
Shaking up authenticated encryption

Thursday 10th October, 2024

Joan Daemen
Radboud University

Nijmegen, The Netherlands

Seth Hoffert
Nebraska, USA

Silvia Mella
Radboud University

Nijmegen, The Netherlands

Gilles Van Assche
STMicroelectronics
Diegem, Belgium

Ronny Van Keer
STMicroelectronics
Diegem, Belgium

Abstract—Authenticated encryption (AE) is a cryptographic
mechanism that allows communicating parties to protect the
confidentiality and integrity of messages exchanged over a
public channel, provided they share a secret key. In this
work, we present new AE schemes leveraging the SHA-
3 standard functions SHAKE128 and SHAKE256, offering
128 and 256 bits of security strength, respectively, and their
“Turbo” counterparts. They support session-based commu-
nication, where a ciphertext authenticates the sequence of
messages since the start of the session. The chaining in the
session allows decryption in segments, avoiding the need to
buffer the entire deciphered cryptogram between decryption
and validation. And, thanks to the collision resistance of
(Turbo)SHAKE, they provide so-called CMT-4 committing
security, meaning that they provide strong guarantees that
a ciphertext uniquely binds to the key, plaintext and asso-
ciated data. The AE schemes we propose have the unique
combination of advantages that 1) their security is based
on the security claim of SHAKE, that has received a large
amount of public scrutiny, that 2) they make use of the
standard KECCAK-p permutation that not only receives
more and more dedicated hardware support, but also allows
competitive software-only implementations thanks to the
TurboSHAKE instances, and that 3) they do not suffer from
a 64-bit birthday bound like most AES-based schemes.

1. Introduction

Authenticated encryption (AE) is a cryptographic
mechanism that provides both confidentiality and authen-
tication of messages under a secret key. An AE scheme
wraps a message, composed of plaintext and of associated
data, and produces a ciphertext. The ciphertext contains
the encrypted plaintext and has redundancy that depends
on both the associated data and the plaintext. After wrap-
ping, the sender sends the ciphertext together with the
associated data to the receiver. This can then use the
AE scheme to unwrap the ciphertext using the secret key
and the associated data as auxiliary inputs. This operation
encompasses the verification of the ciphertext redundancy
and, if valid, the decryption and return of the plaintext. If
the redundancy does not match, it returns an error code.

Many AE schemes are built using modes of operation
on top of AES. For simple AES-based schemes the se-
curity breaks down when the amount of data encrypted
with a given key approaches 264, the so-called birthday
bound. There are AES modes that do not suffer from that

limitation but they tend to be more complicated and/or
expensive. Our (Turbo)SHAKE-based AE schemes are
simple and do not suffer from the birthday bound: They
achieve security strength implied by that of the underlying
XOF. With SHAKE128 for instance, the security strength
is 128.

In modern applications, parties do not limit to ex-
change individual messages, but usually have to wrap
sequences of messages in bi-directional communications.
A simple example is secure messaging applications, where
users exchange messages in a continuous stream.

A session refers to a sequence of messages, where a
message is authenticated in the context of those previ-
ously sent within the sequence. A session-supporting AE
scheme deals with such sequences of messages by having
intermediate tags, ensuring that the encryption context
and authenticity of the current ciphertext depends on all
previous messages in the session. Session-supporting AE
covers the traditional notion of authenticated encryption
of a single message (i.e., a plaintext-associated data pair)
as well. Each session then contains a single message.

Session-supporting AE can be implemented with a
scheme that maintains a rolling state, that keeps track
of the sequence of messages exchanged during the ses-
sion. When a new session is started, the rolling state
of the session-supporting AE scheme is initialized. As
Alice sends messages to Bob, the rolling state of the AE
scheme is updated with each new message. Encryption and
authentication of each message are computed using the
rolling state, ensuring the dependance of the intermediate
tag on all previous messages in the session. When Bob
receives a message from Alice, the AE scheme checks the
message in the context of the rolling state to ensure that
it has not been tampered with and that it is in the correct
sequence. Both parties maintain their AE scheme states,
ensuring that the bidirectional communication remains
secure throughout the session.

The support for sessions presents a solution to the
requirement to be online, as defined in [1] : the ability
to do wrapping or unwrapping on the fly with a fixed
memory size. A long message can be cut in short segments
that are decrypted and authenticated as separate messages
in a session.

When a sender and a receiver hold a secret key K
that was not shared with anyone else, then the successful
unwrap of a ciphertext C authenticates the origin of the
decrypted plaintext, and the receiver knows that it comes
from the legitimate sender. However, as soon as the key

is leaked or under adversarial control, we fall outside of
AE’s usual definition and all bets are off. In general, AE
does not ensure that the key used to successfully unwrap
a ciphertext is the same as the one that was used when it
was wrapped.

As a matter of fact, for the widely used AE schemes
AES-GCM and ChaCha20-Poly1305, one can find key-
plaintext combinations that lead to equal ciphertexts [2].
Schemes that are susceptible to this are said to not com-
mit to the key. On the contrary, the property of key-
commitment implies that a ciphertext can only be suc-
cessfully unwrapped using the same key that was used
for wrapping it. The strongest committing notion is called
CMT-4, denoting the infeasibility to generate colliding
ciphertexts for different (K, [N,]AD,P) tuples, with K
the key, N the nonce, AD the associated data and P the
plaintext [3].

Several generic solutions have been presented to turn
existing AE schemes into committing AE schemes. Most
of them rely on the application of a collision-resistant hash
function or a key-robust PRF on top of the AE scheme,
relying on two or more primitives. A more extended
overview on committing AE is given in Appendix C.

1.1. Our contribution

In this work we propose new AE schemes based on
the sponge function families SHAKE and TurboSHAKE,
whose collision resistance guarantees commitment secu-
rity. Our schemes uniquely combine the following advan-
tages. First, their security is based on the security claim of
a NIST standard that has received a large amount of public
scrutiny: the SHA-3 standard FIPS 202 [4]. Second, they
make use of the standard KECCAK-p permutation that not
only receives more and more dedicated hardware support
(e.g., in the recent Apple™ processors), but also allows
competitive software-only implementations thanks to the
TurboSHAKE instances. Third, they are user-friendly in
that they only require the variable-length AD of the first
message in a session to be a nonce, rather than a fixed-
length short data element N for each wrap call. Finally,
they offer CMT-4 committing security based on collision-
resistance of (Turbo)SHAKE.

Our AE schemes are session-supporting: they allow
to split a long message in fragments and wrap them
separately, with the ciphertext of a fragment authenticating
the partial message decrypted up to that point. We build
our schemes in multiple layers, as depicted in Figure 1:

• At the bottom is the sponge function layer that we
instantiate with SHAKE and TurboSHAKE func-
tions. These are reviewed in Section 2, together with
preliminaries.

• Then, in Section 3, we define a duplexing interface
for SHAKE and TurboSHAKE that we call overwrite
duplex or OD. It is a duplex object that provides
incremental hashing, meaning that it can efficiently
evaluate increasingly long input by hashing its blocks
one at a time, and the current output depends on
all the blocks received so far. Like the OVERWRITE
mode defined in [5], the given input block overwrites
part of the state instead of being (bitwise) added into
it. This is more efficient when the state needs to be
cloned between calls, since the part of the state being

Figure 1. The hierarchy of modes and schemes that we propose.

SHAKE128
SHAKE256

TurboSHAKE128
TurboSHAKE256

overwrite duplex (OD)

upperdeck

Deck-BO
ODWRAP

hashing

incremental hashing

deck function

authenticated encr.

SHAKE128-BO
SHAKE256-BO

TurboSHAKE128-BO
TurboSHAKE256-BO

SHAKE128-Wrap
SHAKE256-Wrap

TurboSHAKE128-Wrap
TurboSHAKE256-Wrap

overwritten does not need to be copied. Concretely, in
the case of (Turbo)SHAKE128, this means copying
40 bytes instead of 200.

• Finally, on top of these, we build committing AE
schemes with two different modes. The first set of
schemes, defined in Section 4, use the nonce-based
authenticated encryption mode ODWRAP, that is
similar to SPONGEWRAP [5]. The second set of
schemes, defined in Section 6, build upon the Deck-
BO mode [6], a session-supporting version of the SIV
AE mode. This mode in turn relies on a deck function
that we build with the upperdeck construction on top
of OD, and this is presented in Section 5.

In an implementation, these multiple layers can be easily
merged, as illustrated in Figures 3 and 5. TurboSHAKE,
OD and upperdeck accept payload data in byte string
inputs and accumulate domain separation bits, coming
from different layers, in a separate single-byte trailer.

We prove that as long as the underlying SHAKE
and TurboSHAKE functions satisfy their accompanying
security claim, the distinguishing advantage of resulting
AE schemes from an ideal AE is negligible even in a
multi-user setup. Moreover, the intermediate schemes are
hard to distinguish from a random oracle.

As SHAKE and TurboSHAKE functions with suffi-
cient output length are designed to be collision-resistant
and are extensively scrutinized with respect to that prop-
erty, the fact that tags in our AE schemes are essentially
hashes of all inputs makes them naturally CMT-4 commit-
ting. With tags of 2s bits, this provides s bits of collision-
resistance. There may be cases where an attacker must find
a second interpretation of a given, fixed, ciphertext. In that
case, the requirement for the underlying hash function is
rather second preimage resistance, and the tag length can
be taken equal to the security strength level s.

Finally, in Section 7, we discuss the performance of
the resulting schemes and show their efficiency is com-
petitive.

2. Preliminaries

In this section, we first introduce our notation. Then
we recall some definitions related to authenticated encryp-
tion and the jammin cipher, our security reference. Finally
we recall SHAKE and TurboSHAKE and define how we
encode inputs and split them into blocks.

2.1. Notation

Most strings that we consider in this work are byte
strings and we denote the empty string by ϵ. The byte

length of a string X is denoted by |X|. The concatena-
tion of two strings X,Y is denoted as X||Y and their
bitwise addition as X+Y , with the resulting string having
length min(|X|, |Y |). Bit string values are noted with a
typewriter font, such as 01101. Byte values are noted
with two hexadecimal digits in a typewriter font and
preceded by 0x, e.g., 0x1F. The repetition of a bit is
noted in exponent, e.g., 03 = 000. Similarly, for bytes,
e.g., 0x003 = 0x00||0x00||0x00. In a sequence of m
strings, we separate the individual strings with a comma,
i.e., x1, x2, . . . , xn. Finally, ⊥ denotes an error code.

In this paper we perform security analysis in the distin-
guishability framework where one bounds the advantage
of an adversary D in distinguishing a real-world system
from an ideal-world system.

Definition 1. Let O,P be two collections of oracles with
the same interface. The advantage of an adversary D in
distinguishing O from P is defined as

∆D(O ∥ P) =
∣∣Pr (DO → 1

)
− Pr

(
DP → 1

)∣∣ .
Here D is an algorithm that returns 0 or 1. Furthermore, if
we replace the adversary with maximal resource specifica-
tions, this means we are maximizing over all adversaries
that use at most these resources,

∆R(O ∥ P) = max
D : resources(D)≤R

∆D(O ∥ P) .

2.2. AE and the jammin cipher

A nonce-based authenticated encryption scheme with
associated data is usually specified as a pair of algorithms
(wrap, unwrap). wrap is a deterministic function that
takes as input a 4-tuple (K,N,AD,P) with key K, nonce
N , associated data AD, and message P , and outputs
a ciphertext C. The ciphertext C has length |P | + τ ,
where τ expresses the ciphertext expansion in bytes. In
schemes with a separate encrypted plaintext and tag, τ
corresponds with the tag length. unwrap takes a 4-tuple
(K,N,AD,C) and returns a plaintext P or an error ⊥.
A scheme is called correct if

unwrap(K,N,AD,wrap(K,N,AD,P)) = P .

for any tuple (K,N,AD,P). Both N and AD are inputs
to the wrap function with the same effect: they influence
the encryption of P to C. We argue that the separation
between N and AD is historical and mostly due to the
fact that in block cipher modes N and AD are processed
differently and it is costly to have a nonce N longer than
the block length. From a user perspective, the distinction
presents an inconvenient restriction: having a requirement
on uniqueness of the variable-length AD would be easier
to satisfy, especially in the case of random nonces. There
is simply no need for distinct AD and N as we can
achieve the same goal with an AD uniqueness require-
ment. Expressing security of schemes that require a fixed-
length nonce can still be accomodated by recasting N to
the first |N | bits of AD and stipulating that the first |N |
bits of AD shall be a nonce. In other words, the nonce data
element is transformed into a nonce requirement, namely
that the AD field, or its leading |N | bits, shall be unique
for each plaintext P for a given key K. In the following
we will adopt this convention and omit the term N .

The typical formulation of security notion for an AE
scheme requires an adversary to distinguish between two
collections of oracles. The first one, in the real world,
is the AE scheme. The second one, in the ideal world,
behaves in an ideal way. In this work, we will use the
jammin cipher as the ideal-world model [6]. Its oracles
are stateful instances of objects that output random re-
sponses to wrap calls, correct plaintexts as a response to
unwrap calls for valid ciphertexts, and errors for invalid
ciphertexts. In a wrap query with (AD,P), a real oracle
returns wrap(K,AD,P) while an ideal oracle returns a
random string of |P | + τ bytes (with τ = t/8 and t the
ciphertext expansion in bits).

As opposed to most other ideal-world AE schemes, the
jammin cipher is operational: it supports all functions that
a real-world scheme does, but with ideal behaviour. The
jammin cipher is inherently multi-user in that it supports
multiple instances that can exchange encrypted messages
on the condition that they have the same ID. Any pair
of such instances supports bi-directional communication
with any instance able to process wrap and unwrap calls
in any order. It can also serve as an ideal world scheme for
AE schemes that do not support sessions by by limiting
each session to a single message AD,P .

The jammin cipher is parameterized by a ciphertext ex-
pansion function WrapExpand() that expresses the length
of the ciphertext given the length of the plaintext. For the
modes in this paper we have |C| = WrapExpand(|P |) =
|P | + τ : it simply adds τ bytes. It achieves the highest
possible security, i.e., the probability of forgery is 0 and
the ciphertexts it produces are as random as injectivity
allows, while behaving deterministically, meaning equal
inputs give equal outputs.

In the jammin cipher, the encryption context of a wrap
query to an instance is the sequence composed of the
(AD,P) inputs received during the previous wrap and
unwrap queries in a session and of the AD value of
the current wrap query. Also, we say that the encryption
context is a nonce iff all wrap queries with non-empty
plaintext have a different encryption context.

The jammin cipher naturally defines a security notion.
We say that an authenticated encryption scheme is a
pseudo-jammin cipher (PJC) if the advantage in distin-
guishing it from the jammin cipher is negligible. If the AE
scheme requires the context to be a nonce, we speak of
a nonce-based PJC (nPJC); if there is no such restriction,
we speak of a plain PJC. For some AE modes, a strong
bound on the distinguishing advantage from the jammin
cipher can be proven without a nonce requirement. Such
modes will leak information due to the fact that equal
ciphertexts with equal encryption contexts indicate equal
plaintexts. Other AE modes require the associated data
AD, or its leading n bits, of the first message of a
session to be a nonce for a provable strong bound on the
distinguishing advantage from the jammin cipher. They
are usually more efficient but the consequences of nonce
violation are more serious. One of the schemes that we
define is a nonce-based PJC, while the other is a plain
PJC. A full specification of the jammin cipher and more
explanations can be found in Appendix A.

Definition 2 (PJC and nPJC security). Let AE be an
authenticated encryption scheme with keys generated ac-

cording to the distribution K and J +t the jammin cipher
with WrapExpand(p) = p + t. We denote the PJC
advantage of AE by:

AdvPJC
AE[K](D1) = ∆D1(K

$←− K; AEK ∥ J +t) .

We denote the nPJC advantage of AE by:

AdvnPJC
AE[K](D2) = ∆D2

(K
$←− K; AEK ∥ J +t) ,

where all wrap queries of D2 have a different encryption
context.

2.3. SHAKE and TurboSHAKE

EXtendable Output Functions (XOF) are hash func-
tions with an arbitrary-length output. SHAKE128 and
SHAKE256 are two XOFs standardized by NIST in [4].
They are defined on top of the KECCAK[c] sponge
function. Internally, both use the 24-round permutation
KECCAK-p[1600, nr = 24] and they are parameterized by
the capacity c, expressed in bits. The capacity determines
the targeted security strength level, as c/2, as well as the
efficiency since the number of bits a sponge function can
absorb or squeeze per call to the underlying permutation
is r = b− c. Here, b is the permutation width in bits and
r the (bit) rate, and we denote with R = r/8 the rate in
bytes. In particular, we have c = 256 for SHAKE128 and
c = 512 for SHAKE256, giving (byte) rates of R = 136
and R = 168, respectively.

An instance of SHAKE takes as input a variable-length
string M and an output length d and appends four bits to
M before presenting it to KECCAK[c]. In particular,

SHAKE128(M,d) = KECCAK[256](M ||1111, d) and
SHAKE256(M,d) = KECCAK[512](M ||1111, d) .

TurboSHAKE is a family of XOFs that was originally
introduced for use in KANGAROOTWELVE [7] and later
formally defined in [8]. As SHAKE, it is parameterized by
the capacity c and is based on the 12-round permutation
KECCAK-p[1600, nr = 12].

It was introduced with the aim of having a more
efficient version of KECCAK. We consider two instances:
TurboSHAKE128 with c = 256 and TurboSHAKE256
with c = 512.

An instance of TurboSHAKE takes as input a message
M , that is a byte string of variable length, and a domain
separator parameter D, a byte with value in the range
[0x01,0x7F] = [1, 127]. The function processes these
two inputs as follows. It appends the byte D to M and
pads the resulting string with the minimum number of
bytes 0x00 until M ′ = M ||D||0x00∗ has length a
multiple of the rate R. Then it bitwise adds the byte 0x80
to the last byte of M ′.

2.3.1. Collision resistance. The authors of SHAKE and
of TurboSHAKE attached a security claim to their func-
tions, see Claim 1. Informally, it claims that for capacity
c, the success probability of any attack against one of
these functions is at most N2/2c+1 higher than the same
attack against a random oracle, with N the computa-
tional complexity expressed as the number of calls to the
permutation or equivalent computations. In other words,

they shall offer the same security strength as a random
oracle whenever that offers a strength below c/2 bits and
a strength of c/2 bits in all other cases.

Claim 1 (Flat sponge claim [9]). The expected success
probability of any attack against KECCAK[r, c] with a
workload equivalent to N calls to KECCAK-f [r + c] or
its inverse shall be smaller than or equal to that for a
random oracle plus

1− exp
(
−N(N + 1)2−(c+1)

)
. (1)

We exclude here weaknesses due to the mere fact that
KECCAK-f [r + c] can be described compactly and can
be efficiently executed, e.g., the so-called random oracle
implementation impossibility [9, Section “The impossibil-
ity of implementing a random oracle”].

This security claim is rather informal due to the ab-
sence of key. Nevertheless, the claim includes the standard
notion of collision resistance as a corollary, and this is one
of two security properties that we need from the primitive.
(The other one is PRF security of the keyed primitive,
see Section 2.3.2.) More specifically, a (Turbo)SHAKE in-
stance F with capacity c and output length n is claimed to
have min(c/2, n/2) bits of collision resistance. This prop-
erty has been challenged by cryptanalysists on reduced-
round versions of (Turbo)SHAKE, as can be seen in the
references of [8]. Quoting FIPS 202 [4]:

The two SHA-3 XOFs are designed to resist
collision, preimage, and second-preimage at-
tacks, and other attacks that would be resisted
by a random function of the requested output
length, up to the security strength of 128 bits
for SHAKE128, and 256 bits for SHAKE256.

2.3.2. Multi-user PRF security. As illustrated in Fig-
ure 1, our deck function and AE schemes are all built
on top of a XOF F and use a secret key that figures
as a prefix of the input to F . This presence of a key
means we rely on a keyed form of the XOF F , that we
denote with FK(x). Here FK(x) denotes F (K;x) with
a; b denoting injective coding of two strings a and b into
one string. If we assume these keyed XOFs are hard to
distinguish from a random oracle, we can prove the PJC
and nPJC security bounds of our AE modes. In particular,
we say that FK is a pseudo-random function (PRF) if an
adversary cannot distinguish it from a random oracle when
the key is randomly and secretly chosen. In this section,
we discuss the PRF security of keyed (Turbo)SHAKE,
furthermore in the multi-user setting.

For multi-user security, we adopt the formalism of [10,
Section 2.1], where the adversary can invoke the scheme
with a key selected from an array of µ keys, each of length
k bits:

K = (K[0], . . . ,K[µ− 1]) ∈
(
Zk
2

)µ
.

Each position in the array corresponds to a pair of com-
municating users, and the index i of a key K[i] can be
viewed as an identifier, just like in the jammin cipher’s
object identifier, see Section 2.2 and Appendix A. Hence,
we will abuse notation and denote a key in the array as
K[ID] for a given identifier ID. There are µ different
identifiers and so they can be injectively mapped to Zµ.

These keys are sampled according to some distribution
K. This distribution is very general: key values do not
have to be independent (e.g., if they are drawn without
replacement) and they can depend on their identifier.

The key distribution impacts the expression of our
bounds via two metrics that we will now discuss. First,
we define its multi-target min-entropy as

Hmtmin(K) = − log2 max
K∈Zk

2

Pr(∃ ID : K[ID] = K).

Second, we define its collision entropy as

Hcoll(K) = − log2 max
ID̸=ID′

Pr(K[ID] = K[ID′]) .

Definition 3 (PRF security). Let FK a collection of µ
keyed instances of a XOF, with keys sampled according
to distribution K and ROµ a collection of µ different
random oracles. The multi-user PRF advantage of FK

with key distribution K is defined as:

AdvPRF
F [K](N,M,µ) = ∆N,M (K

$←− K;FK ∥ ROµ) ,

with the adversarial resources defined as:
• N : computational complexity, expressed as the num-

ber of evaluations of F ’s underlying permutation or
equivalent computations, and

• M : data complexity, expressed in total number of
input and output blocks in queries to FK,

• µ: the number of target keys.

In the following we will will omit the qualifier multi-
user when speaking about multi-user PRF security.

PRF security claims get credibility through public
scrutiny by cryptanalists. As a matter of fact, since its
publication, there has been plenty of cryptanalysis of
reduced-round KECCAK in the keyed setting that provides
evidence for the PRF security of (Turbo)SHAKE, see [8]
for references. Still, we can prove PRF security bounds
for (Turbo)SHAKE if we assume it stands by it security
claim.

Theorem 1. On the condition that (Turbo)SHAKE stands
by its claimed security [8], [11], the PRF advantage of
keyed (Turbo)SHAKE with key distribution K is upper
bounded as

AdvPRF
F [K](N,M,µ) ≤ N

2Hmtmin(K)
+

(
µ
2

)
2Hcoll(K)

+
M2

2c+1
,

(2)

where c is the capacity of F and N,M and µ the
adversarial resources as defined in Definition 3.

The first term of the righthand side of (2) is due to
key guessing, the second is due to key collisions and the
third is due to the security claim of (Turbo)SHAKE.

The proof can be found in Appendix B.1.
We will consider two particular distributions:

• U : each key in K is drawn independently and uni-
formly from Zk

2 ;
• I: each key in K the concatenation of a indepen-

dently and uniformly drawn key of k bits and an
i-bit representation of a unique ID.

For U , we have that Pr(∃ ID : K[ID] = K) ≤
µPr(K[0] = K), and Hmtmin(U) ≥ k − log2 µ. This
shows the degradation of the security by log2 µ bits, and

the probability of guessing one of the keys is µN/2k in
this case. Also, the probability of collision between two
given keys is 2−k, hence Hcoll(U) = k, and among µ keys
this becomes

(
µ
2

)
2−k.

Corollary 1. Under the same conditions as in Theorem 1,
the multi-user PRF advantage of FK with key distribution
U is upper bounded as

AdvPRF
F [U](N,M,µ) ≤ µN

2k
+

(
µ
2

)
2k

+
M2

2c+1
.

The distribution I avoids this degradation. Here, for
a key candidate K∗ to match a key K[ID], the last i bits
must match the ID, and Pr(∃ ID : K[ID] = K∗) =
Pr(K[ID∗] = K∗), with ID∗ the ID that is encoded in K∗.
Hence, Hmtmin(I) = k, and the probability of guessing
one of the keys is N/2k in this case, regardless of the
number of users. Moreover, the presence of the unique
key ID prevents collisions, so the collision term vanishes.

Corollary 2. Under the same conditions as in Theorem 1,
the multi-user PRF advantage of FK with key distribution
I is upper bounded as

AdvPRF
F [I] (N,M,µ) ≤ N

2k
+

M2

2c+1
.

2.4. Byte strings and trailers

In most real-world use cases, the inputs, i.e., keys,
plaintexts, tags and associated data, are strings of bytes.
Nevertheless, as we go down the stack of our construc-
tions as depicted in Figure 1, most layers append domain
separation bits, and mandating byte strings at each level
would imply that this extends the input string by one byte
per layer. To avoid this blowup, we accumulate domain
separation bits in a dedicated single-byte data element
called trailer.

So, in the modes in this paper, functions take as
input payload byte strings and single-byte trailers that
encode strings of domain separation bits of length at
most 7 bits. We specify constant trailers as an integer
value, similarly to the approach taken in the definition of
TurboSHAKE’s domain separation byte D [8]. For a n-bit
trailer e = (e0, e1, . . . , en−1), we define its integer value
E = padint(e), with

padint(e) = 2n +

n−1∑
i=0

2iei . (3)

For instance, padint(ϵ) = 1 and padint(011) = 14. The
inverse function, unpad(E), converts an integer E ≥ 1
to a bit string e. The string e is obtained by taking the
representation of the integer E in base 2, least significant
bit first, and removing its last bit (i.e., the most significant
bit that is always ‘1’ since E ≥ 1).

Representing a trailer with an integer value, suffi-
ciently small to fit in a byte, makes descriptions match
implementations closely. A byte representing a trailer can
be easily integrated into a byte string. The length of the
trailer is unambiguous: Using the padint function works
like padding with the pattern 10∗, where the padding
bit ‘1’ comes from the 2n term in Equation 3. In some
cases, this padding coincides with padding requirements
in lower levels, thereby simplifying layered descriptions.

This allows us to present simple integrated specifications
without the layers, as in Figure 4 and Figure 5.

Multiple layers may need to add domain separation
bits. A typical case is when the lower layer appends a
bit p to a trailer that comes from the upper layer with
integer value E. The resulting trailer has integer value
E′ = padint(unpad(E)||p). For readability, in the sequel
we use the term trailer for the short string of bits and its
integer encoded in a byte interchangeably and with abuse
of notation we will write above expression as E′ = E||p.

2.5. Parsing byte strings into blocks

In several places we need to split byte strings into a
sequence of blocks, each short enough to serve as input
to a duplexing call. We specify our algorithm to do that
in Algorithm 1.

Algorithm 1 Functions to parse byte strings into block
sequences

Definition of parse(X, ℓ1, ℓ2)
Input: Byte string X , length ℓ1, and length ℓ2
Output: sequence x of blocks x1, x2, . . . x|x| of at least
one block
Split X into a first block of ℓ1 bytes and remaining
blocks of ℓ2 bytes. If |X| ≤ ℓ1, the sequence x has a
single block of length |X|. Otherwise the last block of
x may be shorter than ℓ2.

3. The Overwrite Duplex construction

In this section, we define the overwrite duplex (OD)
construction, that can be seen as a (restricted) interface to
a sponge function. In a nutshell, in the OD construction
the user accesses the sponge function as a stateful object
that supports incremental hashing.

OD combines the ideas of the duplex and overwrite
constructions, both introduced in [5]. After initialization,
an OD object can be called an arbitrary number of times.
In a call it takes as input a length-bounded payload byte
string and a single-byte trailer and returns a digest of
the sequence of inputs received since initialization and
it updates its state.

We define the OD construction in terms of the permu-
tation underlying the corresponding sponge function and
prove that the security strength of OD is at least that of
the underlying sponge function.

3.1. Specification of the OD construction

The OD construction is parameterized with a permuta-
tion f , a payload block length ρ (in bytes) and a capacity
c (in bits).

An OD object can be created by initializing it or
by cloning another OD object. There are two cloning
methods, one that clones the full state and another one
that discards the first ρ bytes, i.e., it clones only the last
b− 8ρ bits.

An OD object supports incremental hashing by means
of duplexing calls, where each call takes as input a string
B with |B| ≤ ρ, a trailer E ∈ {1, . . . , 63} and an index

Algorithm 2 Definition of OD[f, ρ, c]

Parameters: b-bit permutation f , payload byte rate ρ
and capacity c

Interface OD.initialize()
Initialize OD’s attributes s← 0b = 0x00b/8 and o← ρ

Interface OD.duplexing((B,E, I), ℓ) with |B| ≤ ρ,
E ∈ {1, . . . , 63}, I ∈ I and ℓ ≤ ρ
if |B| = ρ then

Replace the first ρ bytes of s with B
XOR the next bytes of s with trailenc(E||1, I)

else
Replace the first ρ bytes of s with pad10∗(B)
XOR the next bytes of s with trailenc(E||0, I)

s← f(s)
return the first ℓ bytes of s, then set o← ℓ

Interface OD.squeezeMore(ℓ) with ℓ ≤ ρ− o
return ℓ bytes of s starting from offset o, then update
o← o+ ℓ

Interface OD.clone()
return a new OD[f, ρ, c] object with (s, o) =
(OD.s,OD.o)

Interface OD.cloneCompact()
return a new OD[f, ρ, c] object with s = OD.s except
the first ρ bytes that are set to 0x00 and with o = ρ

I ∈ I ⊆ Z, and returns up to ρ bytes of output. The output
of a duplexing call depends on the sequence of strings,
trailers and indexes (Bi, Ei, Ii) received so far. The OD
object keeps track of how many bytes it returned and
the squeezeMore method allows returning more output in
between duplexing calls. See Figure 2 for an illustration.

The index is an integer, and its intended purpose is
to provide domain separation in addition to the trailers.
However, in the scope of this paper, we will only use it
with the value I = 0; the other values are reserved for
future use.

Algorithm 2 defines the OD construction and uses the
following conventions. While a duplexing call overwrites
the state with the (padded) payload input string, it (bit-
wise) adds the input trailer after applying to it an encoding
function trailenc(). For an input string B shorter than
ρ bytes, it applies padding such that it results in a ρ-
byte block. We denote the padding rule as pad10∗(B)
and we have pad10∗(B) = B||0x01||0x00∗. OD does
not apply padding to input strings of exactly ρ bytes,
but distinguishes between padded and not-padded blocks
using domain separation by adapting the trailer E before
adding it to the state. Namely, it absorbs trailenc(D) with
D = E||1 in the former case and D = E||0 in the latter.

3.2. OD applied to (Turbo)SHAKE

For SHAKE and TurboSHAKE, f is KECCAK-p[1600]
with 24 or 12 rounds, respectively. The capacity is c =
256 for 128-bit security strength and c = 512 for 256-bit

0

0

f f f f

B1

trailenc

E1||1

Z1 B2

trailenc

E2||0

pad10∗

Z2

· · ·

Bn−1

trailenc

En−1||1

Zn−1 Bn

trailenc

En||0

pad10∗

Zn Zn+1 Zn+2 Zn+3

· · ·

initialize duplexing duplexing duplexing duplexing
squeeze
more

squeeze
more

squeeze
more

Figure 2. Illustration of the OD construction.

security strength. Finally, the block length is ρ = (1600−
c− 64)/8.

The term 64 in the formula of ρ is given by the trailer
encoding function, that outputs a string of 8 bytes specific
for the underlying sponge function. For TurboSHAKE, we
define it as

trailenc(D, I) = enc40(I)||D||0x00||0x80 ,

where I = Z240 and enc40(I) converts the index I to a
string of 5 bytes in little-endian format.

The format of trailenc(D, I) is chosen so as to
match that of TurboSHAKE’s domain separation byte and
padding as shown in Section 2.3. In this way, the output of
the first duplexing call OD.duplexing((B,E, I), ℓ) equals
the output of TurboSHAKE[c](B||enc40(I), E||1) or
TurboSHAKE[c](pad10∗(B)||enc40(I), E||0) truncated
to ℓ bytes. See Lemma 1 for more details.

For SHAKE, this is slightly different to account for
the suffix 1111 that FIPS 202 appends to the input string:

SHAKE: trailenc(D, I) = enc40(I)||D||0x1F||0x80 ,

since padint(1111) = 0x1F.
We now show that an OD[f, ρ, c] object can be seen as

a restricted interface to a (Turbo)SHAKE instance F with
permutation f and capacity c. Consequently, OD[f, ρ, c]
inherits, e.g., F ’s collision resistance and PRF security.
This is formalized in Lemma 1.

The output of an OD object to the n-th duplex-
ing call is fully determined by the sequence of inputs
(B1, E1, I1, . . . , Bn, En, In) that it received in the n du-
plexing calls OD.duplexing((Bi, Ei, Ii), ℓi) since its ini-
tialization with OD.initialize(). The output of any inter-
mediate OD.squeezeMore(ℓ) call can be seen as the de-
layed output of the most recent duplexing calls. Moreover,
the output lengths ℓi ≤ ρ for i < n do not influence
the output of the n-th duplexing call. Without loss of
generality, we therefore treat the case of full-block outputs,
that is, output blocks of ρ bytes.

Lemma 1. Let F be a (Turbo)SHAKE instance with
permutation f and capacity c. The full-block output of
the n-th duplexing call to OD[f, ρ, c] is the ρ-byte output
of F applied to an input that is an injective mapping of
(B1, E1, I1, . . . , Bn, En, In). In addition, the input to F
has B1 as a prefix.

The proof can be found in Appendix B.2.

Algorithm 3 Definition of IDAHO[IN]

Parameters: input set IN

Interface I.initialize()
Initialize I’s attributes path← empty and o←∞

Interface I.duplexing(in, ℓ) with in ∈ IN
path← path; in
return the first ℓ bytes of RO(path), then set o← ℓ

Interface I.squeezeMore(ℓ) with o <∞
return ℓ bytes of RO(path) starting from offset o,
then update o← o+ ℓ

Interface I.clone()
return a new IDAHO[IN] object with (path, o) =
(I.path, I.o)

Interface I.cloneCompact()
return a new IDAHO[IN] object with (path, o) =
(I.path,∞)

3.3. Security of keyed OD

We introduce the ideal counterpart of the OD object
in Algorithm 3 and call it an ideal incremental hashing
object (idaho). We define the security of a keyed OD
scheme by the advantage of distinguishing a collection
of its OD objects from a collection of idaho objects. Fur-
thermore, we prove that this advantage is upper bound by
the PRF security of the keyed sponge function underlying
the idaho objects.

An idaho object simply remembers the sequence of
inputs received so far, called the path, and produces
outputs by calling a random oracle RO with the path as
input. It takes as a parameter IN , which by default is the
set of triplets that OD accepts. It has the same interface
as an OD object, except that duplexing calls to an idaho
object have no limited input or output lengths.

In the sequel, we will use the OD object with a secret
key that is input in the first duplexing call, and denote this
as (OD.duplexing((K[ID], 1, 0), 0);OD) in Definition 4.
Theorem 2 then expresses the PRF security of the OD
object in such a case.

Definition 4. The PRF advantage of a keyed duplex object
with key distribution K is defined as the advantage of
distinguishing a collection of keyed duplex objects with key

distribution K from a collection of µ independent idaho
objects, that is,

AdvPRF
OD[K](N,M,µ)

= ∆N,M,µ(K
$←− K; (OD.duplexing(K[ID], 1, 0);OD)

µ

∥ IDAHOµ) ,

with N the computational complexity, M the data com-
plexity and µ the number of target keys, and where the
adversary makes only queries that would be valid on a
OD object (i.e., input and output blocks restricted to ρ
bytes).

Theorem 2. Let F be a (Turbo)SHAKE instance with
permutation f and capacity c. The PRF advantage of
OD[f, ρ, c] with key distribution K is upper bounded as

AdvPRF
OD[f,ρ,c][K](N,M,µ) ≤ AdvPRF

F [K](N,M,µ) .

with resources N , M and µ defined as in Definition 4.

The proof can be found in Appendix B.3.

3.4. Collision resistance of OD

The following theorem expresses the collision resis-
tance of the OD object in terms of the collision re-
sistance of the corresponding sponge function. A colli-
sion for an OD object means two different sequences
of inputs S = (B1, E1, I1, . . . , Bn, En, In) and S′ =
(B′

1, E
′
1, I

′
1 . . . , B

′
m, E′

m, I ′m) such that the output of the
n-th duplexing call to OD[f, ρ, c] with S is the same as
the m-th duplexing call to OD[f, ρ, c] with S′.

Theorem 3. Let F be a (Turbo)SHAKE instance with
permutation f and capacity c. If an adversary A outputs a
collision for OD[f, ρ, c], then one can efficiently transform
it into an adversary A′ that outputs a collision for F .

The proof can be found in Appendix B.4.

4. The ODWRAP mode

In this section, we specify the ODWRAP mode that
builds a nonce-based authenticated encryption scheme
from a sponge function via the OD construction. The
schemes are named by adding “-Wrap” to the underlying
(Turbo)SHAKE instance name. We first specify the mode
and then discuss the nPJC distinguishing advantage and
the CMT-4 committing security of the schemes.

4.1. Specification of ODWRAP

In Algorithm 4, we specify ODWRAP. This mode is a
refinement of spongeWrap defined in [5] and is illustrated
in Figure 3.

ODWRAP objects make use of an underlying OD
object. Upon initialization, the underlying OD object
is loaded with a secret key K. A wrap call takes as
input associated data AD and plaintext P and returns a
ciphertext C of |P | + τ bytes, with τ the tag length in
bytes. An unwrap call takes as input associated data AD
and ciphertext C with |C| ≥ τ and returns a plaintext
P of |C| − τ bytes or an error ⊥ in case the ciphertext
is not authentic. Before unwrapping, a clone is made of

the OD object, allowing a roll-back in case of an invalid
ciphertext.

Each ciphertext authenticates all previous messages in
the session since initialization. Both AD and P can be
empty, leading to four cases. If P is empty, the ciphertext
is basically a tag of length τ .

A wrap call first splits the AD and P in sequences of
blocks of ρ or less and absorbs them in a number of serial
duplexing calls of the underlying OD object, where the
trailer is used to indicate type of block and the purpose of
the corresponding OD output. As a matter of fact, instead
of absorbing the blocks of P , it first encrypts the block
by adding to it the output of the previous duplexing call
and absorbs the resulting ciphertext blocks instead. After
absorbing the complete ciphertext, the first τ bytes of OD
output serves as tag.

If there is no AD in a message, it encrypts the first
block of the plaintext by the output of the last duplexing
call of the previous wrap call (or the init call). As the first
τ bytes of that output were already used for tag generation,
this block will be at most ρ− τ bytes long.

4.2. nPJC security of (Turbo)SHAKE-Wrap

(Turbo)SHAKE-Wrap is ODWRAP on top of OD
applied to keyed (Turbo)SHAKE. We will prove an upper
bound on its nPJC advantage AdvnPJC (see Definition 2)
in terms of the PRF advantage of keyed (Turbo)SHAKE.

When an adversary can start multiple sessions with a
ODWRAP instance with first wrap calls that have the same
associated data AD but different single-block plaintexts
P , ODWRAP can be immediately distinguished from the
jammin cipher as the keystream used for encrypting the
different plaintexts P is the same, and therefore P + C
is the same for all these messages. For the jammin cipher
this is extremely unlikely to happen. Therefore, for its
security, ODWRAP requires the AD of the first wrap call
of all sessions with the same key K to be unique, hence
a nonce.

Theorem 4. Let F be a (Turbo)SHAKE instance, with
permutation f and capacity c, that per assumption stands
by its claimed security. For a fixed ciphertext expansion t,
let there be µ instances of ODWRAP[OD[f, ρ, c], t] (or
F -Wrap for short) keyed according to distribution K.
Assuming the encryption context is a nonce, then the PJC
advantage of F -Wrap is upper bounded as

AdvnPJC
F -Wrap[K](N,M,µ, qforge) ≤

qforge
2t

+AdvPRF
F [K](N,M,µ)

≤ qforge
2t

+
N

2Hmtmin(K)
+

(
µ
2

)
2Hcoll(K)

+
M2

2c+1
,

with qforge the number of forgery attempts and N,M and
µ as in Definition 3.

If k-bit keys are combined with globally unique iden-
tifiers, this becomes

AdvnPJC
F -Wrap[K](N,M,µ, qforge) ≤

qforge
2t

+
N

2k
+

M2

2c+1
.

The proof can be found in Appendix B.5.

0

0

f f f f f f f f

K

trailenc

2

pad10∗

a1

trailenc

25

a2

trailenc

25

· · ·

a|a|

trailenc

19

pad10∗

p1

c1

trailenc

26

p2

c2

trailenc

26

p3

· · · trailenc

26

c|p|−1

p|p|

c|p|

trailenc

20

pad10∗
T

Figure 3. Illustration of the ODWRAP mode merged with the underlying OD construction. This figure shows a first call W.initialize(K) and then
W.wrap(AD,P). For the sake of representation, we assume that the last block of each input string has length smaller than ρ and therefore that
pad10∗ is applied.

4.3. Committing security of (Turbo)SHAKE-
Wrap

In (Turbo)SHAKE-Wrap the tag is the result of hash-
ing an injective encoding of the key and all input data
received up to that moment. As long as there are no
collisions in the tag, the output commits to all inputs.
The committing resistance of (Turbo)SHAKE-Wrap is
therefore given by the security strength against collisions,
namely t/2 bits for a tag length of t bits, as long as
t ≤ c with c the capacity of the underlying sponge
function. Therefore, for tag length t = 256, the schemes
guarantee a committing security strength of 128 bits. For
(Turbo)SHAKE256-Wrap, a tag length of t = 512 bits
guarantees committing security strength of 256 bits. If for
a given application less committing security strength is
considered sufficient, a shorter tag length can be chosen,
say t = 160 for 80 bits of security.

This is expressed more formally in the following the-
orem.

Theorem 5. Let F be a (Turbo)SHAKE instance with
permutation f and capacity c. If an adversary A outputs
a tag collision for ODWRAP[OD[f, ρ, c], t], then one can
efficiently transform it into an adversary A′ that outputs
a collision for F .

The proof can be found in Appendix B.6.

5. The upperdeck mode

In this section, we define a mode to build a deck
function on top of OD, called upperdeck, and discuss its
security.

5.1. Stateful deck objects

A doubly-extendable cryptographic keyed, or deck,
function is a keyed primitive that natively supports vari-
able input and output lengths [12]. Examples of deck
functions are KRAVATTE and XOOFFF, two instances of
the Farfalle construction based on the KECCAK-p and
XOODOO permutations, respectively [12], [13]. One of
the main properties of deck functions is extendability:
the cost of computing DK(X,Y) depends only on the
processing of Y if DK(X) was previously computed. The
extendability property of deck functions allows to support
sessions in a natural way.

A deck object is an object that holds the state that is
necessary to evaluate the deck function on an increasing

number of input strings. A deck object is equivalent to
a deck function but better reflects its implementation and
typical usage. For instance, the description of Deck-BO
in [6] makes use of a variable, called history, that starts
with the empty sequence and then accumulates strings.
A typical pattern consists in first updating the history and
then evaluating the deck function with the history as input:

history← history, X

Y ← 0ℓ +DK(history)
(4)

In a concrete implementation, however, the history is not
materialized as an actual sequence of strings. Instead,
a deck object keeps state and offers a function that re-
places (4).

With a deck object F , the sequence in (4) is replaced
with Y ← D.absorbAndSqueeze(X, ℓ). In addition, we
replace bit strings with pairs of byte strings and trailers.
So, most generally, the following sequence:

D.initialize(K)

D.absorbAndSqueeze(X1, E1, ℓ1)

. . .

Y ←D.absorbAndSqueeze(Xn, En, ℓn)

is equivalent to

Y ← 0ℓn +DK(X1||unpad(E1), . . . , Xn||unpad(En)) .

5.2. Specification of upperdeck

In Algorithm 5, we build a deck function on top of
OD, using the incremental interface described above. The
deck function has an OD object as parameter, that we
indicate by OD. Upon initialization, the key K is absorbed
with a duplexing call with block B = K and trailer E =
padint(ϵ) = 1. Then, the user can absorb an arbitrarily
long string and squeeze as many bits as needed, via a
sequence of calls to the underlying duplex object. This is
illustrated in Figure 4.

The input consists of a byte string X and a trailer E.
The string X is first split into blocks x1, x2, . . . , xn such
that X = x1||x2|| . . . ||xn. The length of each block is ρ
except for the last block that can be shorter. Therefore,
n = ⌈|X|/ρ⌉. Each block is processed by a duplexing
call, with block Bi = xi and with a domain separation bit
that indicates whether the current block is the last one of
the input string (bit 1) or not (bit 0). Together with the
last block, we also absorb the trailer E. More formally, we
make duplexing calls with E′ = padint(0) = 2 for i < n
and E′ = E||1 for the last block. When the last block

Algorithm 4 Definition of
ODWRAP[OD object with ρ, t].

Parameters: overwrite duplex object OD = OD[f, ρ, c]

Interface: W.initialize(K) with K ∈ Z∗
2

OD.initialize()
OD.duplexing((K, 1, 0), 0)
τ = t/8

Interface: C ←W.wrap(AD,P)
a← parse(AD, ρ, ρ)
if (|AD| > 0) AND (|P | > 0) then

p← parse(P, ρ, ρ)
for i = 1 to |a| − 1 do OD.duplexing((ai, 9, 0), 0)
c1 ← p1 +OD.duplexing((a|a|, 11, 0), |p1|)
for i = 2 to |p| do

ci ← pi +OD.duplexing((ci−1, 10, 0), |pi|)
T ← OD.duplexing((c|p|, 12, 0), τ)

else if (|AD| = 0) AND (|P | > 0) then
p← parse(P, ρ− τ, ρ)
c1 ← p1 +OD.squeezeMore(|p1|)
for i = 2 to |p| do

ci ← pi +OD.duplexing((ci−1, 10, 0), |pi|)
T ← OD.duplexing((c|p|, 12, 0), τ)

else
for i = 1 to |a| − 1 do OD.duplexing((ai, 9, 0), 0)
T ← OD.duplexing((a|a|, 13, 0), τ)

return C, the concatenation of c (empty if |P | = 0)
and T

Interface: P ←W.unwrap(AD,C), may return ⊥
if (|C| < τ) then return ⊥
OD′ ← OD.clone()
(C ′||T)← C with |T | = τ
a← parse(AD, ρ, ρ)
if (|AD| > 0) AND (|C| > τ) then

c← parse(C ′, ρ, ρ)
for i = 1 to |a| − 1 do OD.duplexing((ai, 9, 0), 0)
p1 ← c1 +OD.duplexing((a|a|, 11, 0), |c1|)
for i = 2 to |c| do

pi ← ci +OD.duplexing((ci−1, 10, 0), |ci|)
T ′ ← OD.duplexing((c|c|, 12, 0), τ)

else if (|AD| = 0) AND (|C| > τ) then
c← parse(C ′, ρ− τ, ρ)
p1 ← c1 +OD.squeezeMore(|c1|)
for i = 2 to |c| do

pi ← ci +OD.duplexing((ci−1, 10, 0), |ci|)
T ′ ← OD.duplexing((c|c|, 12, 0), τ)

else
for i = 1 to |a| − 1 do OD.duplexing((ai, 9, 0), 0)
T ′ ← OD.duplexing((a|a|, 13, 0), τ)

if T = T ′ then
return P , the concatenation of p (empty if |C| = τ)

OD← OD′

return ⊥

is absorbed, at most ρ bytes are squeezed. More output
bits can be obtained via duplexing calls with empty input
blocks and trailer E′ = padint(0) = 2, although this is
done on a cloned state to make the state of the upperdeck
object independent of the output length ℓ.

We also specify a clone function that limits the
copy to the last b − 8ρ bits of the state via a call to
OD.cloneCompact().

Algorithm 5 Definition of UPPERDECK[OD[f, ρ, c]]

Parameters: overwrite duplex object OD = OD[f, ρ, c]

Interface: D.initialize(K)
OD.initialize()
OD.duplexing((K, 1, 0), 0) // 1 encodes ϵ

Interface: D.absorbAndSqueeze(X,E, ℓ) returns Y
x← parse(X, ρ, ρ)
for i = 1 to |x| − 1 do

OD.duplexing((xi, 2, 0), 0)
Y ← OD.duplexing((x|x|, E||1, 0),min(ℓ, ρ))
if |Y | < ℓ then OD′ ← OD.cloneCompact()
while |Y | < ℓ do

Y ← Y ||OD′.duplexing((ϵ, 2, 0),min(ℓ− |Y |, ρ))
return Y

Interface: D.clone() returns new upperdeck object D′

return D′ with D′.OD = OD.cloneCompact()

5.3. PRF security of (Turbo)SHAKE-Upperdeck

In the following theorem, we express that the PRF
security of upperdeck can be, again, reduced to that of
the underlying (Turbo)SHAKE instance. Note that we
speak about ”PRF” as we view upperdeck in its original
interface.

Theorem 6. Let F be a (Turbo)SHAKE instance with
permutation f and capacity c. The multi-user PRF ad-
vantage of UPPERDECK[OD[f, ρ, c]] with key distribution
K is upper bounded as

AdvPRF
UPPERDECK[OD[f,ρ,c]][K](N,M,µ) ≤ AdvPRF

F [K](N,M,µ) .

The proof can be found in Appendix B.7.

6. The Deck-BO mode

In this section, we specify AE schemes based on the
Deck-BO mode, adapted to work on top of an upperdeck
object. We prove an upper bound on their (plain) PJC
advantage in terms of the PRF advantage of the underly-
ing (Turbo)SHAKE instance. The schemes are named by
adding “-BO” to the underlying (Turbo)SHAKE instance
name. We first specify the mode and then discuss the PJC
advantage and the committing security of the schemes.

6.1. Specification of Deck-BO

Deck-BO is the simplest of the four robust modes
presented in [6]. It is based on the Synthetic Initial

0

0

f f f f f f

K

trailenc

2

pad10∗

x1

trailenc

6

· · ·

x|x|−1

trailenc

6

x|x|

trailenc

E||1||0

pad10∗

Y1 ϵ

trailenc

4

pad10∗

Y2

· · ·

ϵ

trailenc

4

pad10∗

Ym

Figure 4. Illustration of the upperdeck mode merged with the underlying OD construction. This figure shows the call to D.initialize(K), followed
by F.absorbAndSqueeze(X,E, ℓ) that returns Y . Again, we assume K and the last block of X have size smaller than ρ.

Value (SIV) approach in [14] and supports sessions. In
Algorithm 6, we adapt the Deck-BO mode to work on
top of the upperdeck construction to support trailers, as
required by the upperdeck interface (see Section 2.4). This
is illustrated in Figure 5.

An instance of Deck-BO is parameterized with the
deck object F and the tag length in bytes τ . Upon ini-
tialization, the deck object F is initialized with the key
K. A wrap call takes as input (possibly empty) associated
data AD and plaintext P . As output, it gives a ciphertext
Z, that encrypts P , and an authentication tag T of τ
bytes. The tag is generated by absorbing AD and P ,
if non-empty, and by squeezing the first τ bytes of the
state. The tag T is thus a pseudorandom function of AD
and P (and all previous messages) and is also used as
a synthetic diversifier to produce the keystream used to
encrypt P . Domain separation bits are used to distinguish
between associated data and plaintext, as well as between
the generation of tag and keystream. To compute the
keystream, the state of the deck object is cloned but, taking
advantage of the overwrite property of the duplex object
underlying the deck object, only b − 8ρ bits of the state
must be copied. Upon unwrap, a copy of the state is used
to be able to roll back to the original state in case of
failure. If the procedure succeeds then the state is updated
with the working copy.

6.2. PJC security of (Turbo)SHAKE-BO

(Turbo)SHAKE-BO is Deck-BO on top of upperdeck
on top of OD applied to keyed (Turbo)SHAKE. As the
following theorem shows, it is a PJC with its (multi-user)
security strength defined by AdvPJC, i.e., the advantage
of distinguishing µ keyed instances of it from the jammin
cipher, see Definition 2.

Theorem 7. Let F be a (Turbo)SHAKE instance, with
permutation f and capacity c, that per assumption stands
by its claimed security. For a fixed ciphertext expansion t,
let there be µ instances of (Turbo)SHAKE-BO (or F -BO
for short) keyed according to distribution K. Then the PJC

Algorithm 6 Definition of Deck-BO adapted to the up-
perdeck interface

Parameters: deck function F , expansion length τ

Interface: Q.initialize(K)
D.initialize(K)

Interface: Q.wrap(AD,P) returning C
if |P | = 0 then

return C ← F.absorbAndSqueeze(AD, 4, τ)
if |AD| ≠ 0 then

F.absorbAndSqueeze(AD, 5, 0)
F ′ ← F.clone()
T ← F.absorbAndSqueeze(P, 14, τ)
Z ← P + F ′.absorbAndSqueeze(T, 13, |P |)
return C ← Z||T

Interface: Q.unwrap(AD,C) returning P or ⊥
if |C| = τ then

F ′ ← F.clone()
P ← ϵ
C ′ ← F ′.absorbAndSqueeze(AD, 4, τ)
if C ′ ̸= C then return ⊥

else if |C| > τ then
parse C as Z||T with |T | = τ
F ′ ← F.clone()
if |AD| ≠ 0 then

F ′.absorbAndSqueeze(AD, 5, 0)
F ′′ ← F ′.clone()
P ← Z + F ′′.absorbAndSqueeze(T, 13, |Z|)
T ′ ← F ′.absorbAndSqueeze(P, 14, τ)
if T ′ ̸= T then return ⊥

else return ⊥
F ← F ′

return P

advantage of F -BO is upper bounded as

AdvPJC
F -BO[K](N,M, qforge)

≤ qforge
2t

+
∑

context

(
σ(context)

2

)
2t

+AdvPRF
F [K](N,M,µ)

≤ qforge
2t

+
∑

context

(
σ(context)

2

)
2t

+
N

2Hmtmin(K)
+

(
µ
2

)
2Hcoll(K)

+
M2

2c+1
,

0

0

f f f f f f f f f

K

trailenc

2

pad10∗

a1

trailenc

6

a2

trailenc

6

· · ·

a|a|

trailenc

21

pad10∗

p1

trailenc

6

· · ·

p|p|

trailenc

46

pad10∗

T

pad10∗

trailenc

45

p1

c1

ϵ

trailenc

4

pad10∗

p2

c2

· · ·

ϵ

trailenc

4

pad10∗

p|p|

c|p|

Figure 5. Illustration of the Deck-BO mode merged with the underlying upperdeck mode and the OD construction. This figure shows the call to
Q.initialize(K), followed by Q.wrap(AD,P) that returns C. For the sake of visualization, we assume that K, T , and the last blocks of AD and
P have length smaller than ρ.

with qforge the number of forgery attempts, σ(context) the
number of wrap queries with P ̸= ϵ for a given context
value, and N,M and µ as in Definition 3.

If k-bit keys are combined with globally unique iden-
tifiers, this becomes

AdvPJC
F -BO[K](N,M,µ, qforge)

≤ qforge
2t

+
∑

context

(
σ(context)

2

)
2t

+
N

2k
+

M2

2c+1
.

The proof can be found in Appendix B.8.

6.3. Committing security of (Turbo)SHAKE-BO

The committing strength of (Turbo)SHAKE-BO is
given by the infeasibility of generating tag collisions.
By construction, the tag is computed as the hash of all
input data via (Turbo)SHAKE. Therefore, the committing
security strength is given by the minimum of c/2 and t/2,
half the tag length in bits t. In (Turbo)SHAKE, c = 256 or
512, and if we choose t ≥ c this guarantees a committing
security strength of 128 and 256 bits, respectively.

This is expressed more formally in the following theo-
rem, that can be proved following the same approach used
to prove Theorem 5.

Theorem 8. Let F be a (Turbo)SHAKE instance with
permutation f and capacity c. If an adversary A outputs
a tag collision for (Turbo)SHAKE-BO, then one can effi-
ciently transform it into an adversary A′ that outputs a
collision for F .

7. Performance

In this section, we discuss the performance of the dif-
ferent schemes, {TurboSHAKE,SHAKE} × {128, 256}
× {-Wrap, -BO}. In a first step, we show the performance
on an Raspberry Pi 4 equipped with an ARM™ Cortex-
A72 processor running at 1.5 GHz. Our goal was to use a
popular platform, yet one that does not have any dedicated
cryptographic acceleration, to be able to compare relevant
algorithms on an equal footing. Then, in a second step, we
discuss the performance of our schemes relative to that of
hashing with the standard function SHAKE128.

We implemented the algorithms on top of the code
provided in XKCP [15]. Table 1 gives the cost, in nanosec-
ond per byte, of wrapping, unwrapping and processing the
associated data for the different schemes. We focus on the
cost for long messages, i.e., the slope for increasing sizes

TABLE 1. PERFORMANCE ON RASPBERRY PI 4 (NS/BYTE).

. . . -Wrap . . . -BO
AD P or C

TurboSHAKE128 3.33 3.04 6.23
TurboSHAKE256 4.06 3.84 7.82

SHAKE128 6.41 6.27 12.58
SHAKE256 8.07 7.80 15.72

ChaCha20-Poly1305 3.72
AES128-GCM 32.32
AES256-GCM 41.69

TABLE 2. PERFORMANCE RELATIVE TO SHAKE128.

. . . -Wrap . . . -BO
AD P or C

TurboSHAKE128 0.525 0.525 1.050
TurboSHAKE256 0.656 0.656 1.313

SHAKE128 1.050 1.050 2.100
SHAKE256 1.313 1.313 2.625

of associated data, plaintext or ciphertext. Table 1 also
gives the cost of ChaCha20-Poly1305, AES128-GCM and
AES256-GCM on the same platform using the implemen-
tation in OpenSSL 3.0.2 [16].

On this platform, we can see that all the schemes de-
fined in this paper outperform AES-based ones. Of course,
on a platform with dedicated AES support, the picture
would be different. ChaCha20-Poly1305 is a particularly
efficient alternative that does not rely on hardware accel-
eration. Yet, TurboSHAKE128-Wrap outperforms it.

As a second step we discuss the cost relative to that of
hashing with the standard function SHAKE128. Table 2
evaluates the cost of the different schemes under the
assumption that the evaluation of the KECCAK-p permu-
tation dominates, and we now explain where the values
come from.

Let us first discuss the relative cost of the OD layer.
SHAKE128 processes input and output blocks of 168
bytes per call to the permutation, whereas ρ = 160 bytes
and ρ = 128 bytes for OD on top of (Turbo)SHAKE128
and (Turbo)SHAKE256, respectively. Due to OD’s smaller
payload block length, this induces a relative cost of
168/160 = 1.05 for OD on top of SHAKE128 and of
168/128 = 1.3125 with SHAKE256. Due to their lower
number of rounds, the ”Turbo” variants benefit from a
factor-2 speed-up, so the cost is divided by 2 in these
cases.

Next, we discuss the relative cost of ODWRAP. This
mode requires only one pass of the associated data, plain-
text or ciphertext. Thanks to the duplexing, producing

keystream blocks does not induce any extra costs. Associ-
ated data, plaintext or ciphertext blocks translate directly
to OD’s payload blocks, so the long-message performance
of ODWRAP is the same as that of the OD layer.

Finally, we discuss the relative cost of Deck-BO. This
mode needs one pass of the deck function to process
the associated data. Here again, associated data blocks
from Deck-BO translate directly to OD’s payload blocks.
However, it needs two passes to process the plaintext or
ciphertext, so the cost per plaintext or ciphertext byte is
twice that of the underlying OD.

Table 1 is consistent with Table 2 as the cost of
evaluating SHAKE128 on a Raspberry Pi 4 is about
6.11 ns/byte. There is a small discrepancy between the
processing of plaintext and ciphertext in Wrap and that
of the associated data in BO, e.g., 3.33 vs 3.04 for
TurboSHAKE128-Wrap. Processing associated data is
faster because there is no keystream to add with the
plaintext or with the ciphertext.

8. Conclusions

In this work we introduce session-supporting authenti-
cated encryption schemes with inherent committing prop-
erties. The committing security of our schemes is based
the fact that the tags are a hash of all inputs. Specifically,
they are based on SHAKE and TurboSHAKE, whose
collision resistance properties guarantee committing se-
curity in a natural way. Besides committing security, our
proposed schemes are user-friendly in the sense that they
do not restrict the size of the input that needs to be a
nonce, they support sessions, which relaxes the need for
nonce management in some cases, and generally they have
strong indistinguishably properties based on the security
claim in the SHA-3 standard.

Our schemes have also some implementation advan-
tages. They require a single primitive in contrast to other
committing solutions which usually require two. The un-
derlying permutation is standard and there is an increasing
hardware support for it. Yet, even without hardware accel-
eration, our schemes have competitive performance. Also,
the definition of the overwrite duplex object allows smaller
state footprint during clone functions, i.e., 40 bytes instead
of 200 for (Turbo)SHAKE128 and 72 instead of 200 for
(Turbo)SHAKE256.

References

[1] V. T. Hoang, R. Reyhanitabar, P. Rogaway, and D. Vizár,
“Online authenticated-encryption and its nonce-reuse misuse-
resistance,” in Advances in Cryptology - CRYPTO 2015 -
35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part I, ser. Lecture Notes
in Computer Science, R. Gennaro and M. Robshaw, Eds.,
vol. 9215. Springer, 2015, pp. 493–517. [Online]. Available:
https://doi.org/10.1007/978-3-662-47989-6 24

[2] P. Grubbs, J. Lu, and T. Ristenpart, “Message franking via
committing authenticated encryption,” in Advances in Cryptology -
CRYPTO 2017 - 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part
III, ser. Lecture Notes in Computer Science, J. Katz and
H. Shacham, Eds., vol. 10403. Springer, 2017, pp. 66–97.
[Online]. Available: https://doi.org/10.1007/978-3-319-63697-9 3

[3] M. Bellare and V. T. Hoang, “Efficient schemes for
committing authenticated encryption,” in Advances in Cryptology -
EUROCRYPT 2022 - 41st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Trondheim,
Norway, May 30 - June 3, 2022, Proceedings, Part II, ser. Lecture
Notes in Computer Science, O. Dunkelman and S. Dziembowski,
Eds., vol. 13276. Springer, 2022, pp. 845–875. [Online].
Available: https://doi.org/10.1007/978-3-031-07085-3 29

[4] NIST, “Federal information processing standard 202, SHA-3 stan-
dard: Permutation-based hash and extendable-output functions,”
August 2015, http://dx.doi.org/10.6028/NIST.FIPS.202.

[5] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche,
“Duplexing the sponge: Single-pass authenticated encryption
and other applications,” in Selected Areas in Cryptography
- SAC 2011, Revised Selected Papers, ser. Lecture Notes
in Computer Science, A. Miri and S. Vaudenay, Eds., vol.
7118. Springer, 2011, pp. 320–337. [Online]. Available:
https://doi.org/10.1007/978-3-642-28496-0 19

[6] N. Băcuiet,i, J. Daemen, S. Hoffert, G. V. Assche, and R. V.
Keer, “Jammin’ on the deck,” in Advances in Cryptology -
ASIACRYPT 2022 - 28th International Conference on the Theory
and Application of Cryptology and Information Security, Taipei,
Taiwan, December 5-9, 2022, Proceedings, Part II, ser. Lecture
Notes in Computer Science, S. Agrawal and D. Lin, Eds.,
vol. 13792. Springer, 2022, pp. 555–584. [Online]. Available:
https://doi.org/10.1007/978-3-031-22966-4 19

[7] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, R. Van
Keer, and B. Viguier, “KangarooTwelve: Fast hashing based on
Keccak-p,” in Applied Cryptography and Network Security, ACNS
2018, Proceedings, ser. Lecture Notes in Computer Science,
B. Preneel and F. Vercauteren, Eds., vol. 10892. Springer,
2018, pp. 400–418. [Online]. Available: https://doi.org/10.1007/
978-3-319-93387-0 21

[8] G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, G. V. Assche, R. V.
Keer, and B. Viguier, “TurboSHAKE,” IACR Cryptol. ePrint Arch.,
p. 342, 2023. [Online]. Available: https://eprint.iacr.org/2023/342

[9] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Cryp-
tographic sponge functions,” January 2011, https://keccak.team/
papers.html.

[10] J. Daemen, B. Mennink, and G. Van Assche, “Full-state keyed
duplex with built-in multi-user support,” in Advances in Cryptology
- ASIACRYPT 2017 - 23rd International Conference on the Theory
and Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, Proceedings, Part II, ser.
Lecture Notes in Computer Science, T. Takagi and T. Peyrin, Eds.,
vol. 10625. Springer, 2017, pp. 606–637. [Online]. Available:
https://doi.org/10.1007/978-3-319-70697-9 21

[11] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “The KEC-
CAK reference,” January 2011, https://keccak.team/papers.html.

[12] J. Daemen, S. Hoffert, G. Van Assche, and R. Van Keer,
“The design of Xoodoo and Xoofff,” IACR Trans. Symmetric
Cryptol., vol. 2018, no. 4, pp. 1–38, 2018. [Online]. Available:
https://tosc.iacr.org/index.php/ToSC/article/view/7359

[13] G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, G. Van
Assche, and R. Van Keer, “Farfalle: parallel permutation-based
cryptography,” IACR Transactions on Symmetric Cryptology,
vol. 2017, no. 4, pp. 1–38, 2017. [Online]. Available: https:
//tosc.iacr.org/index.php/ToSC/article/view/855

[14] P. Rogaway and T. Shrimpton, “A provable-security treatment of
the key-wrap problem,” in Advances in Cryptology - EUROCRYPT
2006, Proceedings, ser. Lecture Notes in Computer Science,
S. Vaudenay, Ed., vol. 4004. Springer, 2006, pp. 373–390.
[Online]. Available: https://doi.org/10.1007/11761679 23

[15] G. Van Assche, R. Van Keer, and Contributors, “Extended KEC-
CAK code package,” January 2024, https://github.com/XKCP/
XKCP.

[16] OpenSSL community, “OpenSSL – cryptography and SSL/TLS
toolkit,” https://github.com/openssl/openssl.

https://doi.org/10.1007/978-3-662-47989-6_24
https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1007/978-3-031-07085-3_29
http://dx.doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-031-22966-4_19
https://doi.org/10.1007/978-3-319-93387-0_21
https://doi.org/10.1007/978-3-319-93387-0_21
https://eprint.iacr.org/2023/342
https://keccak.team/papers.html
https://keccak.team/papers.html
https://doi.org/10.1007/978-3-319-70697-9_21
https://keccak.team/papers.html
https://tosc.iacr.org/index.php/ToSC/article/view/7359
https://tosc.iacr.org/index.php/ToSC/article/view/855
https://tosc.iacr.org/index.php/ToSC/article/view/855
https://doi.org/10.1007/11761679_23
https://github.com/XKCP/XKCP
https://github.com/XKCP/XKCP
https://github.com/openssl/openssl

[17] Y. Dodis, P. Grubbs, T. Ristenpart, and J. Woodage, “Fast
message franking: From invisible salamanders to encryptment,”
in Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2018, Proceedings, Part I, ser. Lecture Notes
in Computer Science, H. Shacham and A. Boldyreva, Eds.,
vol. 10991. Springer, 2018, pp. 155–186. [Online]. Available:
https://doi.org/10.1007/978-3-319-96884-1 6

[18] A. Albertini, T. Duong, S. Gueron, S. Kölbl, A. Luykx, and
S. Schmieg, “How to abuse and fix authenticated encryption
without key commitment,” in 31st USENIX Security Symposium,
USENIX Security 2022, Boston, MA, USA, August 10-12, 2022,
K. R. B. Butler and K. Thomas, Eds. USENIX Association,
2022, pp. 3291–3308. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity22/presentation/albertini

[19] J. Albrecht, “Introducing subscribe with Google,”
https://blog.google/outreach-initiatives/google-news-initiative/
introducing-subscribe-google/.

[20] J. Salowey, A. Choudhury, and D. A. McGrew, “AES galois
counter mode (GCM) cipher suites for TLS,” RFC, vol. 5288, pp.
1–8, 2008. [Online]. Available: https://doi.org/10.17487/RFC5288

[21] S. Gueron and Y. Lindell, “GCM-SIV: full nonce misuse-resistant
authenticated encryption at under one cycle per byte,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, Denver, CO, USA, October 12-16,
2015, I. Ray, N. Li, and C. Kruegel, Eds. ACM, 2015, pp. 109–
119. [Online]. Available: https://doi.org/10.1145/2810103.2813613

[22] S. Gueron, A. Langley, and Y. Lindell, “AES-GCM-SIV: nonce
misuse-resistant authenticated encryption,” RFC, vol. 8452, pp.
1–42, 2019. [Online]. Available: https://doi.org/10.17487/RFC8452

[23] Y. Nir and A. Langley, “Chacha20 and poly1305 for IETF
protocols,” RFC, vol. 8439, pp. 1–46, 2018. [Online]. Available:
https://doi.org/10.17487/RFC8439

[24] T. Krovetz and P. Rogaway, “The software performance of
authenticated-encryption modes,” in Fast Software Encryption
- 18th International Workshop, FSE 2011, Lyngby, Denmark,
February 13-16, 2011, Revised Selected Papers, ser. Lecture
Notes in Computer Science, A. Joux, Ed., vol. 6733. Springer,
2011, pp. 306–327. [Online]. Available: https://doi.org/10.1007/
978-3-642-21702-9 18

[25] J. Chan and P. Rogaway, “On committing authenticated-
encryption,” in Computer Security - ESORICS 2022 - 27th
European Symposium on Research in Computer Security,
Copenhagen, Denmark, September 26-30, 2022, Proceedings,
Part II, ser. Lecture Notes in Computer Science, V. Atluri,
R. D. Pietro, C. D. Jensen, and W. Meng, Eds., vol.
13555. Springer, 2022, pp. 275–294. [Online]. Available:
https://doi.org/10.1007/978-3-031-17146-8 14

[26] J. Len, P. Grubbs, and T. Ristenpart, “Partitioning oracle attacks,”
in 30th USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021, M. Bailey and R. Greenstadt, Eds. USENIX
Association, 2021, pp. 195–212. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity21/presentation/len

[27] S. Jarecki, H. Krawczyk, and J. Xu, “OPAQUE: an asymmetric
PAKE protocol secure against pre-computation attacks,” in
Advances in Cryptology - EUROCRYPT 2018 - 37th Annual
International Conference on the Theory and Applications
of Cryptographic Techniques, Tel Aviv, Israel, April 29 -
May 3, 2018 Proceedings, Part III, ser. Lecture Notes in
Computer Science, J. B. Nielsen and V. Rijmen, Eds., vol.
10822. Springer, 2018, pp. 456–486. [Online]. Available:
https://doi.org/10.1007/978-3-319-78372-7 15

[28] P. Farshim, C. Orlandi, and R. Rosie, “Security of symmetric
primitives under incorrect usage of keys,” IACR Trans. Symmetric
Cryptol., vol. 2017, no. 1, pp. 449–473, 2017. [Online]. Available:
https://doi.org/10.13154/tosc.v2017.i1.449-473

[29] H. Krawczyk, “The opaque asymmetric pake protocol,” Internet-
Draft draft-krawczyk-cfrgopaque-03, Internet Engineering Task
Force, 2019.

[30] Y. Naito, Y. Sasaki, and T. Sugawara, “Committing security of
ascon: Cryptanalysis on primitive and proof on mode,” IACR Trans.
Symmetric Cryptol., vol. 2023, no. 4, pp. 420–451, 2023. [Online].
Available: https://doi.org/10.46586/tosc.v2023.i4.420-451

Appendix A.
The jammin cipher, an ideal-world AE
scheme

Algorithm 7 The jammin cipher JWrapExpand(p)

1: Parameter: WrapExpand, a t-expanding function
2: Global variables: codebook initially set to ⊥ for all,

taboo initially set to empty

3: Instance constructor: init(ID)
4: return new instance inst with attribute inst.history =

ID

5: Instance cloner: inst.clone()
6: return new instance inst′ with the history attribute

copied from inst

7: Interface: inst.wrap(AD,P) returns C
8: context← inst.history;AD
9: if codebook(context;P) = ⊥ then

10: C = ZWrapExpand(|P |)
2 \

(codebook(context; ∗) ∪ taboo(context))
11: if C = ∅ then return ⊥
12: codebook(context;P)

$← C
13: inst.history← inst.history;AD;P
14: return codebook(context;P)

15: Interface: inst.unwrap(AD,C) returns P or ⊥
16: context← inst.history;AD
17: if ∃!P : codebook(context;P) = C then
18: inst.history← inst.history;AD;P
19: return P
20: else
21: taboo(context)← C
22: return ⊥

In Algorithm 7, we recall the definition of the jammin
cipher [6]. We describe it in an object-oriented way,
with object instances (or instances for short) held by the
communicating parties. An instance belongs to a given
party who initializes it with an object identifier ID. Such
an identifier is the counterpart of a secret key in the real
world: Encryption and decryption will work consistently
only between instances initialized with the same identifier.
This setup models independent pairs (or groups) that
make use of the AE scheme simultaneously. For example,
Alice and Bob may secure their communication each
using instances that share the same identifier IDAlice and Bob,
while Edward and Emma use instances initialized with
IDEdward and Emma. We will informally call an object the set
of instances sharing the same object identifier. This way,
all the instances of the same object have indistinguish-
able behavior, and this justifies that we collectively call
them an object, whereas instances of different objects are
completely independent.

The scheme supports two functions: wrap and unwrap.
With the wrap function the object computes a ciphertext C
from a message that has a plaintext P and associated data
AD, both arbitrary bit strings. With the unwrap function
the object computes the plaintext P from the ciphertext

https://doi.org/10.1007/978-3-319-96884-1_6
https://www.usenix.org/conference/usenixsecurity22/presentation/albertini
https://www.usenix.org/conference/usenixsecurity22/presentation/albertini
https://blog.google/outreach-initiatives/google-news-initiative/introducing-subscribe-google/
https://blog.google/outreach-initiatives/google-news-initiative/introducing-subscribe-google/
https://doi.org/10.17487/RFC5288
https://doi.org/10.1145/2810103.2813613
https://doi.org/10.17487/RFC8452
https://doi.org/10.17487/RFC8439
https://doi.org/10.1007/978-3-642-21702-9_18
https://doi.org/10.1007/978-3-642-21702-9_18
https://doi.org/10.1007/978-3-031-17146-8_14
https://www.usenix.org/conference/usenixsecurity21/presentation/len
https://www.usenix.org/conference/usenixsecurity21/presentation/len
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.13154/tosc.v2017.i1.449-473
https://doi.org/10.46586/tosc.v2023.i4.420-451

C and AD again. The ciphertext C is the encryption of
P for a given AD.

The jammin cipher is parameterized with a func-
tion WrapExpand(p) that specifies the length of the
ciphertext given the length p of the plaintext. Typical
examples observed in AE schemes in the literature are
WrapExpand(p) = p + t with t some fixed length, e.g.,
128 for stream encryption followed by a 128-bit tag. For
use with the jammin cipher, we require WrapExpand to
satisfy this property, defined below.

Definition 5. A function f : Z≥0 → Z≥0 is t-expanding
iff (i) ∀ℓ > 0: f(ℓ) > f(0) and (ii) ∀ℓ : f(ℓ) ≥ ℓ+ t.

When two parties communicate, they usually have
more than one message to send to each other. And a mes-
sage is often a response to a previous request, or in general
its meaning is to be understood in the context of the
previous messages. The jammin cipher is stateful, where
the sequence of messages exchanged so far is tracked in
the attribute history. Initialization sets this attribute to the
object identifier and each wrap and (successful) unwrap
appends a message (AD,P). So history is a sequence with
ID followed by zero, one or more messages (AD,P).

A session is the process in which the history grows
with the messages exchanged so far. The wrap and unwrap
functions make the history act as associated data, so that
a ciphertext authenticates not only the message (AD,P)
but also the sequence of messages exchanged so far. An
important application of this are intermediate tags, which
authenticate a long message in an incremental way.

Finally, a jammin cipher object can be cloned. This is
the ideal world’s equivalent of making a copy of the state
of the cipher. This means the user can save the history
and restart from it ad libitum.

A.1. Properties

The jammin cipher enjoys the following properties:
Deterministic wrapping: In a given context, an object

wraps equal messages (AD,P) to equal ciphertexts
C. It achieves this by tracking the ciphertexts in the
codebook archive.

Injective wrapping: An object wraps messages with
equal context and AD and different P to different
ciphertexts. It achieves this by excluding ciphertext
values that it returned in earlier wrap calls for the
same context and AD.

Random ciphertexts: Except for determinism and injec-
tivity, all ciphertexts C are fully random.

Deterministic unwrapping: In a given context, an ob-
ject unwraps equal ciphertexts to equal responses. It
achieves this by tracking in taboo ciphertext values
that it returns an error to.

Correctness: Thanks to deterministic (un)wrapping and
injective wrapping, one jammin cipher object cor-
rectly unwraps what another wrapped, whenever their
contexts are equal.

Forgery-freeness: In a given context, an object will only
unwrap successfully ciphertexts C resulting from
prior wrap calls in the same context.

The jammin cipher does not enforce the encryption
context to be a nonce, this is left up to the higher level
protocol or use case.

The jammin cipher takes as encryption context the
sequence of messages exchanged so far, including the
associated data in the message containing the plaintext
to be encrypted (in a message without plaintext, there
is no encryption and hence no encryption context). The
advantage of doing authenticated encryption in sessions
is immediate as this reduces the requirement for global
diversifiers of one per session rather than one per message.
Session-level diversifiers may even be omitted unless com-
municating parties wish to start parallel threads or start
afresh from the same shared key.

Definition 6. We say that the encryption context is a
nonce iff all wrap queries with non-empty plaintext have
a different context context.

In case of re-use of encryption context, the jammin
cipher will leak equality of plaintexts given equal cipher-
texts obtained with equal encryption contexts, but nothing
more. In some use cases this may be acceptable. For
such use cases, the jammin cipher can serve as a security
reference for modes or schemes. A proven upper bound
on the distinguishing advantage between such a mode
and the jammin cipher, proves that leakage is limited to
equal plaintexts and encryption contexts, plus the proven
advantage that is typically negligible.

In particular, stream encryption with a keystream that
is generated from the encryption context is perfectly se-
cure if each wrap query has a different encryption context,
but its security completely breaks down when re-using
encryption contexts. Therefore, if we wish security in case
of repeating encryption contexts, we must use a more
elaborate encryption mechanism than stream encryption.

Appendix B.
Deferred proofs

B.1. Proof of Theorem 1

Proof. In the distinguishing experiment ∆D(K
$←−

K;FK ∥ ROµ), we can replace the µ random oracles
ROµ with one that takes the ID as input. The adversary D
is therefore left with the problem of telling F (K[ID]||x)
and RO(ID, x) apart, with (ID, x) pairs of its choice.

We now consider a public random oracle RO′ that
can be queried offline by the adversary and switch to the
problem of telling RO′(K[ID]||x) and RO(ID, x) apart.

We define two generic bad events and argue that, if
they do not occur, RO′(K[ID]||x) and RO(ID, x) cannot
be distinguished. The two bad events are as follows.

• The first is key guessing, that is, the event that the
adversary queries RO′(K||x) offline, with K one
of the µ keys in K and some string x. For a given
key candidate K∗, the probability that there exists
one key in K with this value is upper bounded by
≤ 2−Hmtmin(K). This probability of guessing one
of the µ keys correctly after N attemps is at most
N2−Hmtmin(K).

• The second is key collision, that is, the event that two
keys in the array are equal, i.e., K[ID] = K[ID′] with
ID ̸= ID′. The probability of such a collision among
the µ keys is at most

(
µ
2

)
2−Hcoll(K).

On the condition that these bad events do not occur,
the absence of key collisions implies that the encoding of
the ID into the input ofRO′ is injective, and the adversary
cannot exploit colliding inputs to RO′. Therefore,

∆D(K
$←− K;RO′

K ∥ ROµ) ≤ N

2Hmtmin(K)
+

(
µ
2

)
2Hcoll(K)

.

Following the security claim of (Turbo)SHAKE, the
original distinguishing problem (with FK) shall not have
a success probability greater than that of the latter (with
RO′

K) plus the term in (1). Note that distinguishing FK

from RO′
K can only be done with online queries, so the

resource measure in (1) is the online cost M (instead of
N). Finally, we upper bound (1) with M(M + 1)/2c+1

and approximate it as M2/2c+1.

B.2. Proof of Lemma 1

Proof. For simplicity, we focus on the case that F is
TurboSHAKE128, but the proofs for TurboSHAKE256,
SHAKE128, SHAKE256 or any sponge function are es-
sentially the same.

We first preprocess the sequence
(B1, E1, I1, . . . , Bn, En, In) by applying the padding
to blocks Bi shorter than ρ bytes and transforming
Ei accordingly, as the OD object does during
duplexing calls. We call the resulting sequence
(β1, D1, I1, . . . , βn, Dn, In). More precisely, if |Bi| < ρ,
βi ← pad10∗(Bi) and Di = Ei||0. Otherwise βi ← Bi

and Di = Ei||1. As the last bit of unpad(Di) indicates
whether padding was applied and the padding itself is
injective, this mapping is injective.

We denote by TS(M,D) the output of
TurboSHAKE128 with byte string M and trailer
D as inputs, truncated to its first ρ bytes, and
by OD(β1, D1, I1, . . . , βn, Dn, In) the full-block
output of OD to the preprocessed input sequence
(β1, D1, I1, . . . , βn, Dn, In).

We first prove the theorem for n = 1 by expressing
OD(β1, D1, I1) as TurboSHAKE128 applied to an input
that is an injective mapping of (β1, D1, I1), and then
proceed recursively.

Before the first duplexing call the state of the
OD object is all-zero and overwriting equals XOR-
ing. We XOR β1||enc40(I1)||D1, in total ρ + 5 bytes,
that fits in a single b − c-bit block. From the Tur-
boSHAKE128 specifications, we see that for a single-
block OD(β1, D1, I1) = TS(β1||enc40(I1), D1). Clearly,
the mapping from (β1, D1, I1) to the TurboSHAKE128
input is injective, and this shows that B1 is a prefix of the
input.

For the second duplexing call, we need to take into
account a major difference between the OD object and
the plain sponge construction underlying TurboSHAKE:
The former overwrites the input block in the state, while
the latter XORs it. Referring to [5], overwriting the (outer
part of) the state is actually equivalent to first XORing
the block with the previous output and then XORing the
result into the state. This can be expressed as follows:

OD(β1, D1, I1, β2, D2, I2) =

TS(β1||trailenc(D1, I1)||(β2 ⊕OD(β1, D1, I1))

||enc40(I2), D2).

We can continue recursively. Let O(β1) = β1 and

O(β1, D1, I1, . . . , βn) = O(β1, D1, I1, . . . , βn−1)

||trailenc(Dn−1, In−1)

||(βn ⊕OD(β1, . . . , βn−1, Dn−1, In−1)).

Then,

OD(β1, D1, I1, . . . , βn, Dn, In)

= TS(O(β1, D1, . . . , βn)||enc40(In), Dn).

We can now finish the proof with the recursion
on the injectivity of the input mapping to
the TurboSHAKE128 input and so by proving
that if (β1, D1, I1, . . . , βn−1, Dn−1, In−1) →
(O(β1, D1, . . . , βn−1)||enc40(In−1), Dn−1) is
injective, then (β1, D1, I1, . . . , βn, Dn, In) →
(O(β1, D1, I1, . . . , βn)||enc40(In), Dn) is injective
too. By assumption, any difference in the first n − 1
components of the mapping’s input necessarily leads
to a difference in the mapping’s output, so let us
consider the case of two inputs that have the same
first n − 1 components. In this case, the value
OD(β1, D1, I1, . . . , βn−1, Dn−1, In−1) is fixed, and
XORing βn with it preserves the injectivity.

B.3. Proof of Theorem 2

Proof. Lemma 1 tells us that all the outputs of OD[f, ρ, c]
can be simulated by calls to F with an injective coding.
We focus on the case where the OD object is keyed
with OD.duplexing((K[ID], 1, 0), 0) just after initializa-
tion, and Lemma 1 tells us also that K[ID] is a prefix of
F ’s input. Hence, the subsequent outputs of OD[f, ρ, c] can
be simulated by calls to FK[ID] instead. We can therefore
view the keyed OD object hybridly as an idaho object
where the random oracle RO has been replaced with
FK[ID], which we will denote as IDAHO[FK[ID]] or collec-
tively as IDAHO[FK] for the µ instances. The adversary
then has to distinguish IDAHO[FK] from IDAHO, which
is not easier than distinguishing FK from µ independent
random oracles, and this the multi-user PRF security of
F .

B.4. Proof of Theorem 3

Proof. Let assume that an adversary A gives two colliding
sequences S ̸= S′. As shown in Lemma 1, there is an
injective mapping from a sequence S to a string X such
that the output of OD[f, ρ, c] and F (X) are the same. It
follows that an adversary A′ can build two strings X and
X ′ using such injective mapping from S and S′, and such
strings give a collision in F .

B.5. Proof of Theorem 4

Proof. Thanks to the triangle inequality, the PJC advan-
tage is upper bounded by the sum of two distinguishing
advantages:

1) between µ instances of F -Wrap keyed according to
K and µ independent instances of ODWRAP on top
of IDAHO[ρ];

2) between µ instances of ODWRAP on top of
IDAHO[ρ], and the jammin cipher,

AdvnPJC
F -Wrap[K](D)

≤ ∆D′(K
$←− K;F -WrapK ∥ (ODWRAP[IDAHO[ρ], t])

µ
)

+ ∆D′′((ODWRAP[IDAHO[ρ], t])
µ ∥ J +t) ,

where both D and D′′ must ensure that the encryption
context is a nonce.

The first term is upper bounded by the multi-user
PRF advantage of F . This follows from the fact that an
adversary with direct query access to FK or the RO can
simulate any attack by adversary D′ through the ODWrap
and idaho layers. So, owing to Theorems 1 and 2, we have

∆D′(. . .) ≤ AdvPRF
F [K](N,M) ≤ N

2Hmtmin(K)
+

(
µ
2

)
2Hcoll(K)

+
M2

2c+1
.

The second term is upper bounded by qforge/2
t with

qforge the number of forgery attempts. In short, each call
to the underlying random oracle has a different input
string thanks to the domain separation bits and the fact
that the AD of the first wrap call is a nonce. There-
fore all keystreams and tags are uniformly random and
therefore also all ciphertexts C. The only way to distin-
guish F -Wrap from the jammin cipher is by a successful
forgery: attempting to unwrap a ciphertext that was not
generated in a call to wrap. As the tag has t bits and
all tags are uniformly random, the success probability for
each attempt is 2−t. After qforge attempts, this is upper
bounded by qforge/2

t.

B.6. Proof of Theorem 5

Proof. The tag is the output of the last duplexing call
to the underlying OD object after processing the key
and the messages. It is therefore sufficient to show
that the mapping from a sequence of key and mes-
sages (K,AD1, P1, . . . , ADn, Pn) to a sequence of inputs
(B1, E1, . . . , Bm, Em) to the underlying OD object is
injective. The conclusion then follows from Theorem 3.

We start with n = 1. We can injectively map the
tuple (K,AD,P) to a sequence of the general form S =
(K, 1, 0), (a1, 9, 0), . . . , (a|a|, 11, 0), (c1, 10, 0), . . . , (c|p|, 12, 0)
such that the tag output by ODWRAP[OD[f, ρ, c], t] is
equal to the output of OD[f, ρ, c] after the input sequence
S. Here, a = parse(AD, ρ, ρ) and p = parse(P, ρ, ρ)
or parse(P, ρ − τ, ρ), while c is obtained by adding p
bitwise to the keystream.

Let (K,AD,P) ̸= (K ′, AD′, P ′) be mapped to
OD sequences S and S′, respectively. If (K,AD) ̸=
(K ′, AD′), then clearly S ̸= S′ because of the injectivity
of AD to a. So, let us assume now that K = K ′ and
AD = AD′, but P ̸= P ′. If P and P ′ have a different
number of blocks, then S ̸= S′. Otherwise, let i be such
that pj = p′j for all j < i and pi ̸= p′i. Then, the keystream
used to encrypt pi and p′i is obtained from intermediate
duplexing outputs, and it will be identical for pi and p′i
so that ci ̸= c′i and therefore S ̸= S′. This shows that the
mapping is injective when n = 1.

The reasoning can be easily generalized to n > 1, and
a simple inspection of Algorithm 4 shows that the value

of trailers allows one to unambiguously separate (AD,P)
messages in the OD sequence.

B.7. Proof of Theorem 6

Proof. The upperdeck object converts the sequence of
input strings (i.e., byte strings and trailers) injectively to
a sequence of input blocks and trailers it presents to OD.
Therefore, we have

AdvPRF
UPPERDECK[OD[f,ρ,c]][K](N,M) ≤ Advprivate-idaho

OD[f,ρ,c][K] (N,M) .

The conclusion follows from Theorem 2.

B.8. Proof of Theorem 7

Proof. Thanks to the triangle inequality, the PJC advan-
tage is upper bounded by the sum of two distinguishing
advantages:

1) between µ instances of F -BO keyed according to K
and µ instances of Deck-BO on top of independent
random oracles;

2) between µ instances of Deck-BO on top of indepen-
dent random oracles and the jammin cipher.

The first term is upper bounded by the advantage
of distinguishing µ instances of UPPERDECK[OD[f, ρ, c]]
keyed according to K from µ different random oracle, and
this is covered by Theorem 6.

The second term is covered by the bound for Deck-BO
proven in [6, Theorem 3], which is the probability of a
successful forgery plus the probability of tags colliding
under the same encryption context. In any forgery attempt
that the adversary makes, the tag received in the unwrap
call is compared with a uniformly random string generated
by the underlying random oracle, hence the probability
they are equal is 2−t. For qforge forgery attempts, this
gives qforge

2t .
Tag collisions happens with probability

(
q
2

)
2−t for q

wrap calls. If we consider at most σ(context) wrap queries

with the same context, this gives
∑

context
(σ(context)

2)
2t .

Appendix C.
Committing AE

Certain settings or applications require AE with com-
mitting property, as shown in the following examples.
Dodis et al. [17] and Grubbs et al. [2] showed how to
exploit non-committing AE schemes in old versions of
Facebook’s end-to-end encrypted message service. In [18],
Albertini et al. study weaknesses of key rotation in key
management services, envelope encryption, and “Sub-
scribe with Google” [19], due to the lack of key commit-
ment. They first introduce new theoretical attacks against
commonly used AE schemes, such as AES-GCM [20],
AES-GCM-SIV [21], [22], ChaCha20-Poly1305 [23], and
AES-OCB3 [24], which they turn into practical ones by
creating binary polyglots (i.e., files which are valid in
two different file formats). In [25], Chan and Rogaway
show how in GCM and OCB modes, for any ciphertext C
generated under a “honest” key, the adversary can com-
pute an AD that together with C results in a successful
unwrap under another known key. In [26], Len et al. show

how Shadowsocks proxy servers and the OPAQUE [27]
protocol can be vulnerable to partitioning oracle attacks
due to using non-committing AE.

Farshim et al. ported the notion of key-commitment to
the AE setting in 2017, with the name key-robustness [28].
Later, different definitions have been introduced. Bellare
and Hoang [3] and Chan and Rogaway [25] independently
and contemporarily gave a number of committing AE defi-
nitions, the strongest requiring that the ciphertext commits
to key, nonce, associated data, and plaintext.

Generic solutions have been presented to turn existing
AE schemes into committing AE schemes. Farshim et
al. [28] propose to apply a collision-resistant pseudoran-
dom function (PRF) to the entire message or ciphertext,
to achieve key commitment. Grubbs et al. [2] presented
compactly committing AE, requiring a collision-resistant
hash function in HMAC mode and a stream cipher such as
AES-CTR or ChaCha20. In [18], Albertini et al. achieve
key commitment by deriving a new encryption key and
a commitment string from the scheme’s key, by using a
collision resistant hash function like SHA256. Chan and
Rogaway [25] propose a generic construction that makes
a nonce-based AE scheme committing in the strongest
sense, at the cost of a hash call over the tag. Bellare
and Hoang [3] introduce two generic constructions. The
former makes use of a committing PRF, which is a gen-
eralization of a key-robust PRF based on a block cipher.
This construction however does not guarantee resistance
against nonce-misuse. The latter construction preserves
misuse-resistance and makes use of the same key-robust
PRF and a collision resistant PRF. Dodis et al. [17] design
encryptment schemes as a building block to achieve com-
pact committing AE. They give a concrete encryptment
scheme that uses a compression function and a padding
scheme. In the appendix of their work, the authors also
discuss a SpongeWrap-like encryptment scheme, but with-
out discussing the details. None of these generic solutions
achieves the efficiency of AES-GCM, and the majority of
them requires two passes and the use of more than one
primitive.

Alternative solutions exist that aim to achieve commit-
ment for specific schemes. One of such solutions consists
in adding a padding block to the plaintext and verify
the correctness of the key by checking the presence of
such padding block upon decryption [18], [29]. However
the commitment security of such padding solution is not
guaranteed for every AE scheme, but must be verified
on a case-by-case basis, which was done for AES-GCM,
ChaCha20-Poly1305 [18] and Ascon [30]. In [3], Bellare
and Hoang also propose modifications to the GCM and
GCM-SIV modes to make them key-committing. With
the addition of the generic transformation cited above,
they become committing in the strongest sense. However,
these solutions are intrusive, as they require modifications
to GCM and GCM-SIV.

	Introduction
	Our contribution

	Preliminaries
	Notation
	AE and the jammin cipher
	SHAKE and TurboSHAKE
	Collision resistance
	Multi-user PRF security

	Byte strings and trailers
	Parsing byte strings into blocks

	The Overwrite Duplex construction
	Specification of the OD construction
	OD applied to (Turbo)SHAKE
	Security of keyed OD
	Collision resistance of OD

	The ODWrap mode
	Specification of ODWrap
	nPJC security of (Turbo)SHAKE-Wrap
	Committing security of (Turbo)SHAKE-Wrap

	The upperdeck mode
	Stateful deck objects
	Specification of upperdeck
	PRF security of (Turbo)SHAKE-Upperdeck

	The Deck-BO mode
	Specification of Deck-BO
	PJC security of (Turbo)SHAKE-BO
	Committing security of (Turbo)SHAKE-BO

	Performance
	Conclusions
	References
	Appendix A: The jammin cipher, an ideal-world AE scheme
	Properties

	Appendix B: Deferred proofs
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7

	Appendix C: Committing AE

