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Abstract. State-of-the-art database implementations offer a wide range of func-
tionalities and impressive performances while supporting highly concurrent loads.
However they all rely on the server knowing the content of the database, which
raises issues when sensitive information is being stored on a server that cannot be
trusted. Encrypting documents before sending them to a remote server solves the
confidentiality issue at the cost of loosing the keyword search functionality. Crypto-
graphic primitives such as Symmetric Searchable Encryption (SSE) schemes have been
proposed to recover this functionality. However, no SSE construction properly defines
correctness and successfully guarantees security in a concurrent setting. This paper
attempts a first step in this direction by recommending linearizability as the standard
notion of correctness for a concurrent SSE. We study the impact of concurrency on
security and stress the need for finer-grained security models. Hence, we propose the
log-security model that guarantees security against an adversary having access to
persistency-related logs, fixing a blind spot in the snapshot model while capturing
security in a concurrent setting. We also build the first concurrent SSE solution
proven correct and secure in a concurrent setting, that can be implemented on top
of any database. Our scheme proved to be fast thanks to optimal wait-free search
operations and sequentially-optimal, lock-free modifications, that both execute under
one micro-second per binding, while only incurring a 13.3% storage expansion.
Keywords: SSE · Linearizability · Concurrency

1 Introduction
The use of databases is pervasive in today’s numerical systems. State-of-the-art implemen-
tations offer a wide range of functionalities and impressive performances while supporting
highly concurrent loads. However they all rely on the server knowing the content of the
database, which raises issues when sensitive information is being stored on a server that
cannot be trusted. With the development of the SaaS and cloud models, in which users do
not control the machine that runs the database, these issues have become critical.

Encrypting data before storing it to the database is not acceptable for most use-cases
as it breaks features like keyword search. One cryptographic solution used to recover
this functionality is Symmetric Searchable Encryption (SSE) [Goh03, CGKO06, Bos16,
BMO17, AKM19, MR23, AKM23]. Traditionally, a Symmetric Searchable Encryption
scheme is a cryptographic primitive composed of three protocols executed in a sequential
model, and thus involving a single client and a single server: the client initiates all the
necessary materials thanks to a Setup algorithm; then, using its secret key, it can index
a new entry under a given keyword using the Insert algorithm or retrieve values indexed
under a keyword using the Search algorithm. However, to the best of our knowledge, no
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SSE scheme has ever been designed with the aim of being used under the highly concurrent
workload achieved by current database implementations, and thus, all fail short in replacing
the plaintext indexes of database systems.

1.1 Contributions
The contributions of the present paper are twofold. The first contribution is to study the
impact of a concurrent execution model on the notions of correctness and security model
of an SSE schemes. We found out that both of them need to be modified to overcome the
challenges that arise from the existence of concurrent clients. The second contribution
is to propose a new security model we called the Log-Security, that fixes a blind spot of
the snapshot model that prevents it to accurately model real-life systems and has already
been exploited in [GPT23]. We argue that this model – even though it cannot model a
persistent adversary – may be of practical use in systems where an untrusted storage is
used to store the state of the encrypted database or its backups. As an illustration, we
use this model and the notion of linearizability [HW90], as it is well-established in the
distributed system literature, to instantiate the first SSE scheme proven correct and secure
in a concurrent execution setting.

1.1.1 Correctness of Distributed Systems

Correctness issues arise in a distributed system because concurrent operations may leave
the system in an invalid state. The classic example is those of a distributed system
implementing a counter in a shared memory location, such that each client increments the
value of this counter by reading its value, incrementing it locally, then writing the result
to the shared memory. Two concurrent increment operations may overwrite each-other’s
modification, leaving the system in an incorrect state. Much worst, when more complex
objects are involved, concurrent operations may leave the system in an invalid state.
Capturing the meaning of a correct concurrent execution is therefore not trivial. However,
in the distributed-system literature, linearizability has emerged as a consensual definition
[HW90]. In a nutshell, a system is said to be linearizable if any of its operational histories
can be sequentially reordered without modifying the processes’ view of the system.

1.1.2 Log-Security

The security guarantees of an SSE scheme are captured by a leakage function, and are
proved with respect to a security model. Many such models have been proposed in the
literature, the predominant one being those of the persistent adversary [CGKO06] in which
the adversary resides in the server and has access to all queries made by the client(s). The
more recent snapshot model [AKM19] considers an adversary only catching glimpses of
the state of the memory, called snapshots, the number of which is defined by an additional
parameter m. This situation naturally arises when the server storing the encrypted index
is breached and its memory dumped, or when the server on which back-ups are stored
is breached or owned. An SSE scheme is then said to be breach-resistant if the only
information leaked is the size of the database at the time of each snapshot.

However, the snapshot model fails to satisfyingly model real-life systems. The first
difficulty comes from the parameter m since it seems difficult to establish an upper-bound
on the number of snapshots an adversary can obtain. More importantly, this model does
not take into account the fact that, in most database systems, persistency relies on a
Write Ahead Log (WAL) in which are written all operations modifying its state. In case
of a server failure, this log is replayed to restore the last correct database state known.
The WAL invalidates the snapshot model because it gives an adversary access to the
entire database history up to its first entry after the first retrieved snapshot. Logs have
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already been used to break SSE schemes such as the Queryable Encryption feature of
MongoDB [GPT23]. In order to prevent such attacks, we introduce a new security model
we called the log-security, that considers an adversary having access to the state of the
entire database after each modification.

Incidentally, this security model switches its focus from per-client to per-server SSE
operation, which seems to be a requirement for a security model to correctly capture
security in concurrent execution. Indeed, concurrent client SSE operations may modify
their behavior if they are related, which leaks information. However, concurrency can only
be defined once protocol operations are considered in a white-box fashion: universal time
is expensive to establish in a distributed system [Lam78], plus operations happening “at
the same time” from a client point-of-view may not be concurrent since the network can
retain the response event of the first one until after the second one terminates.

1.1.3 Findex

In order to recover the keyword-search functionality of encrypted database systems, we
consider that an SSE scheme should allow concurrent clients to engage in a protocol with
a shared server, have decent performances, be fully dynamic and scalable. Furthermore,
clients should not be required to communicate with each other. This last requirement
implies that no client-side stash can be used.

We present in this paper the first SSE scheme that meets these requirements that
is proven both correct and secure in a concurrent execution setting. Throughout its
design we focused on the database independency and reducing the number of client-server
communications performed during a search. As a result, our construction features optimal
search operations, indistinguishable insert and delete operations that are optimal in the
absence of concurrent modification on the same keyword, and an asymptotic server-storage
expansion of 13.3%1.

1.2 Related Work
Correctness and termination guarantees in a concurrent setting have never been defined and
studied in the SSE literature. As SSE schemes are single-user schemes [CGKO06, Bos16,
BMO17, AKM19, MR23, AKM23]. They can thus store elements on the client side to
increase efficiency and security. However, in a setting in which multiple non-communicating
clients are allowed to modify the index, it is not possible to maintain up-to-date client-side
information.

While multi-client/user Searchable Encryption schemes also exist in the literature
[BDOP04, VRMO18, WC24, MCT+24], they correspond to use-cases in which the data-
owners are allowed to add and delete content and in which some readers must only be able
to request the database. However, they necessitate public-key cryptography and a linear
scan of the database.

Despite being designed in a single-client setting, the DLS scheme [AKM19] is the
closest academic SSE to our construction. This scheme provides protections against data
breaches as well as forward security. However, a crucial and significant difference with
respect to Findex is that our scheme is designed to be stateless, concurrency-safe, and
more resilient to data breaches, thanks to a stronger underlying security model against a
snapshot adversary.

Up to our knowledge, the MongoDB Queriable Encryption [Mon22] is the only industrial
solution deployed at large scale. However it suffers from issues related to overwriting which
will be not allowed by our correctness definition.

Finally, Findex is significantly easier to deploy in real-world scenarios because it is the
first SSE scheme considering the database system as a black box, enabling seamless access

1A Rust implementation of the scheme is available at Findex repository.

https://github.com/Cosmian/findex/releases/tag/eprint
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to all the inherent benefits of database systems such as concurrency and scalability. The
main drawback of the black box database abstraction is that it implies no cryptographic
server-side operations which is yet a widely used technique of most SSE schemes [CJJ+13,
Bos16, PM21, PPSY21, MR23].

1.3 Organization of the Paper
We begin by defining a concurrent SSE scheme in Section 3 and formalizing its corresponding
correctness. Since the classical security definition of SSE cannot be directly applied to a
concurrent scheme, we introduce a new model called log-security, which records the actual
in-memory changes. Next, we present a new generic architecture for SSE in Section 5. This
section describes all the fundamental elements without the encryption part, allowing us to
later give and prove our construction meets all the requirements stated in the introduction
in Section 6. Finally, Section 7 explains some additional functionalities of Findex, along
with an analysis of the efficiency and complexity, supported by benchmarks from our
implementation.

2 Preliminaries
2.1 Notations
We denote λ the security parameter used in the paper and denote fC,S(x; y) a potentially
interactive protocol f between a client C with input x and a server S with input y.

In this article, we use a Haskell-like type description:

• (), the unit type, stands for “nothing”;

• Index kw v designates an Index type parameterized by the two types kw and v;

• Maybe T = Just T | Nothing designates a Maybe type parameterized by T, that can
either be Just T or Nothing;

• search :: Memory a w→ kw→ Set v designates a function search that takes as first
argument a Memory parameterized by the types a and w, as second argument a value
of type kw, and returns a set of values of type v;

In order to hide some context, we will use a bundle :: Set Procedure→ Object that
takes as argument a list of procedures, and returns an object that exposes these procedures
as methods. For example, bundle [read, write] returns an object o with an o.read and o.write
methods.

2.2 Symmetric Searchable Encryption
We adjust at the margins the SSE definition of [CGKO06]:

Definition 1. An SSE scheme Σ = (Setup, Search, Insert, Delete) is defined by:

• SetupC(1λ): executed by the first client, it takes as input a security parameter 1λ

and outputs a secret key k;

• SearchC,S(k, kw; EDB): it is a protocol between a client with input the secret key k
and a queried keyword kw; and the server with input the encrypted database EDB.
At the end of the protocol, the client receives a list R of results;

• InsertC,S(k, (kw, v); EDB): it is a protocol between a client with input the secret
key k, and a keyword-value pair (kw, v); and the server with input the encrypted
database EDB. At the end of the protocol, the server also stores (kw, v) securely;
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• DeleteC,S(k, (kw, v); EDB): it is a protocol between a client with input the secret
key k, and a keyword-value pair (kw, v); and the server with input the encrypted
database EDB. At the end of the protocol, v has been removed from the results of
kw.

2.3 Distributed Systems
We use the definition of distributed systems given in [Lam78]:
Definition 2 (Distributed System). A distributed system consists of a collection of distinct
processes which are spatially separated and communicate by exchanging messages.

The predominant characteristic of such a system is that the communication medium is
unreliable and thus the relation of time ordering is only partial in such a system. Each
process is considered to be a sequential computation unit, and thus emitting totally ordered
invocation and response events.
Definition 3 (Operational History). The operational history of an execution of a dis-
tributed system is the sequence of invocation (inv) and response (resp) events emitted
and received by all processes in this system.
Definition 4 (Operational Precedence). The operational precedence <H with respect to
an history H is the partial order on the operations defined by:

op1 <H op2 ⇐⇒
{

resp(op1) < inv(op2) or
resp(op2) < inv(op1)

where the event precedence < is such that given two events a and b, then a < b if a comes
before b in some process, if a is the sending of some message by some process and b the
receiving of the same message by another process, or there exists an event c such that
a < c < b.

We can now provide the definition of linearizability for a distributed systems:
Definition 5 (Linearizability). A distributed system is said to be linearizable if for each
history H, there exists a sequential history S such that:

• ∀pi,H|pi
= S|pi

, where the projection H|pi
of an history H on a process pi is the

subset of its events that involve pi, which means that both executions are identical
from the point of view of each process involved;

• <H⊆<S , which means that if op1 <H op2, then op1 <S op2;

• S is a legal history, which means it is correct according to the sequential specification
of the shared objects, and, in particular, that this sequential execution is correct in
the single client model.

Finally, efficiency in a distributed is measured in term of progress properties, among
which (by increasing strength):

• the lock-freedom guarantees that given a set of concurrent legal client processes, at
least one terminates. This property prevents situations in which a process dies without
releasing a lock, effectively blocking all other processes. However, it does not preclude
a process from indefinitely failing to preempt a resource due to monopolization of this
resource by a group of concurrent threads. Such a phenomenon is called starvation;

• the wait-freedom guarantees that each correct process eventually terminates. The
number of steps a process needs to perform however may vary, and depend on the
actions of concurrent processes;

• the bounded wait-freedom guarantees that the existence of a bound B on the number
of steps required by a correct process to terminate.
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3 SSE in a Concurrent Execution Setting
Since SSE are symmetric primitives, its classical definition only considers a single key
holder, requesting an encrypted index. However, in order to use SSE schemes as a tool to
secure database systems, we need to consider several clients concurrently engaging in a
protocol with the server but may not communicate with each other. The server is thus the
only shared object of the distributed system defined by an SSE instantiation.

3.1 Correctness
No previous work in the SSE literature has ever considered multiple clients, and the
established definition of correctness requires the result of a request performed on the
encrypted database to be equal to the result of the same request performed on the
equivalent database in the clear. This definition however does not capture the notion of
correctness in a distributed system. We therefore turn to the linearizability property to
define the correctness of a concurrent execution of an SSE scheme. Note that linearizability
is a strict generalization of the sequential correctness as any linearizable SSE algorithm
remains correct in every possible sequential executions with respect to the sequential
definition of correctness. In the following paragraphs, we further discuss the consequences
of using linearizability as the correctness definition for a concurrent execution of an SSE
scheme.

No Data Loss. Linearizability guarantees that no data can be lost since it would
invalidate the legality of the related operational history (it would not respect its sequential
specification): after a client indexes a new value under a given keyword, this value should
be contained in any further search for this keyword until it is deleted from the index. To
the best of our knowledge, beside being not formally defined, the MongoDB SSE scheme
[Mon22] is not linearizable since it allows data loss whenever two clients attempt indexing
a new value under the same keyword at the same time with probability 1

c , where c is their
contention factor.

Client Stash vs Client Cache. Linearizability precludes SSE schemes from relying
for correctness on a mutable client-side state, usually called stash in the SSE literature.
Indeed, clients in our model are non-communicating. A client has therefore no way to
perform a correct operation relying on a given stashed value as soon as an operation
modifying this value was processed by a concurrent client. We stress that the trivial
solution consisting in downloading the stash from the server, modifying it locally then
uploading its modification does not preserve linearizability as it is exactly similar to the
distributed counter example presented in Section 1.1.1, and that naive use of a locking
mechanism to protect a read/write sequence does not preserve the lock-freedom property
presented in Section 2.3. What is allowed, however, is for a client to maintain a local copy
called cache of some server state, as long as its freshness it guaranteed upon use. Such a
technique is broadly used in real-life systems to save the cost of performing some network
calls.

Another broad use of the client stash in the SSE literature, is to act as a zero-cost, zero-
leakage storage used to delay operations by stashing incoming ones while performing some
others, stashed or dummy operations, effectively decorrelating the actual leakage from the
requested operation. Such a scheme does not rely on the client stash for correctness reasons,
but for security and concurrent clients could each maintain their own (different) local
stashes without breaking the correctness of the operations performed. However, a difficulty
still arises when considering the sequential definition of the requested operations: indexing
a new value under a given keyword can terminate before indexing this value server-side.
Therefore, any search operation on this keyword performed by a concurrent client would not
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result in finding this new value, which is illegal with respect to linearizability. Even worst,
such a distributed system is not eventually consistent – which arose in the distributed
system literature as a relaxation of the linearizability – since there is no guarantee that
it will reach a consistent state after quiescence. Indeed, in the state-of-the-art FIX
scheme [AKM23], a server-side modification can only be performed upon processing a new
modification request. A quiescent systems has by definition no such incoming modification
request and is therefore stuck in an inconsistent state. More generally, for any SSE scheme
relying on delayed modifications, the client in charge of this operation could die after
terminating but before it has already been performed on the server.

3.2 Security
In a concurrent execution setting, concurrent operations may modify their behavior, which
is the source of a new leakage. For example, when considering a simple SSE scheme
reminiscent of [AKM19] in which all values are stored in an EDX with respect to a token
derived from a secret key, the keyword they are indexed under, and their position in the
list of values indexed under it, the correctness of this scheme would rely on a client stash
storing the current number of values indexed under each keyword. Considering for the
sake of the example that it is possible to somehow store these counters server-side without
degrading the security or losing the linearizability, this scheme is clearly forward secure
since modification only add new encrypted value using random-like tokens. However, two
concurrent modifications would derive the same token and one of them would fail to insert
its value and retry with an updated counter value. This breaks the forward security since
two concurrent insertions of values for the same keyword cannot be simulated without
knowing which keyword they are targeting.

In order to be valid in a concurrent execution setting, a security model therefore needs
not only to manipulate SSE operations, but also the sequence of communications between
a given client and the server during the execution of the protocol defined by each SSE
operation. Indeed, as described in the previous paragraph, concurrent operations may be
the source of new leakages. Furthermore, it seems natural to let the adversary control
the network as in the distributed systems that consider the network to be an adversarial
scheduler.

4 Log-Security Model
As explained in the previous section, a sequential security proof that considers the decom-
position of the SSE operations into memory operations would not be enough to model
concurrent use-cases as they are not deterministic. To solve this major security issue, we in-
troduce the log-security model in which the adversary has access to a copy of the encrypted
memory after each modification instead of each SSE operation (Search, Insert or Delete).
This model is thus closer to the RAM model used in ORAM schemes [Gol87, GO96] while
featuring relaxed security constraints for efficiency reason.

Write Ahead Log. In many database systems, each modification of the memory,
encrypted in our case, is stored in a Write Ahead Log (WAL). Its presence is essential
because it allows the current state of the database to be reconstructed at any time,
ensuring persistence. Therefore, disabling it is not an option. In case it exists, an adversary
having access to a copy of the server memory, as assumed for example in the m-snapshot
model [AKM19], would also receive the WAL. However, it has never been taken into
account in the security model and has already been used as an attack vector against the
MongoDB solution [GPT23].
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Our Model. In our log-security model, the adversary is allowed to adaptively choose
a sequence of SSE operations to be executed by concurrent clients. The number of such
clients is not necessarily fixed. In fact, the adversary is free to instantiate new clients
on-the-fly. To simulate the non-determinism arising from a concurrent setting, we give the
adversary the additional power to select which memory operation to apply next among all
incoming operations. Notice though that in practice, an adversary that has access to the
WAL cannot interfere with this order.

Similarly to previous SSE security models, the adversary sends to the challenger a set
op = {opi} of operations in {Search, Insert, Delete}, called SSE operations all along the
game. In the real experiment, the role of the challenger is to play the role of the clients
and the server as defined by the protocol. The challenger thus begins the execution of
the operations in op in parallel on each client i, but before performing a server-memory
operation (e.g. read or write), the challenger sends to the adversary the set {m_opi,j}
containing the next server-memory operations to be executed to complete each parallel
SSE operation. As memory operations are atomic, the adversary can only select at most
one of them, leaving the others pending. The challenger executes the memory operation
selected by the adversary, sends a copy of the encrypted memory to the adversary upon
modification, and continues the execution of all pending operations, regularly asking to
the adversary which memory operation must be applied. After each reception of a new
memory state, the adversary is allowed to add a new SSE operation. The game finishes
when all SSE operations are completed or the adversary decides to terminate the game.

In the ideal experiment, instead of performing the protocol, the challenger executes
each operation m_opi,j on a plaintext database DB, and gives L(m_opi,j , DBi,j) to the
simulator.

To ease the reading, we introduce a stateful function schedule corresponding to the
first part of the challenger’s execution as depicted in Figure 1: schedule corresponds
to the client-server protocol interfacing with the server-memory in the real experiment
and corresponds to the same protocol without any encryption interfacing with a plaintext
memory in the ideal experiment.

• schedule.new_op(opi): Given in input an SSE operation opi or ⊥, it adds opi to an
internal list of SSE operations and outputs {m_opi,j} the list of possible memory
operations that must be done to continue the protocol;

• schedule.next_m_op(m_opi,j): Given in input the result of the memory operation
on the memory, it removes m_opi,j from the list of memory operations that must be
done and updates its internal states.

One can now formally define the log security model illustrated in Figure 1:
Definition 6 (Log-security). Let Σ be an SSE scheme, L a stateful leakage function, A
an adversary, schedule as defined above. Σ is said L-log secure if there exists a PPT
simulator S such that for all PPT adversaries A,

|Pr[RealΣ
A(1λ) = 1]− Pr[IdealΣ

A,S(1λ) = 1]| ≤ negl(1λ).

where RealΣ
A and IdealΣ

A,S are defined in Figure 2.

5 A Modular SSE Architecture
The aim of this section is to propose an architecture that simplifies concurrency management
and inherits from the good properties of existing DataBase Management Systems (DBMS)
like scalability, persistence and replication. We first recall the properties we claim to be
required from a production SSE that aims at recovering the lost keyword-search feature of
an encrypted database:
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A Challenger

Schedule Encrypted
Memory

opi new_op EDBi∗,j∗

̸=

next_m_op

{m_opi,j}
m_opi∗,j∗

A Challenger

Schedule Plaintext
Memory

L

opi new_op

EDBi∗,j∗

Sim

next_m_op

{m_opi,j}
m_opi∗,j∗

Figure 1: Representation of the log-model: above the Real game, below the Ideal game.

• decent performances: contrary to the line of works focusing on page efficiency
[MR22, MR23, MCDP24], we claim, in tradition with the literature of distributed
systems, that in a real-life distributed system, the performance of a protocol operation
is dominated by the number and size of the communications, and the amount of client
synchronization that are required. From this fact, we deduce as guiding principle
that operations should thrive to achieve wait freedom – in particular the use of lock
should be avoided, and that the number of sequential communications involved in a
protocol should be minimal;

• light client requirements: typical database clients are light, which means that the
amount of memory required to perform a search operation should be independent of
the size of the database;

• other guarantees: since no call to the database will be performed directly as one
needs encryption, the SSE can be the limiting factor of the equation, in term of
both scalability, persistency and availability. Ideally, an SSE should be as scalable,
persistent, and available as the database of which it indexes the data.

5.1 Server as a Memory
State-of-the-art DBMSs are very complex objects. A great deal of this complexity is due
to the need to provide efficient operations sacrificing neither scalability, persistency nor
availability. In order to build upon this work, we claim that a realistic SSE construction
should restrict the server to a DBMS. In our architecture, we go even further by totally
abstracting this DBMS behind a transactional memory implementing the following Abstract
Data Type (ADT) Memory a w:
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RealΣ
A(1λ):

1. The challenger runs k ← Setup(1λ).

2. While A does not output a bit b ∈ {0, 1}:

(a) The adversary selects m_opi∗,j∗ ∈ {m_opi,j} ∪ {⊥},
(b) If m_opi∗,j∗ = ⊥, the challenger ignores the step, otherwise it runs

schedule.next_m_op(m_opi∗,j∗) and executes the operation on the encrypted
memory which produces the snapshot EDBi∗,j∗ and sends EDBi∗,j∗ to the adver-
sary if the result differs from the previous one.

(c) The adversary chooses an SSE operation opi = (fi, xi) with fi ∈ {Search, Insert,
Delete, ⊥} and xi an input of fi and sends opi to the challenger,

(d) The challenger executes {m_opi,j} ← schedule.new_op(opi) and sends
{m_opi,j} to the adversary.

3. The experiment outputs the bit b from the adversary.

IdealΣ
A,S(1λ):

1. While A does not output a bit b ∈ {0, 1}:

(a) The adversary selects m_opi∗,j∗ ∈ {m_opi,j} ∪ {⊥},
(b) If m_opi∗,j∗ = ⊥, the challenger ignores the step, otherwise it runs

schedule.next_m_op(m_opi∗,j∗), executes the operation on the plaintext mem-
ory which produces the snapshot DBi∗,j∗ and sends L(m_opi∗,j∗, DBi∗,j∗) to the
simulator. The simulator outputs EDBi∗,j∗ sent to the adversary.

(c) The adversary chooses an SSE operation opi = (fi, xi) with fi ∈ {Search, Insert,
Delete, ⊥} and xi an input of fi and sends opi to the challenger,

(d) The challenger executes {m_opi,j} ← schedule.new_op(opi) and sends
{m_opi,j} to the adversary.

2. The experiment outputs the bit b from the adversary.

Figure 2: Experiments for the log-security model
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Definition 7 (Memory ADT). A Memory a w exposes two atomic operations:

• b_read :: List a→ List w returns the list of words [wi] stored at the addresses [ai];

• g_write :: (a ∗ Maybe w) ∗ Set (a ∗ w)→ Maybe w takes as arguments a guard binding
(ag, wref

g ) and a set of new bindings {(ai, wi)}; it writes these bindings to memory if
the word wg currently bound to ag is wref

g , and returns wg.

Note that this abstraction can be implemented over most DBMS supporting transactions.
For example, Redis allows atomic scripting using an embedded Lua interpreter, and
PostgreSQL language allows conditional expressions to be used in transactions. Restricting
the range of possible transactions is not essential to our scheme. It however has the
advantage to simplify the implementation and the security proof. On systems that do
not support transactions but expose a Compare and Swap (CAS) operation, the g_write
operation can be implemented using the k-CAS algorithm [GKMZ20] and the b_read
operation using the double-collect technique [AAD+93], at the cost of the wait-freedom.

This memory abstraction can be viewed as a dictionary (DX) as defined in the Structured
Encryption (STE) [CK10], we argue, however, that this abstraction is a better fit as it
exposes its similarity with Software Transactional Memories (STE) and the Asynchronous
Shared Memory (ASM) model.

5.2 The Encryption Layer
The external memory implemented over a DBMS presented in the previous section should
only stores encrypted data. Since the server is reduced to an external memory, all encryption
is performed client-side. However, one could wish to reason about an SSE construction
in the same way one reasons about a data-structure. To this aim, we propose to clearly
extract the cryptographic transformations from the client protocol to an encryption layer.
This layer can formally be defined as an endomorphism on the space of memories that
transforms a plaintext memory Memory a w into an encrypted memory Memory a∗ w∗, and
thus allows to expose a plaintext memory interface to the rest of the client-side computation.
In the rest of this paper, we use virtual address to design an address in the plaintext
memory abstraction and actual address to design an address in the encrypted memory
abstraction.

The encryption layer could be implemented by the algorithm presented in Figure 3,
where E :: k→ (W ∗ A→ W∗) ∗ (W∗ ∗ A→ Maybe W) is an encryption scheme with auxiliary
data that uses the actual address as auxiliary data to encrypt the memory words, and
Π:: k→ (A→ A) ∗ (A→ A) is a keyed random permutation on the address space A. Note
that if E is not deterministic, a cache needs to be added so that a decrypted value w∗

g

must be re-encrypted identically, should it be given as the next wref
g value. However, it is

not displayed in the figure. The cryptographic primitives chosen in this Figure 3 could be
modified to enforce different guarantees, for example:

• by adding a signature scheme [DH76], one can define a set a writers as a subset of
readers. Any signature scheme could be used. For example, a group signature [Cv91,
BMW03] scheme allows a signer to be anonymous inside a group of signers (to add
new keyword or values in the SSE scheme without revealing the origin of the data
even to the readers) while at the same time, an authority can reveal the identity in
case of abuse;

• by using public-key schemes as E scheme, and in particular ABE ones [GPSW06,
BdPP24], one opens the door to rights for the readers as in MC-SE [BDOP04,
VRMO18, WC24, MCT+24, AC17, RW22]. In that case, all the data stored in the
database must be authenticated as keyword guessing attack can be damaging [HL17].
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function make_encryption_layer(k, m∗)
kπ ← KDF(k||0)
kϵ ← KDF(k||1)
(π, π−1)← Π(kπ)
(ϵ, ϵ−1)← E(kϵ)

procedure b_read([ai])
[a∗

i ]← [π(ai)]
[w∗

i ]← m∗.b_read([a∗
i ])

[wi]← [ϵ−1(w∗
i , a∗

i )]
return [wi]

end procedure

procedure g_write((ag, wref
g ), {(ai, wi)})

a∗
g ← π(ag)

wref,∗
g ← ϵ(wref

g , a∗
g)

{(a∗
i , w∗

i )} ← shuffle ({(π(ai), ϵ(wi, π(ai)))})
w∗

g ← m∗.g_write((a∗
g, wref,∗

g ), {(a∗
i , w∗

i )})
wg ← ϵ−1(w∗

g , a∗
g)

return wg

end procedure

return bundle(b_read, g_write)
end function

Figure 3: Implementation of an Encryption Layer

5.3 SSE as an Index
We recall that the goal of an SSE scheme is to implement an index with added security
guarantees, which functionality is captured by the following ADT:

Definition 8 (Index ADT). An Index kw v exposes three procedures:

• search :: kw→ Set v returns the set of values {vi} bound to a keyword kw in the
index;

• insert :: kw ∗ Set v→ () binds a set of values {vi} to a keyword kw in the index;

• delete :: kw ∗ Set v→ () unbinds a set of values {vi} from a keyword kw in the
index.

Previous publications in the STE line of works focused on the multimap (MM) and
encrypted multimap (EMM) ADTs [CK10, KMO18], however, we note that it differs in the
fact that it associates keywords with sets of values rather than tuples of values of varying
lengths, and thus can formally be described as a map from the set of keywords to the
power-set of the possible values. Moreover, an MM is formally defined as a data-structure
rather than an abstract data-type and is strongly oriented toward an associative array.

We stress once again that now that the encryption has been extracted in a separate
layer, one is free to directly reuse all the constructions in the algorithm and distributed
system literature. As an illustration, we present in the next section a simple implementation
of the index ADT using vectors stored in a perfect hash-table, that is proven correct in a
concurrent execution setting and secure in the log-security model.
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6 Findex

6.1 Index ADT implementation
The natural way to implement an index is to use a hash-table, the difficulty then resides in
the management of hash collisions. However since in our model allocations have virtually
zero cost, we can use the entire memory space to guarantee the absence of collision
with overwhelming probability. Since an index stores sets of values, we store vectors as
values of our perfect hash-table. In this section, we present the relevant ADTs and their
implementations.

Definition 9 (Vector ADT). A Vector v exposes two procedures:

• read :: ()→ List v returns the values [vi] stored in the vector.

• push :: List v→ () pushes new values [vi] at the end of the vector.

We implicitly implement the perfect hash-table using a deterministic address derivation:
typically a hash hash :: kw→ a of this keyword that only needs to guarantee a good-enough
collision resistance. Our implementation of the vector is given in Figure 4. make_vector
takes as argument the vector address a and an implementation m of a plaintext memory
abstraction. It returns an object with the two read and push methods. We use two helper
functions to manage headers and keep the pseudo-code free from implementation details:

• inc_cnt :: Maybe Header ∗ Int→ Header takes as argument an optional base header
and an increment, and returns the header built by adding this increment to the
internal counter of the base header or a newly instantiated header if none was given;

• get_cnt :: Maybe Header→ Int returns the internal counter of the given header or
0 if none was given.

Once we have implemented a vector, the implementation of the index ADT follows
straightforwardly. We give a cache-less implementation of this ADT in Figure 4 that relies
on two helper functions:

• decompose :: (Insert | Delete) ∗ Set v→ List w that takes as input Insert or Delete,
and a set of values, and returns the list of memory words [wi] encoding the application
of this operation on these values;

• recompose :: List w→ Set v that takes as input a list of memory words and returns
the list of values obtained by applying all the operations encoded in these words.

These implementations are stripped to the bare minimum for the sake of the discussion.
The careful reader would have noticed that our vector implementation fails to respect the
homogeneity of the memory words since it indifferently stores its header and the values
it was given: our actual implementation needs to serialize both header and values into
memory words of the same length (to guarantee their indistinguishability). Additionally,
since Remote Procedure Calls (RPC) are used to access the memory, such accesses are
costly. Our implementation therefore uses a cache to store the vector headers: this allows
performing all index operations with a single RPC in case no concurrent modification on
the same keyword was perform. Another way to see it is that each client maintains a local
stash similar to the one used in [AKM19], while a global stash is stored server-side. Client
operations perform optional mutations on this global stash (in case of Index :: insert and
Index :: delete), and synchronize the entry of their local cache associated to the keyword
being operated on with the respective entry of the global stash.
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function make_vector(a, m)
procedure push({vi}i∈[1,n])

procedure push_with(ho)
hn ← inc_cnt(ho, |{vi}|)
hc ← m.g_write(

(a, ho),
{(a, hn)} ∪ {(a +

get_cnt(ho) + i, vi)}i)
if ho ̸= hc then

push_with(hc)
end if

end procedure
push_with(Nothing)

end procedure

procedure read()
h← m.b_read([a])
return m.b_read([a +

i]i∈[1;get_cnt(h)])
end procedure

return bundle(read, push)
end function

function make_index(m)
procedure search(kw)

v⃗kw ← make_vector(hash(kw), m)
return recompose(v⃗kw.read())

end procedure

procedure insert(kw, {vi})
v⃗kw ← make_vector(hash(kw), m)
v⃗kw.push(decompose(Insert, {vi}))

end procedure

procedure delete(kw, {vi})
v⃗kw ← make_vector(hash(kw), m)
v⃗kw.push(decompose(Delete, {vi}))

end procedure

return bundle(search, insert, delete)
end function

Figure 4: Implementations

Laziness. The decompose and recompose helpers allow to implement a lazy delete
operation on the index: both Index :: insert and Index :: delete push new values to the
underlying vector. These values only need to be encoded along with their associated
operation into memory words. Therefore, making an operation lazy consists in registering
it in some vector, which can then be viewed as a log of committed operations. More
generally, as long as application forms a monoid on the set of logged operations, laziness
allows to transform any dynamic construction storing sequences of values into a construction
performing arbitrarily complex operations. Readers then only need to left-fold the logged
operations. If moreover logging only requires a single insertion, both schemes have the
same leakage. Increased server-side storage and client-side search computation seem to
be a small price to pay for this transformation since these are not limiting factors in our
model, and that one can enforce an upper bound on this overhead by regularly applying
the log server-side.

Lazy operations also come handy when they avoid the need for clients to fetch data
before manipulating it. For example, in the concrete example of the delete operation, a
client attempting to delete a given value from the set of values indexed under can just
insert a negation of this value. This simplification may prevent important leakages. Indeed,
in the simple scheme exposed in Section 3.2, eager deletion would not be forward private
while lazy deletion would.

Note that in case the set of logged operations forms a commutative group for application
then the same transformation can be applied on any index implementation, and thus any
SSE scheme. Sadly this is not the case for the insert and delete operations.

6.2 SSE ADT implementation
Finally, we present here the Findex implementation of the SSE ADT. Briefly, we instantiate
the scheme by passing it some connection to a server implementing the Memory ADT. We
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instantiate an object m∗ that implements the same Memory ADT. Then for each one of
the procedures Search(k, kw), Insert(k, kw, v) and Insert(k, kw, v), we first instantiates an
encryption layer, which creates an object m implementing a plaintext memory interface.
We stress that any call to one of its methods actually performs an encrypted, server-side
operation. The client then instantiate an object index that implements the index ADT as
defined previously, and calls its appropriate method.

function make_findex(connection)
m∗ ← make_memory(connection)

procedure Setup(1λ)
k

$← {0, 1}λ

return k
end procedure

procedure Search(k, kw)
m← make_encryption_layer(k, m∗)
index ← make_index(m)
return index.Search(kw)

end procedure

procedure Insert(k, kw, v)
m← make_encryption_layer(k, m∗)
index ← make_index(m)
index.Insert(kw, {v})

end procedure

procedure Delete(k, kw, v)
m← make_encryption_layer(k, m∗)
index ← make_index(m)
index.Delete(kw, {v})

end procedure

return bundle(Setup, Search, Insert, Delete)
end function

6.3 Concurrent Behavior
We can now prove all the claimed Findex properties.

Theorem 1. Findex is a linearizable scheme that exposes lock-free insert and delete
operations and a bounded-wait-free read operation.

Proof. Linearizability is easily obtained in Findex thanks to the use of a transactional
memory: the linearization point for write operations is the success of the transaction
while the linearization point for read operations is the fetching of the current header value.
Indeed, transactional writes preserve what we call the vector invariant (Iv): the value of
the counter stored in the header is equal to the number of values stored in the vector,
and those values are stored in-order, in a contiguous memory area. Therefore, reading
a counter value allows reading all vector values written by operations up to the last to
increase this counter.

Write operations loop on a failing to commit their transaction, which happens when
the client is not aware of the up-to-date header value. In a sequential context – if headers
are cached – modifications can thus be performed with a single communication. In
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a concurrent context, this freshness of the cached value cannot be guaranteed since a
concurrent modifications may occur. In that case, the client receives the current state of
the header, and communicate an updated transaction to the server. Now, given a group of
client processes concurrently modifying the same vector and starting with an up-to-date
knowledge of the header state, at least one of them commits its transaction. Others retry
with an updated transaction, and at least one of them succeeds, etc. Therefore, given
a group of legal, concurrent writers, at least one terminates in a finite number of states
which makes the write operation lock-free. Write operations are not wait-free since they
do not prevent starvation of slow processes.

Read operations are trivially bounded-wait-free since reading is not a fallible operation,
and require exactly two sequential communications.

We insist on the fact that the log-security model only considers sources of leakage
such as back-ups and WALs. These two sources cannot be avoided since they are used to
guarantee data persistency. In many databases systems, other events like search queries
can be logged. However, these log are only used for monitoring and can be disabled –
which needs to be done to stay in the log-security model.

Moreover, Delete and Insert are identical as the operation is simply encoded into the
values during the decompose/recompose step. During an update (i.e. Insert or Delete),
several scenarios can appear generating more or less leakages.

If the keyword to be updated is not already present in the database and no other
concurrent calls are made, the update produces only one snapshot of an encrypted memory
that has two additional bindings. This comes from the fact the writing in the memory
g_write is implemented through a transaction. Hence, an adversary cannot receive an
intermediate step where the counter of elements in the header of a keyword does not
correspond to the current number of stored elements for that keyword in the database.

If the keyword to be updated is already stored, an adversary learns that a binding has
been modified and an additional one appears. It can deduce the two belongs to the same
keyword. More generally, the adversary can estimates the volume of each stored keyword,
the number of binding related to a keyword.

Theorem 2. Findex is a correct concurrent SSE scheme and if E is a secure symmetric
encryption scheme and π is a pseudo-random permutation, then Findex is LF -log secure
where LF is a stateful function tracking the change on DB during the memory operation
m_op: LF (m_op, DB′) = (ℓupdate, ℓadd) with ℓupdate is ⊥ or a representative of the updated
binding and ℓadd is the number of added bindings from the last DB received.

Proof. As Findex is linearizable, Findex is a correct SSE scheme.
For the security, we are interested by all the server writings as the goal of the simulator

will be to produce, for each memory operation m_op chosen by the adversary, a sequence
of snapshots, one snapshot per server-memory modification, indistinguishable from a real
execution of the protocol where the m_op come from SSE operations op. One first analyzes
Findex.Insert to highlight those writings. Informally, Findex.Insert(k, (kw, v)) corresponds
to the three steps:

1. mptx ← EL.decrypt(k, mctx)

2. index ← make_index(mptx)

3. index.Insert(kw, v)

Hence, all the writings on the server side come from writings in the index object followed
by the EL transformations. While this structuring was originally intended to simplify
the implementation of the SSE, the writings in the index object will correspond to the
challenger part while the EL transformations will be replaced by random values by the
simulator in the ideal experiment.
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Real experiment. The challenger follows the protocol playing the role of the client
and the server. Before each writings in the encrypted memory, the challenger asks to the
adversary which one must be performed. This generates a copy of the memory and given
to the adversary if the memory was changed.

Ideal experiment. The challenger executes the same protocol without the encrypted
layer. Before each writings in the plaintext memory, the challenger asks to the adversary
which one must be performed. If the memory changed, LF (m_op, DB′) = (ℓupdate, ℓadd) is
given to the simulator which produces EDB as follows:

• if ℓupdate = ⊥, it adds ℓadd bindings (ai, ci) with ai, ci
$← {0, 1}λ,

• else, it replaces (aℓupdate
, cℓupdate

) by (aℓupdate
, c∗) and adds ℓadd bindings (ai, ci) with

c∗, ai, ci
$← {0, 1}λ,

Hence, the advantage of the adversary distinguishing between the two games is upper
bounded by the advantage of an adversary against E and π.

7 Performance Evaluation
It is trivial to see from the Figure 4 that write operations involve O(M) communications,
that read operations involve one O(1) and one O(V ) communications and that both
read and write operations involve a constant number of communications in a sequential
setting where M corresponds to the number of modifications and V the number of values.
Furthermore, we have demonstrated in Section 6.3 that our scheme was linearizable and
that read and write operations are respectively bounded-wait-free and lock-free. We
therefore validate all the requirements established in Section 5. We now demonstrate the
claims given in Section 6.

7.1 Search optimality
Theorem 3. Let n(t) be the number of bits used to store an information I(t) without
loss. In the asynchronous shared-memory model, the minimum number of client-server
communications of size O(n(t)) after which a client can read I(t) from the memory is two.

Proof. First off, note that n(t) must depend on the entropy of I(t) (source coding theorem).
Then recall that in the asynchronous shared-memory model, clients do not communicate
and no assumption can be made on the relative speed of the client processes. Therefore no
client can know for sure the entropy of I(t) (the knowledge of the entropy of I(t′) for some
t′ < t may have been deprecated by a concurrent addition to this set). For the same reason,
no upper bound can be assumed either. For these reasons, the number of memory words
from which to read cannot be known without communicating with the server and thus a
single communication cannot allow to read I(t) with certainty, while a second can.

Corollary 1. In a setting in which the server does not perform any operation other than
memory operations, the minimum number of client-server communications needed to fetch
the results bound to a given keyword using O(V ) operations is two.

7.2 Benchmarks
Our implementation is written in Rust2, and can therefore be compiled to highly optimized
binaries that takes advantage of hardware features like AES instructions. It can also be
compiled to a WASM target, and run in a browser. We used AES256-XTS as encryption

2https://github.com/Cosmian/findex/releases/tag/eprint.

https://github.com/Cosmian/findex/releases/tag/eprint
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Figure 5: (Left) Client-side computation time (in µs) for a single-keyword search, given
the number of bound one-word values. (Right) Client-side computation time (in µs) for a
single-keyword insert, given the number of bound one-word values.

scheme E and AES256 as keyed pseudo-random permutation π in the encryption layer,
and the memory was implemented in-memory using a std :: collections :: HashMap. In
particular, the benchmarks presented in this section do not include any communication
time. In real use-cases, the network time would need to be added, accordingly to the
number of round-trips discussed in the previous sections. All timings were obtained by
benchmarking on an Intel(R) Xeon(R) CPU @ 2.30GHz.

The Figure 5 (Left) displays the client-side computation time, in micro-seconds, involved
by searching for a single keyword, and varies with the number of values bound to this
keyword. It was computed by measuring the total time for such operations, to which was
removed the time needed to search for the according number of words from the memory.
A linear regression is presented, that does not take into account searches with less than 10
results, in order not to be influenced by the constant overhead. We therefore demonstrate
that time varies linearly with the number of bindings: Findex search operations really are
O(V ).

The Figure 5 (Left) is similar to the Figure 5 (Right), but is relative to insertions:
it displays the client-side computation time, in micro-second, needed to insert a given
number of bindings to the index. Similarly to the search timings, these timings are linear
with respect to the number of bindings to add, which proves once again that Findex insert
operations are O(M).

Finally, the Figure 6 displays the overhead arising from conflicts between concurrent
writers. These timings were measured by benching concurrent clients inserting 100 bindings
to the same keyword, to which were removed the times needed for the same number of
clients to insert the same number of bindings on different keywords. As noted before, no
latency was added to communications. This figure once again shows a linear dependency,
which can be explained by the fact that Findex’s conditional write essentially linearizes
concurrent clients. Indeed, the total time needed to finalize concurrent insertions is equal
to the insertion time of the client that last commits its modification. If latency variance
is neglected, all clients synchronously retry committing their modification after a failure.
Since after each failure, one client has succeeded, the number of times the last client to
commit its modification has retried is therefore equal to the number of concurrent clients.
Following this reasoning, a first approximation on the time a concurrent batch of insertion
terminates must be n× tm, where n is the number of concurrent clients, and tm the time
to insert m bindings. In our experiment, each client inserts 100 bindings, which gives
tm = 56µs by using the coefficient of the linear regression in Figure 5 (Right), is about the
same as the coefficient of the linear regression in 6 and validates our hypothesis.
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Figure 6: Concurrency overhead (in µs) for adding 100 bindings on the same keyword,
given the number of concurrent clients.

7.3 Expansion of the index
The first source of overhead our scheme introduces is the storage of vector headers. This
cost is static and thus amortized as the size of the indexed data increases. The second
source of overhead is the encoding of the operations into memory words. This cost depends
on the number of both encoded operations and used words. The dependency on the
number of operations can be relaxed by considering a compacted state, which leaves an
encoding overhead that must be roughly proportional to the amount of encoded data.
The third and last source is the encryption overhead. Since encryption is performed on
a per-word basis, its cost is also roughly proportional to the amount of data stored in
the index. Additionally, the server-side memory may be implemented using a key-value
store, which implies addresses are stored alongside their associated word and thus incur
an overhead that is similar to the encryption overhead.

Our implementation uses one byte of metadata per encoded word, AES256-XTS as
encryption scheme, and a server-side memory based on a key-value store. Since AES-XTS
does not introduce any overhead, our implementation has an overall 17-byte overhead per
word. In order to fully use the metadata byte and to optimize our scheme to store 16-byte
values (size of DB UIDs), we use eight 16-byte blocks per words. Considering a compacted
state, the asymptotic expansion of the index can neglect the header and padding overheads,
and amounts to 13.3%.

7.4 Limitations
Firstly, as discussed in the previous section, a storage overhead must be paid for each
modification. The insertion overhead is due to the padding of the last memory word and to
the encoding of the operation, while deletions are pure overhead since they are stored and
performed client-side. In storage-critical applications, it is possible to use the padding in
the vector headers to store a sparsity budget. Each operation uses this budget as described
by some rule (deletions should cost more than insertions) and clients need to perform a
compact operation of the target vector in case the associated budget does not allow to
carry on with the intended operation.

Secondly, Findex modifications are only lock-free. This means that this scheme does
not prevent some client from eventually starving, which can happen, for example, if other
threads have a faster connection to the server and keep modifying bindings associated
to the same keyword, and in which that case the starving client cannot keep-up and its
attempts to modify some bindings are constantly rejected by the server.
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Finally, Findex is not forward-secure. Indeed, with only snapshots from the log-security
model, an attacker can keep track of the header modifications which in turn can be linked
to a particular keyword through a statistical attack. It is also possible to track how many
memory words are allocated to the storage of the bindings of each keyword and deduce
an approximation on the indexed volumes. In the literature, forward security is usually
obtained through a client-side storage (to store the volume of each keyword) and a one-way
function (so that only the client is able to compute the next line to be added for the next
modifications and not the server). However, application of this technique is incompatible
with performances and correctness in the concurrent setting. It turns out that achieving
forward security in this setting while preserving O(1), wait-free searches is not trivial, and
is left as an open problem.

8 Conclusion
In this work, we introduced the first formal definition of SSE correctness in a concurrent
environment together with a new security model stronger than the snapshot model that
may be of independent interest.

We have demonstrated it was possible to design an SSE scheme that is both log-secure,
correct and efficient in the concurrent setting. Furthermore, assimilating the server to a
transactional memory in the aim to make our scheme database independent by default
allowed for a great deal of simplifications in the client-side implementation, and led to a
modular design: changing the cryptographic primitives used in the encryption layer allows
introducing private rights, while a change in the choice of data-structure used to implement
the index ADT allows modifying its access pattern and thus its security characteristics
and finally, being able to expose a plaintext transactional memory to the client-side
implementation allows to reuse many of the classic distributed system techniques.

The design space therefore seems to be large, and finding a local minimum along the
three axes that are security level, communication, and progress, is not trivial. In particular,
the existence of a scheme that is both forward-secure, wait-free and with O(1) operations,
is an open problem.

Finally, our scheme proved to be fast, scalable and easy to deploy on top of any database
system and we find its security guarantees to be credible enough to use it as a solution
for secured production-grade offloaded storage. We hope this work will open new doors
for practical SSE applications, and pave the way for a shift in the academic study of SSE
schemes toward the support of a concurrent setting and security models compatible with
real-life applications, on par with our novel log-security.
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