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Abstract

In two recent papers, we introduced and studied the notion of kth-
order sum-freedom of a vectorial function F : Fn

2 → Fm
2 . This notion gen-

eralizes that of almost perfect nonlinearity (which corresponds to k = 2)
and has some relation with the resistance to integral attacks of those block
ciphers using F as a substitution box (S-box), by preventing the propaga-
tion of the division property of k-dimensional affine spaces. In the present
paper, we show that this notion, which is rarely satisfied by vectorial func-
tions, can be weakened while retaining the property that the S-boxes do
not propagate the division property of k-dimensional affine spaces. This
leads us to the property that we name kth-order t-degree-sum-freedom,
whose strength decreases when t increases, and which coincides with kth-
order sum-freedom when t = 1. The condition for kth-order t-degree-
sum-freedom is that, for every k-dimensional affine space A, there exists a
non-negative integer j of 2-weight at most t such that

∑
x∈A(F (x))j 6= 0.

We show, for a general kth-order t-degree-sum-free function F , that t can
always be taken smaller than or equal to min(k,m) under some reason-
able condition on F , and that it is larger than or equal to k

deg(F )
, where

deg(F ) is the algebraic degree of F . We study examples for k = 2 (case in
which t = 1 corresponds to APNness) showing that finding j of 2-weight
2 can be challenging, and we begin the study of power functions, and
in particular, of the multiplicative inverse function (used as S-box in the
AES), for which we extend to kth-order t-degree-sum-freedom the result
that it is kth-order sum-free if and only if it is (n − k)th-order sum-free.
We begin the study of the cases of k ∈ {2, 3, n− 3, n− 2, n− 1, n}.

Keywords: vectorial function, S-box, almost perfect nonlinear, kth-order sum-
free, integral attack, division property.
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1 Introduction

A (vectorial) (n,m)-function F : Fn
2 → Fm

2 is called kth-order sum-free [4] if,
for every k-dimensional affine space A in Fn

2 , we have
∑

x∈A F (x) 6= 0. This is
equivalent to saying that the kth-order derivatives Da1

. . . Dak
F (x) never vanish

when a1, . . . , ak are linearly independent over F2.
There is a relation between this notion and integral attacks [8]. Todo [11]

has introduced, in the framework of these cryptanalyses, the notion of division
property of a set, and Boura-Canteaut [2] have translated it into the language
of Reed-Muller codes (see a survey in [7]). A set X ⊆ Fn

2 is said to have
the division property at an order t if its indicator has an algebraic degree at
most n− t. Integral attacks practically lead to studying the propagation of the
division property through rounds, which needs to study it through S-boxes. It
is shown in [4] that kth-order sum-freedom makes it impossible the propagation
of the division property of k-dimensional affine spaces through the S-box. Since
the division property is often (but not always) investigated by cryptanalysts
by focussing on affine spaces, the study of kth-order sum-freedom is useful for
designers, helping them to protect ciphers against such kind of integral attacks,
and for cryptanalysts, letting them know which affine spaces can be considered
in integral attacks. However, the functions satisfying kth-order sum-freedom for
a given k are rare, and even if a function satisfies it for some value of k, it may
not satisfy it for other values. Fortunately, we show in the present paper that
this criterion can be generalized into a version depending on some parameter
t ≥ 1, that is satisfied for every k by any vectorial function for a large enough
value of t (kth-order sum-freedom corresponding to t = 1). This notion is then
practically more useful and easier to satisfy (but it is still more difficult to
study).
In the present paper, we begin the study of this new notion, called kth-order
t-degree-sum-freedom. The condition for such property to be satisfied by F is
that, for every k-dimensional affine space A, there exists a non-negative integer j
of 2-weight at most t such that

∑
x∈A(F (x))j 6= 0, where the 2-weight of a non-

negative integer equals the Hamming weight of its binary expansion. For general
k, we show that we can take t ≤ min(k,m) under a reasonable assumption on
F , and that we necessarily have t ≥ k

deg(F ) , where deg(F ) is the algebraic

degree of F . This generalizes the fact that a function of algebraic degree d
cannot be kth-order sum-free for k > d. We study a little more in detail the
case of k = 2 (corresponding to APNness) and the case for general k of power
functions, and we focus specifically on the multiplicative inverse function (used
as S-box in the AES), by showing that it is is kth-order t-degree-sum-free if
and only if it is (n− k)th-order t-degree-sum-free and by studying the cases of
k ∈ {2, 3, n− 3, n− 2, n− 1, n}.
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2 Preliminaries

Given two positive integers n,m, we call (n,m)-function (vectorial function if
we do not wish to specify n,m) any function F : Fn

2 → Fm
2 . If m = 1, we

speak of an n-variable Boolean function and we denote it by a lowercase sym-
bol f . We can endow the domain or the co-domain of such function (or both)
with the structure of a finite field, since for instance the finite field F2n is an
n-dimensional vector space over F2, and given a basis (α1, . . . , αn), we have the
correspondence (x1, . . . , xn) 7→

∑n
i=1 xiαi.

We call F a kth-order sum-free function if, for every k-dimensional affine sub-
space A of Fn

2 (or of F2n), we have
∑

x∈A F (x) 6= 0 [4].
When viewing a vectorial function as defined over Fn

2 , we can represent it by
its (unique) algebraic normal form F (x) =

∑
I⊆{1,...,n} aI

∏
i∈I xi with aI ∈ Fm

2

(or aI ∈ F2m). This allows to define its algebraic degree max{|I|; aI 6= 0} where
| . . . | denotes the size.
When viewing a vectorial function as defined over F2n and valued in this same
field (which includes the possibility it is valued in a sub-field of F2n and allows
then to consider not only (n, n)-functions but also (n,m)-functions, where m
divides n), we can represent it by its (unique) univariate representation F (x) =∑2n−1

i=0 δix
i, δi ∈ F2n . The algebraic degree of F equals then max{w2(i); δi 6= 0},

where w2(i) is the 2-weight of i.
A subset X of Fn

2 or F2n satisfies the division property at the order l if the
n-variable Boolean function equal to its indicator (taking value 1 on X and 0
elsewhere) has algebraic degree at most n− l (see [2]).

3 A weakening of the sum-freedom notion

To show why sum-freedom can be weakened, let us briefly recall why kth-order
sum-freedom avoids the propagation of the division property of k-dimensional
affine spaces through the S-box. We first need to say what is the image of a set
that needs to be considered as the result of the processing of a setX (supposed to
have the division property) through the S-box: if the S-box F is a permutation,
or is more generally injective, then the image of X by F to be considered is the
classic one F (X) = {F (x);x ∈ X} = {y ∈ Fm

2 ;X ∩ F−1(y) 6= ∅}. If not, then
the image to be considered is (see [7]):

F ((X)) := {y ∈ Fm
2 ;X ∩ F−1(y) has an odd size}

(we use a specific notation to avoid any confusion between F (X) and F ((X))
when F is not injective). What is shown in [4] is that if

∑
x∈X F (x) 6= 0, then

F ((X)) does not have the division property at the order 2.
Let us now show that this nicely simple notion of sum-freedom is too de-

manding in most cases, as a property implying the non-propagation of the di-
vision property. Let X have an even size (so that it has at least the division
property at the order 1). Then F ((X)) has an even size as well, and we have∑

x∈X F (x) =
∑

y∈F ((X)) y. The fact that the sum
∑

y∈F ((X)) y is nonzero is
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equivalent to the property that the indicator of F ((X)) has at least algebraic
degree n−1 (see more details in [4, Subsection 3.2]). Then no propagation of the
division property is possible for k-dimensional affine spaces when F is kth-order
sum-free, since F ((X)) only satisfies the division property at the order 1. But
we do not need the division property to drop to order 1 for the integral attack
to be made impossible, we only need that the division property falls to a small
enough level.

The propagation of the division property has been studied in [2, 7] through
a representation of the S-box by its algebraic normal form, that is, viewing
it as defined over the vector space Fn

2 . This leads to the notion of parity set
introduced in [2]. The division property fails to be propagated at the order
t + 1 if there exists a vector v ∈ Fm

2 of Hamming weight at most t such that∑
x∈X F v(x) = 1, where F v(x) equals the composition of F on its left by the

(multivariate) monomial Boolean function
∏

i∈supp(v) xi. We will not develop
here this approach. We shall identify the vector space Fm

2 with the field F2m

(by choosing a basis (α1, . . . , αm) of this m-dimensional vector space over F2,
and identifying any vector (x1, . . . , xm) ∈ Fm

2 with the element
∑m

i=1 xiαi of the
field). We believe this has an interest, since:

• it is in some cases simpler to address the propagation of the division
property in fields than in vector spaces,

• in many block ciphers such as the AES, S-boxes are naturally defined and
valued in fields,

• most of the important (infinite classes of) vectorial functions for cryptog-
raphy are defined and valued in fields,

• in particular, many important functions for cryptography are power func-
tions over finite fields, and no infinite class of (for instance) APN functions
is known by its algebraic normal form.

3.1 Preliminaries on Reed-Muller codes

We know (see [10, 3]) that, for every 1 ≤ d ≤ m, the dual of the Reed-Muller
code of order d − 1 equals the Reed-Muller code of order m − d, that is, any
m-variable Boolean function f has algebraic degree strictly less than d if and
only if, for every Boolean function g of algebraic degree at most m − d, we
have

∑
y∈F2m

f(y)g(y) = 0, or more generally, for every (m, r)-function G (with
r ≥ 1), of algebraic degree at most m − d, we have

∑
y∈F2m

f(y)G(y) = 0.
Hence:

Lemma 1 Let m be any positive integer, and let 0 ≤ d ≤ m. Any nonzero
m-variable Boolean function f has algebraic degree at least d if and only if
there exists a Boolean function g of algebraic degree at most m − d, such that∑

y∈F2m
f(y)g(y) 6= 0, or equivalently there exists an (m, r)-function G of alge-

braic degree at most m− d such that
∑

y∈F2m
f(y)G(y) 6= 0.
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In particular (taking d = 0), for every nonzero m-variable Boolean function f ,
there exists an m-variable Boolean function g of algebraic degree at most m,
such that

∑
y∈F2m

f(y)g(y) 6= 0 (note that we can take for g the indicator of a
singleton {a}, where f(a) = 1).
Moreover, when the domain of the Boolean function equals F2m , we can specify
Lemma 1 in a way that will be convenient in our framework. We recall that the
2-weight of j is the Hamming weight of the binary expansion of j.

Lemma 2 [3, Corollary 2] Let m be any positive integer, and let 0 ≤ d ≤ m.
Any nonzero m-variable Boolean function f has algebraic degree at least d if and
only if if there exists a non-negative integer j whose 2-weight satisfies w2(j) ≤
m− d, and such that

∑
y∈F2m

yjf(y) 6= 0.

For making the paper self-contained, let us give a proof of this fact (a different
proof from that of [3]):

• the functions in the Reed-Muller code of order m−d are the Boolean func-
tions whose univariate representation has the form (see e.g. [3, Relation
(2.16)]): ∑

j∈Γ(m)
w2(j)≤m−d

trmj
(βjy

j), with ∀j ∈ Γ(m), βj ∈ F2mj ,

where Γ(m) is a set of representatives of the cyclotomic classes of 2 modulo
2m−1, the integer mj is the size of the cyclotomic class containing j, and

trmj
(y) =

∑mj−1
i=0 y2

i

is the absolute trace function from F2mj to F2,

• since for every y ∈ F2m , we have yj ∈ F2mj , we have
∑

y∈F2m
yjf(y) 6= 0

for some j of 2-weight at most m − d if and only if there exists βj in
F2mj such that

∑
y∈F2m

trmj
(βjy

j)f(y) = 1, that is, f is not orthogonal
to the Reed-Muller code of order m − d, that is, does not belong to the
Reed-Muller code of order d− 1.

3.2 Weakening the notion of sum-freedom

From the results recalled above, we deduce by taking d = m−t (that is, m−d =
t) the following proposition, after observing that if f is the indicator of F ((X))
in F2m , then we have

∑
y∈F2m

G(y)f(y) =
∑

x∈X G◦F (x) and
∑

y∈F2m
yjf(y) =∑

x∈X
(
F (x)

)j
:

Proposition 1 For any positive integers n, m, t, let F : Fn
2 → F2m be any

(n,m)-function (where Fn
2 can be identified with F2n or not) and X any set in

Fn
2 . The set F ((X)) fails to have the division property of order t+1 if and only if

some non-negative integer j exists such that w2(j) ≤ t and
∑

x∈X
(
F (x)

)j 6= 0,
which is equivalent to: some (m, r)-function G (with r ≥ 1) of algebraic degree
at most t exists such that

∑
x∈X(G ◦ F )(x) 6= 0.
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Indeed, F ((X)) fails to satisfy the division property at the order l = t + 1 if
its indicator has algebraic degree at least m− l + 1 = m− t. This leads to the
definition:

Definition 1 Let F : Fn
2 → F2m be an (n,m)-function. Let 1 ≤ k ≤ n and

1 ≤ t ≤ m. Then F is called kth-order t-degree-sum-free if, for every k-
dimensional affine space A, there exists a non-negative integer j whose 2-weight

is at most t and such that
∑

x∈A
(
F (x)

)j 6= 0.

According to what we observed above, this is equivalent to the fact that,
for some r ≥ 1, there exists a vectorial (m, r)-function G of algebraic degree at
most t such that

∑
x∈X(G ◦ F )(x) 6= 0.

Proposition 2 If an (n,m)-function F is kth-order t-degree-sum-free, then the
propagation through the S-box of the division property of order t + 1 of any k-
dimensional affine space fails.

Remark. The notion could be extended to non-affine sets X, but then it would
become quite complex to study, and it seems then reasonable to start studying
this notion by restricting vectorial functions to affine spaces. �

The larger t, the weaker the notion of kth-order t-degree-sum-freedom. The
classic kth-order sum-freedom corresponds to t = 1. Indeed, a k-dimensional
affine space A, with k ≥ 1, having an even size, the set F ((A)) has also an even
size, and the only possibility for F to be kth-order 1-degree sum-free is then
that

∑
x∈A(F (x))2

i

= (
∑

x∈A F (x))2
i 6= 0 for some i, that is,

∑
x∈A F (x) 6= 0.

Of course, if a function is kth-order t-degree-sum-free, then it is kth-order
t′-degree-sum-free for every t′ ≥ t.

Let us see now that any (n,m)-function satisfying some some reasonable
condition is kth-order t-degree-sum-free for some t, and more precisely, that the
value of t can be taken smaller than or equal to m.

Lemma 3 Every (n,m)-function such that, for any k-dimensional affine space
A, the set F ((A)) is non-empty (in particular, every injective (n,m)-function)
is kth-order m-degree-sum-free.

Indeed, we recalled above the existence, for every nonzero m-variable func-
tion f , of an m-variable Boolean function g of algebraic degree at most m
such that

∑
y∈F2m

f(y)g(y) 6= 0. Taking for f the indicator of F ((A)), this
proves the existence of a non-negative integer j of 2-weight at most m such

that
∑

y∈F2m
yjf(y) =

∑
x∈A

(
F (x)

)j 6= 0. The value t = m satisfies then the
condition of Definition 1 (note that even if F ((A)) equals {0}, in which case we
have

∑
x∈A(F (x))j = 0 for every positive integer j, we can take j = 0 to have∑

x∈A(F (x))j 6= 0; we can more generally do so when F ((A)) is any singleton).
This leads to the following:
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Definition 2 Let n,m be two positive integers and let 2 ≤ k ≤ n. Let F
be any (n,m)-function such that, for any k-dimensional affine space A, the
set F ((A)) is non-empty (for instance let F be injective). We call kth-order
degree-sum-free-limit of F the smallest value of t ≤ m such that F is kth-order
t-degree-sum-free.

According to the observations above, the kth-order degree-sum-free-limit of the
functions ensuring, for any k-dimensional affine space A, that the set F ((A))
is non-empty, is an affine invariant parameter, that is, if L and L′ are two
affine permutations, then the kth-order degree-sum-free-limit of F equals the
kth-order degree-sum-free-limit of L ◦ F ◦ L′.

Remark. The condition on F in Definition 2 is necessary, since if it is not
satisfied for some A, the kth-order degree-sum-free-limit cannot exist. Take for
instance F (x) = x+ x2, then for every j, the sum of the values of (F (x))j over
an affine space stable under translation by 1 equals 0.
It would be nice to characterize precisely what are all the functions satisfying
this condition.
We leave this as an open problem, but we give an example of an infinite class of
non-bijective (m,m)-functions satisfying it: for every positive even integers m
and k such that k ≤ m, we take for F any power (m,m)-functions F (x) = xd

such that gcd(d, 2m − 1) = 3 (as are all APN power functions over F2m , see
[3, Proposition 165]). Let A be a k-dimensional vector subspace of F2m and
suppose that F ((A)) = ∅. Let us denote by w a primitive element of F4. The
pre-images by F are the singleton {0} and the 3-sets uF∗4, where u 6= 0. Then
if F ((A)) = ∅, then A must not contain 0, and for every a ∈ A, we must have
either aw ∈ A (and aw2 6∈ A which is in fact automatically implied by 0 6∈ A
since a + aw + aw2 = 0) or aw2 ∈ A (and aw 6∈ A). Since if b = aw2 then
a = bw, we have then that A is the disjoint union of a set S of size 2k−1 and of
the set wS = {wx;x ∈ S}. The elements of S are the elements x of A such that
wx ∈ A. Hence, S = A ∩ w2A is an affine space. Since A = S ∪ wS is an affine
space and S is an affine hyperplane of A, the vector space E over F2 underlying
S is then stable under the multiplication by w. It is then a vector space over F4

and its dimension as an F2-vector space is then even. This proves that if k − 1
is odd, then F satisfies the condition of Definition 2.
Note that, since for n odd, all APN power functions are bijective, all APN power
functions satisfy the condition in Definition 2. �

3.3 An upper bound on the kth-order degree-sum-free-
limit

We shall prove that every (n,m)-function satisfying the condition of Definition
2 is kth-order k-degree-sum-free, that is, has kth-order degree-sum-free-limit at
most k. This is clearly true if F ((A)) is an affine space, but it is not immediately
clear whether it is true in general.
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Remark. If F ((A)) = {0} then we can take j = 0 and otherwise, there exists
b in F ((A)) \ {0}. Denoting by 1b the indicator of the singleton {b} in F2m , we
have

∑
x∈A(1b ◦ F )(x) = 1, but 1b has algebraic degree m and the question is:

can we replace it (or another function having the same property) by a function
of algebraic degree at most k? Let us consider F valued in Fm

2 ; this will simplify
our presentation and we know that the two representations of F over Fm

2 and
F2m are equivalent. Without loss of generality we can then assume that b is the
all-1 vector. Then 1b(y) =

∏m
i=1 yi and denoting the coordinate functions of F

by f1, . . . , fm, we have (1b ◦ F )(x) =
∏m

i=1 fi(x). By Jordan’s reduction, there
exist, up to a permutation of the input variables (which we can apply without
loss of generality), n−k affine Boolean functions lk+1, . . . , ln, such that, for every
x = (x1, . . . , xn) in A, we have xk+1 = lk+1(x1, . . . , xk), . . . , xn = ln(x1, . . . , xk).
For every x ∈ A, we can substitute in

∏m
i=1 fi(x) every xk+l, l = 1, . . . , n − k,

with lk+l(x1, . . . , xk). Then f1, . . . , fm become functions in k variables, but it
is not clear whether we can express 1b ◦ F or any other function g such that∑

x∈A(g ◦F )(x) = 1 in the form g′ ◦F where g′ has algebraic degree at most k.
In fact, the question is: the indicator of F ((A)) has it algebraic degree larger
than m − k? This is indeed equivalent to the question whether there exists a
Boolean function g over Fm

2 such that fg has algebraic degree m. The next
proposition clarifies this. �

Proposition 3 Let n,m be two positive integers and let 2 ≤ k ≤ n. Let F be
any (n,m)-function such that F ((A)) 6= ∅ for every k-dimensional affine space
A. Then F has kth-order degree-sum-free-limit at most min(k,m).

Proof. Since we know that we can take t ≤ m, we just have to show that we can
take t ≤ k. For every k-dimensional affine space A, F ((A)) has size at most 2k

and its indicator f has then algebraic degree at least m− k (indeed, we know,
see [10, 3]) that any nonzero m-variable Boolean function of algebraic degree
at most d has Hamming weight at least 2m−d). There exists then, according
to (the opposite of) Lemma 2, an integer j of 2-weight at most k such that∑

y∈F2m
yjf(y) =

∑
x∈A(F (x))j 6= 0. 2

3.4 A lower bound on kth-order degree-sum-free-limit

Let us show a lower bound on the value of t. Denoting by deg
(
F (x)

)
the

algebraic degree of function F (x), we have, for every non-negative integer j:

deg
(
(F (x))j

)
≤ w2(j) deg(F ),

since the algebraic degree of the function G : x ∈ F2m 7→ xj equals w2(j) and
we have, for every (n,m)-function F , and any (m,m)-function G: deg(G◦F ) ≤
deg(G) deg(F ). Let A be any k-dimensional affine space. If deg

(
(F (x))j

)
< k,

then we have
∑

x∈A(F (x))j = 0. We deduce:
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Proposition 4 Let F be any (n,m)-function that is kth-order t-degree sum-
free. We have:

t ≥
⌈

k

deg(F )

⌉
. (1)

Indeed, if t < k
deg(F ) then, for every j such that w2(j) ≤ t, we have deg

(
(F (x))j

)
≤

deg(F )w2(j) < k.
Note that Proposition 4 generalizes the obvious fact that a function of algebraic
degree d cannot be kth-order sum-free for k > d.

4 A few examples in the particular case of k = 2

In this section, we visit a few examples of (infinite classes of) non-APN permu-
tations, illustrating the upper bound on the kth-order degree-sum-free-limit of
Proposition 3.
A non-APN (n, n)-function has what [9] calls vanishing flats (which would bet-
ter be called vanishing planes, since they are the affine planes {x, y, z, x+y+z},
with x, y, z distinct, over which F sums to 0); we shall respect this terminology.
To evaluate the second-order degree-sum-free-limit of a given permutation, we
need to determine its vanishing flats, and for each of them, visit by increasing
2-weight the integers j until we find one such that (F (x))j sums to a nonzero
value over this vanishing flat. Proposition 3 tells us that this will always happen
with 2-weight 2.
The examples below show that determining the vanishing flats of a function F
may be easy (then, determining the values of j such that

∑
x∈P (F (x))j 6= 0

may be easy or hard), or it may be hard. In the first example, determining the
vanishing flats P is easy, and determining the values of j is hard; in the second
example, both determinations are rather easy; in the last example, determining
the vanishing flats is hard.

4.1 Quadratic power functions

It is easy to determine the vanishing flats of quadratic power functions F (x)
(but it is more complex to evaluate the sum of the values taken by (F (x))j over
them).

Lemma 4 Let n, i be positive integers. Let F (x) = x1+2i . The vanishing flats
of F are the planes {x, y, z, x + y + z} with x, y, z distinct, such that y + z =
w(x+ z) where w ∈ F2l \ F2 with l = gcd(i, n).

Proof. The vanishing flats of F are the planes {x, y, z, x + y + z} with x, y, z

distinct, such that x1+2i + y1+2i + z1+2i + (x + y + z)1+2i = 0, that is, (x +

z)(y + z)2
i

+ (x + z)2
i

(y + z) = 0, or equivalently, (y + z)2
i−1 = (x + z)2

i−1,
that is, y + z = w(x + z) where w is any (2i − 1)th root of unity (satisfying

then w2i = w) different from 1 in F2n , which is equivalent to w ∈ F2l \ F2 with
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l = gcd(i, n). 2

Let us now see if it is difficult for each such vanishing flat P to determine
j such that

∑
x∈P (F (x))j 6= 0. Without loss of generality, we take F (x) = xd

where d = 1 + 2i. According to Lemma 4, the vanishing flats of F are the planes
{x, y, z, x + y + z} with x, y, z distinct, such that y + z = w(x + z) where w ∈
F2l \F2 with l = gcd(i, n). Note that y+z = w(x+z) is equivalent to z = wx+y

w+1 ,

and we have then zd =
(

wx+y
w+1

)1+2i

= (wx+y)(w2ix2i+y2i )

(w+1)(w+1)2i
= (wx+y)(wx2i+y2i )

w2+1 =

w2xd+wxy2i+wx2iy+yd

w2+1 and (x + y + z)d =

(
(w+1)(x+y)+wx+y

)d
w2+1 = (x+wy)d

w2+1 =

xd+wxy2i+wx2iy+w2yd

w2+1 . Let us now consider a positive integer j of 2-weight 2.
Without loss of generality, we take j = 1 + 2r. We want to evaluate:

xdj +ydj +
(w2xd + wxy2

i

+ wx2
i

y + yd

w2 + 1

)j
+
(xd + wxy2

i

+ wx2
i

y + w2yd

w2 + 1

)j
=

xdj + ydj +
A

(w2 + 1)j
,

where A = (w2xd+wxy2
i

+wx2
i

y+yd)(w2r+1

xd2
r

+w2rx2
r

y2
i+r

+w2rx2
i+r

y2
r

+

yd2
r

)+(xd+wxy2
i

+wx2
i

y+w2yd)(xd2
r

+w2rx2
r

y2
i+r

+w2rx2
i+r

y2
r

+w2r+1

yd2
r

),

that is, A = w2r+1+2xdj + w2r+2xd+2ry2
i+r

+ w2r+2xd+2i+r

y2
r

+ w2xdyd2
r

+
w2r+1+1xd2

r+1y2
i

+ w2r+1x2
r+1y2

i+r+2i + w2r+1x2
i+r+1y2

r+2i + wxyd2
r+2i +

w2r+1+1xd2
r+2iy + w2r+1x2

r+2iy2
i+r+1 + w2r+1x2

i+r+2iy2
r+1 + wx2

i

yd2
r+1 +

w2r+1

xd2
r

yd + w2rx2
r

y2
i+r+d + w2rx2

i+r

y2
r+d + ydj + xdj + w2rx2

r+dy2
i+r

+
w2rx2

i+r+dy2
r

+ w2r+1

xdyd2
r

+ wxd2
r+1y2

i

+ w2r+1x2
r+1y2

i+r+2i +
w2r+1x2

i+r+1y2
r+2i + w2r+1+1xyd2

r

+ wxd2
r+2iy + w2r+1x2

r+2iy2
i+r+1 +

w2r+1x2
i+r+2iy2

r+1 + w2r+1+1x2
i

yd2
r

+ w2xd2
r

yd + w2r+2x2
r

y2
i+r+d +

w2r+2x2
i+r

y2
r+d + w2r+1+2ydj =

(w2j + 1)xdj + (wj+1 + wj−1)xd+2ry2
i+r

+ (wj+1 + wj−1)xd+2i+r

y2
r

+

(w2 +w2j−2)xdyd2
r

+(w2j−1 +w)xd2
r+1y2

i

+(wj +w2j−1)xjy2
ij +wxy2

i+d2r +

(w2j−1 + w)x2
i+d2ry + (wj + w2j−1)x2

i+2ry2
i+r+1 + wx2

i

yd2
r+1 + (w2j−1 +

w2)xd2
r

yd+(wj−1+wj+1)x2
r

yd+2i+r

+(wj−1+wj+1)x2
i+r

yd+2r+ydj+w2j−1xyd2
r

+

w2r+1+1x2
i

yd2
r

+ w2jydj .
According to Proposition 3, we know that j of 2-weight 2 exists such that this
expression is nonzero, but determining such j seems hard.

4.2 Inverses of quadratic power permutations: an example

Determining the vanishing flats of non-quadratic functions is in most cases dif-
ficult. A case where it is simplified is when the function is a permutation whose
compositional inverse is quadratic. It is indeed shown in [9] that if two functions
are CCZ-equivalent, then their vanishing flats correspond to each others. Let us
detail what happens with a permutation F and its compositional inverse F−1,
since we will need such details below. Let {x, y, z, x+ y+ z} be a vanishing flat
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of F . We have by hypothesis F (x) + F (y) + F (z) + F (x + y + z) = 0. This
equality can be written in the form x+y+z = F−1

(
F (x)+F (y)+F (z)

)
, that is,

F−1(F (x))+F−1(F (y))+F−1(F (z))+F−1
(
F (x)+F (y)+F (z)

)
= 0. Hence if

{x, y, z, x+y+z} is a vanishing flat of F , then {F (x), F (y), F (z), F (x)+F (y)+
F (z)} is a vanishing flat of F−1, and the converse is also true by exchanging
the roles of F and F−1. We summarize this in the following lemma, that is not
really a new result, but which clarifies the situation:

Lemma 5 Let P = {x, y, z, x + y + z} be any affine plane of F2n and let F
be any permutation of F2n . Then P is a vanishing flat of F if and only if
{F (x), F (y), F (z), F (x) + F (y) + F (z)} is a vanishing flat of F−1.

Let us study the case of the power function F (x) = xd with d = 3·2n−2
5 with

n ≡ 2 (mod 4), which is the compositional inverse of the power permutation
x5, since we have 5d ≡ 1 (mod 2n − 1), and with k = 2, we have that xd is not
second-order sum-free, that is, not APN, since it inverse x5 is not APN, because
gcd(2, n) = 2 6= 1. According to Lemma 5 applied to F−1 instead of F , the
vanishing flats of F are the planes {x5, y5, z5, x5+y5+z5} where {x, y, z, x+y+z}
are the vanishing flats of the power permutation x5. According to Lemma 4,
the vanishing flats of x5 are the planes {x, y, z, x + y + z} with x, y, z distinct,
such that y + z = w(x+ z) or y + z = w2(x+ z), where w and w2 = w + 1 are
the two primitive elements of F4, that is z = w2x + wy or z = wx + w2y (and
in both cases, the condition x 6= y is enough to ensure that x, y, z are distinct).
We deduce:

Lemma 6 The vanishing flats of the function F (x) = xd, where d = 3·2n−2
5

and n ≡ 2 (mod 4), are the planes:

{x5, y5, (w2x+ wy)5, x5 + y5 + (w2x+ wy)5 =

{x5, y5, (w2x+ wy)5, (wx+ w2y)5}

and
{x5, y5, (wx+ w2y)5, x5 + y5 + (wx+ w2y)5} =

{x5, y5, (wx+ w2y)5, (w2x+ wy)5},

where in both cases x 6= y.

We can check, since d is the inverse of 5, that F sums to 0 over each of these
planes. Let us now see what gives

∑
x∈P (F (x))j when j is a positive integer of

2-weight 2 and P is any of these planes. Without loss of generality, we take j =
1+2i. We obtain in both cases x1+2i +y1+2i +(w2x+wy)1+2i +(wx+w2y)1+2i =

x1+2i +y1+2i + (w2x+wy)(w2i+1

x2
i

+w2iy2
i

) + (wx+w2y)(w2ix2
i

+w2i+1

y2
i

).

1. If i ≡ 0 (mod 3), then we obtain x1+2i + y1+2i + (w2x + wy)(w2x2
i

+

wy2
i

) + (wx+ w2y)(wx2
i

+ w2y2
i

) = 0.

2. If i ≡ 1 (mod 3), then we obtain x1+2i+y1+2i+(w2x+wy)(wx2
i

+w2y2
i

)+

(wx+w2y)(w2x2
i

+wy2
i

) = x1+2i +y1+2i +xy2
i

+x2
i

y = (x+y)1+2i 6= 0.
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3. If i ≡ 2 (mod 3), then we obtain x1+2i + y1+2i + (w2x + wy)(w2x2
i

+

wy2
i

) + (wx+ w2y)(wx2
i

+ w2y2
i

) = 0.

Determining j is this case is then easy.

4.3 Some other power functions

We shall study apart the case of the multiplicative inverse function in Subsection

5.2. Let us study the case of the power functions Pk(x) = x2
k−1 (which are

shown in [4] to be kth-order sum-free). For k ≤ 2, there is nothing special to
say about them, since they equal identity for k = 1 and are APN for k = 2.
We assume then k ≥ 3. The vanishing flats of Pk are not investigated in [9], so
we need to address the case of j having a 2-weight equal to 1. Without loss of

generality we can take j = 1. The condition that the function x2
k−1 sums to a

nonzero value over an affine plane {x, y, z, x+y+z} (with x, y, z ∈ F2n distinct)

is x2
k−1 +y2

k−1 +z2
k−1 +(x+y+z)2

k−1 6= 0 and we can again reduce ourselves

to z = 1. We obtain x2
k−1 + y2

k−1 + 1 + (x + y + 1)2
k−1 6= 0. Hence, if the

equation x2
k−1 + y2

k−1 + 1 + (x + y + 1)2
k−1 = 0 admits solutions (x, y) such

that x and y are distinct and different from 1, we shall have to consider integers
j of 2-weight larger than 1 for the corresponding affine planes {x, y, z, x+y+z}.

• If x + y + 1 = 0 (with x and y nonzero and distinct), then the equation

becomes x2
k−1 + (x + 1)2

k−1 + 1 = 0. Multiplying by x(x + 1) (which

is nonzero), we obtain x2
k

(x + 1) + x(x2
k

+ 1) + x(x + 1) = 0, that is,

x2
k

+x2 = 0, or equivalently x2
k−1−1 = 1. We have gcd(2k−1−1, 2n−1) =

2gcd(k−1,n)− 1. Hence, if k − 1 is co-prime with n, then the function sums
to a nonzero value over {x, y, z, x+ y+ z} = {x, x+ 1, 1, 0}, and if k − 1 is
not co-prime with n, then {x, x+ 1, 1, 0} is a vanishing flat (that we need
to consider when we move to j of a 2-weight larger than 2). Note that
for k = n− 1 and n even, this gives what we know on the vanishing flats

of the inverse function (see below): x2
k−1−1 = 1 becomes x2

n−2−1 = 1,
that is, x ∈ F∗4 and (taking rid of the restriction that z = 1) the vanishing

flats are the planes z · F4 where z ∈ F∗2n . But for k = n− 2, x2
k−1−1 = 1

becomes x2
n−3−1 = 1, that is, x ∈ F∗8, and we get vanishing flats of the

form z · {0, 1, x, x+ 1}, where x ∈ F8 \ F2 and z ∈ F∗2n . For j = 1 + 2i, we

have z(2
k−1)j +(zx)(2

k−1)j +(z(x+1))(2
k−1)j = z(2

k−1)j(1+(x1+2i)2
k−1 +

(x2
i+1 + x2

i

+ x+ 1)2
k−1).

• If x+y+1 6= 0, then multiplying the equation by it gives x2
k−1y+x2

k−1+

xy2
k−1 + y2

k−1 + x+ y = 0, that is, x2k−1+1
x+1 = y2k−1+1

y+1 .
We are then brought to considering those pre-images by the function x ∈
F2n \ {1} 7→ x2k−1+1

x+1 that contain at least two distinct elements x, y such
that x + y + 1 6= 0. For instance, the pre-image of 0 equals F2r \ {1}
where s = gcd(k, n) = 1, which leads to a vanishing flat if s ≥ 3, and the
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pre-image of 1 equals F2r \ {1} where r = gcd(k − 1, n) = 1, which leads
to a vanishing flat if r ≥ 3.

We do not see how the known results on this function [1] can allow to determine
all vanishing sets, for general k.

5 Power functions

An (n, n)-function F (x) = xd, x ∈ F2n (where d is better viewed in Z/(2n−1)Z,
note that the 2-weight is coherent with this structure), is kth-order t-degree-
sum-free if and only if, for every k-dimensional affine space A, there exists a non-
negative integer j of 2-weight at most t such that

∑
x∈A x

dj 6= 0. Addressing the

kth-order t-degree-sum-freedom of a power function xd includes then addressing
it for the functions xl where l is a multiple of d, and we have:

Proposition 5 Let d ∈ Z/(2n − 1)Z and let l be a nonzero multiple of d in
Z/(2n − 1)Z:

0 6≡ l ≡ dr (mod 2n − 1).

If the power function xl is kth-order t-degree-sum-free for some k and t, then
F (x) = xd is kth-order (w2(r)t)-degree-sum-free.

Proof. Let A be any k-dimensional vector space and j a non-negative integer of
2-weight at most t such that

∑
x∈A x

lj 6= 0. Then we have
∑

x∈A x
drj 6= 0 and

w2(rj) ≤ w2(r)w2(j) ≤ w2(r)t. 2

5.1 A general upper bound on t for permutations

We give now an upper bound on the kth-order degree-sum-free-limit of power
functions which, in some cases, is tighter than the bound min(k,m).

Proposition 6 Let F (x) = xd be any power permutation and let d′ be the
inverse of d modulo 2n − 1. Then F is kth-order t-degree-sum-free where t
equals the 2-weight of r = d′(2k − 1) ∈ Z/(2n − 1)Z.

Proof. We know from [4] that the power function x2
k−1 is kth-order sum-

free, that is, kth-order 1-degree sum-free and we have: d(d′(2k − 1)) ≡ 2k − 1
(mod 2n − 1). Proposition 5 with t = 1 completes the proof. 2

Of course, this gives an information only if w2(d′(2k− 1)) < w2(2k− 1) = k.

5.2 The multiplicative inverse function

The multiplicative inverse function

Finv(x) = x2
n−2, x ∈ F2n ,

13



being APN for n odd, that is, second-order sum-free, it is second-order 1-degree-
sum-free.
We know that Finv is not 2nd-order sum-free over F2n when n is even, since it is
not APN. Hence the multiplicative inverse function is not 2nd-order 1-sum-free.
The next proposition shows that it is however kth-order t-degree-sum-free for
the value of t coming immediately after 1.

Proposition 7 Let n be an even integer such that n ≥ 4. The multiplicative
inverse function Finv(x) = x2

n−2, x ∈ F2n , is 2nd-order 2-sum-free.

Proof. We know from [4] that for every affine space A that is not a vector space
(i.e. which does not include the 0 vector), we have

∑
x∈A F (x) 6= 0. In the case

of a 2-dimensional vector space, that is, A = {0, a, b, a+ b} with a and b linearly

independent over F2, we have 1
a + 1

b + 1
a+b = a2+b2+ab

ab(a+b) =
a
(
1+( b

a )2+ b
a

)
b(a+b) . The

only affine planes over which the inverse function sums to 0 are then the vector
spaces of the form aF4, since the equation 1 + x2 + x = 0 has for solutions
the two primitive elements of F4. Over such plane, the cube function x3 sums
to a nonzero value, and since the cube function is quadratic, Finv is 2nd-order
2-sum-free. 2

On the basis of computer investigations, we conjecture that, for every k ∈
{3, . . . , n − 3} and every n ≥ 6, the inverse function is not kth-order 2-degree-
sum-free (see [5], see also [6]). It is then useful to study the values of t for which
it is kth-order t-degree-sum-free.

5.2.1 A general upper bound on t

Since Finv has algebraic degree n − 1, Relation (1) does not give information,
but we have:

Proposition 8 For every 2 ≤ k ≤ n, the multiplicative inverse (n, n)-function
is kth-order t-degree-sum-free with t = n− k.

This is a direct consequence of Proposition 6 with d′ = 2n − 2 and r = (2n −
2)(2k − 1) = 2n − 2k ∈ Z/(2n − 1)Z.
This result gives an information only for n− k < k, that is, k > n

2 .
An interesting question would be to see whether t = n− k can be lowered.

5.2.2 Relation with subspace polynomials and consequences

Case of vector spaces: Let Ek be a k-dimensional vector space and let
LEk

(x) =
∏

u∈Ek
(x + u) =

∑k
i=0 bk,ix

2i (see [4] and recall that bk,0 6= 0 and
bk,k = 1). Such a (linearized) polynomial is sometimes called a subspace poly-
nomial.
Since for every x ∈ Ek, we have x = 1

bk,0

∑k
i=1 bk,ix

2i , we have for nonzero

x ∈ Ek and every non-negative integer j, by dividing by xj+1, that x−j =
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1
bk,0

∑k
i=1 bk,ix

2i−1−j . We deduce that:

∑
x∈Ek\{0}

x−j =
1

bk,0

k∑
i=1

bk,i

( ∑
x∈Ek\{0}

x2
i−1−j

)
.

Hence, since for every (n, n)-function F of algebraic degree less than k, we have∑
x∈Ak

F (x) = 0, we deduce:

Lemma 7 Let n and k be any positive integers such that k ≤ n and let Ek be
any k-dimensional vector space and LEk

(x) =
∏

u∈Ek
(x + u) =

∑k
i=0 bk,ix

2i .
Let

r = min{i; 1 ≤ i ≤ k and bk,i 6= 0}.
Then

∑
x∈Ek\{0} x

−j equals 0 for every 1 ≤ j < 2r − 1 and is nonzero for

j = 2r − 1 (since
∑

x∈Ek\{0} x
0 = 1).

This result extends results from [4, 5].

Case of affine spaces not being vector spaces, i.e. not including 0:
Let Ak be a k-dimensional affine space not containing 0. Since we know from
[4] that

∑
x∈Ak

x−1 6= 0, we can take j = 1 and do not have to look for
larger values of j. By curiosity, let us show however how the method used
above for vector spaces can be adapted to find again this result. Let Ek be
the direction of Ak (that is, Ek = Ak + Ak). We have Ak = L−1Ek

(b) for

some nonzero b. Then, for every x ∈ Ak, we have b =
∑k

i=0 bk,ix
2i and

then
∑

x∈Ak
x−j = 1

b

∑k
i=0

(
bk,i

∑
x∈Ak

x2
i−j
)

. We find for j = 1 that since∑
x∈Ak

x2
i−1 is 0 for i < k and nonzero for i = k, then

∑
x∈Ak

x−1 6= 0. This
provides a different way of proving the known result from [4]. For j ≥ 2, then

we have that
∑

x∈Ak
x−j = 1

b

∑k
i=0

(
bk,i

∑
x∈Ak

x2
i−1−(j−1)

)
equals 0 for every

j such that j − 1 < 2k − 1 and is (of course) nonzero for j = 2k.

We deduce from the observations above:

Proposition 9 The multiplicative inverse function Finv is kth-order t-degree-
sum-free, where t is the minimum positive integer such that, for every k-dimensi-
onal vector subspace Ek of F2n , denoting LEk

(x) =
∏

u∈Ek
(x+u) =

∑k
i=0 bk,ix

2i ,
we have t ≥ min{i; 1 ≤ i ≤ k and bk,i 6= 0}.

Corollary 1 If k divides n, then we have t = k.

Proof. This is a direct consequence of the fact that, for Ek = F2k , we have

LEk
(x) = x2

k

+ x. 2

The next corollary generalizes to the degree-sum-free-limit the equality,
proved in [5], between the kth-order sum-freedom of the inverse function and
its (n− k)th-order sum-freedom.
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Corollary 2 For any n ≥ 2 and any k ∈ {2, . . . , n − 2}, the kth-order degree-
sum-free-limit of the multiplicative inverse (n, n)-function equals its (n − k)th-
order degree-sum-free-limit.

Proof. It is recalled in [5] that if Ek is any k-dimensional vector subspace of
F2n and En−k = LEk

(F2n) then En−k has dimension n − k and we have the
following relation in F2n [x]:

LEn−k
◦ LEk

(x) = LEk
◦ LEn−k

(x) = x2
n

+ x.

Writing LEk
(x) =

∑k
i=0 bk,ix

2i and LEn−k
(x) =

∑n−k
i=0 bn−k,ix

2i , we have LEn−k
◦

LEk
(x) =

∑n−k
i=0

∑k
j=0(bk,j)

2ibn−k,ix
2i+j

. We have then:

∀r ∈ {1, . . . , n− 1},
r∑

i=0

(bk,r−i)
2ibn−k,i = 0. (2)

We know from Proposition 9 that, if t is the kth-order degree-sum-free-limit of
the inverse function, then bk,0 and bk,t are nonzero and bk,1 = · · · = bk,t−1 = 0.
The t − 1 first relations in (2) imply bn−k,1 = · · · = bn−k,t−1 = 0 and the tth
relation implies bn−k,t 6= 0. 2

5.2.3 The case of k = 3

The result [4, Proposition 8] gives a necessary and sufficient condition on two
elements a, b such that a, b and 1 are linearly independent over F2 and Finv

sums to 0 over the 3-dimensional vector space E spanned by a, b, 1 (and this
is straightforwardly generalized to the 3-dimensional vector space spanned by
three linearly independent elements a, b, c by replacing a by a

c , b by b
c and

multiplying all the elements in the vector space by c, which does not change
the fact that the sum of the function x−j over the vector space sums to 0 or
to a nonzero value). The condition is ab4 + a4b + ab8 + a8b + a4b8 + a8b4 = 0.
Dividing by ab and factorizing gives (a7+1)(b3+1) = (a3+1)(b7+1). Note that
if a ∈ F4 (that is, a ∈ F4 \ F2), then the condition becomes (a+ 1)(b3 + 1) = 0,
that is, b ∈ F4 \ F2, but then a, b, 1 are not linearly independent. The condition
can then be written:

a, b 6∈ F4, a, b, 1 linearly independent, and
a7 + 1

a3 + 1
=
b7 + 1

b3 + 1
. (3)

To determine the kth-order degree-sum-free-limit of the multiplicative inverse
function, we need then, for every a, b satisfying (3), to find the minimum 2-
weight (necessarily at least 2) of non-negative integers j such that:

a−j + b−j + 1 + (a+ b)−j + (a+ 1)−j + (b+ 1)−j + (a+ b+ 1)−j 6= 0.

We leave this question open for the moment.
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5.2.4 The case of k ≥ n− 4

If k = n, then Corollary 1 shows that t = n.
If k = n− 1, then we know from [5] that the inverse function is kth-order sum-
free and then t = 1.
If k = n− 2, then we can apply Corollary 2 and we have that Finv is (n− 2)th-
order 1-degree-sum-free over F2n when n is odd, and it is only kth-order 2-
degree-sum-free when n is even. By curiosity, let us prove it also directly. We
know from [5], for general k, that

∑
u∈Ek\{0}

1
u equals the coefficient of x in the

univariate representation of the indicator function 1Ek
(x) and it is deduced that

if (u1, . . . , un−k) is a basis of E⊥ = {y ∈ F2n ; trn(x y) = 0,∀x ∈ E}, since we

have 1E(x) =
∏n−k

i=1 (1 + trn(ui x)), the coefficient of x equals then:

∑
b∈{−∞,0,...,n−1}n−k;∑n−k
i=1

2bi≡1 (mod 2n−1)

(
n−k∏
i=1

u2
bi

i

)
.

For k = n− 2, we obtain u1 +u2 +
(
u1u2

) 1
2

and the (n− 2)-dimensional spaces

over which the inverse function sums to 0 are of the form (aF4)⊥, a ∈ F∗2n ,
that is, of the form aF⊥4 , a ∈ F∗2n . We can use Proposition 9: F⊥4 equals
{x ∈ F2n ; trn(x) = trn(wx) = 0}, where w is a primitive element of F4 and
its subspace polynomial equals then the gcd of trn(x) and trn(wx). We have
gcd

(
trn(x), trn(wx)

)
= gcd

(
trn(x), wtrn(x) + trn(wx)

)
= gcd

(
x + x4 + · · · +

x2
n−2

, trn(x)
)

= x+ x4 + · · ·+ x2
n−2

. We deduce:

Proposition 10 Let n ≥ 4 be any even integer. Then the multiplicative inverse
function is (n− 2)th-order 2-degree-sum-free.

If k = n−3, n−4, then it can be proved (see [5]) that Finv is not (n−3)th-order
sum-free over F2n We leave the study of the kth-order degree-sum-free-limit open
for the moment.
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