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Recently, Masny and Rindal [MR19] formalized a notion called Endemic
Oblivious Transfer (EOT), and they proposed a generic transformation from
Non-Interactive Key Exchange (NIKE) to EOT with standalone security in the
random oracle (RO) model. However, from the model level, the relationship be-
tween idealized NIKE and idealized EOT and the relationship between idealized
elementary public key primitives have been rarely researched.

In this work, we investigate the relationship between ideal NIKE and ideal
one-round EOT, as well as the relationship between ideal public key encryption
(PKE) and ideal two-round Oblivious Transfer (OT), in the indifferentiability
framework proposed by Maurer et al.(MRH04). Our results are threefold: Firstly,
we model ideal PKE without public key validity test, ideal one-round EOT and
ideal two-round OT in the indifferentiability framework. Secondly, we show that
ideal NIKE and ideal one-round EOT are equivalent, and ideal PKE without
public key validity test are equivalent to ideal two-round OT. Thirdly, we show a
separation between ideal two-round OT and ideal one-round EOT, which implies
a separation between ideal PKE and ideal NIKE.
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1 Introduction

Oblivious Transfer (OT) is one of the most important fundamental cryptographic
primitives in secure Multi-Party Computation (MPC). Many well-known MPC
protocols, such as Yao’s GC [23], GMW [15], IPS [17], use OT as a key build-
ing block in their design. In practice, to achieve better online efficiency, MPC
parties often prepare sufficiently many Random OT (ROT) instances in the of-
fline phase, and then convert them to the needed OT instances accordingly in
the online phase. The first non-interactive ROT protocol was proposed by Bel-
lare and Micali [3]; the protocol can be completed within one-round, considering
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simultaneous messaging, i.e., both parties can send messages to each other simul-
taneously in the same round. It is semi-honest secure under the DDH assumption
in the Common Reference String (CRS) model. Later, Garg and Srinivasan [13]
show that the ROT [3] can be upgraded to achieve malicious security using
Groth-Sahai proof [16]. However, when considering malicious adversaries, due to
its non-interactivity, the malicious sender can bias its output (m0,m1), and the
malicious receiver can bias its output mb, where b ∈ {0, 1} is the receiver’s choice
bit. This property is later captured by the notion of Endemic Oblivious Transfer
(EOT) introduced by Masny and Rindal [19]. The functionality of EOT is the
same as ROT but it offers weaker security guarantees – the malicious party can
fix its output arbitrarily. This type of weak ROT is also considered by Garg et
al. [12], and the authors propose several one-round UC-secure EOT construc-
tions under various assumptions in the CRS model. Recently, Zhou et al. [25]
proposed many one-round UC/GUC-secure EOT in the (global) RO model.

In terms of the relationship between EOT and non-interactive key exchange
(NIKE), Masny and Rindal [19] proposed a generic transformation from a key
exchange protocol to an EOT protocol with standalone security in the RO model.
Although the authors claim that if the key exchange protocol is one-round then
the EOT can be completed within the same round, no security proof is provided.
In terms of the relationship between OT and public key encryption (PKE), there
are several related works in the standard model. Gertner et al. [14] showed that
PKE with oblivious sampleable public key implies two-round OT, and PKE with
oblivious sampleable ciphertext implies three round OT, but no formal proof was
provided. Peikert et al. [21] proved that dual mode encryption implies OT. Friolo
et al. [11] showed that two types of strong uniform PKE regarding public key and
ciphertext imply strong uniform semi-honestly secure OT. Li et al. [18] showed
that rerandomizable PKE implies OT.

However, nearly no research focused on the relationship between ideal model
EOT and ideal model NIKE, or the relationship between ideal model OT and
ideal model PKE, in the indifferentiability framework [20]. The relationship be-
tween elementary public key primitives under the ideal model is an interesting
question that motivates our work.

The indifferentiability framework proposed by Maurer, Renner and Holen-
stein (MRH) [20] formalizes a set of necessary and sufficient conditions for one
cryptosystem to securely be replaced with another one in an arbitrary envi-
ronment. A number of cryptographic primitives justify the structural sound-
ness via this framework; those primitives include hash functions [6, 9], blockci-
phers [1, 8, 10], domain extenders [7], authenticated encryption with associated
data [2], and public key cryptosystems [24].

Compared to standard model, the indifferentiability framework considers
cryptographic primitives in a more abstract level, which offers a measure for
cryptographic ideal models and promotes a deeper understanding of the rela-
tionship between cryptographic primitives.

Relationship with Universal Composability (UC) [24]. Both the indif-
ferentiability framework and the UC [5] framework define an “ideal” object for
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a given cryptographic concept, and they both use a simulation paradigm to
define security and composition. However, the two notions have fundamental
difference. In the UC framework, an ideal functionality specifies how a trusted
third party solves a given cryptographic task abstractly, for example, an ideal
functionality for public key encryption specifies how messages are passed. In con-
trast, in the indifferentiability framework, an ideal model specifies how to such a
task concretely, in particular, the concrete algorithms along with the inputs and
outputs interfaces for the ideal model are provided. In addition, discussing the
relationship of two idealized models is natural in the indifferentiability frame-
work, but it is unnatural in UC, since UC mainly measures how close a standard
model construction (maybe with the help of some ideal functionality) is to a
desired ideal functionality. Moreover, it is much more convenient to model ideal
constant-round primitives, such as NIKE, PKE and two-round OT, in the indif-
ferentiability framework than in the UC framework.

Hereby, we ask the following question in the indifferentiability framework:

What is the relationship between ideal NIKE and ideal one-round EOT?
Moreover, what is the relationship between ideal PKE and ideal two-round OT?

1.1 Our Results

In this work, we investigate the above question thoroughly. Our contribution can
be summarized as follows.

Modeling Ideal one-round EOT and Ideal two-round OT. Following
the similar methodology in Zhandry and Zhang [24], we model ideal one-round
EOT protocol as four ideal algorithms (I.EOTA1 , I.EOTA2 , I.EOTB1 , I.EOTB2)

4.
I.EOTA1 and I.EOTB1 can be run independently and simultaneously by two par-
ties with their secret inputs. First, a sender runs PK1 ← I.EOTB1(SK1) and a
receiver runs Q← I.EOTA1(SK0, b), and they send PK1, Q to each other, respec-
tively. Next, the sender runs (K0,K1)← I.EOTB2(SK1, Q) and the receiver runs
Kb ← I.EOTA2(SK0, b,PK1) locally, such that Kb equals one of K0, K1. Note
that the communication can be done in a simultaneous round, so we call this
protocol ideal “one-round” EOT. In addition, we model ideal two-round OT pro-
tocol as three ideal algorithms (I.OT1, I.OT2, I.OT3), where the three algorithms
should be run sequentially.First, a receiver runs Q ← I.OT1(SK0, b) and sends
Q to a sender.Next, the sender runs w ← I.OT2(Q, SK1,m0,m1) and sends w
to the receiver. Finally, the receiver runs mb ← I.OT3(SK0, b, w) and output mb

that should equal m0 or m1. Here the communication should be finished in two
rounds, so we call this protocol ideal “two-round” OT.

Equivalence of Ideal one-round EOT and Ideal NIKE. We show the
equivalence between ideal NIKE and ideal one-round EOT in the indifferentia-
bility framework. Concretely, we provide transformations from ideal NIKE to
4 We use the prefix “I.” to denote ideal schemes, protocols and algorithms, and use

the prefix “Π.” to denote our constructed schemes, protocols and algorithms.
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ideal EOT and back and we prove the security of the transformations in the
indifferentiability framework.
Equivalence of Ideal two-round OT and Ideal PKE without Public
Key Validity Test. We show the equivalence of ideal PKE without public key
validity test and ideal two-round OT In the indifferentiability framework. In
particular, we provide transformations from ideal PKE to ideal two-round OT
and back, and we prove the security of the transformations in both directions in
the indifferentiability framework.
Separation between Ideal two-round OT and Ideal one-round EOT.
We show a separation between ideal two-round OT and ideal one-round EOT
in the following steps: firstly, we show that ideal one-round EOT can be used to
construct ideal two-round OT, secondly, we show the inverse is not true, thus
the two ideal models are not equivalent. This also implies a separation between
ideal NIKE and ideal PKE, according to the two equivalence relations above-
mentioned.

Our results can be depicted in Figure 1, where the one-way arrows indicate
that the ideal models at the end of the arrow can be transformed into the ideal
models at the top of the arrow, and a slash in the middle of an arrow indicate
that the ideal model at the end of the arrow are separated from the ideal models
at the top of the arrow, namely, the former cannot be transformed into the
latter. Besides, the transformations’ security and the separations are proved in
the theorems above the arrows.

Fig. 1: Roadmap of our results

1.2 Our Techniques

In this section, we describe our techniques for proving the two equivalence
results. To prove the equivalence of ideal EOT and ideal NIKE, we observe
that an ideal NIKE has two algorithms: key generation algorithm I.symKG and
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shared key algorithm I.symSHK, with the correctness requirement I.symSHK(SK0,
I.symKG(SK1)) = I.symSHK(SK1, I.symKG(SK0)). It can be observed that the al-
gorithms of an ideal NIKE have a certain “symmetry”, so we also call it “ideal
symmetric NIKE”. However, an ideal EOT has four algorithms with the outputs
of two parties only partially identical. To make the proof easier, we introduce a
new primitive called ideal asymmetric NIKE, which has four algorithms and the
two parties can obtain the same output. To prove equivalence of ideal EOT and
ideal NIKE, firstly, we construct an ideal asymmetric NIKE from an ideal NIKE;
secondly, we construct an ideal EOT from an ideal asymmetric NIKE; finally,
we construct an ideal NIKE from an ideal EOT. And we prove the security of
our constructions. To prove the equivalence of ideal PKE and ideal two-round
OT is much easier.

Below, we describe our detailed techniques.
Construct Ideal Asymmetric NIKE from Ideal NIKE.
An ideal asymmetric NIKE has four interfaces (I.asyKG0, I.asyKG1, I.asySHK0,
I.asySHK1), where I.asyKG0, I.asyKG1 are key generation algorithms, and
I.asySHK0,I.asySHK1 are shared key algorithms. These algorithms can be di-
vided into “the left part” (consisting of (I.asyKG0,I.asySHK0) and their in-
puts and outputs) and “the right part” (consisting of (I.asyKG1,I.asySHK1

and their inputs and outputs). The correctness requires that I.asySHK0(SK0,
I.asyKG1(SK1))=I.asySHK1(SK1, I.asyKG0(SK0)). Note that the inputs for
I.asySHK0 should have SK0 from “the left part” and I.asyKG1(SK1) from “the
right part”, and the inputs for I.asySHK1 should have SK1 from “the right part”
and I.asyKG0(SK0)) from “the left part”.

Our goal is to combine an ideal NIKE and idealized models such as RO
model [4] and ideal cipher model [22], to construct an ideal asymmetric NIKE.
Our construction techniques are described as follows, where we use two ran-
dom oracles H0, H1 and two ideal permutations [24] P0, P1. Simply setting
Π.asyKG0,Π.asyKG1 to be I.symKG is not enough, since we need two ran-
dom oracles to process the inputs of Π.asyKG0 and Π.asyKG1, thus allowing
I.symKG to distinguish the two inputs. Besides, the two algorithms Π.asySHK0

and Π.asySHK1 need to distinguish “the left part” public key PK0 output by
Π.asyKG0 from “the right part” public key PK1 output by Π.asyKG1, so we use
two ideal permutations P0, P1. P0, P1 enable converting PK0,PK1 back to the
outputs of I.symKG, thus serving as valid inputs for I.symSHK.

Following the techniques, we construct an ideal asymmetric NIKE as fol-
lows: Π.asyKG0 = P0(I.symKG(H0(SK))), Π.asyKG1=P1(I.symKG(H1(SK))),
Π.asySHK0(SK0,PK1) = I.symSHK(H0(SK0), P

−1
1 (PK1)),and Π.asySHK1(SK1,

PK0) = I.symSHK(H1(SK1), P
−1
0 (PK0)).

This construction is indifferentiable from an ideal asymmetric NIKE. To
prove this, we employ special/careful simulation strategies for the adversarial
interfaces H0, H1, P0, P1, P

−1
0 , P−11 , I.symKG, I.symSHK, via a sequence of hybrid

games, where each game corresponds to one type of differentiation attack. By
showing that these attacks do not work in each game, we prove the indistin-
guishability of our construction and ideal asymmetric NIKE scheme in the in-
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differentiability framework, and we formalize it in Theorem 1 and provide a
proof.
Construct Ideal One-Round EOT from Ideal Asymmetric NIKE.
Our goal is to combine an ideal asymmetric NIKE and idealized objects
like random oracles to construct an ideal model one-round EOT Π.EOT
consisting of four algorithms (Π.EOTA1 ,Π.EOTA2 ,Π.EOTB1 ,Π.EOTB2)
using an ideal asymmetric NIKE consisting of four algorithms
(I.asyKG0, I.asyKG1, I.asySHK0, I.asySHK1). Since the algorithm interfaces of
an ideal EOT and an ideal asymmetric NIKE are mostly similar, a natural
idea is to correspond an ideal asymmetric NIKE’s four algorithms one-to-one
to the constructed ideal EOT’s four algorithms, with appropriate adjustments.
Our construction follows the steps below, in which we use four random oracles
H0, H1, H2, H3 and an ideal cipher [24] (E , E−1), where E is an encryption
algorithm and E−1 is a decryption algorithm.

By definition, Π.EOTB2 should take Π.EOTA1 ’s output Q and a secret
string SK1 as the input and output two strings K0,K1. A natural idea is
to split Q as two parts to somehow correspond to K0,K1. A first attempt
is to construct Q ← Π.EOTA1(b, SK0) as this: Q1−b = H2(SK0, b), Qb =
I.asyKG0(SK0) ⊕ H3(Q1−b), Q = Q0‖Q1. Following this construction, it holds
that I.asyKG0(SK0) = PK0 = H3(Q1−b)⊕Qb for both b = 0 and b = 1. Namely,
for (Q0, Q1)← Π.EOTA1(SK0, 0) and (Q′0, Q

′
1)← Π.EOTA1(SK0, 1), a fixed rela-

tion H3(Q1)⊕Q0 = H3(Q′0)⊕Q′1 holds. However, for an ideal algorithm I.EOTA1 ,
this fixed relation should not hold, otherwise the randomness of I.EOTA1 is vi-
olated. To remove the fixed relation, we embed I.asyKG0(SK0) in an ideal ci-
pher E using H3(Q1−b) as the key. We define Q ← Π.EOTA1(b, SK0) as this:
Q1−b = H2(SK0, b), Qb = E(H3(Q1−b), I.asyKG0(SK0)), output Q = Q0‖Q1.

Following the techniques, we define PK1 ← Π.EOTB1(SK1) = I.asyKG1(SK1),
Kb ← Π.EOTA2(PK1, SK0, b) = Hb(I.asySHK0(PK1, SK0)), where Hb = H0

when b = 0 and Hb = H1 when b = 1. And we define (K0,K1) ←
Π.EOTB2(Q, SK1) as follows: Q = Q0‖Q1, A0 = E−1(H3(Q1), Q0), A1 =
E−1(H3(Q0), Q1), K0 ← H0(I.asySHK1(A0, SK1)), K1 ← H1(I.asySHK1(A1,
SK1)).

The joint construction of (Π.EOTA1 , Π.EOTB1 , Π.EOTA2 , Π.EOTB2) are in-
differentiable from an ideal EOT I.EOT, which we formalize in Theorem 2 and
provide a proof.
Construct Ideal NIKE from Ideal One-Round EOT.
Our goal is to combine ideal EOT protocol and random oracles to obtain an ideal
model symmetric NIKE consisting of two algorithms (Π.symKG,Π.symSHK).
Our construction follows the steps below, in which we use two random oracles
H0, H1.

We need to use the four algorithms of an ideal EOT to construct two
algorithms of an ideal NIKE, a natural idea is to use the combined out-
puts of I.EOTA1 , I.EOTB1 as the output of Π.symKG, and to use the combined
outputs of I.EOTA2 , I.EOTB2 as the output of Π.symKG. Wlog, the inputs of
I.EOTA1 , I.EOTB1 should be different, thus we use a random oracle H1 to process
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an input SK0 of Π.symKG to produce another input SKB = H1(SK0). Then we
let SK0, SKB be the inputs of I.EOTA1 and I.EOTB1 , respectively.

To make the outputs of adversarial interface and honest interface consistent,
we carefully provide all necessary information in the adversarial interfaces. First,
we define Π.symKG(SK0) = (I.EOTA1(SK0, 0), I.EOTB1(H1(SK0))). Next, we de-
fine Π.symSHK = H0(I.EOTA2(SK0,PK

B
1 , 0), LoR0(I.EOTB2(H1(SK0), PKA

1 )).
This joint construction of (Π.symKG, Π.symSHK) is indifferentiable from an

ideal symmetric NIKE I.symNIKE in Def. 2, which we formalize in Theorem 3
and provide a proof.
Construct Ideal Two-Round OT from Ideal PKE.
Our goal is to combine an ideal PKE and random oracles to construct an ideal
two-round OT Π.2OT, consisting of three algorithms (Π.OT1,Π.OT2,Π.OT3).
Our construction follows the steps below, in which we use four random oracles
H0, H1, H2, H3, a random permutation P0 and an ideal cipher E .

We first attempt to define Q ← Π.OT1(b, SK) = I.KGEN(SK) ⊕ H2(b"0),
where "0 = |PK|. However, this construction implies a fixed relation
Π.OT1(SK, 0)⊕Π.OT1(SK, 1) = H2(0"0)⊕H2(1"0), and the relation should not
hold for an ideal algorithm I.OT1. Therefore, we incorporate b in a random oracle
and embed KGEN(SK) in an ideal cipher to remove the fixed relation, using the
similar strategy in the construction of an ideal EOT from an ideal asymmetric
NIKE. To make the outputs of adversarial interface and honest interface consis-
tent, we carefully provide all necessary information in the adversarial interfaces.

Following these techniques, firstly, we define Q ← Π.OT1(SK, b) as this:
PK = KGEN(SK), Q1−b = H2(SK, b), Qb = E(H3(Q1−b),PK), output Q =
Q0‖Q1. Secondly, we define w ← Π.OT2(Q,m0,m1, SK) as this: PK0 :=
E−1(H3(Q1), Q0), PK1 := E−1(H3(Q0), Q1), C0 ← ENC(PK0,m0, H0(SK,m1)),
C1 ← ENC(PK1,m1, H1(SK,m0)), output w := P0(C0‖C1). Finally, we define
mb ← Π.OT3(w, SK, b) as follows: C0‖C1 = P−10 (w), mb = DEC(SK, Cb).

This joint construction Π.2OT=(Π.OT1, Π.OT2, Π.OT3) is indifferentiable
from ideal two-round OT I.2OT, and we formalize it in Theorem 5 and provide
a proof.
Construct Ideal PKE from Ideal Two-Round OT.
Our goal is to combine ideal two-round OT protocol and random oracles
to construct an indifferentiable PKE Π.PKE consisting of three algorithms
(Π.KGEN,Π.ENC,Π.DEC). A natural idea is to set the choice bit b in the OT
protocol as 0, and let the two messages from the sender be the same, and use the
sender’s secret input SK as the randomness for the encryption. Following this
idea, we construct Π.PKE as following: Π.KGEN(SK) = I.2OT1(0, SK) = PK,
Π.ENC(PK,m, nonce) = LoR0(I.2OT2(m,m,PK, nonce)) = C, where nonce =
SK, and Π.DEC(SK, C) = I.2OT3(C, SK, 0) = m.

This joint construction Π.PKE=(Π.KGEN, Π.ENC, Π.DEC) is indifferentiable
from an ideal PKE I.PKE, and we show it in Theorem 4.

7



2 Preliminaries

Notations. Let λ ∈ N be the security parameter for all the definitions in this
paper, and let “PPT” denote probabilistic polynomial time. Let y ← f(x) denote
running a probabilistic algorithm f with an input x and obtaining an output y.
Denote by negl(λ) a negligible function of λ. Let 1n and 0n denote a n-bit string
with every bit being 1 and a n-bit string with every bit being 0, respectively. Let
a‖b denote concatenating a string a and b from left-to-right order, and LoRb(x)
denote a function that outputs the left half of x if b = 0, or the right half of x if
b = 1.

2.1 Indifferentiability Framework

When it comes to the framework of indifferentiability, we typically consider that
a cryptosystem implements either some ideal objects F , or a construction CF ′

which applies underlying ideal objects F ′.

Definition 1. [Indifferentiability [20]] Let Σ1 and Σ2 be two cryptosystems
and S be a simulator. The indifferentiability advantage of a differentiator D
against (Σ1,Σ2) with respect to S is

Advindif
Σ1,Σ2,S,D(1

λ) := Pr[RealΣ1,D(1
λ)]− Pr[IdealΣ2,S,D(1

λ)],

where the real game RealΣ1,D and the ideal game IdealΣ2,S,D are defined in Figure
2. We say Σ1 is indifferentiable from Σ2, if there exists an efficient simulator S
such that for any probabilistic polynomial time differentiator D, the advantage
above is negligible. Moreover, we say Σ1 is statistically indifferentiable from Σ2,
if there exists a PPT simulator such that, for any unbounded differentiator D,
the advantage above is negligible.

RealΣ1,D(1λ):
b← DHonestR,AdvR

Return b.

HonestR(X)
Return Σ1.hon(X).
AdvR(X)
Return Σ1.adv(X).

IdealΣ2,S,D(1λ):
b← DHonestI,AdvI

Return b.

HonestI(X)
Return Σ2.hon(X).
AdvI(X)
Return
SimΣ2.adv(·)(X).

Fig. 2: Indifferentiability of Σ1 and Σ2

Below, we also use the notations in [2] and consider the definition above to
two systems with interfaces as:

(Σ1.hon(X),Σ1.adv(x)) := (CF1(X),F1(x)); (Σ2.hon(X),Σ2.adv(x)) := (F2(X),F2(x)),
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where F1 and F2 are two ideal objects sampled from their distributions and CF1

is a construction of F2 by calling F1.
Next, we provide the definition of ideal NIKE without public key validity

test5, which means that no PPT algorithm can distinguish a uniformly sampled
string in the public key space from a key output by the key generation algorithm,
referring to [24].

Definition 2. [Ideal NIKE [24]] Let X ,Y,W ∈ ω(log λ) be three sets. We
denote F [X → Y ] as the set of all injections that map X to Y and G[X ×Y → K]
as the set of functions that map X × Y to K.

We define an ideal NIKE scheme I.symNIKE = (I.symGEN, I.symSHK) as the
set of all function pairs (f, g) such that: (1) f ∈ F , g ∈ G; (2) ∀x1, x2 ∈ X ,
g(x1, f(x2)) = g(x2, f(x1)); (3) g(x1, y1) = g(x2, y2) ⇒ (x1 = x2 ∧ y1 = y2) ∨
(y1 = f(x2) ∧ y2 = f(x1)).

The definition of ideal PKE without public key validity test6 is provided
below, which means that no PPT algorithm can distinguish whether a given
string is uniformly sampled from the public key space or generated by the key
generation algorithm, referring to [24].

Definition 3. [Ideal PKE [24]] Let X ,Y,M,R, C ∈ ω(log λ) be five sets.We
denote F1[X → Y ] as the set of all injections that map X to Y; F2[Y×M×R→
C] as the set of all injections that map Y×M×R to C and F3[C×X →M∪⊥]
as the set of all functions that map X × C to M ∪ ⊥.

We define an ideal PKE scheme I.PKE = (I.KGEN, I.ENC, I.DEC) as the set
of all function tuples (f1, f2, f3) such that: (1) f1 ∈ F1, f2 ∈ F2 and f3 ∈ F3;
(2)∀x ∈ X , m ∈M and r ∈ R, f3(x, f2(f1(x),m, r)) = m; (3)∀x ∈ X , c ∈ C, if
there is no (m, r) ∈M×R such that f2(f1(x),m, r) = c, then f3(x, c) = ⊥.

3 EOT and NIKE are Equivalent in Indifferentiability
Framework

3.1 Indifferentiable Asymmetric NIKE from Ideal Symmetric NIKE

First, we define ideal asymmetric NIKE and ideal one-round EOT.

Definition 4. [Ideal Asymmetric NIKE] Let X1,Y1,X2,Y2,K ∈ ω(log λ)
be five sets. Let G1 := {X1 .→ Y1} be a family of injective functions that maps
an element from X1 to an element in Y1.Let G2 := {X2 .→ Y2} be a family
of injective functions that maps an element from X2 to an element in Y2. Let
F1 := {X2 × Y1 .→ K} be a family of functions that maps an element from X2×Y1

5 In the following, we abbreviate ideal NIKE without public key validity test as ideal
NIKE.

6 In the following, we abbreviate ideal PKE without public key validity test as ideal
PKE.
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to an element in K. Let F2 := {X1 × Y2 .→ K} be a family of functions that maps
an element from X1 × Y2 to an element in K.

We define an ideal asymmetric NIKE as a set of all function tuples
(g1, g2, f1, f2) such that: (1) for i ∈ [2], gi ∈ Gi and fi ∈ Fi; (2) ∀x1 ∈ X1,
∀x2 ∈ X2, f1(g2(x2), x1) = f2(g1(x1), x2).

Definition 5. [Ideal One-Round EOT] Let X1,X2,Y1,Y2,K ∈ ω(log λ) be
five sets. Let F1 := {{0, 1}× X1 .→ Y1} be a family of injective functions that
maps an element from {0, 1} × X1 to an element in Y1. Let F2 := {X2 .→ Y2}
be a family of functions that maps an element in X2 to an element in Y2. Let
F3 := {{0, 1}× X1 × Y2 .→ K} be a family of functions that maps an element in
{0, 1}×X1 ×Y2 to an element in K. Let F4 := {X2 × Y1 .→ K ×K} be a family
of functions that maps an element in X2 × Y1 to an element in K ×K.

We define ideal one-round IEOT = (IEOTA1 , IEOTA2 , IEOTB1 , IEOTB2) as the
set of all function tuples (f1, f2, f3, f4) such that: (1) for i ∈ [4], fi ∈ Fi; (2)∀b ∈
{0, 1}, ∀x1 ∈ X1,∀x2 ∈ X2: f4(f1(b, x1), x2) = (y0, y1) and f3(b, x1, f2(x2)) = yb.

Parameters. Denote the secret key space, public key space and shared key
space of I.symKG as {0, 1}n1(λ), {0, 1}n2(λ), {0, 1}n3(λ), respectively. Denote the
two secret key spaces, public key space and shared key space of I.asyKG as
{0, 1}"1(λ), {0, 1}"3(λ), {0, 1}"2(λ), {0, 1}n3(λ), respectively. Denote the two se-
cret key spaces, two public key spaces and key space of I.EOT as {0, 1}"1(λ),
{0, 1}"3(λ), {0, 1}"2(λ), {0, 1}"4(λ), {0, 1}n3(λ), respectively.

Construction. The construction of an asymmetric NIKE scheme Π.asyNIKE =
(Π.asyKG0,Π.asyKG1,Π.asySHK0, Π.asySHK1) (wlog, assuming that PK1 and
PK0 for are of equal length) from an ideal symmetric NIKE scheme I.symNIKE,
is described below, where H0, H1 are random oracles, P0, P1 are random per-
mutations, defined below: H0 : {0, 1}∗ .→ {0, 1}n1(λ), H1 : {0, 1}∗ .→ {0, 1}n1(λ),
P0 : {0, 1}"2(λ) .→ {0, 1}"2(λ), P1 : {0, 1}"2(λ) .→ {0, 1}"2(λ).

– Π.asyKG0(SK0) = P0(I.symKG(H0(SK0)));
– Π.asyKG1(SK1) = P1(I.symKG(H1(SK1)));
– Π.asySHK0(SK0,PK1) = I.symSHK(H0(SK0), P

−1
1 (PK1));

– Π.asySHK1(SK1,PK0) = I.symSHK(H1(SK1), P
−1
0 (PK0)).

Theorem 1. The constructed scheme Π.asyNIKE in Sec. 3.1, with access to
an ideal symmetric NIKE scheme I.symNIKE, random oracles H0, H1 and
random permutations P0, P1, is indifferentiable from an ideal asymmetric
NIKE scheme as in Def. 4. More precisely, there exists a simulator S such
that for all polynomial q-query distinguisher D, the distinguishing advantage
Advindif

Π.asyNIKE,I.asyNIKE,S,D(1
λ) satisfies the following:

Advindif
Π.asyNIKE,I.asyNIKE,S,D(1

λ) ≤ 2q2

2n1(λ)
+

4q2

2n2(λ)
+

3q2

2"1(λ)
+

2q2

2"3(λ)
+

q2

2"2(λ)
+

2q2

2"4(λ)

≤ negl(λ),
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Proof. By the definition of indifferentiability, in the real world, the differentia-
tor D has oracle access to (Π.asyKG0, Π.asyKG1, Π.asySHK0, Π.asySHK1) via
the honest interface and oracle access to (H0, H1, I.symKG, I.symSHK, P0, P

−1
0 ,

P1, P
−1
1 ) via the adversarial interface. In the ideal world, the differentiator D

has oracle access to (I.asyKG0, I.asyKG1, I.asySHK0, I.asySHK1) via the honest
interface and access to S via the adversarial interface. Therefore, to establish a
proof using the simulation paradigm, in the ideal world we need to build a PPT
simulator S that simulates the oracles for the adversarial interface properly, by
making queries to the oracles for the honest interface, such that for any PPT
D, the view in the real world is computationally close to the view in the ideal
world.

Before describing the simulator, we first specify some parameters: 1) The
differentiator D can make at most q queries to the oracles, where q = poly(λ);
2) There are eight types of queries at the adversarial interface, corresponding to
the eight oracles (H0, H1, I.symKG, I.symSHK, P0, P

−1
0 , P1, P

−1
1 ); 3) In the real

game, the queries at adversarial interface are responded by the corresponding
oracles. And in the ideal game, the queries at adversarial interface are simu-
lated by the simulator. The simulator maintains a table for each oracle at the
adversarial interface, in the following forms, where the subscript indicates the
corresponding oracle: TH0 = (SK0, sk0, pk0,PK0), TH1 = (SK1, sk1, pk1,PK1),
TP0 = (SK0, sk0, pk0,PK0), TP−1

0
= (∗, ∗, pk0,PK0), TP1 = (SK1, sk1, pk1,PK1),

TP−1
1

= (∗, ∗, pk1,PK1), TsymKG = (∗, sk, pk, ∗), TsymSHK = (ŝk, p̃k,K). The tables
are initially empty, once the adversary makes a query to an oracle that does not
exist in the tables, the simulator inserts the query and the simulated answer to
the table corresponding to the oracle.

Then, we describe the responses of simulator S to the queries at the adver-
sarial interface.For any query, if the corresponding answer can be found in the
tables maintained by S, no matter the answer is exactly in the corresponding
table or can be extrapolated from the associated items in different tables and
the honest interface, the simulator will give an answer consistent with the tables
by simply searching the tables and/or querying the honest interface with the
corresponding inputs. And for any fresh query whose answer cannot be simply
found using the tables, the simulator answer them as following:

For a fresh query SK0 to the oracle H0, if ∃(∗, ∗, pk0,PK0) ∈ TP−1
0

s.t. PK0 =

I.asyKG0(SK0), sample random sk0 ← {0, 1}n1(λ), add (SK0, sk0, pk0,PK0) to
TH0 , and return sk0. Otherwise, sample random sk0 ← {0, 1}n1(λ), pk0 ←
{0, 1}n2(λ); query I.asyKG0 with SK0 and obtain PK0; add (SK0, sk0, pk0,PK0) to
TH0 , and return sk0. For a fresh query SK1 to the oracle H1, if ∃(∗, ∗, pk1,PK1) ∈
TP−1

1
s.t. PK1 = I.asyKG1(SK1), sample random sk1 ← {0, 1}n1(λ), add

(SK1, sk1, pk1,PK1) to TH1 , and return sk1. Otherwise, sk1 ← {0, 1}n1(λ),
pk1 ← {0, 1}n2(λ), query the external I.asyKG1 with SK1 to obtain PK1; add
(SK1, sk1, pk1,PK1) to TH1 , and return sk1.

For a fresh query pk0 to the oracle P0, randomly sample SK0 ← {0, 1}"1(λ)
and sk0 ← {0, 1}n1(λ), query I.asyKG0 with SK0 to obtain PK0, return PK0,
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and add (SK0, sk0, pk0,PK0) to the table TP0 . For a fresh query PK0 to the
oracle P−10 , return a randomly sampled pk0 ← {0, 1}n2(λ), add (∗, ∗, pk0,PK0)
to the table TP−1

0
. For a fresh query pk1 to the oracle P1, randomly sample

SK1 ← {0, 1}"3(λ) and sk1 ← {0, 1}n1(λ), query I.asyKG1 with SK1 to obtain
PK1, return PK1 and add (SK1, sk1, pk1,PK1) to the table TP1 . For a fresh
query PK1 to the oracle P−10 , return a randomly sampled pk1 ← {0, 1}n2(λ),
add (∗, ∗, pk1,PK1) to the table TP−1

1
.

For a fresh query sk to the oracle I.symKG, randomly sample p̃k← {0, 1}n2(λ),
S̃K0 ← {0, 1}"1(λ) and S̃K1 ← {0, 1}"3(λ); query I.asyKG0 with S̃K0 to ob-
tain P̃K0; query I.asyKG1 with S̃K1 to obtain P̃K1; return p̃k, finally, add
(S̃K0, sk, p̃k, P̃K0) and (S̃K1, sk, p̃k, P̃K1) to the table TsymKG.

For a fresh query (ŝk, p̃k) to the oracle I.symSHK, if there exists a PK1

corresponding to p̃k in the tables, randomly sample SK0 ← {0, 1}"1(λ), query
I.asySHK0 with (SK0,PK1) to obtain K, and return K; if there exists a PK0

corresponding to p̃k in the tables, randomly sample SK1 ← {0, 1}"3(λ), query
I.asySHK1 with (SK1,PK0) to obtain K, and return K; if there exists a SK0

corresponding to ŝk in the tables, randomly sample PK1 ← {0, 1}"4(λ), query
I.asySHK0 with (SK0,PK1) to obtain K0, and return K0; if there exists a
SK1 corresponding to ŝk in the tables, randomly sample PK0 ← {0, 1}"2(λ),
query I.asySHK1 with (SK1,PK0) to obtain K1, and return K1; otherwise, ran-
domly sample SK1 ← {0, 1}"3(λ) and P̃K0 ← {0, 1}"2(λ), query I.asySHK1 with
(SK1, P̃K0) to obtain K, return K, and finally, store all the newly generated
query-and-answer items in the corresponding tables.

According to the output randomness of all the oracles on the adversarial
interface and the relationship between the outputs and inputs of the oracles
determined by the construction Π.asyNIKE, the answers simulated by the sim-
ulator and that of the corresponding oracles in the real scheme are computa-
tionally indistinguishable for any PPT differentiator. Therefore, the constructed
Π.asyNIKE is indistinguishable from an ideal asymmetric NIKE in the indiffer-
eniability framework. The full proof of Theorem 1 is shown in Appendix A.

3.2 Indifferentiable Endemic OT from Ideal Asymmetric NIKE

We construct an indifferentiable EOT from an ideal asymmetric NIKE as below,
where H0 : Z .→ Z, H1 : Z .→ Z, H2 : X × {0, 1} .→ Y, H3 : Y .→ Y are random
oracles, E : Y × Y .→ Y, E−1 : Y × Y .→ Y is an ideal cipher.

– Q← Π.EOTA1(b, SK0):
PK0 ← I.asyKG0(SK0), Q1−b = H2(SK0, b), Qb = E(H3(Q1−b),PK0),
output Q = Q0‖Q1.

– PK1 ← Π.EOTB1(SK1) = I.asyKG1(SK1)

– Kb ← Π.EOTA2(PK1, SK0, b) = Hb(I.asySHK0(PK1, SK0)).
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– (K0,K1)← Π.EOTB2(Q, SK1):
Q = Q0, Q1, A0 = E−1(H3(Q1), Q0), A1 = E−1(H3(Q0), Q1),
K0 ← H0(I.asySHK1(A0, SK1)), K1 ← H1(I.asySHK1(A1, SK1)),
output (K0,K1).

We prove the security of the EOT construction below.

Theorem 2. The constructed protocol Π.EOT in Sec. 3.2, with access to an
ideal asymmetric NIKE scheme I.asyNIKE, random oracles H0, H1, H2, H3 and
an ideal cipher E, is indifferentiable from an ideal EOT protocol I.EOT as in
Def.5. More precisely, there exists a simulator S such that for all polynomial q-
query distinguisher D, the distinguishing advantage Advindif

Π.EOT,I.EOT,S,D(1
λ) sat-

isfies the following:

Advindif
Π.EOT,I.EOT,S,D(1

λ) ≤ q2

2"1(λ)
+

2q2

2"2(λ)
+

q2

2n3(λ)
≤ negl(λ),

Proof. In the real world, the differentiator D has oracle access to
(Π.EOTA1 ,Π.EOTA2 ,Π.EOTB1 ,Π.EOTB2) via the honest interface and oracle ac-
cess to (H0, H1, I.asyKG0, I.asyKG1, I.asySHK0, I.asySHK1) via the adversarial in-
terface. In contrast, in the ideal world, the differentiator D and the simulator
Shas oracle access to (I.EOTA1 , I.EOTA2 , I.EOTB1 , I.EOTB2) via the honest inter-
face and access to S via the adversarial interface.

First, S maintains a table of queries and answers for each of the ora-
cles (H0, H1, I.asyKG0, I.asyKG1, I.asySHK0, I.asySHK1). The simulator maintains
a table for each of the oracles, respectively, in the following form: TH0 =
(SK0, b, Q1−b, Qb), TH1 = (Qd, k̃), TE = (Qb, k̃,PK0), TE−1 = (Qb, k̃,PK0),
TasyKG0

= (SK0,PK0), TasyKG1
= (SK1,PK1), TasySHK0

= (SK0,PK1,K),
TasySHK1

= (SK1,PK0,K).
Then the simulator S responds to oracle queries at the adversarial interface

using the similar strategies as that in the proof of Theorem 1. In particular,
for any query, if the corresponding answer can be found by searching the tables
and/or querying the honest interface, S answers it using these methods. And for
any fresh query whose answer cannot be simply found with those methods, the
simulator answer them as following:

For a fresh query (SK0, b) at H0, the simulator will query the external I.EOTA1

with (SK0, b) to obtain Q0, Q1, reply with Q1−b, and store (SK0, b, Q1−b, Qb) in
the table TH0 . For a fresh query Qd at H1, the simulator will sample a random
k̃ from the range of H1, reply with k̃ and store (Qd, k̃) in the table TH1 . For
a fresh query (PK0, k̃) at E , the simulator will uniformly sample a SK0 from
{0, 1}"1(λ), and a bit b← {0, 1}, query I.EOTA1 with (SK0, b) to obtain (Q0, Q1),
reply with Qb, and store (Q1−b, k̃), (SK0,K0) and (Qb, k̃,PK0) in the table TH1 ,
TasyKG0

and TE , respectively. For a fresh query (Qb, k̃) at E−1, the simulator will
uniformly sample a PK0 from {0, 1}"2(λ),, reply with PK0, store (Qb, k̃,PK0) in
the table TE−1 . For a fresh query SK0 at I.asyKG0, the simulator will uniformly
sample a PK0 from {0, 1}"2(λ),, reply with PK0, store (SK0,PK0) in the table
TasyKG0 . For a fresh query SK1 at I.asyKG1, the simulator will query Π.EOTB1
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with SK1, obtain PK1, reply with PK1, store (SK1,PK1) in the table TasyKG1
.

The simulated answers are indistinguishable from the answers of the real oracles
at the adversarial interfaces. Therefore, the real world construction Π.EOT is
indifferentiable from an ideal one-round EOT.

The full proof of Theorem 2 is shown in Appendix B.

3.3 NIKE from EOT in Indifferentiability Framework

Using I.EOT as the main component, we construct a NIKE scheme Π.symNIKE =
(Π.symKG,Π.symSHK), described as following, where H1 is a random oracle, H0

is a random function defined below: H1 : {0, 1}∗ .→ {0, 1}"3(λ), H0 : {0, 1}n3(λ)×
{0, 1}n3(λ) .→ {0, 1}n3(λ).

– Π.symKG(SK0)→ PK0:
PKA

0 ← I.EOTA1(SK0, 0), PKB
0 ← I.EOTB1(H1(SK0)),

output PK0 = (PKA
0 ,PK

B
0 ).

– Π.symSHK(SK0,PK1)→ K:
K = H0(I.EOTA2(SK0,PK

B
1 , 0), LoR0(I.EOTB2(H1(SK0),PK

A
1 )),7

output K.

By the definition of the ideal NIKE, the correctness holds. We argue the
security of Π.symNIKE below.

Theorem 3. The constructed scheme Π.symNIKE in Sec. 3.3, with access to an
ideal EOT protocol I.EOT and random oracles H0, H1, is indifferentiable from
an ideal symmetric NIKE scheme as in Def. 2. More precisely, there exists a
simulator S such that for all polynomial q-query distinguisher D, we have

Advindif
Π.symNIKE,I.symNIKE,S,D(1

λ) ≤ q2

2"2(λ)
+

2q2

2"3(λ)
+

5q2

2n3(λ)
+

q2

22n3(λ)
≤ negl(λ),

Proof. In the real world, the differentiator D has oracle access to
(Π.symKG,Π.symSHK) via the honest interface and oracle access to
(H0, H1, I.EOTA1 , I.EOTA2 , I.EOTB1 , I.EOTB2) via the adversarial interface.
In contrast, in the ideal world, the differentiator D has oracle ac-
cess to (I.symKG, I.symSHK) via the honest interface and access to S
via the adversarial interface. Therefore, to establish a proof, we build
an explicit (and efficient) simulator S that simulates the rest oracles
(H0, H1, I.EOTA1 , I.EOTA2 , I.EOTB1 , I.EOTB2) properly by making queries to
(I.symKG, I.symSHK).

The simulator maintains a table for each of those oracle in the follow-
ing forms, where the subscript indicates the corresponding oracle: TH0 =
(SK0, sk0, pk0,PK0), TH1 = (SK1, sk1, pk1,PK1), TP0 = (SK0, sk0, pk0,PK0),
TP−1

0
= (∗, ∗, pk0,PK0), TP1 = (SK1, sk1, pk1,PK1), TP−1

1
= (∗, ∗, pk1,PK1),

7 the two inputs of H0 are in lexicographical order
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TsymKG = (∗, sk, pk, ∗), TsymSHK = (ŝk, p̃k,K). The tables are initially empty,
once the adversary makes a query to an oracle that does not exist in the tables,
the simulator inserts the query and the simulated answer to the table corre-
sponding to the oracle. The simulator answers the queries at the adversarial
interface as follows. For any query, if the corresponding answer can be found by
searching the tables maintained by S and/or querying the honest interface, S
answers it using these methods. And for any fresh query whose answer cannot
be simply found using those methods, the simulator answer them as follows.

For a fresh query SK to the oracle H1, return a randomly sampled SK ←
{0, 1}"1(λ); add (SK, SK) to TH1 . For a fresh query (SK, 1) to the oracle I.EOTA1 ,
return a randomly sampled PKL ← {0, 1}2"5(λ), and add (SK, 1,PKL) to the
table TOTA1

. For a fresh query (SK, b, P̃K
R
) to the oracle I.EOTA2 , return a

randomly sampled KA ← {0, 1}n3(λ), and add (SK, b, P̃K
R
,KA) to TOTA2

. For
a fresh query SK to I.EOTB1 , randomly sample SK← {0, 1}"1(λ), query I.symKG
with SK to obtain PK (which has "2(λ) bits), truncate the last "4(λ) bits of PK
as PKR; return PKR; add (SK, SK) to TH1 and (SK,PKR) to TOTB1

. For a fresh
query (SK, P̃K

L
) to I.EOTB2 , if there exists the corresponding answer’s first half

KB or the second half KA in the tables, randomly sample K̃B ← {0, 1}n3(λ),
return KB , K̃B or K̃B ,KA and add (SK, P̃K

L
,KB , K̃B) or (SK, P̃K

L
, K̃B ,KA)

to the table TOTB2
. Otherwise, return randomly sampled KB , K̃B ← {0, 1}n3(λ),

and add (SK, P̃K
L
,KB , K̃B) to the table TOTB2

. For a fresh query (KA,KB) to
the oracle H0, return a random sampled K ← {0, 1}n3(λ); add (KA,KB ,K) to
the table TH0 .

The simulated answers are indistinguishable from the answers of the real
oracles at the adversarial interfaces. Therefore, the real world construction
Π.symNIKE is indifferentiable from an ideal (symmetric) NIKE. The full proof
of Theorem 3 is provided in Appendix C.

4 Relations between two-round OT and PKE in
Indifferentiability Framework

4.1 Indifferentiable PKE from Ideal Two-Round OT

First, we present the definition of ideal two-round OT as follows.

Definition 6. [Ideal Two-Round OT] Let X1,Y,M,X2,Z,W ∈ ω(log λ) be
five sets. Let F1 := {{0, 1}× X1 .→ Y} be a family of functions that maps an
element in {0, 1}×X1 to an element in Y. Let F2 := {Y ×M×M× X2 .→W}
be a family of functions that maps an element in Y×M×M×X2 to an element
in W. Let F3 := {W × X1 × {0, 1} .→M} be a family of functions that maps an
element in W × X1 × {0, 1} to an element in M.

We define ideal two-round OT I.2OT = (I.OT1, I.OT2, I.OT3) as the set
of all function tuples (f1, f2, f3) such that: (1) for i ∈ [3], fi ∈ Fi;
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and (2) ∀b ∈ {0, 1}, ∀x1 ∈ X1, ∀x2 ∈ X2, ∀m0,m1 ∈ M, it holds that
f3(f2(f1(b, x1)),m0,m1, x2) = mb.

In this section, we ignore the parameters of these ideal objects for simplicity,
without influencing our theorems.

We construct a PKE scheme without public key validity test, denoted by
Π.PKE = (Π.KGEN,Π.ENC,Π.DEC), from an ideal two-round OT protocol
I.2OT = (I.OT1, I.OT2, I.OT3), as following.

– PK← Π.KGEN(SK) = I.OT1(0, SK)
– C = Π.ENC(PK,m, SK) = I.OT2(m,m,PK, SK), where SK serves as the

nonce for encryption.
– m = Π.DEC(SK, C) = I.OT3(C, SK, 0)

By definition, the correctness holds. We argue the security of Π.PKE below.

Theorem 4. The constructed scheme Π.PKE in Sec. 4.1, with access to an ideal
two-round OT protocol I.2OT, is indifferentiable from an ideal PKE scheme as
in Def. 3.

Proof. In the real world, the differentiator D has oracle access to (Π.KGEN,
Π.ENC, Π.DEC) via the honest interface and oracle access to (I.OT1, I.OT2,
I.OT3) via the adversarial interface. In the ideal world, the differentiator D has
oracle access to (I.KGEN, I.ENC, I.DEC) via the honest interface and access to S
via the adversarial interface.

Note that the inputs for the adversarial interface and for the honest interface
are highly matched in both the ideal world and the real world. For most of the
queries, the simulator S can simply use the full or partial query input(s) to query
the honest interface and obtain an output, then use the output as the response.
For example, for a query (0, SK) to the oracle I.OT1, the simulator just queries
I.KGEN with SK to obtain PK, and return PK as the answer. In this way, S’s
responses are consistent with the honest interface. For queries not covered in the
above, the simulator answers them as follows. For a fresh query (SK, 1) to the
oracle I.OT1, return a randomly sampled P̃K ← Y, and add (SK, b, P̃K) to the
table TOT1 . For a fresh query (m0,m1,PK, SK) (with m0 2= m1) to I.OT2, return
a randomly sampled C ← C and add (m0,m1,PK, SK, C) to the table TOT2 . For
a fresh query (SK, 1, C) to I.OT3, return a randomly sampled m̃←M and add
(SK, 1, C, m̃) to the table TOT3 .

Since the outputs of the oracles I.OT1, I.OT2, I.OT3 are randomly distributed,
the simulator’s responses are indistinguishable from their responses. Therefore,
the constructed PKE scheme Π.PKE is indifferentiable from an ideal PKE. The
full proof can be found in Appendix D.1.

4.2 Indifferentiable two-round OT from Ideal PKE Without Public
Key Validity Test

We construct a two-round OT protocol, denoted by Π.2OT =
(Π.OT1,Π.OT2,Π.OT3), from an ideal PKE PKE = (KGEN,ENC,DEC)),
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as following, where H0, H1, H2, H3 are random oracles, (P0, P
−1
0 ) are an ideal

permutation and its inverse, and (E , E−1) are an ideal cipher and its inverse.

– Q← Π.OT1(b, SK):
PK = KGEN(SK), Q1−b = H2(SK, b), Qb = E(H3(Q1−b),PK), Q = Q0‖Q1

– w ← Π.OT2(Q,m0,m1, SK)

PK0 := E−1(H3(Q1), Q0), PK1 := E−1(H3(Q0), Q1),
C0 ← ENC(PK0,m0, H0(SK,m1)), C1 ← ENC(PK1,m1, H1(SK,m0)),
w := P0(C0, C1)

– mb ← Π.OT3(w, SK, b)

W = P−10 (w), W = C0, C1, mb = I.DEC(SK, Cb)

By definition, the correctness holds. We show the security of this 2OT con-
struction via Theorem 5, below.

Theorem 5. The constructed protocol Π.2OT in Sec. 4.2, with access to an ideal
PKE I.PKE, random oracles H0, H1, H2, H3, a random permutation P0 and an
ideal cipher (E , E−1), is indifferentiable from an ideal two-round OT protocol as
in Def. 6.

Proof. In the real world, the differentiator D has oracle access to (Π.OT1, Π.OT2,
Π.OT3 via the honest interface and oracle access to (H0, H1, H2, H3, P0, P

−1
0 ,

E , E−1 via the adversarial interface. In the ideal world, the differentiator D has
oracle access to (I.OT1, I.OT2, I.OT3 via the honest interface and access to S via
the adversarial interface.

The simulator S maintains a table for each oracle at the adversarial in-
terface, in the following forms: TH0 = (SK,m1, r0), TH1 = (SK,m0, r1),
TH2 = (SK, b, Q1−b), TH3 = (Q,K), TP0 = (C0, C1, w), TP−1

0
= (C0, C1, w),

TE = (K,PK, Q), TE−1 = (K,PK, Q).
The simulator S in the ideal world is described below. For any query, if the

corresponding answer can be found by searching the tables and/or querying the
honest interface, S answers it using these methods. And for any fresh query
whose answer cannot be simply found with those methods, the simulator answer
them as following: For a fresh query (SK,m1) to the oracle H0, return a randomly
sampled r0 ← R; add (SK,m1, r0) to the table TH0 . For a fresh query (SK,m0)
to the oracle H1, return a randomly sampled r1 ← R; add (SK,m0, r1) to the
table TH1 . For a fresh query Q to the oracle H3, return a randomly sampled
K ← K; add (Q,K) to the table TH3 . For a fresh query (K,PK) to the oracle E ,
return a randomly sampled Q← C; add (K,PK, Q) to the table TE . For a fresh
query (K,Q) to the oracle E−1, return a randomly sampled PK ← PK; add
(K,PK, Q) to the table TE−1 . For a fresh query (C0‖C1) to the oracle P0, return
a randomly sampled w ← C×C; add (C0, C1, w) to TP0 . For a fresh query w to the
oracle P−1, return randomly sampled C0, C1 ← C; add (C0, C1, w) to TP−1

0
. For

a fresh query SK to the oracle I.KGEN, return a randomly sampled PK ← PK;
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add (SK,PK) to TKGen. For a fresh query (PK,m, r) to the oracle I.ENC, return
a randomly sampled C ← C; add (PK,m, r, C) to the table TEnc. For a fresh
query (SK, C) to the oracle I.DEC, return a randomly sampled m ← M; add
(SK, C,m) to the table TDec.

The simulated answers are indistinguishable from the answers of the real or-
acles at the adversarial interfaces. Therefore, the real world construction Π.2OT
is indifferentiable from an ideal two round OT. The full proof can be found in
Appendix D.2.

5 The relationship between Ideal one-round EOT and
Ideal two-round OT

Here we provide a construction of two-round OT Π.2OT =
(Π.OT1,Π.OT2,Π.OT3) based on an ideal one-round EOT I.EOT, where
H0 is a random oracle, P0 is a random permutation, (E1, E−11 ) and (E2, E−12 ) are
ideal ciphers.

– Q← Π.OT1(SK, b) = I.EOTA1(SK, b)

– w ← Π.OT2(Q,m0,m1, S̃K)

e = H0(Q,m0,m1, S̃K), P̃K← I.EOTB1(S̃K), P̂K = E1(e, P̃K),
(K0,K1)← I.EOTB2(Q, S̃K), C0 = E2(K0,m0), C1 = E2(K1,m1),
w = P0(P̂K, e, C0, C1)

– mb ← Π.OT3(w, b, SK)

(P̂K, e, C0, C1) = P−10 (w), P̃K = E−11 (e, P̂K), Kb ← I.EOTA2(P̃K, b, SK),
mb = E−12 (Kb, Cb).

Theorem 6. The constructed protocol Π.2OT in Sec. 5, with access to an ideal
one-round EOT protocol I.EOT, a random oracle H0, a random permutation
P0 and two ideal ciphers (E1, E−11 ), (E2, E−12 ), is indifferentiable from an ideal
two-round OT protocol as in Def. 6.

Proof. In the real world, the differentiator D has oracle access to (Π.OT1, Π.OT2,
Π.OT3) via the honest interface and oracle access to (I.EOTA1 , I.EOTB1 , I.EOTA2 ,
EOTB2) via the adversarial interface. In the ideal world, the differentiator D has
oracle access to (I.OT1, I.OT2, I.OT3 via the honest interface and access to S via
the adversarial interface.

First, the simulator S maintains a table for each oracle at the adversarial
interface as in the previous proofs. Then for any query, if the corresponding
answer can be found by searching the tables and/or querying the honest interface,
S answers it using these methods. And for any fresh query whose answer cannot
be simply found with those methods, the simulator answer them as following:

For a fresh query (Q,m0,m1, S̃K) to the oracle H0, query the external I.OT2

with (Q,m0,m1, S̃K) to obtain e; return e, and add (Q,m0,m1, S̃K, e) to the
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table TH0 . For a fresh query (e, P̃K) to the oracle E1, return a randomly sampled
P̂K; add (e, P̃K, P̂K) to the table TE1 . For a fresh query (e, P̂K) to E−11 , return
a randomly sampled P̃K; add (e, P̃K, P̂K) to the table TE−1

1
. For a fresh query

(K,m) to E2, return a randomly sampled C; add (K,m,C) to the table TE2 .
For a fresh query (K,C) to E−12 , return a randomly sampled m; add (K,m,C)
to the table TE−1

2
. For a fresh query (SK, b) to I.EOTA1 , query I.OT1(SK, b)

to obtain Q; return Q, and add (SK, b, Q) to the table TEOTA1
. For a fresh

query (S̃K) to I.EOTB1 , return a randomly sampled P̃K; add (S̃K, P̃K) to the
table TEOTB1

. For a fresh query (SK, b, P̃K) to I.EOTA2 , return a randomly sam-
pled Kb; add (SK, b, P̃K,Kb) to the table TEOTA2

. For a fresh query (Q, S̃K) to
I.EOTB2 , return a randomly sampled K0,K1, add (Q, S̃K,K0,K1) to the table
TEOTB2

. For a fresh query (P̂K, e, C0, C1) to P0, return a randomly sampled w,
add (P̂K, e, C0, C1, w) to the table TP0 . For a fresh query w to P−10 , return a
randomly sampled (P̂K, e, C0, C1), add (P̂K, e, C0, C1, w) to the table TP−1

0
.

The simulated answers are indistinguishable from the answers of the real or-
acles at the adversarial interfaces. Therefore, the real world construction Π.2OT
is indifferentiable from an ideal two round OT. The full proof can be found in
Appendix E.

Theorem 7. Let I.2OT denote an ideal two-round OT protocol. For any con-
struction of a one-round EOT protocol Π.EOT, with access to the I.2OT and
random oracles, there exists a PPT differentiator that can distinguish the con-
structed Π.EOT from an ideal one-round EOT protocol I.EOT as in Def. 5.

Proof. Our constructed one-round EOT Π.EOT has four interfaces
Π.EOTA1 ,Π.EOTA2,Π.EOTB1 ,Π.EOTB2 , and an ideal two-round OT has
three interfaces I.OT1, I.OT2, I.OT3. According to the interface parameters,
I.OT1 should be used to construct Π.EOTA1 , I.OT2 should be used to construct
Π.EOTB1 and Π.EOTB2 , and I.OT3 should be used to construct Π.EOTA2. Note
that I.OT2 takes the output of I.OT1 as input to ensure correctness, however,
Π.EOTB1 does not need the output of Π.EOTA1 as its input. Then the algorithm
I.OT2 underlying Π.EOTB1 ,Π.EOTB2 cannot obtain the output of I.OT1 as its
input, and the underlying I.OT2, I.OT3 cannot be computed correctly.

Therefore, the correctness of any constructed EOT based on I.2OT cannot
be ensured, and there exists a PPT differentiator that can distinguish the con-
structed one-round EOT Π.EOT from an ideal EOT protocol, which completes
our proof.

Discussion on the relationship between ideal PKE and ideal NIKE.
Zhandry and Zhang [24] showed a construction of indifferentiable PKE without
public key validity test from ideal NIKE without public key validity test. How-
ever, it is not clear whether ideal PKE implies ideal NIKE, after trying a lot
of methods, we did not find a correct and secure construction of indifferentiable
NIKE from ideal PKE. Based the our previous theorems, we obtain the following
corollary.
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Corollary 1. According to Theorem 1, Theorem 2, Theorem 3, Theorem 4, The-
orem 5, Theorem 6 and Theorem 7, ideal PKE does not imply ideal NIKE in the
indifferentiablity framework.

Proof. In the indifferentiablity framework, based on Theorem 1, Theorem 2 and
Theorem 3, ideal NIKE is equivalent to ideal one-round EOT. And based on
Theorem 4 and Theorem 5, ideal PKE is equivalent to ideal two-round OT.
However, based on Theorem 6 and Theorem 7, ideal two round OT does not
imply ideal one-round EOT; therefore, ideal PKE does not imply ideal NIKE in
the indifferentiablity framework.
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A Proof of Theorem 1

Proof. We use hybrid arguments to prove the indistinguishability of the con-
structed real asymmetric NIKE scheme from an ideal asymmetric NIKE scheme.
First, we describe our simulator S in the hybrid games.
Game 0. This game is identical to the real game, namely, the simulator’s re-
sponses are the same as in the real game, except that simulator records the eight
type of queries and responses in the corresponding eight tables, referring to H0

table TH0 , H1 table TH1 , P0 table TP0 , P1 table TP1 , P−10 table TP−1
0

, P−11 table
TP−1

1
, symKG table TsymKG and symSHK table TsymSHK, respectively.

In Game 0, the simulator maintains the tables as following.

1. H0-table TH0 : initially empty, consists of tuples with form of (SK0, sk0, ∗, ∗).
Once the adversary queries oracle H0 with SK0 which does not exist in TH0 ,
the simulator inserts (SK0, H0(SK0), ∗,Π.asyKG0(SK0)) into TH0 table.

2. H1-table TH1 : initially empty, consists of tuples with form of (SK1, sk1, ∗, ∗).
Once the adversary queries oracle H1 with SK1 which does not exist in TH1 ,
the simulator inserts (SK1, H1(SK1), ∗,Π.asyKG1(SK1)) into TH1 -table.

21



3. P0-table TP0 : initially empty, consists of tuples with form of (∗, ∗, pk0,PK0).
Once the adversary queries oracle P0 with pk0 which does not exist in TP0 ,
the simulator inserts (∗, ∗, pk0, P0(pk0)) into P0-table.

4. P−10 -table TP−1
0

: initially empty, consists of tuples with form of
(∗, ∗, pk0,PK0). Once the adversary queries oracle P−10 with PK0 which does
not exist in the TP−1

0
-table, the simulator inserts (∗, ∗, P−10 (PK0),PK0) into

P−10 -table.
5. P1-table TP1 : initially empty, consists of tuples with form of (∗, ∗, pk1,PK1).

Once the adversary queries oracle P1 with pk1 which does not exist in TP1 ,
the simulator inserts (∗, ∗, pk1, P1(pk1)) into TP1 -table.

6. P−11 -table TP−1
1

: initially empty, consists of tuples with form of
(∗, ∗, pk1,PK1). Once the adversary queries oracle P−11 with PK1 which is
not in TP−1

1
, the simulator inserts (∗, ∗, P−11 (PK1),PK1) into TP−1

1
-table.

7. I.symKG-table TsymKG: initially empty, consists of tuples with form of
(∗, sk, pk, ∗). Once the adversary queries I.symKG with sk which does not
exist in TsymKG-table, the simulator inserts (∗, sk, I.symKG(sk), ∗) into TsymKG-
table.

8. I.symSHK-table TsymSHK: initially empty, consists of tuples with form of
(∗, sk0, pk1,K) or (∗, sk1, pk0,K). Once the adversary queries I.symSHK with
(sk0, pk1) which does not exist in the symSHK-table, the simulator inserts
(sk0, pk1, I.symSHK(sk0, pk1)) into TsymSHK-table.
In Game 0, all the queries are responded by the real oracles, and these tables

are just keeping track of information related to the queries.
Claim 1. Game Real ≈ Game 0.
Proof. The only difference between Game Real and Game 0 is that, in Game
0 the simulator additionally maintains several tables that are hidden from the
adversary, hence the adversary’s views in the two games are identical, namely,

Pr[Game Real = 1] = Pr[Game 0 = 1]

Simulator S1

SH0
1 (SK0):

Case 1 : if ∃(SK0, sk0, ∗,PK0) ∈ TH0 ,
return sk0;

Case 2 : if ∃(∗, sk0, pk0, ∗) ∈ TsymKG and ∃(∗, ∗, pk0,PK0) ∈ TP0 ∪ TP−1
0

s.t.
PK0 = Π.asyKG0(SK0),

return sk0;
Case 3 : otherwise, TH0 = TH0 ∪ (SK0, H0(SK0), ∗,Π.asyKG0(SK0)),

return H0(SK0).

SH1
1 (SK1):

Case 1 : if ∃(SK1, sk1, ∗,PK1) ∈ TH1 ,
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return sk1;
Case 2 : if ∃(∗, sk1, pk1, ∗) ∈ TsymKG and ∃(∗, ∗, pk1,PK1) ∈ TP1 ∪ TP−1

1
s.t.

PK1 = Π.asyKG1(SK1),
return sk1;

Case 3: otherwise, TH1 = TH1 ∪ (SK1, H1(SK1), ∗,Π.asyKG1(SK1),
return H1(SK1).

SP0
1 (pk0):

Case 1 : if ∃(∗, ∗, pk0,PK0) ∈ TP0 ∪ TP−1
0

,
return PK0;

Case 2 : if ∃(∗, sk0, pk0, ∗) ∈ TsymKG and ∃(SK0, sk0, ∗,PK0) ∈ TH0 ,
return PK0;

Case 3 : otherwise, TP0 = TP0 ∪ (∗, ∗, pk0, P0(pk0));
return P0(pk0).

SP−1
0

1 (PK0):
Case 1 : if ∃(∗, ∗, pk0,PK0) ∈ TP0 ∪ TP−1

0
,

return pk0;
Case 2 : if ∃(∗, sk0, pk0, ∗) ∈ TsymKG and ∃(SK0, sk0, ∗,PK0) ∈ TH0 ,

return pk0;
Case 3 : otherwise, TP−1

0
= TP−1

0
∪ (∗, ∗, pk0, P

−1
0 (pk0));

return P−1
0 (pk0).

SP1
1 (pk1):

Case 1 : if ∃(∗, ∗, pk1,PK1) ∈ TP1 ∪ TP−1
1

,
return PK1;

Case 2 : if ∃(∗, sk1, pk1, ∗) ∈ TsymKG and ∃(SK1, sk1, ∗,PK1) ∈ TH1 ,
return PK1;

Case 3 : otherwise, TP1 = TP1 ∪ (∗, ∗, pk1, P1(PK1));
return P1(PK1).

SP−1
1 (PK1):

Case 1 : if ∃(∗, ∗, pk1,PK1) ∈ TP1 ∪ TP−1
1

,
return pk1;

Case 2 : if ∃(∗, sk1, pk1, ∗) ∈ TsymKG and ∃(SK1, sk1, ∗,PK1) ∈ TH1 ,
return pk1;

Case 3 : otherwise, TP−1
1

= TP−1
1
∪ (∗, ∗, pk1, P

−1
1 (PK1));

return P−1
1 (PK1)).

SsymKG
1 (sk):

Case 1 : if ∃(∗, sk, pk, ∗) ∈ TsymKG,
return pk;

Case 2: if ∃(SK0, sk, ∗,PK0) ∈ TH0 ,
Subcase 2.1 : if ∃(∗, ∗, pk,PK0) ∈ TP0 or ∃(∗, ∗, pk,PK0) ∈ TP−1

0
,

return pk;
Subcase 2.2 : otherwise, pk = I.symKG(sk); TsymKG = TsymKG ∪ (∗, sk, pk, ∗),
return pk;
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Case 3: if ∃(SK1, sk, ∗,PK1) ∈ TH1 ,
Subcase 3.1 : if ∃(SK1, ∗, pk,PK1) ∈ TP1 or ∃(∗, ∗, pk,PK1) ∈ TP−1

1
,

return pk;
Subcase 3.2 : otherwise, pk = I.symKG(sk); TsymKG = TsymKG ∪ (∗, sk, pk, ∗),
return pk;

Case 4: otherwise, pk = I.symKG(sk); TsymKG = TsymKG ∪ (∗, sk, pk, ∗),
return pk.

//Fact: There exists difference between Subcase 2.2, Subcase 3.2 and Case 4.

//In Subcase 2.2 the adversary D had queried SK0 and thus knows SK0;

//In Subcase 3.2 the adversary D had queried SK1 and thus knows SK1;

//however, in Case 4 D knows neither SK0 nor SK1.

SsymSHK
1 (sk0, pk1):

Case 1: if ∃(sk0, pk1,K) ∈ TsymSHK,
return K;

Case 2: if ∃(∗, ∗, pk1,PK1) ∈ TP1 or ∃(∗, ∗, pk1,PK1) ∈ TP−1
1

,
Subcase 2.1 : if ∃(SK0, sk0, ∗,PK0) ∈ TH0 ,
query Π.asySHK0 with (SK0,PK1), obtain K;
return K;

Subcase 2.2 : if ∃(∗, sk0, pk0, ∗) ∈ TsymKG,
K = I.symSHK(sk0, pk1);
return K;

Subcase 2.3 : otherwise, K = I.symSHK(sk0, pk1);
return K;

//Fact: there exists difference between Subcase 2.2 and Subcase 2.3,

//in Subcase 2.2, D once queries sk0 to I.symKG and knows pk0;

//in Subcase 2.3, D never queries sk0 and knows nothing else about sk0.
Case 3: if ∃(∗, ∗, pk1,PK1) ∈ TP0 or ∃(∗, ∗, pk1,PK1) ∈ TP−1

0
,

Subcase 3.1 : if ∃(SK0, sk0, ∗,PK0) ∈ TH1 ,
query Π.asySHK1 with (SK0,PK1), obtain K;
return K;

Subcase 3.2 : if ∃(∗, sk0, pk0, ∗) ∈ TsymKG,
K = I.symSHK(sk0, pk1);
return K;

Subcase 3.3 : otherwise, K = I.symSHK(sk0, pk1);
return K;

//Fact: there exists difference between Subcase 3.2 and Subcase 3.3,

//in Subcase 3.2, D once queries sk0 to I.symKG and knows pk0;

//in Subcase 3.3, D never queries sk0 and knows nothing else about sk0.
Case 4: if !(∗, ∗, pk1,PK1) ∈ TP0 ∪ TP1 or !(∗, ∗, pk1,PK1) ∈ TP−1

0
∪ TP−1

1
,

Subcase 4.1 : if ∃(SK0, sk0, ∗,PK0) ∈ TH0 ,
run PK1 ← SP1(pk1), query Π.asySHK0 with (SK0,PK1), obtain K0;
return K0;

Subcase 4.2 : if ∃(SK0, sk0, ∗,PK0) ∈ TH1 ,
run PK1 ← SP0(pk1), query Π.asySHK1 with (SK0,PK1), obtain K1;
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return K1;
Subcase 4.3 : if ∃(∗, sk0, pk0, ∗) ∈ TsymKG,
K = I.symSHK(sk0, pk1);
return K;

Subcase 4.4 : otherwise, K = I.symSHK(sk0, pk1);
return K.

//Fact: there exists difference between Subcase 4.3 and Subcase 4.4,

//in Subcase 4.3, D once queries sk0 to I.symKG and knows pk0;

//in Subcase 4.4, D never queries sk0 and knows nothing about sk0.

Game 1. This game is identical to Game 0, except the way of maintaining the
tables and responding to the queries at adversarial interfaces. Specifically, the
simulator, denoted by S1, responds to the oracles as above.

Compared to Game 0, in Game 1 the simulator keeps a longer table, and
for part of the queries, the simulator responds to them in an alternative way,
only using the tables and the honest interfaces. Moreover, in Game 1, the tuples
stored in the tables are consistent with the response by the real oracles to the
adversary’s queries.

Claim 2. Game 0 ≈ Game 1.
Proof. The difference between Game 0 and Game 1 is that, in Game 1, the
simulator maintains longer tables than in Game 0 and the simulator responds to
part of the queries at the adversarial interfaces by using those tables and calling
the honest interfaces. Moreover, the items stored in those tables are always
consistent with the real oracles H0, H1, P0, P1, P

−1
0 , P−11 , I.symKG, I.symSHK at

adversarial interfaces. Hence, for queries at adversarial interfaces, the responses
by either the real oracles H0, H1, P0, P1, P

−1
0 , P−11 , I.symKG, I.symSHK (Game 0)

or by real oracles plus honest interfaces and tables (Game 1) are identical, which
implies

Pr[Game 0 = 1] = Pr[Game 1 = 1]

Hence, in either game, the response of any query is identical, which refers to
that the view in Game 1 is identical to the one in Game 0. However, the simulator
can only answer part of the queries by tables and honest interfaces, and for the
rest it has to call the real oracles. Thus, in the following hybrid games, we will
illustrate additional alternative ways (not calling the real oracles) to respond to
the rest queries, without changing the view significantly.
Game 2. This game is identical to Game 1, except for responding to P0 queries.
In the following description of simulator, we only show the changes in the be-
haviors of simulator. The simulator in Game 2 responds to a query pk0 at P0 as
follows:

Simulator S2
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SP0
2 (pk0):

Case 1: if ∃(∗, ∗, pk0,PK0) ∈ TP0 ∪ TP−1
0

,
return PK0;

Case 2: if ∃(∗, sk0, pk0, ∗) ∈ TsymKG and ∃(SK0, sk0, ∗,PK0) ∈ TH0 ,
return PK0;

Case 3: otherwise, S̃K0 ← DomAsySK0
; TP0 = TP0 ∪ (S̃K0, ∗, pk0, P̃K0) with

P̃K0 = Π.asyKG0(S̃K0);
return P̃K0.

The only difference between Game 1 and Game 2 occurs in the Case 3 where
pk0 never appears in TP0∪TP−1

0
∪TsymKG. In Game 1, the simulator responds to a

new query pk0 to P0 with P0(pk0); while in Game 2, the simulator responds with
P̃K0 = Π.asyKG0(S̃K0) for a randomly sampled secret key S̃K0 ← DomAsySK0

,
and adds S̃K0 to the first item of the entry (∗, ∗, pk0, P̃K0) in table TP0 . Due
to definition, the only case that the adversary queries P0 with pk0 is when the
adversary D knows nothing of P0(pk0). Therefore, from the adversary D’s view,
P0(pk0) is uniformly distributed in {0, 1}"2(λ), P̃K0 is also uniformly distributed
in {0, 1}"2(λ), thus D’s view in Game 2 is insidtinguishable from the view in
Game 1 with high probability, except for the following bad event Bad2.

Bad Event Bad2. There exists a tuple (SK0, sk0, ∗,PK0) ∈ TH0 and a tuple
(S̃K0, ∗, pk0, P̃K0) ∈ TP0 , and SsymKG

2 (sk0) returns a uniformly sampled random
string p̃k in {0, 1}n2(λ) s.t. p̃k = pk0 and PK0 2= P̃K0.

The Bad2 event occurs with negligible probability, since p̃k is uniformly dis-
tributed and it is the same with pk0 with probability q

2!2(λ) , which is negligible.

Claim 3. Game 1 ≈ Game 2.
We note that, in order not to be distinguished by the adversary, the simula-

tor’s responses at adversarial interfaces should satisfy the consistency conditions
below:

1. There exists no two sk0, sk1 (sk0 2= sk1) such that SsymKG(sk0) = SsymKG(sk1);
2. Π.asyKG0(SK0) = SP0(SsymKG(SH0(SK0)));
3. Π.asyKG1(SK1) = SP1(SsymKG(SH1(SK1)));
4. Π.asySHK0(SK0,PK1) = SsymSHK(SH0(SK0),SP−1

1 (PK1));
5. Π.asySHK1(SK1,PK0) = SsymSHK(SH1(SK1),SP−1

0 (PK0));
6. SsymSHK(SH0(SK0),SP−1

1 (PK1)) = SsymSHK(SH1(SK1),SP−1
0 (PK0)) if and

only if PK0 = Π.asyKG0(SK0) and PK1 = Π.asyKG1(SK1).
7. SP0(SP−1

0 (PK0)) = PK0;
8. There exists no (PK0 2= PK′0), (pk0 2= pk′0) such that SP−1

0 (PK0) =

SP−1
0 (PK′0) or SP0(pk0) = SP0(pk′0).

9. SP1(SP−1
1 (PK1)) = PK1;

10. There exists no (PK1 2= PK′1), (pk1 2= pk′1) such that SP−1
1 (PK1) =

SP−1
1 (PK′1) or SP1(pk1) = SP1(pk′1).
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Proof. The only difference between Game 1 and Game 2 occurs in the simulating
the response of a P0 query pk0 in the Case 3, where the PK0 corresponding to
pk0 never appears in the previous tables. In Game 1, the simulator responds to
pk0 with P0(pk0), while in Game 2, the simulator samples a uniformly random
˜SK0 and responds with Π.asyKG0( ˜SK0).

Since P0 is a random permutation, the distribution of P0(pk0) should be
uniformly random in DomAsyPK0

, and Π.asyKG0( ˜SK0) is also uniformly random
in DomAsyPK0

for a random ˜SK0.
For the Case 3, it’s trivial that the adversary had never made a query

SsymKG(SH0(SK0)) to P0, as such a query would have resulted in a tuple
which contains PK0 being added to P0 table. Therefore, SK0, SH0(SK0) and
SsymKG(SH0(SK0)) are independent of pk0 in the adversary’s view. Besides, it’s
easy to check that in Game 2, the equations for consistency hold. Combining
together, Game 1 and Game 2 are indistinguishable except that Bad2 occurs.
Hence,

|Pr[Game 1 = 1]− Pr[Game 2 = 1]| ≤ q · Pr[Bad2] ≤ negl(λ)

Game 3. This game is identical to Game 2, except for responding to P−10 queries.
The simulator responds to a query PK0 at P−10 as follows:

Simulator S3

SP−1
0

3 (PK0):
Case 1: if ∃(SK0, ∗, pk0,PK0) ∈ TP0 ∪ (∗, ∗, pk0,PK0) ∈ TP−1

0
,

return pk0;
Case 2: if ∃(∗, sk0, pk0, ∗) ∈ TsymKG and ∃(SK0, sk0, ∗,PK0) ∈ TH0 ,

return pk0;
Case 3: p̃k0 ← DomSympk, TP−1

0
= TP−1

0
∪ (∗, ∗, p̃k0,PK0);

return p̃k0.

The only difference between Game 2 and Game 3 occurs in the Case 3 where
PK0 is never queried to P−10 , besides, the corresponding SK0 is never queried to
H0 and H0(SK0) is never queried to P0.

For the Case 3, in Game 2, the simulator responds to P−10 query on PK0 with
P−10 (PK0); while in Game 3, the simulator responds with a random string p̃k0.
Due to definition, the only case that the adversary queries P−10 with PK0 is when
the adversary D knows nothing of P−10 (PK0). Therefore, from the adversary
D’s view, P−10 (PK0) is uniformly distributed in {0, 1}n2(λ), which implies D’s
view in Game 3 preserves with high probability if the simulator responds a P−10

query PK0 with a uniformly random string p̃k0 in {0, 1}n2(λ) and stores a tuple
(∗, ∗, p̃k0,PK0) in Table TP−1

0
, unless the following bad event occurs.
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Bad Event Bad3. There exists a tuple (SK′0, sk0, ∗,PK′0) ∈ TH0 and a tuple
(∗, ∗, p̃k0,PK0) ∈ TP−1

0
, and SsymKG

3 (sk0) uniformly samples a random string
p̃k in {0, 1}n2(λ) s.t. p̃k = p̃k0 and PK′0 2= PK0. The bad event occurs with
negligible probability, since p̃k is uniformly distributed and its value equals p̃k0
with probability q

2n2(λ) , which is negligible.

Claim 4. Game 2 ≈ Game 3.

Proof. The only difference between Game 2 and Game 3 occurs in simulating the
response of a P−10 query PK0 in the Case 3, where pk0 corresponding to PK0

never appears in TP0 ∪ TP−1
0
∪ TsymKG. In Game 2, the simulator responds to a

query PK0 on P−10 with P−10 (PK0), while in Game 3, the simulator samples a
uniformly random string ˜pk0.

Since P−10 is a random permutation, the distribution of P−10 (PK0) should be
uniformly distributed in DomAsyPK0

. Note that ˜pk0 is also uniformly distributed
in DomAsyPK0

. Since the adversary has no ability to learn P−10 (PK0) in the
Case 3, thus the simulator can answer a P−10 query PK0 with a random ˜pk0,
such that the adversary’e view in Game 2 and Game 3 are indistinguishable
with high probability except that the event Bad3 occurs. Besides, in Game 3,
the consistency equations holds trivially. Hence,

|Pr[Game 2 = 1]− Pr[Game 3 = 1]| ≤ q · Pr[Bad3] ≤ negl(λ)

Game 4. This game is identical to Game 3, except for responding to P1 queries.
The simulator responds to a query pk1 at P1 in the same way as in Game 3,
except when the response of P1(pk1) cannot be inferred from the entries of tables
maintained by the simulator. In the exception case, the simulator randomly
sample S̃K1 ← DomAsySK1

; add (S̃K1, ∗, pk1, P̃K1) to the table TP1 , compute
P̃K1 = Π.asyKG1(S̃K1); and responds the query pk1 at P1 with P̃K1.

The only difference between Game 3 and Game 4 occurs in the exception
case, where pk1 never appears in TP1 ∪ TP−1

1
∪ TsymKG.

In Game 3, the simulator responds to P1 query on pk1 with P1(pk1); while in
Game 4, the simulator responds with a string P̃K1 = Π.asyKG1(S̃K1) for a ran-
domly sampled string S̃K1. Due to definition, the only case that the adversary
queries P1 with pk1 is when the adversary D knows nothing of P1(pk1). There-
fore, from the adversary D’s view, P1(pk1) is uniformly distributed in {0, 1}n2(λ),
which implies D’s view in Game 4 preserves with high probability if the simula-
tor responds a P1 query pk1 with a string P̃K1 that is also uniformly distributed
in {0, 1}n2(λ) and adds S̃K1 in an entry (S̃K1, ∗, pk1, P̃K1) of Table TP1 .

Bad Event Bad4. There exists a tuple (SK1, sk1, ∗,PK1) ∈ TH1 and a tuple
(S̃K1, ∗, pk1, P̃K1) ∈ TP1 , and SsymKG

4 (sk1) returns a uniformly sampled string
p̃k in {0, 1}n2(λ) s.t. p̃k = pk1 and PK1 2= P̃K1.

The bad event Bad4 occurs with negligible probability, since p̃k is uniformly
distributed and its value equals pk1 with probability q

2n2(λ) , which is negligible.
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Claim 5. Game 3 ≈ Game 4.
The only difference between Game 3 and Game 4 occurs in the simulating

the response of a P1 query pk1 in the Case 3, where the PK1 corresponding to
pk0 never appears in the previous tables. In Game 3, the simulator responds to
pk1 with P1(pk1), while in Game 4, the simulator samples a uniformly random
˜SK1 and responds with Π.asyKG1( ˜SK1). Similarly to the analysis for Claim 3,

Game 3 and Game 4 are indistinguishable except that Bad4 occurs, hence

|Pr[Game 3 = 1]− Pr[Game 4 = 1]| ≤ q · Pr[Bad4] ≤ negl(λ)

Game 5. This game is identical to Game 4, except for responding to P−11 queries.
The simulator responds to a P−11 query PK1 as follows:

Simulator S5

SP−1
1

5 (PK1):
Case 1: if ∃(SK1, ∗, pk1,PK1) ∈ TP1 ∪ ∃(∗, ∗, pk1,PK1) ∈ TP−1

1
,

return pk1;
Case 2: if ∃(∗, sk1, pk1, ∗) ∈ TsymKG and ∃(SK1, sk1, ∗,PK1) ∈ TH1 ,

return pk1;
Case 3: otherwise, p̃k1 ← DomSympk, TP−1

1
= TP−1

1
∪ (∗, ∗, p̃k1,PK1);

return p̃k1.

The only difference between Game 4 and Game 5 occurs in the case where
PK1 never appears in TP0 ∪ TP−1

0
∪ TH1 . In Game 4, the simulator responds to

P−11 query on PK1 with P−11 (PK1); while in Game 5, the simulator responds
with a random string p̃k1. Due to definition, the only case that the adversary
queries P−11 with PK1 is when the adversary D knows nothing of P−11 (PK1).
Therefore, from the adversary D’s view, P−11 (PK1) is uniformly distributed in
{0, 1}n2(λ), which implies D’s view in Game 7 preserves with high probability if
the simulator responds a P−11 query PK1 with a uniformly random string p̃k1 in
{0, 1}n2(λ) and stores a tuple (∗, ∗, p̃k1,PK1) in Table TP−1

1
, unless the following

bad event occurs.
Bad Event Bad5. There exists a tuple (SK′1, sk1, ∗,PK′1) ∈ TH1 and a tuple

(∗, ∗, p̃k1,PK1) ∈ TP−1
1

, and SsymKG
8 (sk1) returns a uniformly sampled random

string p̃k in {0, 1}n2(λ) s.t. p̃k = p̃k1 and PK′1 2= PK1. The bad event Bad5
occurs with negligible probability, since p̃k is uniformly distributed and its value
equals p̃k1 with probability q

2n2(λ) , which is negligible.

Claim 6. Game 4 ≈ Game 5. Similarly to the analysis in Claim 4, Game 4 and
Game 5 are indistinguishable except that the event Bad5 occurs. Hence,

|Pr[Game 4 = 1]− Pr[Game 5 = 1]| ≤ q · Pr[Bad5] ≤ negl(λ)
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Game 6. This game is identical to Game 5, except for responding to H0 queries.
In Game 6, the simulator responds to a query SK0 at H0 as follows:

Simulator S6

SH0
6 (SK0):

Case 1 : if ∃(SK0, sk0, ∗,PK0) ∈ TH0 ,
return sk0;

Case 2 : if ∃(∗, sk0, pk0, ∗) ∈ TsymKG and (∃(SK0, ∗, pk0,PK0) ∈ TP0 or
∃(∗, ∗, pk0,PK0) ∈ TP−1

0
, s.t. PK0 = Π.asyKG0(SK0)),

return sk0;
Case 3 : otherwise, sk0 ← DomSymsk; TH0 = TH0 ∪ (SK0, sk0, ∗,Π.asyKG0(SK0));

return sk0.

The only difference between Game 5 and Game 6 occurs in the Case 3 where
SK0 never appears in TH0 , and it never occurs that sk0 appears in table TsymKG

and Π.asyKG0(SK0) appears in P1 ∪ P−11 table simultaneously.
In Game 5, the simulator responds a query SK0 at H0 with H0(SK0), while

in Game 6, the simulator responds with a random string sk0. Due to definition,
the only case that the simulator queries H0 with SK0 is when the adversary D
knows nothing of H0(SK0), although the adversary might know Π.asyKG0(SK0).
Therefore, from the adversary D’s view, H0(SK0) is uniformly distributed in
{0, 1}n1(λ), which implies D’s view in Game 6 is statistically indistinguishable
from its view in Game 5.

Claim 7. Game 5 ≈ Game 6.
Proof. Recalling that the only difference between Game 5 and Game 6 occurs
in simulating the response of a H0 query SK0 in the Case 3, where the SK0.
In Game 5, the simulator responds to a H0 query SK0 with H0(SK0) while in
Game 6, the simulator replaces it with a random string sk0 in DomAsysk.

To prove the indistinguishability, we first formalize the adversary’s view in
Game 5. By definition, in Game 5,

– The simulator responds to a H0 query SK0 with H0(SK0);
– The simulator responds to a H1 query SK1 with H1(SK1);
– The simulator responds to a P0 query PK0 with SP0(PK0);
– The simulator responds to a P−10 query pk0 with SP−1

0 (pk0);
– The simulator responds to a P1 query PK1 with SP1(PK1);
– The simulator responds to a P−11 query pk1 with SP−1

1 (pk1);
– The simulator responds to a symKG query sk with I.symKG(sk);
– The simulator responds to a symSHK query (skb, pk1−b) for b ∈ {0, 1} with

I.symSHK(skb, pk1−b);

Hence in adversary’s view, under the consistency conditions, the responses
of H0 and H1 are independent and random strings; the responses of SP0 ,SP−1

0
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are indistinguishable from those of random permutations, as are the same for
(SP1 ,SP−1

0 ), and the behavior of (SP0 ,SP−1
0 ) are independent of (SP1 ,SP−1

0 ) (;
I.symKG a random injection, and I.symSHK is a random injection with shared
key property.

Next we see the view on the adversarial interfaces in Game 6. For
any H0 query SK0, the simulator’s response sk0 is uniformly sampled
and has the same distribution with H0(SK0), thus the responses for H0

queries are indistinguishable in Game 5 and Game 6. We note that for
H1, P0, P1, P

−1
0 , P−11 , I.symKG, I.symSHK queries, the responses are identical in

Game 5 and Game 6, without being influenced by the replacement of SH0(SK0)
with H0(SK0).

Let Collide6 denote the event that SH0 responds a query SK0 with a string
sk0, while (SK′0, sk0, ∗, ∗) (SK′0 2= SK0) already exists in the tables maintained by
the simulator. Namely, there is a collision in the responses of H0 queries. In fact,
the simulator’s response is uniformly sampled from DomSymsk, the probability
of Collide6 occurs is bounded by q

|DomSymsk|
.

Next we prove that, with high probability, the consistency conditions in Game
6 hold.

First Equation. As I.symKG is a random injection, and the responses of SsymKG

are consistent with those of I.symKG (namely, the response of SsymKG(sk) is in-
distinguishable from that of I.symKG(sk) for any sk ∈ DomSymsk, and both of
them are consistent with the responses at honest interfaces), thus this equation
holds trivially with high probability.

Second Equation. As I.symKG is a random injection, P0 is a random permuta-
tion, and the responses of SH0 , SP0 and SsymKG are consistent with H0, P0 and
I.symKG, respectively; hence the equation holds.

Third Equation. As I.symKG is a random injection, P1 is a random permuta-
tion, meanwhile, the responses of SP1 , SsymKG and SH1 are consistent with those
of P1, I.symKG and H1, respectively. Therefore, by definition the equation holds
trivially.

Fourth Equation. As I.symSHK is a random injection, P−11 is a random permu-
tation, meanwhile, the responses of SsymSHK, SP−1

1 are consistent with I.symSHK
and P−11 , respectively, hence the equation holds.

Fifth Equation. As I.symSHK is a random injection, P−10 is a random permuta-
tion, meanwhile, the responses of SsymSHK, SP−1

0 SH1 are consistent with those
of I.symSHK, P−10 and H1, respectively. By definition, the equation holds.

Sixth Equation. Under the condition that the Fourth Equation and the Fifth
Equation holds and the shared key property of I.symSHK holds, this equation
holds.

Seventh Equation. This equation holds trivially since the responses of P0 and
P−10 are consistent.
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Eighth Equation. This equation holds trivially since the simulator’s responses
of P0 and P−10 are indistinguishable from that of random permutations except
with negligible probability, bounded by q

|DomSympk|
.

Ninth Equation. This equation holds trivially since the responses of P1 and
P−11 are consistent.
Tenth Equation. This equation holds trivially since the simulated responses
of P1 and P−11 are indistinguishable from the responses of random permutations
except with negligible probability, which is bounded by q

|DomSympk|
.

According to the analysis above, the adversary’s views in Game 5 and Game
6 are indistinguishable, which refers to

|Pr[Game 5 = 1]− Pr[Game 6 = 1]| ≤ q · Pr[Collide6] ≤ negl(λ)

Game 7. This game is identical to Game 6, except for responding to H1 queries.
The simulator responds to a query SK1 at H1 as follows:

Simulator S7

SH1
7 (SK1):

Case 1 : if ∃(SK1, sk1, ∗,PK1) ∈ TH1 ,
return sk1;

Case 2 : if ∃(∗, sk1, pk1, ∗) ∈ TsymKG and ( ∃(SK1, ∗, pk1,PK1) ∈ TP1 or
∃(∗, ∗, pk1,PK1) ∈ TP−1

1
s.t. PK1 = Π.asyKG1(SK1),

return sk1;
Case 3 : otherwise, sk1 ← DomSymsk; TH1 = TH1 ∪ (SK1, sk1, ∗,Π.asyKG1(SK1)),
return sk1.

The only difference between Game 6 and Game 7 occurs in the Case 3 where
SK1 never appears in TH1 , and it never occurs that sk1 appears in table TsymKG

and Π.asyKG1(SK1) appears in P1 ∪ P−11 table simultaneously. In Game 6, the
simulator responds to H1 query on SK1 with H1(SK1); while in Game 7, the
simulator responds with a random string sk1. Due to definition, the only case
that the simulator queries H1 with SK1 is when the adversary D knows nothing
of H1(SK1), although the adversary might know Π.asyKG1(SK1). Therefore,
from the adversary D’s view, H1(SK1) is uniformly distributed in {0, 1}n1(λ),
which implies that D’s view in Game 7 is statistically indistinguishable from its
view in Game 6.

Claim 8. Game 6 ≈ Game 7.
Proof. The analysis in this claim is very similar to the Claim 7 ( Game 5 ≈ Game
6), hence

|Pr[Game 6 = 1]−Pr[Game 7 = 1]| ≤ |Pr[Game 5 = 1]−Pr[Game 6 = 1]| ≤ negl(λ)
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Game 8. This game is identical to Game 7, except for responding to symKG
queries. Remark that responses to symSHK queries change according to that of
symKG queries. The simulator responds to a symKG query sk as in the box of
Simulator S8.

The only difference between Game 7 and Game 8 occurs in the Subcase 2.2,
Subcase 3.2 and Case 4. For the Subcase 2.2, in Game 7, the simulator responds
with pk = I.symKG(sk) and inserts (∗, sk, pk, ∗) in TsymKG; while in Game 8,
the simulator responds with pk = SP−1

0 (PK0) and inserts (SK0, sk, pk,PK0) in
TsymKG. In Subcase 2.2, there exists a tuple (SK0, sk, ∗,PK0) in TH0 , sk is never
queried to I.symKG and PK0 is never queried to P−10 , which implies that pk is
uniformly distributed in {0, 1}"2(λ), and the distributions of pk = I.symKG(sk)

and pk = SP−1
0 (PK0) are identical. Besides, inserting longer tables for TsymKG

will not be detected by the adversary.

Simulator S8

SsymKG
8 (sk):

Case 1 : if ∃(∗, sk, pk, ∗) ∈ TsymKG,
return pk;

Case 2: if ∃(SK0, sk, ∗,PK0) ∈ TH0 ,
Subcase 2.1 : if ∃(SK0, ∗, pk,PK0) ∈ TP0 or ∃(∗, ∗, pk,PK0) ∈ TP−1

0
,

return pk;
Subcase 2.2 : otherwise, run pk ← SP−1

0 (PK0); TsymKG = TsymKG ∪
(SK0, sk, pk,PK0),

return pk;
Case 3: if ∃(SK1, sk, ∗,PK1) ∈ TH1 ,

Subcase 3.1 : if ∃(SK1, ∗, pk,PK1) ∈ TP1 or ∃(∗, ∗, pk,PK1) ∈ TP−1
1

,
return pk;
Subcase 3.2 : otherwise, run pk ← SP−1

1 (PK1), TsymKG = TsymKG ∪
(SK1, sk, pk,PK1),

return pk;
Case 4: otherwise, p̃k← DomSympk, S̃K0 ← DomAsySK0

, S̃K1 ← DomAsySK1
;

query I.asyKG0 with S̃K0, obtain P̃K0; query I.asyKG1 with S̃K1, obtain P̃K1;
TsymKG = TsymKG ∪ (S̃K0, sk, p̃k, P̃K0), TsymKG = TsymKG ∪ (S̃K1, sk, p̃k, P̃K1);

return p̃k.
//From this point, all entries in TsymKG are updated as the form (SK, sk, pk,PK) .

SsymSHK
8 (sk0, pk1):

Case 1: if ∃(sk0, pk1,K) ∈ TsymSHK,
return K;

Case 2: if ∃(SK1, ∗, pk1,PK1) ∈ TP1 or ∃(∗, ∗, pk1,PK1) ∈ TP−1
1

,
Subcase 2.1 : if ∃(SK0, sk0, ∗,PK0) ∈ TH0 ,
query Π.asySHK0 with (SK0,PK1), obtain K;
return K;

Subcase 2.2 : if ∃(SK0, sk0, pk0,PK0) ∈ TsymKG,
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query Π.asySHK0 with (SK0,PK1), obtain K;
return K;

Subcase 2.3 : otherwise, K = I.symSHK(sk0, pk1);
return K;

Case 3: if ∃(SK1, ∗, pk1,PK1) ∈ TP0 or ∃(∗, ∗, pk1,PK1) ∈ TP−1
0

,
Subcase 3.1 : if ∃(SK0, sk0, ∗,PK0) ∈ TH1 ,
query Π.asySHK1 with (SK0,PK1), obtain K;
return K;

Subcase 3.2 : if ∃(SK0, sk0, pk0,PK0) ∈ TsymKG,
query Π.asySHK1 with (SK0,PK1), obtain K;
return K;

Subcase 3.3 : otherwise, K = I.symSHK(sk0, pk1);
return K;

Case 4: if !(SK1, ∗, pk1,PK1) ∈ TP0 ∪ TP1 or !(∗, ∗, pk1,PK1) ∈ TP−1
0
∪ TP−1

1
,

Subcase 4.1 : if ∃(SK0, sk0, ∗,PK0) ∈ TH0 ,
run PK1 ← SP1(pk1), query Π.asySHK0 with (SK0,PK1), obtain K0;
return K0;

Subcase 4.2 : if ∃(SK0, sk0, ∗,PK0) ∈ TH1 ,
run PK1 ← SP0(pk1), query Π.asySHK1 with (SK0,PK1), obtain K1;
return K1;

Subcase 4.3 : if ∃(SK0, sk0, pk0,PK0) ∈ TsymKG,
run PK1 ← SP1(pk1), query Π.asySHK0 with (SK0,PK1), obtain K;
return K;

//or run PK1 ← SP0 (pk1), query Π.asySHK1 with (SK0,PK1), obtain K; return K;

Subcase 4.4 : otherwise, K = I.symSHK(sk0, pk1);
return K.

For the Subcase 3.2, the analysis is similar to that of Subcase 2.2. In Game
7, the simulator responds with pk = I.symKG(sk) and inserts (∗, sk, pk, ∗) in
TsymKG; in Game 8, the simulator responds with pk ← SP−1

1 (PK1) and inserts
(SK1, sk, pk,PK1) in TsymKG. Since there exists a tuple (SK1, sk, ∗,PK1) in TH1 ,
where sk is never queried to I.symKG and PK1 is never queried to P−11 , we
have that pk is uniformly distributed in {0, 1}"2(λ), and the distributions of
pk = I.symKG(sk) and pk = SP−1

1 (PK1) are identical. Besides, inserting longer
tables for TsymKG will not be detected by the adversary.

For the Case 4, in Game 7, the simulator responds a query to I.symKG with
I.symKG(sk). In Game 8, the simulator responds with a randomly sampled string
p̃k← {0, 1}n2(λ); meanwhile, the simulator samples S̃K0 and S̃K0, and implicitly
set H0(S̃K0) = sk, H1(S̃K1) = sk, P0(p̃k) = Π.asyKG0(S̃K0) and P1(p̃k) =
Π.asyKG1(S̃K1). The reason that P0(p̃k), P1(p̃k) are set as random public keys,
rather than random strings, is to keep consistency with the honest interfaces
Π.asySHK0 and Π.asySHK1. Due to definition, the only case that the adversary
queries I.symKG with sk is when the adversary D knows nothing of I.symKG(sk).
Besides, in Case 4, D knows nothing about the SK0 and SK1 corresponding to
sk, which implies that Π.asyKG0(S̃K0),Π.asyKG1(S̃K1) are also well-distributed.
Beyond that, the responses of symSHK queries have minor changes in the Subcase
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2.2, Subcase 3.2 and Subcase 4.3, due to the change of table TsymKG. Note that
the changes do not influence the consistency conditions and the view of the
adversary D in Game 8.

Therefore, from the adversary D’s view, I.symKG(sk) is uniformly distributed
in {0, 1}n2(λ), and D’s view in Game 8 are indistinguishable from its view in
Game 7 with high probability.

Claim 9. Game 7 ≈ Game 8.

Proof.
The adversary’s view in Game 8 is: the responses of H0, H1 queries are ran-

dom and independent strings; the responses of P0, P
−1
0 queries and P1, P

−1
1

queries are independent random permutations; I.symSHK is a random injection
with the shared key property.

The differences between Game 7 and Game 8 occurs in the Subcase 2.2, the
Subcase 3.2 and the Case 4 for simulating the responses of symKG queries, as
well as in the Subcase 2.2, the Subcase 3.2 and the Subcase 4.3 for simulating
the responses of symSHK queries.

First, we discuss the differences in simulating the responses of symKG
queries. In the Subcase 2.2, for a symKG query sk, in Game 7 the simu-
lator responds with I.symKG(sk) and inserts (∗, sk, I.symKG(sk), ∗) in the ta-
ble TsymKG; while in Game 8, the simulator responds with pk = SP−1

0 (PK0)

and inserts (SK0, sk, pk,PK0) in the table TsymKG. By the definition of SP−1
0 ,

pk = SP−1
0 (PK0) and I.symKG(H0(SK0)) have the same distribution. In ad-

dition, the responses of H0, P0, P
−1
0 queries are consistent in both Game 7 and

Game 8 (for both Game 7 and Game 8, the consistency conditions hold). Storing
longer tables will not be detected by the adversary or influence the consistency
conditions. Therefore, in the Subcase 2.2, the adversary’s views in Game 7 and
Game 8 are indistinguishable.

In the Subcase 3.2, the adversary’s views in Game 7 and Game 8 are indis-
tinguishable, and the analysis is similar to that of Subcase 2.2.

In the Case 4, for a symKG query sk, in Game 7 the simulator responds with
I.symKG(sk); while in Game 8, the simulator responds with a random sampled
p̃k ← DomSympk, meanwhile, the simulator randomly selects S̃K0, S̃K1 from
DomAsySK0

and DomAsySK1
, respectively, inserts (S̃K0, sk, p̃k,Π.asyKG0(S̃K0))

and (S̃K1, sk, p̃k,Π.asyKG1(S̃K1)) in the table TsymKG. In addition, the simulator
implicitly sets SH0(S̃K0) = sk, SH1(S̃K1) = sk, SP0(pk) = Π.asyKG0(S̃K0)

and SP1(pk) = Π.asyKG1(S̃K1). Note that I.symKG(sk) and p̃k have the same
distribution.

Let Bad8 denote the event that the adversary makes one of the following
queries before the symKG query sk:

– 1) query SK0 to real oracle H0, which responds with sk
– 2) query SK1 to real oracle H1, which responds with sk
– 3) query Π.asyKG0(SK0) to real oracle P−10 , which responds with pk
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– 4) query Π.asyKG1(SK1) to real oracle P−11 , which responds with pk

Hence as long as Bad8 did not occur, in the Case 4, the responses of H0, H1

and P0, P
−1
0 , P1, P

−1
1 queries will be consistent in Game 7 and Game 8.

In fact, SK0 and SK1 are hidden from the adversary, thus Π.asyKG0(SK0) and
Π.asyKG1(SK1) are also random strings never revealed to the adversary, which
means Bad8 occurs(i.e., the four bad queries appears in the query sequence) with
probability bounded by q

|DomAsySK0
|+

q
|DomAsySK1

|+
q

|DomAsyPK0
|+

q
|DomAsyPK1

| , which
is negligible.

Hence as long as the corresponding SK0, and H0(SK0), SK1, H1(SK1), as well
as P−10 (Π.asyKG0(SK0)) and P−11 (Π.asyKG1(SK1)) are hidden from the adver-
sary, the responses of symKG queries are indistinguishable in Game 7 and Game
8. It’s trivial that the responses in Game 8 satisfy the consistency conditions.

For symSHK queries, the difference is caused by the change of TsymKG table,
and the responses of symSHK queries are consistent in Game 7 and Game 8 if
the responses of symKG are consistent.

Combining together, the adversary’s view in Game 7 and Game 8 are indis-
tinguishable except when the event Bad8 occurs, and we can bound probability
of Bad8 by the following equation.

Pr[Bad8] ≤
q

|DomAsySK0
| +

q

|DomAsySK1
| +

q

|DomAsyPK0
| +

q

|DomAsyPK1
|

which refers to
|Pr[Game 7 = 1]− Pr[Game 8 = 1]| ≤ q · Pr[Bad8] ≤ negl(λ)

Game 9. This game is identical to Game 8, except for responding to symSHK
queries.

Simulator S9

SsymSHK
9 (sk0, pk1):

Case 1: if ∃(sk0, pk1,K) ∈ TsymSHK,
return K;

Case 2: if ∃(SK1, ∗, pk1,PK1) ∈ TP1 or ∃(∗, ∗, pk1,PK1) ∈ TP−1
1

,
Subcase 2.1 : if ∃(SK0, sk0, ∗,PK0) ∈ TH0 ,
query Π.asySHK0 with (SK0,PK1), obtain K;
return K;

Subcase 2.2 : if ∃(SK0, sk0, pk0,PK0) ∈ TsymKG,
query Π.asySHK0 with (SK0,PK1), obtain K;
return K;
Subcase 2.3 : otherwise, S̃K0 ← DomAsySK0

; query Π.asySHK0 with
(S̃K0,PK1), obtain K0;

return K0;
Case 3: if ∃(SK1, ∗, pk1,PK1) ∈ TP0 or ∃(∗, ∗, pk1,PK1) ∈ TP−1

0
,

Subcase 3.1 : if ∃(SK0, sk0, ∗,PK0) ∈ TH1 ,
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query Π.asySHK1 with (SK0,PK1), obtain K;
return K;

Subcase 3.2 : if ∃(SK0, sk0, pk0,PK0) ∈ TsymKG,
query Π.asySHK1 with (SK0,PK1), obtain K;
return K;
Subcase 3.3 : otherwise, S̃K0 ← DomAsySK1

; query Π.asySHK1 with
(S̃K0,PK1), obtain K1;

return K1;
Case 4: if !(SK1, ∗, pk1,PK1) ∈ TP0 ∪ TP1 or !(∗, ∗, pk1,PK1) ∈ TP−1

0
∪ TP−1

1
,

Subcase 4.1 : if ∃(SK0, sk0, ∗,PK0) ∈ TH0 ,
run PK1 ← SP1(pk1), query Π.asySHK0 with (SK0,PK1), obtain K0;
return K0;

Subcase 4.2 : if ∃(SK0, sk0, ∗,PK0) ∈ TH1 ,
run PK1 ← SP0(pk1), query Π.asySHK1 with (SK0,PK1), obtain K1;
return K1;

Subcase 4.3 : if ∃(SK0, sk0, pk0,PK0) ∈ TsymKG,
run PK1 ← SP1(pk1), query Π.asySHK0 with (SK0,PK1), obtain K;
return K;

//or run PK1 ← SP0 (pk1), query Π.asySHK1 with (SK0,PK1), obtain K; return K;

Subcase 4.4 : otherwise, S̃K0 ← DomAsySK0
, record

(S̃K0, sk0, ∗,Π.asyKG0(S̃K0)) in TH0 ; run PK1 ← SP1(pk1); query Π.asySHK0

with (S̃K0,PK1), obtain K0;
return K0. //or, S̃K0 ← DomAsySK1

; record (S̃K0, sk0, ∗,Π.asyKG1(S̃K0)) in TH1 ;

// run PK1 ← SP0 (pk1); then query Π.asySHK1 with (S̃K0,PK1), obtain K1; return K1;

Claim 10. Game 8 ≈ Game 9.

Proof.
The differences between Game 8 and Game 9 occurs in the Subcase 2.3, the

Subcase 3.3 and the Subcase 4.4.
For the Subcase 2.3, in Game 8, the simulator responds to a query

(sk0, pk1) with I.symSHK(sk0, pk1), while in Game 9, the simulator responds
K0 ← Π.asySHK0( ˜SK0,PK1) for a random sampled ˜SK0. The distributions of
I.symSHK(sk0, pk1) and Π.asySHK0( ˜SK0,PK1) are indistinguishable, both satis-
fying the consistency conditions.

For the Subcase 3.3, the analysis is similar to that of the Subcase 2.3.
For the Case 4, in Game 8, the simulator responds to a query (sk0, pk1)

with I.symSHK(sk0, pk1), while in Game 9, the simulator responds with
K0 ← Π.asySHK0( ˜SK0,PK1) for a random sampled ˜SK0 ← DomAsySK0

and
PK1 = SP1(pk1) (or responds with K1 ← Π.asySHK1( ˜SK0,PK1) for a ran-
dom sampled ˜SK0 ← DomAsySK1

and PK1 = SP0(pk1)). The distributions of
I.symSHK(sk0, pk1) and K0 (or K1) are indistinguishable, both satisfying the
consistency conditions.

By definition, the responses of P0, P1, P
−1
0 , P−11 , H0, H1, symKG queries are

identical in Game 8 and Game 9.
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Let Bad9 denote the event that before the symSHK query (sk0, pk1), the
adversary makes a query ˜SK0 on H0 or makes a query P−11 (pk1) on P1 such
that SH0( ˜SK0) = sk′0 2= sk0 or SP1(P−11 (pk1)) = pk′1 2= pk1. The responses of
symSHK queries are consistent if Bad9 did not occur. Since ˜SK0 and P−11 (pk1)
are random strings unknown to the adversary, the only way the adversary can
get the two strings is random guessing, and the probability of guessing right
(Bad9 occurs) is bound by q

|DomAsySK0
| +

q
|DomAsyPK1

| .
Combing together, we have

|Pr[Game 8 = 1]−Pr[Game 9 = 1]| ≤ q·( q

|DomAsySK0
|+

q

|DomAsyPK1
| ) ≤ negl(λ)

Game 10. In Game 9, the queries to the adversarial interfaces are answered
by the tables which are maintained by the simulator and by making queries to
Π.asyKG0,Π.asyKG1,Π.asySHK0,Π.asySHK1. The simulator never make queries
directly to H0, H1, P0, P1, P

−1
0 , P−11 , I.symKG, I.symSHK; these oracles are only

used to answer the Π.asyKG0,Π.asyKG1,Π.asySHK0,Π.asySHK1 queries (either
generated by the adversary or by the simulator). At this point, we can replace the
calls to Π.asyKG0,Π.asyKG1,Π.asySHK0,Π.asySHK1 with the calls to ideal algo-
rithms I.asyKG0, I.asyKG1, I.asySHK0, I.asySHK1 respectively, resulting in Game
10.

We note that in Game 9, the simulator is efficient, and it responds
to the adversarial interfaces just by keeping several tables and calling
Π.asyKG0,Π.asyKG1,Π.asySHK0,Π.asySHK1 at the honest interfaces. Thus, we
can build a simulator that responds to the honest and adversarial queries pre-
cisely as the simulator does in Game 9, except for the changes in calls to the
honest interfaces. Hence, the adversary’s view in Game 10 is identical to the
ideal world and it suffices to prove that any adjacent games are indistinguish-
able. Next we give the rigorous proof for the indistinguishably between each
adjacent games.

Claim 11. Game 9 ≈ Game 10.
Proof. Let (I.asyKG0, I.asyKG1, I.asySHK0, I.asySHK1) be the function pair that
samples from TasyNIKE.We note that in Game 9, the simulator responds
all of the adversarial interfaces just using the tables and the algorithms
(Π.asyKG0,Π.asyKG1,Π.asySHK0,Π.asySHK1) at honest interfaces, and it never
directly calls the real oracles at honest interfaces. We immediately observe that
the simulator in Game 10 is identical to the simulator in the ideal game, which
refers to

Pr[Game 10 = 1] = Pr[Ideal Game = 1]

Therefore, it is rest to prove that Game 9 and Game 10 are close.
H0, H1 are random oracles, P0, P

−1
0 , P1, P

−1
1 are random permutations,

(I.symKG, I.symSHK) is an ideal symmetric NIKE with I.symKG, I.symSHK being

38



random injections except with shared key property symSHK(sk0, symKG(sk1)) =
symSHK(symKG(sk0), sk1).

Conditioned on the oracles H0, H1 having no collisions, with regard to the
asymmetric key generation oracles, for any SK0 and SK1, it’s oblivious that
the distributions of Π.asyKG0(SK0) and I.asyKG0(SK0) are identical, and the
distributions of Π.asyKG1(SK1) and I.asyKG1(SK1) are identical; and with re-
gard to the asymmetric shared key oracles, for any (SK0,PK1), the distri-
butions of Π.asySHK0(SK0,PK1) and I.asySHK0(SK0,PK1) are identical; in
addition, for any (SK1,PK0) the distributions of Π.asySHK1(SK1,PK0) and
I.asySHK1(SK1,PK0) are identical.

That the oracle H0 has collision means there are two queries SK0 and SK′0
to H0 such that SK0 2= SK′0 and H0(SK0) = H0(SK

′
0). That the oracle H1 has

collision means there are two queries SK1 and SK′1 to H1 such that SK1 2= SK′1
and H1(SK1) = H1(SK

′
1);

If none of the collision occurs, we can re-
place (Π.asyKG0,Π.asyKG1,Π.asySHK0,Π.asySHK1) with
(I.asyKG0, I.asyKG1, I.asySHK0, I.asySHK1, which represents Game 10. Moreover,
we can bound the probability of H0, H1 having collision by

Pr[Collision] ≤ q2

|DomAsySK0
| +

q2

|DomAsySK1
| ≤ negl(λ),

which refers to

|Pr[Game 9 = 1]− Pr[Game 10 = 1]| ≤ negl(λ)

Simulator In Ideal Game. Let (I.asyKG0, I.asyKG1, I.asySHK0, I.asySHK1) be the
function pair that samples from the ideal asymmetric NIKE family TasyNIKE, the
simulator works as follows. In Game 10, the simulator in the ideal game maintains
eight tables in the same way as in Game 9 except that the table entries set as
the responses of Π.asyKG0,Π.asyKG1,Π.asySHK0,Π.asySHK1 are replaced by
the responses of I.asyKG0, I.asyKG1, I.asySHK0, I.asySHK1, respectively.

By definition, the simulator S now has access to
(I.asyKG0, I.asyKG1, I.SHK0, I.SHK1) at the honest interfaces.

And for the adversarial queries, S works the same as in Game 9, by just using
the tables and querying the honest interfaces.

Combining all claims together, we have

|Pr[Real Game = 1]− Pr[Ideal Game = 1]| ≤ 2q2

|DomSymsk|
+

4q2

|DomSympk|

+
3q2

|DomAsySK0
| +

2q2

|DomAsySK1
| +

q2

|DomAsyPK0
| +

2q2

|DomAsyPK1
|

≤ negl(λ),

thus we complete the entire proof.
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B Proof of Theorem 2

Proof. Here, we give full proof of Theorem 2, that the constructed Π.EOT in
Sec.?? is indifferentiable from ideal I.EOT.

In the real world, the differentiator D has oracle access to
(Π.EOTA1 ,Π.EOTA2 ,Π.EOTB1 ,Π.EOTB2) via the honest interface and oracle
access to (H0, H1, I.asyKG0, I.asyKG1, I.asySHK0, I.asySHK1) via the adversarial
interface. In contrast, in the ideal world, the differentiator D has oracle access
to (I.EOTA1 , I.EOTA2 , I.EOTB1 , I.EOTB2) via the honest interface and access to
S via the adversarial interface. Therefore, to establish a proof, we need to
build an explicit (and efficient) simulator S that simulates the rest oracles
(H0, H1, I.asyKG0, I.asyKG1, I.asySHK0, I.asySHK1) properly by making queries to
(I.EOTA1 , I.EOTA2 , I.EOTB1 , I.EOTB2).

Namely, for any PPT differentiator D, the view of D in the real game is
computationally close to the view in the ideal game. To do so, we will go through
with a sequence of hybrid games, where in each game, the simulator responds
to all of the queries (both honest and adversarial) in a slightly different way and
the last game is the same as the ideal world. Note that the differentiator D can
make at most q queries to the oracles, where q = poly(λ).

First, we describe our simulator S in the ideal game.

Simulator S

The simulator S has the external oracle access to the ideal random OT scheme
I.EOT = (I.EOTA1 , I.EOTB1 , I.EOTA2 , I.EOTB2). The simulator S will provide the
following interfaces for the external differentiator D:

SH0(SK0, b):
Case 1: if ∃(SK0, b, Q1−b, Qb) ∈ TH0 ,

return Q1−b;
Case 2: otherwise, query the external I.EOTA1 with (SK0, b), and obtain Q0, Q1;

TH0 = TH0 ∪ (SK0, b, Q1−b, Qb);
return Q1−b.

SH1(Qd):

Case 1: if ∃(Qd, k̃) ∈ TH1 ,
return k̃;

Case 2: if ∃(SK0,PK0) ∈ TasyKG0
∧ (SK0, b, Q1−b, Qb) ∈ TH0 ∧ (Qb, k̃,PK0) ∈

TE ∪ TE−1 , s.t. Qd = Q1−b,
return k̃;

Case 3: otherwise, k̃ ← {0, 1}#2(λ); TH1 = TH1 ∪ (Qd, k̃);
return k̃.

SE(PK0, k̃):

Case 1: if ∃(Qb, k̃,PK0) ∈ TE ∪ TE−1 ,
return Qb;
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Case 2: if ∃(Q1−b, k̃) ∈ TH1 and ∃(SK0,PK0) ∈ TasyKG0
,

Subcase 2.1: if ∃(SK0, b, Q1−b, Qb) ∈ TH0 ,
return Qb;

Subcase 2.2: else, query I.EOTA1 with (SK0, 0), obtain (Q0, Q1);
if Q1 = Q1−b, return Q0; else, query I.EOTA1 with (SK0, 1), obtain (Q′

0, Q
′
1),

if Q′
0 = Q1−b, return Q′

1; else, Q̃b ← {0, 1}#2(λ), TE = TE ∪ (Q̃b, k̃,PK0);
return Q̃b.
Case 3 : otherwise, randomly sample SK0 ← {0, 1}#1(λ), b← {0, 1}, query I.EOTA1

with (SK0, b), obtain (Q0, Q1); implicitly set SH1(Q1−b) = k̃ and SasyKG0(SK0) =
K0; TE = TE ∪ (Qb, k̃,PK0);

return Qb.

SE−1
(Qb, k̃):

Case 1: if ∃(Qb, k̃,PK0) ∈ TE ∪ TE−1 ,
return PK0;

Case 2: if ∃(Q1−b, k̃) ∈ TH1 and ∃(SK0, b, Q1−b, Qb) ∈ TH0 ,
Subcase 2.1: if ∃(SK0,PK0) ∈ TasyKG0

, return PK0;
Subcase 2.2: else, run PK0 = SasyKG0(SK0), return PK0;

Case 3 : PK0 ← DomAsyPK0
, TE−1 = TE−1 ∪ (Qb, k̃,PK0);

return PK0.

SasyKG0(SK0):
Case 1: if ∃(SK0,PK0) ∈ TasyKG0

,
return PK0;

Case 2: if ∃(SK0, b, Q1−b, Qb) ∈ TH0 ∧(Q1−b, k̃) ∈ TH1 ∧(Qb, k̃,PK0) ∈ TE ∪TE−1,
return PK0;

Case 3: if ∃(SK0,PK1,K) ∈ TasySHK0
and ∃(SK1,PK0,K) ∈ TasySHK1

s.t. PK1 =
I.EOTB1(SK1),

return PK0;
Case 4: otherwise, PK0 ← DomAsyPK0

; TasyKG0
= TasyKG0

∪ (SK0,PK0);
return PK0.

SasyKG1(SK1):
Case 1: if ∃(SK1,PK1) ∈ TasyKG1

,
return PK1;

Case 2: if ∃(SK0,PK1,K) ∈ TasySHK0
∧ ∃(SK1,PK0,K) ∈ TasySHK1

and PK0 =
SasyKG0(SK0),

return PK1;
Case 3: otherwise, query Π.EOTB1 with SK1, obtain PK1;

return PK1.

SasySHK0(SK0,PK1):
Case 1: if ∃(SK0,PK1,K) ∈ TasySHK0

,
return K;

Case 2: if ∃(SK0,PK0) ∈ TasyKG0
∧ (SK1,PK1) ∈ TasyKG1

∧ (SK1,PK0,K) ∈
TasySHK1

,
return K;

Case 3: if ∃(SK0, b, Q1−b, Qb) ∈ TH0 ∧ (SK1,PK1) ∈ TasyKG1
,
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query Π.EOTB2 with (Q0, Q1, SK1), obtain K0,K1;
return Kb;

Case 4: otherwise, b ← {0, 1}, query Π.EOTA2 with (SK0,PK1, b), obtain Kb;
TasySHK0

= TasySHK0
∪ (SK0,PK1,Kb);

return Kb.

SasySHK1(SK1,PK0):
Case 1: if ∃(SK1,PK0,K) ∈ TasySHK1

,
return K;

Case 2: if ∃(SK0,PK0) ∈ TasyKG0
,

Subcase 2.1: if ∃(SK1,PK1) ∈ TasyKG1
∧ (SK0,PK1,K) ∈ TasySHK0

,
return K;

Subcase 2.2: if ∃(SK0, b, Q1−b, Qb) ∈ TH0 ,
query Π.EOTB2 with (Q0, Q1, SK1), obtain K0,K1;
return Kb;

Subcase 2.3: otherwise, query Π.EOTB1 with SK1, obtain PK1; b← {0, 1},
query Π.EOTA2 with (SK0,PK1, b), obtain Kb;
return Kb;

Case 3: if ∃(SK0, b, Q1−b, Qb) ∈ TH0 ∧(Q1−b, k̃) ∈ TH1 ∧(Qb, k̃,PK0) ∈ TE ∪TE−1 ,
query Π.EOTB2 with (Q0, Q1, SK1), obtain K0,K1;
return Kb;

Case 4: otherwise, randomly sample SK0 ← {0, 1}#1(λ), b ← {0, 1}, query
Π.EOTB1 with SK1, obtain PK1;

query Π.EOTA2 with (SK0,PK1, b), obtain Kb;
return Kb.

Next, we describe our simulator S in the hybrid games.
Game 0. This game is identical to the real game except that the simulator
maintains eight tables for the adversarial interfaces, referring to H0 table TH0 ,
H1 table TH1 , I.asyKG0 table TasyKG0

, I.asyKG1 table TasyKG1
, I.asySHK0 table

TasySHK0
and I.asySHK1 table TasySHK1

, E table TE and E−1 table TE−1 . The
tables are initially empty, and the table entries are added by the simulator when
new queries are answered, in the following forms:

– TH0 := (SK0, b, Qb, Q1−b) with b ∈ {0, 1};
– TH1 := (Qd, k̃);
– TE := (Qb, k̃,PK0);
– TE−1 := (Qb, k̃,PK0);
– TasyKG0

:= (SK0,PK0);
– TasyKG1

:= (SK1,PK1);
– TasySHK0

:= (SK0,PK1,K0);
– TasySHK1

:= (SK1,PK0,K1).

Concretely, the simulator responds to the queries by forwarding the responses
of the corresponding oracles, such that the simulator’s responses are the same as
in the real world. For instance, SH0

0 (SK0, b) = H0(SK0, b), SH1
0 (Qd) = H1(Qd),

SasyKG0
0 (SK0) = I.asyKG0(SK0), SasySHK0

0 (SK0,PK1) = I.asySHK0(SK0,PK1)
and so forth.
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In Game 0, the simulator maintains the tables as follows.

1. H0-table TH0 : Once the adversary queries oracle H0 with (SK0, b) which
does not exist in TH0 , the simulator inserts (SK0, b,H0(SK0, b), ∗) into the
TH0 table.

2. H1-table TH1 : Once the adversary queries oracle H1 with Qd which does not
exist in TH1 , the simulator inserts (Qd, H1(Qd)) into the TH1 -table.

3. I.asyKG0-table TasyKG0
: Once the adversary queries I.asyKG0 with SK0 which

does not exist in TasyKG0
-table, the simulator inserts (SK0, I.asyKG0(SK0)

into the TasyKG0
-table.

4. I.asyKG1-table TasyKG1
: Once the adversary queries I.asyKG1 with SK1 which

does not exist in TasyKG1
-table, the simulator inserts (SK1, I.asyKG1(SK1)

into the TasyKG1
-table.

5. I.asySHK0-table TasySHK0
: Once the adversary queries I.asySHK0 with

(SK0,PK1) which does not exist in the TasySHK0
-table, the simulator inserts

(SK0,PK1, I.asySHK0(SK0,PK1)) into TasySHK0
-table.

6. I.asySHK1-table TasySHK1
: Once the adversary queries I.asySHK1 with

(SK1,PK0) which does not exist in the TasySHK1
-table, the simulator inserts

(SK1,PK0, I.asySHK1(SK1,PK0)) into TasySHK1
-table.

At this point all the queries are responded by the real oracles and these tables
are just keeping track of information related to D’s queries (to the adversarial
interfaces) and completely hidden to the adversary, hence the adversary’s view
in real game is identical to the one in Game 0.

Next, we illustrate an alternative way to answer part of the queries, by using
these tables and the honest interfaces.
Game 1. This game is identical to Game 0, except the way of maintaining
the tables and responding to the queries at adversarial interfaces. Specifically,
the simulator S1 has the external oracle access to the random OT scheme
Π.EOT = (Π.EOTA1 ,Π.EOTB1 ,Π.EOTA2 ,Π.EOTB2). The simulator S1 will pro-
vide the following interfaces for the external differentiator D, as shown in the
box of Simulator S1.

Compared to Game 0, in Game 1 the simulator keeps a longer table, and for
part of the queries, the simulator responds to them in an alternative way, which
is only using the tables and the honest interfaces. Moreover, in Game 1, the
tuples stored in the tables are consistent with the responses by the real oracles
to the adversary’s queries. Hence, in either game, the response of any query is
identical, which refers to that the view in Game 1 is identical to the one in Game
0.

However, the simulator can only answer part of the queries by tables and
honest interfaces, and for the rest it has to call the real oracles. Thus, in the
following hybrid games, we will illustrate additional alternative ways (not calling
the real oracles) to respond to the rest queries, without changing the adversary’s
view significantly.
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Simulator S1

SH0
1 (SK0, b):

Case 1: if ∃(SK0, b, Q1−b, ∗) ∈ TH0 ,
return Q1−b;

Case 2: otherwise, Q1−b = H0(SK0, b); TH0 = TH0 ∪ (SK0, b, Q1−b, Qb);
return Q1−b.

SH1
1 (Qd):

SH1(Qd):

Case 1: if ∃(Qd, k̃) ∈ TH1 ,
return k̃;

Case 2: if ∃(SK0,PK0) ∈ TasyKG0
∧ (SK0, b, Q1−b, Qb) ∈ TH0 ∧ (Qb, k̃,PK0) ∈

TE ∪ TE−1 , s.t. Qd = Q1−b,
return k̃;

Case 3: otherwise, k̃ = H1(Qd); TH1 = TH1 ∪ (Qd, k̃);
return k̃.

SE
1 (PK0, k̃):

Case 1: if ∃(Qb, k̃,PK0) ∈ TE ∪ TE−1 ,
return Qb;

Case 2: if ∃(Q1−b, k̃) ∈ TH1 and ∃(SK0,PK0) ∈ TasyKG0
,

Subcase 2.1: if ∃(SK0, b, Q1−b, Qb) ∈ TH0 ,
return Qb;

Subcase 2.2: else, query I.EOTA1 with (SK0, 0), obtain (Q0, Q1);
if Q1 = Q1−b, return Q0; else, query I.EOTA1 with (SK0, 1), obtain (Q′

0, Q
′
1),

if Q′
0 = Q1−b, return Q′

1; else, Q̃b = E(PK0, k̃); TE = TE ∪ (Q̃b, k̃,PK0);
return Q̃b.
Case 3 : otherwise, Q̃b = E(PK0, k̃);TE = TE ∪ (Q̃b, k̃,PK0);

return Q̃b.

SE−1

1 (Qb, k̃):

Case 1: if ∃(Qb, k̃,PK0) ∈ TE ∪ TE−1 ,
return PK0;

Case 2: if ∃(Q1−b, k̃) ∈ TH1 and ∃(SK0, b, Q1−b, Qb) ∈ TH0 ,
Subcase 2.1: if ∃(SK0,PK0) ∈ TasyKG0

return PK0;
Subcase 2.2: else, run PK0 = SasyKG0

1 (SK0), return PK0;
Case 3 : PK0 = E−1(Qb, k̃); TE−1 = TE−1 ∪ (Qb, k̃,PK0);

return PK0.

SasyKG0
1 (SK0):

Case 1: if ∃(SK0,PK0) ∈ TasyKG0
,

return PK0;
Case 2: if ∃(SK0, b, Q1−b, Qb) ∈ TH0 ∧(Q1−b, k̃) ∈ TH1 ∧(Qb, k̃,PK0) ∈ TE ∪TE−1,

return PK0;
Case 3: if ∃(SK0,PK1,K) ∈ TasySHK0

and ∃(SK1,PK0,K) ∈ TasySHK1
s.t. PK1 =

Π.EOTB1(SK1),
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return PK0;
Case 4: otherwise, PK0 = I.asyKG0(SK0); TasyKG0

= TasyKG0
∪ (SK0,PK0);

return PK0.

SasyKG1
1 (SK1):

Case 1: if ∃(SK1,PK1) ∈ TasyKG1
,

return PK1;
Case 2: if ∃(SK0,PK1,K) ∈ TasySHK0

∧ ∃(SK1,PK0,K) ∈ TasySHK1
and PK0 =

SasyKG0(SK0),
return PK1;

Case 3: otherwise, PK1 = I.asyKG1(SK1); TasyKG1
= TasyKG1

∪ (SK1,PK1);
return mathrmPK1.

SasySHK0
1 (SK0,PK1):

Case 1: if ∃(SK0,PK1,K) ∈ TasySHK0
,

return K;
Case 2: if ∃(SK0,PK0) ∈ TasyKG0

∧ (SK1,PK1) ∈ TasyKG1
∧ (SK1,PK0,K) ∈

TasySHK1
,

return K;
Case 3: if ∃(SK0, b, Q1−b, Qb) ∈ TH0 ∧ (SK1,PK1) ∈ TasyKG1

,
query Π.EOTB2 with (Q0, Q1, SK1), obtain K0,K1;

return Kb;
Case 4: otherwise, K0 = I.asySHK0(SK0,PK1); TasySHK0

= TasySHK0
∪

(SK0,PK1,K0);
return K0.

SasySHK1
1 (SK1,PK0):

Case 1: if ∃(SK1,PK0,K) ∈ TasySHK1
,

return K;
Case 2: if ∃(SK0,PK0) ∈ TasyKG0

,
Subcase 2.1: if ∃(SK1,PK1) ∈ TasyKG1

∧ (SK0,PK1,K) ∈ TasySHK0
,

return K;
Subcase 2.2: if ∃(SK0, b, Q1−b, Qb) ∈ TH0 ,

query Π.EOTB2 with (Q0, Q1, SK1), obtain K0,K1;
return Kb;

Subcase 2.3: else, query Π.EOTB1 with SK1, obtain PK1; b ← {0, 1}, query
Π.EOTA2 with (SK0,PK1, b), obtain Kb;

return Kb;
Case 3: if ∃(SK0, b, Q1−b, Qb) ∈ TH0 ∧(Q1−b, k̃) ∈ TH1 ∧(Qb, k̃,PK0) ∈ TE ∪TE−1 ,

query Π.EOTB2 with (Q0, Q1, SK1), obtain K0,K1;
return Kb;

Case 4: otherwise, Kb = I.asySHK1(SK1,PK0);
return Kb.

Game 2. This game is identical to Game 1, except for responding to H0 queries.
The simulator responds to a query SK0 on H0 as follows:
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Simulator S2

SH0
2 (SK0):

Case 1: if ∃(SK0, ∗, Q1−b, ∗) ∈ TH0 ,
return Q1−b;

Case 2: otherwise, query the external Π.EOTA1 with (SK0, b), and obtain Q0, Q1;
TH0 = TH0 ∪ (SK0, b, Q1−b, Qb);

return Q1−b.

The only difference between Game 1 and Game 2 occurs in the Case
2 where (SK0, b) never appears in TH0 . In Game 1, the simulator responds
with H0(SK0, b) while in Game 2, the simulator responds with Q1−b =
LoR1−b(Π.EOTA1(SK0, b)). By definition, H0(SK0) is identical to Q1−b, from
the adversary D’s view, Game 1 and Game 2 are identical.

Game 3. This game is identical to Game 2, except for responding to H1 queries.
The simulator responds to a query Qd on H1 as in the box of Simulator S3.

The only difference between Game 2 and Game 3 occurs in the Case 3 of a
H0 query Qd which never appears in TH1 ∪ TH0 .

In Game 2, the simulator responds to H1 query on Qd with H1(Qd); while
in Game 3, the simulator responds with a random string k̃. Due to defini-
tion, the only case that the simulator queries H1 with such Qd is when the
adversary D knows nothing of H1(Qd), although the adversary might know
Π.OTB2(SK1, Qd, Q1−d). Therefore, from the adversary D’s view, H1(Qd) is
uniformly distributed in {0, 1}"2(λ), which implies D’s view in Game 3 is in-
distinguishable from its view in Game 2 with high probability.

Simulator S3

SH1
3 (Qd):

Case 1: if ∃(Qd, k̃) ∈ TH1 ,
return k̃;

Case 2: if ∃(SK0,PK0) ∈ TasyKG0
∧ (SK0, b, Q1−b, Qb) ∈ TH0 ∧ (Qb, k̃,PK0) ∈

TE ∪ TE−1 , s.t. Qd = Q1−b,
return k̃;

Case 3: otherwise, k̃ ← {0, 1}#2(λ); TH1 = TH1 ∪ (Qd, k̃);
return k̃.

Game 4. This game is identical to Game 3, except for responding to I.asyKG0

queries. The simulator responds to a query SK0 at I.asyKG0 as in the box of S4.
The only difference between Game 3 and Game 4 occurs in the Case 4 of

a I.asyKG0 query. In Game 3, the simulator responds to a I.asyKG0 query SK0
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with I.asyKG0(SK0); while in Game 4, the simulator responds with a randomly
sampled string PK0 ← {0, 1}"2(λ).

Due to definition, the only case that the simulator queries I.asyKG0 with SK0

is when the adversary D knows nothing of I.asyKG0(SK0), although the adversary
might know Π.EOTA1(SK0, b) for b = 0, 1. Therefore, from the adversary D’s
view, I.asyKG0(SK0) is uniformly distributed in {0, 1}"2(λ). Note that SH1

1 (Q1)
is also uniformly distributed in {0, 1}"2(λ), which implies D’s view in Game 4
and D’s view in Game 3 are indistinguishable.

Simulator S4

SasyKG0
4 (SK0):

Case 1: if ∃(SK0,PK0) ∈ TasyKG0
,

return PK0;
Case 2: if ∃(SK0, b, Q1−b, Qb) ∈ TH0 ∧(Q1−b, k̃) ∈ TH1 ∧(Qb, k̃,PK0) ∈ TE ∪TE−1,

return PK0;
Case 3: if ∃(SK0,PK1,K) ∈ TasySHK0

and ∃(SK1,PK0,K) ∈ TasySHK1
s.t. PK1 =

Π.EOTB1(SK1),
return PK0;

Case 4: otherwise, PK0 ← {0, 1}#2(λ); TasyKG0
= TasyKG0

∪ (SK0,PK0);
return PK0.

Game 5. This game is identical to Game 4, except for responding to I.asyKG1

queries. The simulator responds to a query SK1 on I.asyKG1 as in the box of
Simulator S5.

The only difference between Game 4 and Game 5 occurs in the Case 3 of a
I.asyKG1 query. In Game 4, the simulator responds to a I.asyKG1 query SK1 with
I.asyKG1(SK1); while in Game 5, the simulator responds with Π.EOTB1(SK1).
Due to definition, I.asyKG1(SK1) and Π.EOTB1(SK1) are identical for any SK1.
Therefore, D’s view in Game 5 and D’s view in Game 4 are the same.

Simulator S5

SasyKG1
5 (SK1):

Case 1: if ∃(SK1,PK1) ∈ TasyKG1
,

return PK1;
Case 2: if ∃(SK0,PK1,K) ∈ TasySHK0

∧ ∃(SK1,PK0,K) ∈ TasySHK1
and PK0 =

SasyKG0(SK0),
return PK1;

Case 3: otherwise, query Π.EOTB1 with SK1, obtain PK1;
return PK1.
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Game 6. This game is identical to Game 5, except for responding to E queries.
The simulator responds to a query (PK0, k̃) on E as follows:

Simulator S6

SE
6 (PK0, k̃):

Case 1: if ∃(Qb, k̃,PK0) ∈ TE ∪ TE−1 ,
return Qb;

Case 2: if ∃(Q1−b, k̃) ∈ TH1 ,
Subcase 2.1: if ∃(SK0,PK0) ∈ TasyKG0

and ∃(SK0, b, Q1−b, Qb) ∈ TH0 ,
return Qb;

Subcase 2.2: if ∃(SK0,PK0) ∈ TasyKG0
and !(SK0, b, Q1−b, Qb) ∈ TH0 ,

query I.EOTA1 with (SK0, 0), obtain (Q0, Q1),
if Q1 = Q1−b, return Q0;
else, query I.EOTA1 with (SK0, 1), obtain (Q′

0, Q
′
1);

and if Q′
0 = Q1−b, return Q′

1;
else, Q̃b ← {0, 1}#2(λ), TE = TE ∪ (Q̃b, k̃,PK0); return Q̃b.

Case 3 : otherwise, randomly sample SK0 ← {0, 1}#1(λ), b← {0, 1}, query I.EOTA1

with (SK0, b), obtain (Q0, Q1); implicitly set SH1(Q1−b) = k̃ and SasyKG0(SK0) =
PK0; TE = TE ∪ (Qb, k̃,PK0);

return Qb.

The only difference between Game 5 and Game 6 occurs in the Case 3 of a E
query. In Game 5, the simulator responds to a E query (PK0, k̃) with E(PK0, k̃);
while in Game 6, the simulator responds with LoRb(I.EOTA1(SK0, b)) for a ran-
dom bit b.

Game 7. This game is identical to Game 6, except for responding to E−1 queries.
The simulator responds to a query (Qb, k̃) on E−1 as follows:

Simulator S7

SE−1

7 (Qb, k̃):

Case 1: if ∃(Qb, k̃,PK0) ∈ TE ∪ TE−1 ,
return PK0;

Case 2: if ∃(Q1−b, k̃) ∈ TH1 and ∃(SK0, b, Q1−b, Qb) ∈ TH0 ,
Subcase 2.1: if ∃(SK0,PK0) ∈ TasyKG0

, return PK0;
Subcase 2.2: run PK0 = SasyKG0(SK0), return PK0;

Case 3 : PK0 ← DomAsyPK0
, TE−1 = TE−1 ∪ (Qb, k̃,PK0);

return PK0.

The only difference between Game 6 and Game 7 occurs in the Case 3 of
a E−1 query. In Game 6, the simulator responds to a E−1 query (Qb, k̃) with
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E−1(Qb, k̃); while in Game 7, the simulator responds with a randomly sampled
string PK0 ← DomAsyPK0

.
Game 8. This game is identical to Game 7, except for responding to I.asySHK0

queries. The simulator responds to a query (SK0,PK1) on I.asySHK0 as follows.

Simulator S8

SasySHK0
8 (SK0,PK1):

Case 1: if ∃(SK0,PK1,K) ∈ TasySHK0
,

return K;
Case 2: if ∃(SK0,PK0) ∈ TasyKG0

∧ (SK1,PK1) ∈ TasyKG1
∧ (SK1,PK0,K) ∈

TasySHK1
,

return K;
Case 3: if ∃(SK0, b, Q1−b, Qb) ∈ TH0 ∧ (SK1,PK1) ∈ TasyKG1

,
query Π.EOTB2 with (Q0, Q1, SK1), obtain K0,K1;
return Kb;

Case 4: otherwise, b← {0, 1}, query Π.EOTA2 with (SK0,PK1, b), obtain Kb;
return Kb.

The only difference between Game 7 and Game 8 occurs in the Case 4.
In Game 7, the simulator responds to a I.asySHK0 query (SK0,PK1)

with I.asySHK0(SK0,PK1); while in Game 8, the simulator responds with
Π.EOTA2(SK0,PK1, b) for a random bit b.

By definition, I.asySHK0(SK0,PK1) and Π.EOTA2(SK0,PK1, b) are identical
for any (SK0,PK1). Therefore, D’s view in Game 8 and D’s view in Game 7 are
identical.

Simulator S9

SasySHK1
9 (SK1,PK0):

Case 1: if ∃(SK1,PK0,K) ∈ TasySHK1
,

return K;
Case 2: if ∃(SK0,PK0) ∈ TasyKG0

,
Subcase 2.1: if ∃(SK1,PK1) ∈ TasyKG1

∧ (SK0,PK1,K) ∈ TasySHK0
,

return K;
Subcase 2.2: if ∃(SK0, b, Q1−b, Qb) ∈ TH0 ,

query Π.EOTB2 with (Q0, Q1, SK1), obtain K0,K1;
return Kb;

Subcase 2.3: otherwise, query Π.EOTB1 with SK1, obtain PK1; b← {0, 1},
query Π.EOTA2 with (SK0,PK1, b), obtain Kb;
return Kb;

Case 3: if ∃(SK0, b, Q1−b, Qb) ∈ TH0 ∧(Q1−b, k̃) ∈ TH1 ∧(Qb, k̃,PK0) ∈ TE ∪TE−1 ,
query Π.EOTB2 with (Q0, Q1, SK1), obtain K0,K1;
return Kb;
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Case 4: otherwise, randomly sample SK0 ← {0, 1}#1(λ), b ← {0, 1}, query
Π.EOTB1 with SK1, obtain PK1; query Π.EOTA2 with (SK0,PK1, b), obtain Kb;

return Kb.

Game 9. This game is identical to Game 8, except for responding to I.asySHK1

queries. The simulator responds to a query (SK1,PK0) on I.asySHK1 as follows.
The only difference between Game 8 and Game 9 occurs in the Case 4. In

Game 8, the simulator responds to a random query (SK1,PK0) to I.asySHK1

with I.asySHK1(SK1,PK0); while in Game 9, the simulator responds with
LoRb(Π.EOTA2(SK0,PK1, b)) for a randomly sampled string SK0 ← {0, 1}"1(λ)
and a random bit b← {0, 1}.

Due to definition, the only case that the simulator queries I.asySHK1 with
(SK1,PK0) is when the adversary D knows nothing of I.asySHK0(SK0,PK1), al-
though the adversary might know Π.OTB1(SK1). Therefore, from the adversary
D’s view, I.asySHK0(SK0,PK1) is uniformly distributed in {0, 1}n3(λ). Note that
K is also uniformly distributed in {0, 1}n3(λ), which implies D’s view in Game
9 and D’s view in Game 8 are indistinguishable.

Game 10. In Game 9, the queries to the adversarial interfaces are an-
swered by the tables which are maintained by the simulator and by mak-
ing queries to Π.EOTA1 ,Π.EOTA2 ,Π.EOTB1 ,Π.EOTB2 . The simulator never
make queries directly to H0, H1, I.asyKG0, I.asyKG1, I.asySHK0, I.asySHK1; these
oracles are only used to answer the Π.EOTA1 ,Π.EOTA2 ,Π.EOTB1 ,Π.EOTB2

queries (either generated by the adversary or by the simulator’s response to
H0, H1, I.asyKG0, I.asyKG1, I.asySHK0, I.asySHK1 queries). At this point, we can
replace the calls to Π.EOTA1 ,Π.EOTA2 ,Π.EOTB1 ,Π.EOTB2 with the calls to
ideal algorithms I.EOTA1 , I.EOTA2 , I.EOTB1 , I.EOTB2 respectively, resulting in
Game 10.

Note that in Game 9, the simulator is efficient, and it responds
to the adversarial interfaces just by keeping several tables and calling
Π.EOTA1 ,Π.EOTA2 ,Π.EOTB1 ,Π.EOTB2 at the honest interfaces. Thus, we can
build a simulator that responds to the honest and adversarial queries precisely
as the simulator does in Game 9. The result is that the view in Game 10 is
identical to the ideal world and it suffices to prove that any adjacent games
are indistinguishable. Next we give the rigorous proof for the indistinguishably
between each adjacent games.

Simulator In Ideal Game. Let (I.EOTA1 , I.EOTA2 , I.EOTB1 , I.EOTB2) be the func-
tion pair that samples from the ideal OT family TEOT, the simulator works
as follows. In Game 10, the simulator in the ideal game maintains six tables
in the same way as in Game 9 except that those table items being the re-
sponses of Π.EOTA1 ,Π.EOTA2 ,Π.EOTB1 ,Π.EOTB2 are replaced by the responses
of I.EOTA1 , I.EOTA2 , I.EOTB1 , I.EOTB2 respectively.

By definition, the simulator S now has access to
I.EOTA1 , I.EOTA2 , I.EOTB1 , I.EOTB2 at the honest interfaces.
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And for the adversarial queries, S works the same as in Game 9, by just using
the tables and querying the honest interfaces.

Now we prove the indistinguishability between any adjacent games.

Claim 1. Game Real ≈ Game 0.
Proof. Recalling that the only difference between Game Real and Game 0 is
that, in Game 0 the simulator additionally maintains several tables that are
completely hidden from the adversary, hence we have

Pr[Game Real = 1] = Pr[Game 0 = 1]

Claim 2. Game 0 ≈ Game 1.
Proof. In Game 1, the simulator maintains longer tables than in Game 0,
and the simulator responds to part of the queries at the adversarial inter-
faces by using those tables and calling the honest interfaces. For the queries
to the honest interfaces, the simulator responds by forwarding the calls and
responses of the algorithms Π.EOTA1 ,Π.EOTA2 ,Π.EOTB1 ,Π.EOTB2 . Moreover,
the items stored in those tables are always consistent with the real game or-
acles H0, H1, I.asyKG0, I.asyKG1, I.asySHK0, I.asySHK1 at adversarial interfaces.
Hence, the response of adversarial queries by either the real game oracles
H0, H1, I.asyKG0, I.asyKG1, I.asySHK0, I.asySHK1 (in Game 0) or by real game or-
acles plus honest interfaces and tables (in Game 1) are identical, which implies

Pr[Game 0 = 1] = Pr[Game 1 = 1]

Claim 3. Game 1 ≈ Game 2.
We note that, in order not to be distinguished by the adversary, the simula-

tor’s responses at adversarial interfaces should satisfy the consistency conditions
below:

1. There exists no two SK0, SK
′
0 such that SasyKG0(SK0) = SasyKG0(SK′0);

2. There exists no two SK1, SK
′
1 such that SasyKG1(SK1) = SasyKG1(SK′1);

3. LoRb(Π.EOTA1(SK0, b)) = SH0(SK0);
4. Π.EOTB1(SK1) = SasyKG1(SK1);
5. Π.EOTA2(SK0,PK1, b) = SasySHK0(SK0,PK1);
6. LoRb(Π.EOTB2(Π.EOTA1(SK0, b), SK1)) = SasySHK1(SK1,PK0);
7. Π.EOTA2(SK0,Π.EOTB1(SK1), b) = LoRb(Π.EOTB2(Π.EOTA1(SK0, b), SK1)).
8. SasySHK0(SK0,PK1) = SasySHK1(SK1,PK0) if and only if PK1 = SasyKG1(SK1)

and PK0 = SasyKG0(SK0).

Proof. The only difference between Game 1 and Game 2 occurs in the
Case 2, where (SK0, b) /∈ TH0 . In Game 1, the simulator responds to H0

query (SK0, b) with H0(SK0, b) while in Game 2, the simulator responds with
LoRb(Π.EOTA1( ˜SK0)).

Since the adversary knows nothing of H0(SK0, b), the distri-
bution of H0(SK0, b) should be uniformly random in DomQ,and
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LoRb(Π.EOTA1(SK0, b)) has identical distribution. Due to definition, H0(SK0, b)
and LoRb(Π.EOTA1(SK0)) are identical. Besides, all the consistency conditions
hold. Therefore, from the adversary’s view, Game 1 and Game 2 are identical.
Hence,

Pr[Game 1 = 1] = Pr[Game 2 = 1]

Claim 4. Game 2 ≈ Game 3.
Proof. Recalling that the only difference between Game 2 and Game 3 occurs
in the Case 3 of simulating H1.In Game 2, the simulator responds to a random
query Qd with H1(Qd) while in Game 3, the simulator replaces it with a random
string P̃K in DomAsyPK0

. Due to definition, the only case that the adversary
queries Qd to H1 is when the adversary knows nothing of H1(Qd). From the
adversary’s view, H1(Qd) is uniformly distributed in DomAsyPK0

, thus P̃K is
well-distributed. Since the responses of H0, H1 are independent and random
strings, and for I.asyKG0, I.asyKG1, I.asySHK0, I.asySHK1 queries, the responses
are identical in either game.

Therefore, from the adversary’s view, Game 2 and Game 3 are indistinguish-
able except with negligible probability when P̃K is already used in a previous
query, which is bounded by q2

|DomAsyPK0
| . Hence

|Pr[Game 2 = 1]− Pr[Game 3 = 1]| ≤ q2

|DomAsyPK0
| ≤ negl(λ)

Claim 5. Game 3 ≈ Game 4.
Proof. Recalling that the only difference between Game 3 and Game 4 occurs in
the Case 4 of simulating the responses of I.asyKG0 query. In Game 3, the simulator
responds to a random query SK0 with I.asyKG0(SK0) while in Game 4, the sim-
ulator replaces it with a random string SH1(Q1)⊕LoR0(Π.EOTA1(SK0, 0)). Due
to definition, the only case that the adversary queries SK0 to I.asyKG0 is when
the adversary knows nothing of I.asyKG0(SK0), which is uniformly distributed in
DomAsyPK0

from the adversary’s view. Since SH1(Q1) is uniformly distributed
in DomAsyPK0

, SH1(Q1)⊕ LoR0(Π.EOTA1(SK0, 0)) is also well-distributed. And
for H0, H1, I.asyKG1, I.asySHK0, I.asySHK1 queries, the responses are identical in
either game, both satisfying the consistency conditions.

Therefore, from the adversary’s view, Game 3 and Game 4 are indistinguish-
able.

Claim 6. Game 4 ≈ Game 5.
Proof. Recalling that the only difference between Game 4 and Game 5 occurs
in the Case 4 of simulating I.asyKG1.In Game 4, the simulator responds to a
random query SK0 with I.asyKG1(SK0) while in Game 5, the simulator replaces
it with Π.EOTB1(SK1). Due to definition, the distributions of I.asyKG1(SK0)
and Π.EOTB1(SK1) are identical. And for H0, H1, I.asyKG0, I.asySHK0, I.asySHK1
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queries, the responses are identical in either game, both satisfying the consistency
conditions.

Therefore, from the adversary’s view, Game 4 and Game 5 are indistinguish-
able.

Claim 7. Game 5 ≈ Game 6.

Proof. Recalling that the only difference between Game 5 and Game 6 occurs
in the Case 4 of simulating I.asySHK0.In Game 5, the simulator responds to
a query (SK0,PK1) with I.asySHK0(SK0,PK1) while in Game 6, the simulator
replaces it with Π.EOTA2(SK0,PK1, b) for a random bit b. Due to definition, the
distributions of I.asySHK0(SK0,PK1) and Π.EOTA2(SK0,PK1, b) are identical.
And for H0, H1, I.asyKG0, I.asyKG1, I.asySHK1 queries, the responses are identical
in either game, both satisfying the consistency conditions.

Therefore, from the adversary’s view, Game 5 and Game 6 are indistinguish-
able.

Claim 8. Game 6 ≈ Game 7.

Proof. Recalling that the only difference between Game 6 and Game 7 occurs
in the Case 7 of simulating I.asySHK1.In Game 6, the simulator responds to
a random query (SK1,PK0) with I.asySHK1(SK1,PK0) while in Game 7, the
simulator replaces it with a random string K uniformly distributed in DomAsyK.

Due to definition, the only case that the adversary queries (SK1,PK0) to
I.asySHK1 is when the adversary knows nothing of I.asySHK1(SK1,PK0), which
is uniformly distributed in DomK from the adversary’s view. Hence, K is well-
distributed. And for H0, H1, I.asyKG0, I.asyKG1, I.asySHK0 queries, the responses
are identical in either game, both satisfying the consistency conditions.

Therefore, from the adversary’s view, Game 6 and Game 7 are indistinguish-
able unless collision event in DomK occurs, which is bounded by q2

|DomK| . Hence
we have

|Pr[Game 6 = 1]− Pr[Game 7 = 1]| ≤ q2

|DomK|
≤ negl(λ)

Claim 9. Game 7 ≈ Game 8.

Proof. Let (I.EOTA1 , I.EOTA2 , I.EOTB1 , I.EOTB2) be the function pair that
samples from TEOT. We note that in Game 7, the simulator responds
all of the adversarial interfaces just using tables and the algorithms
(Π.EOTA1 ,Π.EOTA2 ,Π.EOTB1 ,Π.EOTB2) at honest interfaces, it never directly
calls the real oracles at honest interfaces. We immediately observe that S8 is
identical to the simulator S in the ideal game, which refers to

|Pr[Game 8 = 1]− Pr[Ideal Game = 1]|

Therefore, it is rest to prove that Game 7 and Game 8 are close.
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H0, H1 are random oracles, I.asyKG0, I.asyKG1, I.asySHK0, I.asySHK1 are ran-
dom injections with the shared key property.

Conditioned on the oracles H0, H1 have no collisions, for any SK0, b and SK1,
it’s oblivious that the distributions of Π.EOTA1(SK0, b) and I.EOTA1(SK0, b) are
identical, and the distributions of Π.EOTB1(SK1) and I.EOTB1(SK1) are iden-
tical; and for any (SK0,PK1), the distributions of Π.EOTA2(SK0,PK1, b) and
I.EOTA2(SK0,PK1, b) are identical, and for any (SK1, Q) the distributions of
Π.EOTB2(SK1, Q) and I.EOTB2(SK1, Q) are identical.

That the oracle H0 has collision means there are two queries SK0 and SK′0
to H0 such that SK0 2= SK′0 and H0(SK0) = H0(SK

′
0). That the oracle H1 has

collision means there are two queries Qd and Q′d to H1 such that Qd 2= Q′d and
H1(Qd) = H1(Q′d);

If none of the collision occurs, we can replace (Π.EOTA1 ,Π.EOTA2 ,Π.EOTB1 ,
Π.EOTB2) with (I.EOTA1 , I.EOTA2 , I.EOTB1 , I.EOTB2), which represents Game 8.
Moreover, we can bound the probability of H0, H1 collision by

Pr[Collision] ≤ q2

|DomAsySK0
| +

q2

|DomAsyPK0
| ≤ negl(λ),

which refers to

|Pr[Game 7 = 1]− Pr[Game 8 = 1]| ≤ Pr[Collision] ≤ negl(λ)

Combining all claims together, we have

|Pr[Real Game = 1]−Pr[Ideal Game = 1]| ≤ q2

|DomAsySK0
|+

2q2

|DomAsyPK0
|+

q2

|DomK|
≤ negl(λ),

thus we complete the entire proof.

C Proof of Theorem 3

Proof. According to the definition of indifferentiability, in the real world, the
differentiator D has oracle access to (Π.symKG,Π.symSHK) via the honest in-
terface and oracle access to (H0, H1, I.EOTA1 , I.EOTA2 , I.EOTB1 , I.EOTB2) via the
adversarial interface.

In contrast, in the ideal world, the differentiator D has oracle ac-
cess to (I.symKG, I.symSHK) via the honest interface and access to S
via the adversarial interface. Therefore, to establish a proof, we need to
build an explicit (and efficient) simulator S that simulates the rest ora-
cles (H0, H1, I.EOTA1 , I.EOTA2 , I.EOTB1 , I.EOTB2) properly by making queries to
(I.symKG, I.symSHK). Namely, for any PPT differentiator D, the view of D in the
real game is computationally close to the view in the ideal game. To do so, we
will go through with a sequence of hybrid games, where in each game, the sim-
ulator responds to all of the queries (both honest and adversarial) in a slightly
different way and the last game is the same as the ideal world. Note that the
differentiator D can make at most q queries to the oracles, where q = poly(λ).
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The simulator in the ideal world works as follows. The simulator S has
the external oracle access to an ideal symmetric NIKE scheme I.symNIKE =
(I.symKG, I.symSHK); and the simulator S will provide the following interfaces
for the external differentiator D.

Simulator S

SH1(SK):

Case 1: if ∃(SK, SK) ∈ TH1 ,
return SK;

Case 2: if ∃(SK, 0,PKL) ∈ TOTA1
∧ (SK,PKR) ∈ TOTB1

, s.t. I.symKG(SK) =

PKL‖PKR,
return SK;

Case 3: if ∃(SK, 0,PKR
1 ,KA) ∈ TOTA2

∧ (SK0,PK
L
1 ,KB , K̃B) ∈ TOTB2

∧
(KA,KB ,K) ∈ TH0 , s.t. I.symSHK(SK,PKL

1 ‖PKR
1 ) = K,

return SK0;
Case 4: if ∃(SK, 0,PKR

0 ,KA) ∈ TOTA2
∧ (SK1,PK

L
0 ,KB , K̃B) ∈ TOTB2

∧
(KA,KB ,K) ∈ TH0 , s.t. I.symSHK(SK,PKL

0 ‖PKR
0 ) = K,

return SK1;
Case 5: Otherwise, sample SK← {0, 1}#1(λ);TH1 = TH1 ∪ (SK, SK);

return SK.

SEOTA1 (SK, b):

Case 1: if ∃(SK, b,PKL) ∈ TOTA1
,

return PKL;
If b = 0:
Case 2: if ∃(SK, 0,PKR

1 ,KA) ∈ TOTA2
∧ (SK1,PK

L
0 ,KB , K̃B) ∈ TOTB2

∧
(SK1,PK

R
1 ) ∈ TOTB1

s.t. KA = KB ,
return PKL

0 ;
Case 3: if ∃(SK, 0,PKR

0 ,KA) ∈ TOTA2
∧ (SK0,PK

L
1 ,KB , K̃B) ∈ TOTB2

∧
(SK0,PK

R
0 ) ∈ TOTB1

s.t. KA = KB ,
return PKL

1 ;
Case 4: otherwise, query I.symKG with SK, obtain PK (which has "2(λ) bits),
truncate the first 2"5(λ) bits as PKL;

TOTA1
= TOTA1

∪ (SK, 0,PKL);
return PKL;

If b = 1:
Case 5: sample PKL ← {0, 1}2#5(λ); TOTA1

= TOTA1
∪ (SK, 1,PKL);

return PKL.

SEOTA2 (SK, b, P̃K
R
):

Case 1: if ∃(SK, b, P̃K
R
,KA) ∈ TOTA2

,
return KA;

If b = 0:
Case 2: if ∃(SK, 0,PKL

0 ) ∈ TOTA1
∧(SK1,PK

L
0 ,KB , K̃B) ∈ TOTB2

∧(SK1, P̃K
R
) ∈
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TOTB1
,

return KB ;
Case 3: if ∃(SK, 0,PKL

1 ) ∈ TOTA1
∧(SK0,PK

L
1 ,KB , K̃B) ∈ TOTB2

∧(SK0, P̃K
R
) ∈

TOTB1
,

return KB ;
Case 4: if ∃(SK, SK) ∈ TH1 ∧ (KA,KB ,K) ∈ TH0 ∧ (SK, P̃K

L
,KB , K̃B) ∈ TOTB2

,
s.t. I.symSHK(SK, P̃K

L
‖P̃K

R
) = K,

return KA;
Case 5: otherwise, sample KA ← {0, 1}n3(λ); TOTA2

= TOTA2
∪(SK, 0, P̃K

R
,KA);

return KA;
If b = 1:
Case 6: if ∃(SK1, P̃K

R
) ∈ TOTB1

∧(SK, 1,PKL
0 ) ∈ TOTA1

∧(SK1,PK
L
0 ,KB , K̃B) ∈

TOTB2
,

return K̃B .
Case 7: otherwise, sample KA ← {0, 1}n3(λ); TOTA2

= TOTA2
∪(SK, 1, P̃K

R
,KA);

return KA.

SEOTB1 (SK):

Case 1: if ∃(SK,PKR) ∈ TOTB1
,

return PKR;
Case 2: if ∃(SK1, 0,PK

L
1 ) ∈ TOTA1

∧ (SK,PKL
1 ,KB) ∈ TOTB2

∧
(SK1, 0,PK

R
0 ,KA) ∈ TOTA2

s.t. KA = KB ,
return PKR

0 ;
Case 3: if ∃(SK0, 0,PK

L
0 ) ∈ TOTA1

∧ (SK,PKL
0 ,KB) ∈ TOTB2

∧
(SK0, 0,PK

R
1 ,KA) ∈ TOTA2

s.t. KA = KB ,
return PKR

1 ;
Case 4: if ∃(SK, SK) ∈ TH1 ,

query I.symKG with SK, obtain PK ("2(λ) bits), truncate the last "4(λ) bits
as PKR;

return PKR.
Case 5: otherwise, sample SK ← {0, 1}#1(λ), query I.symKG with SK, obtain
PK (which has "2(λ) bits), truncate the last "4(λ) bits as PKR;

TH1 = TH1 ∪ (SK, SK),TOTB1
= TOTB1

∪ (SK,PKR);
return PKR.

SEOTB2 (SK, P̃K
L
):

Case 1: if ∃(SK, P̃K
L
,KB , K̃B) ∈ TOTB2

,
return KB , K̃B ;

Case 2: if ∃(SK, SK) ∈ TH1 ∧ (KA,KB ,K) ∈ TH0 ∧ (SK, 0, P̃K
R
,KA) ∈ TOTA2

,
s.t. I.symSHK(SK, P̃K

L
‖P̃K

R
) = K,

sample K̃B ← {0, 1}n3(λ),
return KB , K̃B ;

Case 3: if ∃(SK′, 0, P̃K
L
) ∈ TOTA1

∧ (SK,PKR) ∈ TOTB1
∧ (SK′, 0,PKR,KA) ∈

TOTA2
,
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sample K̃B ← {0, 1}n3(λ),
return KA, K̃B ;

Case 4: if ∃(SK′, 1, P̃K
L
) ∈ TOTA1

∧ (SK,PKR) ∈ TOTB1
∧ (SK′, 1,PKR,KA) ∈

TOTA2
,

sample K̃B ← {0, 1}n3(λ),
return K̃B ,KA;

Case 5: otherwise, sample KB , K̃B ← {0, 1}n3(λ); TOTB2
= TOTB2

∪
(SK, P̃K

L
,KB , K̃B);

return KB , K̃B .

SH0(KA,KB):
Case 1: if ∃(KA,KB ,K) ∈ TH0 ,

return K;
Case 2: if ∃(SK0, 0,PK

R
1 ,KA) ∈ TOTA2

∧ (SK0,PK
L
1 ,KB , K̃B) ∈ TOTB2

∧
(SK0, SK0) ∈ TH1 ,

query I.symSHK with SK0,PK
L
1 ‖PKR

1 , obtain K; TH0 = TH0 ∪ (KA,KB ,K);
return K;

Case 3: if ∃(SK1, 0,PK
R
0 ,KA) ∈ TOTA2

∧ (SK1,PK
L
0 ,KB , K̃B) ∈ TOTB2

∧
(SK1, SK1) ∈ TH1 ,

query I.symSHK with (SK1,PK
L
0 ‖PKR

0 ), obtain K; TH0 = TH0 ∪ (KA,KB ,K);
return K;

Case 4: otherwise, K ← {0, 1}n3(λ); TH0 = TH0 ∪ (KA,KB ,K);
return K.

Next, we describe our simulator S in the hybrid games.
Game 0. This game is identical to the real game except that the simulator
maintains six tables for the adversarial interfaces, referring to H0 table, H1 table,
OTA1 table, OTA2 table, OTB1 table and OTB2 table. The tables are denoted
as TH0 , TH1 , TOTA1

, TOTA2
, TOTB1

, TOTB2
respectively, in the following forms:

– TH1 := (SK0, SK0) or TH1 := (SK1, SK1);
– TOTA1

:= (SK0, b,PK
L
0 ), or TOTA1

:= (SK1, b,PK
L
1 );

– TOTA2
:= (SK0, b,PK

R
1 ,KA) or TOTA2

:= (SK1, b,PK
R
0 ,KA);

– TOTB1
:= (SK0,PK

R
0 ) or TOTB1

:= (SK1,PK
R
1 );

– TOTB2
:= (SK0,PK

L
1 ,KB , K̃B) or TOTB2

:= (SK1,PK
L
0 ,KB , K̃B);

– TH0 := (KA,KB ,K);

Concretely, the simulator responds to the queries by forwarding the re-
sponses of the corresponding oracles, such that the simulator’s responses
are the same as in the real world. For instance, SH1

0 (SK) = H1(SK),
SH0
0 (KA,KB) = H0(KA,KB), S

EOTA1
0 (SK, b) = I.EOTA1(SK, b), SEOTB1

0 (SK) =

I.EOTB1(SK), SEOTA2
0 (SK′, b,PKR) = I.EOTA2(SK

′, b,PKR), SEOTB2
0 (SK, P̃K

L
) =

I.EOTB2(SK, P̃K
L
) and so forth.
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Simulator S0

SH1
0 (SK):

SK← H1(SK), return SK.

SEOTA1
0 (SK, b):

PKL ← I.EOTA1(SK, b), return PKL.

SEOTA2
0 (SK0, b,PK

R
1 ):

KA ← I.EOTA2(SK0, b,PK
R
1 ), return KA.

SEOTB1
0 (SK):

PKR ← I.EOTB1(SK), return PKR.

SEOTB2
0 (SK0,PK

L
1 ):

KB ← I.EOTB2(SK0,PK
L
1 ), return KB .

SH0
0 (KA,KB):

K ← H0(KA,KB), return K.

For the tables, the simulator maintains them as follows.

1. H1-table TH1 : initially empty, consists of tuples with form of (SK, SK). Once
the adversary queries oracle H1 with SK which does not exist in TH1 , the
simulator inserts (SK, H1(SK)) into the TH1 -table.

2. I.EOTA1 -table TOTA1
: initially empty, consists of tuples with form of

(SK, b,PKL). Once the adversary queries I.EOTA1 with (SK, b) which does
not exist in TOTA1

-table, the simulator inserts (SK, b, I.EOTA1(SK, b) into the
TOTA1

-table.
3. I.EOTA2 -table TOTA2

: initially empty, consists of tuples with form of
(SK0, b,PK

R
1 ,KA) or (SK1, b,PK

R
0 ,KA). Once the adversary queries

I.EOTA2 with (SK0, b,PK
R
1 ) or (SK1, b,PK

R
0 ) which does not exist in

TOTA2
-table, the simulator inserts (SK0, b,PK

R
1 , I.EOTA2(SK0, b,PK

R
1 ) or

(SK1, b,PK
R
0 , I.EOTA2(SK1, b,PK

R
0 ) into the TOTA2

-table.
4. I.EOTB1 -table TOTB1

: initially empty, consists of tuples with form of
(SK,PKR). Once the adversary queries I.EOTB1 with SK which does not
exist in the TOTB1

-table, the simulator inserts (SK, I.EOTB1(SK)) into the
TOTB1

-table.
5. I.EOTB2 -table TOTB2

: initially empty, consists of tuples with form of
(SK0,PK

L
1 ,KB , K̃B) (or (SK1,PK

L
0 ,KB , K̃B) ). Once the adversary

queries I.EOTB2 with (SK0,PK
L
1 ) (or (SK1,PK

L
0 )) which does not exist

in TOTB2
-table, the simulator inserts (SK0,PK

L
1 , I.EOTB2(SK0,PK

L
1 ) (or

(SK1,PK
L
0 , I.EOTB2(SK1,PK

L
0 ) ) into the TOTB2

-table.
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6. H0-table TH0 : initially empty, consists of tuples with form of (KA,KB ,K).
Once the adversary queries oracle H0 with KA,KB which does not exist in
TH0 , the simulator inserts (KA,KB , H0(KA,KB)) into the TH0 table.

At this point all the queries are responded by the real oracles, and these tables
are just keeping track of information related to D’s queries (to the adversarial
interfaces) and completely hidden to the adversary, hence the adversary’s view
in real game is identical to the one in Game 0.

Next, we illustrate an alternative way to answer part of the queries, by using
these tables and the honest interfaces.

Simulator S1

SH1
1 (SK):

Case 1: if ∃(SK, SK) ∈ TH1 ,
return SK;

Case 2: if ∃(SK, 0,PKL) ∈ TOTA1
∧ (SK,PKR) ∈ TOTB1

, s.t. Π.symKG(SK) =

PKL‖PKR,
return SK;

Case 3: if ∃(SK, 0,PKR
1 ,KA) ∈ TOTA2

∧ (SK0,PK
L
1 ,KB , K̃B) ∈ TOTB2

∧
(KA,KB ,K) ∈ TH0 , s.t. Π.symSHK(SK,PKL

1 ‖PKR
1 ) = K,

return SK0;
Case 4: if ∃(SK, 0,PKR

0 ,KA) ∈ TOTA2
∧ (SK1,PK

L
0 ,KB , K̃B) ∈ TOTB2

∧
(KA,KB ,K) ∈ TH0 , s.t. Π.symSHK(SK,PKL

0 ‖PKR
0 ) = K,

return SK1;
Case 5: Otherwise, SK = H1(SK); TH1 = TH1 ∪ (SK, SK); return SK.

SEOTA1
1 (SK, b):

Case 1: if ∃(SK, b,PKL) ∈ TOTA1
,

return PKL;
If b = 0:
Case 2: if ∃(SK, 0,PKR

1 ,KA) ∈ TOTA2
∧ (SK1,PK

L
0 ,KB , K̃B) ∈ TOTB2

∧
(SK1,PK

R
1 ) ∈ TOTB1

s.t. KA = KB ,
return PKL

0 ;
Case 3: if ∃(SK, 0,PKR

0 ,KA) ∈ TOTA2
∧ (SK0,PK

L
1 ,KB , K̃B) ∈ TOTB2

∧
(SK0,PK

R
0 ) ∈ TOTB1

s.t. KA = KB ,
return PKL

1 ;
Case 4: otherwise, PKL = I.EOTA1(SK, 0); TOTA1

= TOTA1
∪ (SK, 0,PKL);

return PKL;
If b = 1:
Case 5: PKL = I.EOTA1(SK, 0); TOTA1

= TOTA1
∪ (SK, 0,PKL);

return PKL;

SEOTB1
1 (SK):

Case 1: if ∃(SK,PKR) ∈ TOTB1
,
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return PKR;
Case 2: if ∃(SK1, 0,PK

L
1 ) ∈ TOTA1

∧ (SK,PKL
1 ,KB) ∈ TOTB2

∧
(SK1, 0,PK

R
0 ,KA) ∈ TOTA2

s.t. KA = KB ,
return PKR

0 ;
Case 3: if ∃(SK0, 0,PK

L
0 ) ∈ TOTA1

∧ (SK,PKL
0 ,KB) ∈ TOTB2

∧
(SK0, 0,PK

R
1 ,KA) ∈ TOTA2

s.t. KA = KB ,
return PKR

1 ;
Case 4: if ∃(SK, SK) ∈ TH1 ,

query Π.symKG with SK, obtain PK ("2(λ) bits), truncate the last "4(λ) bits
as PKR;

return PKR.
Case 5: otherwise, PKR = I.EOTB1(SK); TOTB1

= TOTB1
∪ (SK,PKR);

return PKR.

SEOTA2
1 (SK, b, P̃K

R
):

Case 1: if ∃(SK, b, P̃K
R
,KA) ∈ TOTA2

,
return KA;

If b = 0:
Case 2: if ∃(SK, 0,PKL

0 ) ∈ TOTA1
∧(SK1,PK

L
0 ,KB , K̃B) ∈ TOTB2

∧(SK1, P̃K
R
) ∈

TOTB1
,

return KB ;
Case 3: if ∃(SK, 0,PKL

1 ) ∈ TOTA1
∧(SK0,PK

L
1 ,KB , K̃B) ∈ TOTB2

∧(SK0, P̃K
R
) ∈

TOTB1
,

return KB ;
Case 4: if ∃(SK, SK) ∈ TH1 ∧ (KA,KB ,K) ∈ TH0 ∧ (SK,PKL,KB , K̃B) ∈ TOTB2

,
s.t. Π.symSHK(SK,PKL‖P̃K

R
) = K,

return KA;
Case 5: otherwise, KA = I.EOTA2(SK, 0, P̃K

R
); TOTA2

= TOTA2
∪

(SK, 0, P̃K
R
,KA);

return KA;
If b = 1:
Case 6: if ∃(SK1, P̃K

R
) ∈ TOTB1

∧(SK, 1,PKL
0 ) ∈ TOTA1

∧(SK1,PK
L
0 ,KB , K̃B) ∈

TOTB2
,

return K̃B .
Case 7: otherwise, KA = I.EOTA2(SK, 1, P̃K

R
); TOTA2

= TOTA2
∪

(SK, 1, P̃K
R
,KA);

return KA.

SEOTB2
1 (SK, P̃K

L
):

Case 1: if ∃(SK, P̃K
L
,KB , K̃B) ∈ TOTB2

,
return KB , K̃B ;

Case 2: if ∃(SK, SK) ∈ TH1 ∧ (KA,KB ,K) ∈ TH0 ∧ (SK, 0, P̃K
R
,KA) ∈ TOTA2

,
s.t. Π.symSHK(SK, P̃K

L
‖P̃K

R
) = K,

sample K̃B ← {0, 1}n3(λ); TOTB2
= TOTB2

∪ (SK, P̃K
L
,KB , K̃B);
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return KB , K̃B ;
Case 3: if ∃(SK′, 0, P̃K

L
) ∈ TOTA1

∧ (SK,PKR) ∈ TOTB1
∧ (SK′, 0,PKR,KA) ∈

TOTA2
,

sample K̃B ← {0, 1}n3(λ); TOTB2
= TOTB2

∪ (SK, P̃K
L
,KA, K̃B);

return KA, K̃B ;
Case 4: if ∃(SK′, 1, P̃K

L
) ∈ TOTA1

∧ (SK,PKR) ∈ TOTB1
∧ (SK′, 1,PKR,KA) ∈

TOTA2
,

sample K̃B ← {0, 1}n3(λ); TOTB2
= TOTB2

∪ (SK, P̃K
L
, K̃B ,KA);

return K̃B ,KA;
Case 5: otherwise, (KB , K̃B) = I.EOTB2(SK, P̃K

L
); TOTB2

= TOTB2
∪

(SK, P̃K
L
,KB , K̃B);

return KB , K̃B .

SH0
1 (KA,KB):

Case 1: if ∃(KA,KB ,K) ∈ TH0 ,
return K;

Case 2: if ∃(SK0, 0,PK
R
1 ,KA) ∈ TOTA2

∧ (SK0,PK
L
1 ,KB , K̃B) ∈ TOTB2

∧
(SK0, SK0) ∈ TH1 ,

query Π.symSHK with SK0,PK
L
1 ‖PKR

1 , obtain K; TH0 = TH0 ∪ (KA,KB ,K);
return K;

Case 3: if ∃(SK1, 0,PK
R
0 ,KA) ∈ TOTA2

∧ (SK1,PK
L
0 ,KB , K̃B) ∈ TOTB2

∧
(SK1, SK1) ∈ TH1 ,

query Π.symSHK with (SK1,PK
L
0 ‖PKR

0 ), obtain K; TH0 = TH0∪(KA,KB ,K);
return K;

Case 4: otherwise, K = H0(KA,KB); TH0 = TH0 ∪ (KA,KB ,K);
return K.

Game 1. This game is identical to Game 0, except the way of maintain-
ing the tables and responding to the queries at adversarial interfaces. The
simulator S1 has the external oracle access to the symmetric NIKE scheme
Π.symNIKE = (Π.symKG,Π.symSHK). The simulator S1 will provide the in-
terfaces for the external differentiator D. Specifically, the simulator responds to
the oracles as in the box of S1.

Compared to Game 0, in Game 1 the simulator keeps a longer table, and for
part of the queries, the simulator responds to them in an alternative way, which
is only using the tables and the honest interfaces. Note that, for the I.EOTB2

queries, when the useful half of the output is determined using the tables and
honest interfaces, the other half of the output (which does not influence all other
queries) is sampled uniformly at random, without influencing the distribution
of the overall distribution. Moreover, in Game 1, the tuples stored in the tables
correspond to the response by the real oracles to the adversary’s queries, except
for the Case 2, Case 3 and Case 4 of I.EOTB2 queries, the responses for which
consists of two parts with one part being the same in Game 0 and Game 1 and
the other part having identical distribution in Game 0 and Game 1. Note that

62



the other part (in most cases the second part) has no influence on all the other
oracles/ interfaces. identical distribution with the responses of real oracles.

Hence, in Game 0 and Game 1, the responses of any query other than I.EOTB2

query are identical, and the responses for I.EOTB2 query have statistically close
distribution. Therefore, the adversary’s view in Game 1 is indistinguishable from
the view in Game 0. However, in Game 1, the simulator can only answer part
of the queries by tables and honest interfaces, and for the rest it has to call the
real oracles. Thus, in the following hybrid games, we will illustrate additional
alternative ways to respond to the rest queries, without changing the view sig-
nificantly.
Game 2. This game is identical to Game 1, except for responding to H1 queries.
The simulator responds to a query SK on H1 as follows:

Simulator S2

SH1
2 (SK):

Case 1: if ∃(SK, SK) ∈ TH1 ,
return SK;

Case 2: if ∃(SK, 0,PKL) ∈ TOTA1
∧ (SK,PKR) ∈ TOTB1

, s.t.
Π.symKG(SK) = PKL‖PKR,

return SK;
Case 3: if ∃(SK, 0,PKR

1 ,KA) ∈ TOTA2
∧ (SK0,PK

L
1 ,KB , K̃B) ∈ TOTB2

∧
(KA,KB ,K) ∈ TH0 , s.t. Π.symSHK(SK,PKL

1 ‖PKR
1 ) = K,

return SK0;
Case 4: if ∃(SK, 0,PKR

0 ,KA) ∈ TOTA2
∧ (SK1,PK

L
0 ,KB , K̃B) ∈ TOTB2

∧
(KA,KB ,K) ∈ TH0 , s.t. Π.symSHK(SK,PKL

0 ‖PKR
0 ) = K,

return SK1;
Case 5: otherwise, sample SK← {0, 1}#3(λ); TH1 = TH1 ∪ (SK, SK);

return SK.

The only difference between Game 1 and Game 2 occurs in the Case 5 of H1

queries where the corresponding SK never appears in the tables maintained by
the simulator. In Game 1, the simulator responds with H1(SK); while in Game 2,
the simulator responds with a random string SK in {0, 1}"3(λ). Due to definition,
the only case that the adversary queries H1 with such SK is when the adversary
D knows nothing of H1(SK). Therefore, from D’s view, H1(SK) is uniformly
distributed in {0, 1}"3(λ), and SK has the same distribution, which implies D’s
view in Game 2 are indistinguishable from its view in Game 1.
Game 3. This game is identical to Game 2, except for responding to I.EOTA1

queries. The simulator responds to a query (SK, b) as follows:

Simulator S3
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SEOTA1
3 (SK, b):

Case 1: if ∃(SK, b,PKL) ∈ TOTA1
,

return PKL;
If b = 0:
Case 2: if ∃(SK, 0,PKR

1 ,KA) ∈ TOTA2
∧ (SK1,PK

L
0 ,KB , K̃B) ∈ TOTB2

∧
(SK1,PK

R
1 ) ∈ TOTB1

s.t. KA = KB ,
return PKL

0 ;
Case 3: if ∃(SK, 0,PKR

0 ,KA) ∈ TOTA2
∧ (SK0,PK

L
1 ,KB , K̃B) ∈ TOTB2

∧
(SK0,PK

R
0 ) ∈ TOTB1

s.t. KA = KB ,
return PKL

1 ;
Case 4: otherwise, query Π.symKG with SK, obtain PK (which has "2(λ) bits),
truncate its first 2"5(λ) bits as PKL;

TOTA1
= TOTA1

∪ (SK, 0,PKL);
return PKL;

If b = 1:
Case 5: sample ˜PKL ← {0, 1}2#5(λ); TOTA1

= TOTA1
∪ (SK, 1, ˜PKL);

return ˜PKL.

The only difference between Game 2 and Game 3 occurs in the Case 4 and
Case 5 of I.EOTA1 query.

For Case 4, in Game 2, the simulator responds to a query (SK, 0) with
I.EOTA1(SK, 0); while in Game 3, the simulator responds with PKL which is the
first 2"5(λ) bits of Π.symKG(SK). Due to definition, I.EOTA1(SK, 0) and PKL

are identical. For Case 5, in Game 2, the simulator responds to a query (SK, 1)
with I.EOTA1(SK, 1); while in Game 3, the simulator responds with a uniformly
sampled random string ˜PKL ← {0, 1}2"5(λ). Due to definition, I.EOTA1(SK, 1)
is uniformly distributed in {0, 1}2"5(λ), thus the distributions of I.EOTA1(SK, 1)

and ˜PKL are identical. Therefore, the adversary’s views in Game 3 and Game 2
are indistinguishable.
Game 4. This game is identical to Game 3, except for responding to I.EOTB1

queries. The simulator responds to a query SK on I.EOTB1 as follows:

Simulator S4

SEOTB1
4 (SK):

Case 1: if ∃(SK,PKR) ∈ TOTB1
,

return PKR;
Case 2: if ∃(SK1, 0,PK

L
1 ) ∈ TOTA1

∧ (SK,PKL
1 ,KB) ∈ TOTB2

∧
(SK1, 0,PK

R
0 ,KA) ∈ TOTA2

s.t. KA = KB ,
return PKR

0 ;
Case 3: if ∃(SK0, 0,PK

L
0 ) ∈ TOTA1

∧ (SK,PKL
0 ,KB) ∈ TOTB2

∧
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(SK0, 0,PK
R
1 ,KA) ∈ TOTA2

s.t. KA = KB ,
return PKR

1 ;
Case 4: if ∃(SK, SK) ∈ TH1 ,
query Π.symKG with SK, obtain PK (with "2(λ) bits), truncate the last "4(λ)
bits as PKR;

return PKR.
Case 5: otherwise, sample SK← {0, 1}#1(λ), query Π.symKG with SK, obtain PK
(which has "2(λ) bits), truncate the last "4(λ) bits as PKR;

TH1 = TH1 ∪ (SK, SK), TOTB1
= TOTB1

∪ (SK,PKR);
return PKR.

The only difference between Game 3 and Game 4 occurs in the Case 5.
In Game 3, the simulator responds to a I.EOTB1 query SK with I.EOTB1(SK);

while in Game 4, the simulator responds with a string PKR that is the last
"4(λ) bits of Π.symKG(SK) for a random string SK in {0, 1}"1(λ). Due to def-
inition, the only case that the adversary queries I.EOTB1 with SK is when the
adversary knows nothing of I.EOTB1(SK). Therefore, from the adversary’s view,
I.EOTB1(SK) is uniformly distributed in {0, 1}"4(λ). Since PKR is also uniformly
distributed in {0, 1}"4(λ), D’s view in Game 4 and its view in Game 3 are indis-
tinguishable.

Simulator S5

SEOTA2
5 (SK, b, P̃K

R
):

Case 1: if ∃(SK, b, P̃K
R
,KA) ∈ TOTA2

,
return KA;

If b = 0:
Case 2: if ∃(SK, 0,PKL

0 ) ∈ TOTA1
∧(SK1,PK

L
0 ,KB , K̃B) ∈ TOTB2

∧(SK1, P̃K
R
) ∈

TOTB1
,

return KB ;
Case 3: if ∃(SK, 0,PKL

1 ) ∈ TOTA1
∧(SK0,PK

L
1 ,KB , K̃B) ∈ TOTB2

∧(SK0, P̃K
R
) ∈

TOTB1
,

return KB ;
Case 4: if ∃(SK, SK) ∈ TH1 ∧ (KA,KB ,K) ∈ TH0 ∧ (SK,PKL,KB , K̃B) ∈ TOTB2

,
s.t. Π.symSHK(SK,PKL‖P̃K

R
) = K,

return KA;
Case 5: otherwise, uniformly sample KA ← {0, 1}n3(λ); TOTA2

= TOTA2
∪

(SK, 0, P̃K
R
,KA);

return KA;
If b = 1:
Case 6: if ∃(SK1, P̃K

R
) ∈ TOTB1

∧(SK, 1,PKL
0 ) ∈ TOTA1

∧(SK1,PK
L
0 ,KB , K̃B) ∈

TOTB2
,

return K̃B .
Case 7: otherwise, uniformly sample KA ← {0, 1}n3(λ); TOTA2

= TOTA2
∪
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(SK, 1, P̃K
R
,KA);

return KA.

Game 5. This game is identical to Game 4, except for responding to I.EOTA2

queries. The simulator responds to a query SK0, b,PK
R
1 on I.EOTA2 as in the box

of Simulator S5.
The only difference between Game 4 and Game 5 occurs in the Case 5 and

Case 7 of I.EOTA2 query. For the Case 5, in Game 4, the simulator responds to
a I.EOTA2 query (SK, 0, P̃K

R
) with I.EOTA2(SK, 0, P̃K

R
); while in Game 5, the

simulator responds with a randomly sampled string KA ← {0, 1}n3(λ). Since the
only case that the adversary D queries (SK, 0, P̃K

R
) is when D knows nothing

of I.EOTA2(SK, 0, P̃K
R
), which refers to I.EOTA2(SK, 0, P̃K

R
) is uniformly dis-

tributed in {0, 1}n3(λ). Hence, the distributions of I.EOTA2(SK0, 0,PK
R
1 ) and KA

are identical. For the Case 7, in Game 4, the simulator responds to a I.EOTA2

query (SK, 1, P̃K
R
) with I.EOTA2(SK, 1, P̃K

R
); while in Game 5, the simulator

responds with a random string K̃ ← {0, 1}n3(λ). Similar to the above analy-
sis, I.EOTA2(SK, 1, P̃K

R
) and K̃ are both uniformly distributed in {0, 1}n3(λ).

Therefore, the adversary D’s view in Game 5 and its view in Game 4 are indis-
tinguishable.
Game 6. This game is identical to Game 5, except for responding to I.EOTB2

queries. The simulator responds to a query (SK, P̃K
L
) on I.EOTB2 as in the box

of Simulator S6.
The only difference between Game 5 and Game 6 occurs in the Case

5. In Game 5, the simulator responds to a I.EOTB2 query (SK, P̃K
L
) with

I.EOTB2(SK, P̃K
L
); while in Game 6, the simulator responds with a random

string KB‖K̃B .
Due to definition, from the adversary D’s view, I.EOTB2(SK, P̃K

L
) is uni-

formly distributed in {0, 1}n3(λ), hence KB‖K̃ has identical distribution with
I.EOTB2(SK, P̃K

L
). Therefore, D’s view in Game 6 and D’s view in Game 5 are

indistinguishable with high probability.
Game 7. This game is identical to Game 6, except for responding to H0 queries.
The simulator responds to a query (KA,KB) on H0 as in the box of Simulator
S7.

The only difference between Game 6 and Game 7 occurs in the Case 4.
In Game 6, the simulator responds to a random H0 query (KA,KB) with
H0(KA,KB); while in Game 7, the simulator responds with a random string
K in {0, 1}n3(λ). Due to definition, the only case that the adversary D queries
H0 with (KA,KB) is when D knows nothing of H0(KA,KB). Therefore, from
the adversary D’s view, H0(KA,KB) is uniformly distributed in {0, 1}n3(λ). Note
that K is also uniformly distributed in {0, 1}n3(λ), which implies that with high
probability D’s view in Game 7 and D’s view in Game 6 are indistinguishable.
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Simulator S6

SEOTB2
6 (SK, P̃K

L
):

Case 1: if ∃(SK, P̃K
L
,KB , K̃B) ∈ TOTB2

,
return KB , K̃B ;

Case 2: if ∃(SK, SK) ∈ TH1 ∧ (KA,KB ,K) ∈ TH0 ∧ (SK, 0, P̃K
R
,KA) ∈ TOTA2

,
s.t. Π.symSHK(SK, P̃K

L
‖P̃K

R
) = K,

sample K̃B ← {0, 1}n3(λ); TOTB2
= TOTB2

∪ (SK, P̃K
L
,KB , K̃B);

return KB , K̃B ;
Case 3: if ∃(SK′, 0, P̃K

L
) ∈ TOTA1

∧ (SK,PKR) ∈ TOTB1
∧ (SK′, 0,PKR,KA) ∈

TOTA2
,

sample K̃B ← {0, 1}n3(λ); TOTB2
= TOTB2

∪ (SK, P̃K
L
,KA, K̃B);

return KA, K̃B ;
Case 4: if ∃(SK′, 1, P̃K

L
) ∈ TOTA1

∧ (SK,PKR) ∈ TOTB1
∧ (SK′, 1,PKR,KA) ∈

TOTA2
,

sample K̃B ← {0, 1}n3(λ); TOTB2
= TOTB2

∪ (SK, P̃K
L
, K̃B ,KA);

return K̃B ,KA;
Case 5: otherwise, randomly sample KB , K̃B ← {0, 1}n3(λ); TOTB2

= TOTB2
∪

(SK, P̃K
L
,KB , K̃B);

return KB , K̃B .

Simulator S7

SH0
7 (KA,KB):

Case 1: if ∃(KA,KB ,K) ∈ TH0 ,
return K;

Case 2: if ∃(SK0, 0,PK
R
1 ,KA) ∈ TOTA2

∧ (SK0,PK
L
1 ,KB , K̃B) ∈ TOTB2

∧
(SK0, SK0) ∈ TH1 ,

query Π.symSHK with SK0,PK
L
1 ‖PKR

1 , obtain K; TH0 = TH0 ∪ (KA,KB ,K);
return K;

Case 3: if ∃(SK1, 0,PK
R
0 ,KA) ∈ TOTA2

∧ (SK1,PK
L
0 ,KB , K̃B) ∈ TOTB2

∧
(SK1, SK1) ∈ TH1 ,

query Π.symSHK with SK1,PK
L
0 ‖PKR

0 , obtain K; TH0 = TH0 ∪ (KA,KB ,K);
return K;

Case 4: otherwise, K ← {0, 1}n3(λ); TH0 = TH0 ∪ (KA,KB ,K);
return K.

Game 8. In Game 7, the queries to the adversarial interfaces are an-
swered by the tables which are maintained by the simulator and by making
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queries to Π.symKG,Π.symSHK. The simulator never make queries directly to
H0, H1, I.EOTA1 , I.EOTA2 , I.EOTB1 , I.EOTB2 ; these oracles are only used to answer
the Π.symKG,Π.symSHK queries (either generated by the adversary or by the
simulator’s response to H0, H1, I.EOTA1 , I.EOTA2 , I.EOTB1 , I.EOTB2 queries). At
this point, we can replace the calls to Π.symKG,Π.symSHK with the calls to
ideal algorithms I.symKG, I.symSHK respectively, resulting in Game 8.

We note that in Game 7, the simulator is efficient, and it responds
to the adversarial interfaces just by keeping several tables and calling
Π.symKG,Π.symSHK at the honest interfaces. Thus, we can build a simulator
that responds to the honest and adversarial queries precisely as the simulator
does in Game 7. The result is that the view in Game 8 is identical to the view
in the ideal world, and it suffices to prove that any adjacent games are indis-
tinguishable. Next we give the rigorous proof for the indistinguishably between
each adjacent games.

Simulator In Ideal Game. Let (I.symKG, I.symSHK) be the function pair that
samples from the ideal symmetric NIKE family TsymNIKE, the simulator works as
follows. In Game 8, the simulator in the ideal game maintains six tables in the
same way as in Game 7 except that those table items that are set as the responses
of Π.symKG,Π.symSHK are replaced by the responses of I.symKG, I.symSHK re-
spectively.

By definition, the simulator S now has access to I.symKG, I.symSHK at the
honest interfaces. And for the adversarial queries, S responds the same way as
in Game 7, by just using the tables and querying the honest interfaces.

Now we prove the indistinguishability between any adjacent games.

Claim 1. Game Real ≈ Game 0.
Proof. Recalling that the only difference between Game Real and Game 0 is
that, in Game 0 the simulator additionally maintains several tables that are
completely hidden from the adversary, hence we have

Pr[Game Real = 1] = Pr[Game 0 = 1]

Claim 2. Game 0 ≈ Game 1.
Proof. Compared to Game 0, in Game 1 the simulator maintains longer ta-
bles responds to part of the queries at the adversarial interfaces by using those
tables and calling the honest interfaces; besides, in Game 1 the simulator’s re-
sponses to some I.EOTB2 queries are slightly different while distributed iden-
tically with that in Game 0, without influencing the simulation of all other
oracle queries. For the queries to the honest interfaces, the simulator responds
by forwarding the calls and responses of the algorithms Π.symKG,Π.symSHK.
Moreover, the items stored in those tables are always consistent with the real
oracles H0, H1, I.EOTA1 , I.EOTA2 , I.EOTB1 at adversarial interfaces, and the items
in the TOTB2

table are indistinguishable from the responses of the I.EOTB1 or-
acle. Hence, the response of adversarial queries by either the real game oracles
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H0, H1, I.EOTA1 , I.EOTA2 , I.EOTB1 , I.EOTB2 (in Game 0) or by real game oracles
plus honest interfaces and tables (in Game 1) are indistinguishable, which implies

|Pr[Game 0 = 1]− Pr[Game 1 = 1]| ≤ negl(λ)

Claim 3. Game 1 ≈ Game 2.
We note that, in order not to be distinguished by the adversary, the simula-

tor’s responses at adversarial interfaces should satisfy the consistency conditions
below:

1. There exists no two SK, SK′ such that SK 2= SK′ and SH1(SK) = SH1(SK′);
2. There exists no two pair (KA,KB), (K ′0,K ′1) such that (KA,KB) 2= (K ′0,K

′
1)

and SH0(KA,KB) = SH0(K ′0,K
′
1);

3. There exists no two SK, SK′ (SK 2= SK′) such that SEOTA1 (SK, 0) =
SEOTA1 (SK′, 0) or SEOTA1 (SK, 1) = SEOTA1 (SK′, 1);

4. There exists no two SK, SK
′ (SK 2= SK

′ ) such that SEOTB1 (SK) =

SEOTB1 (SK
′
);

5. For any SK ∈ "1(λ), Π.symKG(SK) = SEOTA1 (SK, 0)‖SEOTB1 (SH1(SK));
6. For any SK0 ∈ "1(λ) and PK1 ∈ "2(λ), Π.symSHK(SK0,PK1) =

SH0(SEOTA2 (SK0,PK
R
1 , 0), LoR0(SEOTB2 (SH1(SK0),PK

L
1 ))), where PK1 =

PKL
1 ‖PKR

1 ;
7. For any SK0, SK1 ∈ "1(λ), SEOTA2 (SK0,SEOTB1 (SH1(SK1)), 0) =

LoR0(SEOTB2 (SH1(SK1),SEOTA1 (SK0, 0))).
Proof. The only difference between Game 1 and Game 2 occurs in the Case
5. In Game 1, the simulator responds to a random H1 query SK with
H1(SK) while in Game 2, the simulator responds with a random string
SK ← {0, 1}"3(λ) and implicitly set SEOTB1 (SK) = Trun"4(Π.symKG(SK)),
where Trun"4 is a function that truncates the last "4(λ) bits of an input as
the output.
By definition, H1 is a random oracle, the distribution of H1(SK) should be
uniformly random in {0, 1}"3(λ), and SK is well-distributed. Besides, all the
consistency conditions hold in either games. Therefore, from the adversary’s
view, with high probability Game 1 and Game 2 are indistinguishable except
when SH1 has collisions, which occurs with probability bounded by q2

2!3(λ) .
Hence, we have

|Pr[Game 1 = 1]− Pr[Game 2 = 1]| ≤ q2

2"3(λ)
≤ negl(λ)

Claim 4. Game 2 ≈ Game 3.
Proof. Recalling that the only difference between Game 2 and Game 3 occurs
in the Case 4 and Case 5 of simulating I.EOTA1 where (SK, b) never appears
in the previous queries.
For the Case 4, in Game 2, the simulator responds to a random query (SK, 0)
to I.EOTA1 with I.EOTA1(SK, 0); while in Game 3, the simulator replaces it
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with PKL being the first 2"5(λ) bits of Π.symKG(SK). Due to definition,
I.EOTA1(SK, 0) and PKL are identical. For the Case 5, in Game 2, the sim-
ulator responds to a random query (SK, 1) to I.EOTA1 with I.EOTA1(SK, 1);
while in Game 3, the simulator replaces it with a random string P̃K

L in
{0, 1}2"5(λ).By definition, the only case that the adversary queries (SK, 1) to
I.EOTA1 is when the adversary knows nothing of I.EOTA1(SK, 1). From the
adversary’s view, I.EOTA1(SK, 1) is uniformly distributed in {0, 1}2"5(λ), thus
P̃K

L is well-distributed. Besides, in either games, the consistency conditions
hold.
Therefore, from the adversary’s view, Game 2 and Game 3 are indistinguish-
able except when P̃K

L already appears in a previous entry, which occurs with
negligible probability bounded by q2

|22!5(λ)| . Hence,

|Pr[Game 2 = 1]− Pr[Game 3 = 1]| ≤ q2

2"2(λ)
≤ negl(λ)

Claim 5. Game 3 ≈ Game 4.
Proof. Recalling that the only difference between Game 3 and Game
4 occurs in the Case 5 of simulating I.EOTB1 . In Game 3, the simu-
lator responds to a query SK to I.EOTB1 with I.EOTB1(SK); while in
Game 4, the simulator replaces it with PKR which is the last "4(λ) bits
of Π.symKG(SK) for a randomly sampled string SK in {0, 1}"1(λ).Due
to definition, I.EOTB1(SK) and PKR have identical distribution. Besides,
for H1, I.EOTA1 , I.EOTA2 , I.EOTB2 , H0 queries, the simulator’s responses are
identical in either game, both satisfying the consistency conditions. There-
fore, from the adversary’s view, Game 3 and Game 4 are indistinguishable.

Claim 6. Game 4 ≈ Game 5.
Proof. Recalling that the only difference between Game 4 and Game 5 occurs
in the Case 3 and Case 4 of simulating the responses of I.EOTA2 .
For the Case 3, in Game 4, the simulator responds to a random query
SK0, 0,PK

R
1 with I.EOTA2(SK0, 0,PK

R
1 ); while in Game 5, the simulator re-

places it with a random string KA in DomSymK. By definition, the dis-
tributions of I.EOTA2(SK0, 0,PK

R
1 ) and KA are identical. For the Case

4, in Game 4, the simulator responds to a random query SK0, 1,PK
R
1

with I.EOTA2(SK0, 1,PK
R
1 ); while in Game 5, the simulator replaces it

with a random string K̃ in DomSymK. By definition, the distributions of
I.EOTA2(SK0, 1,PK

R
1 ) and K̃ are identical.

Besides, for H1, I.EOTA1 , I.EOTB1 , I.EOTB2 , H0 queries, the simulator’s re-
sponses are identical in either game, both satisfying the consistency con-
ditions. Therefore, from the adversary’s view, Game 4 and Game 5 are in-
distinguishable. We have

|Pr[Game 4 = 1]− Pr[Game 5 = 1]| ≤ q2

2n3(λ)
≤ negl(λ)
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Claim 7. Game 5 ≈ Game 6.

Proof. Recalling that the only difference between Game 5 and Game
6 occurs in the Case 5 of simulating the responses of I.EOTB2 .In
Game 5, the simulator responds to a I.EOTB2 query (SK, P̃K

L
) with

I.EOTB2(SK, P̃K
L
); while in Game 6, the simulator replaces it with a ran-

dom string KB‖K̃B from {0, 1}n3(λ). Due to definition, the distributions of
I.EOTB2(SK, P̃K

L
) and the random string KB‖K̃B are identical. And for

H1, I.EOTA1 , I.EOTB1 , I.EOTA2 , H0 queries, the responses are identical in ei-
ther game, both satisfying the consistency conditions. Therefore, from the
adversary’s view, Game 5 and Game 6 are indistinguishable with high prob-
ability, except when a collision for I.EOTB2 occurs, hence we have

|Pr[Game 5 = 1]− Pr[Game 6 = 1]| ≤ q2

2n3(λ)
≤ negl(λ)

Claim 8. Game 6 ≈ Game 7.

Proof. Recalling that the only difference between Game 6 and Game 7 occurs
in the Case 4 of simulating H0. In Game 6, the simulator responds to a
random query (KA,KB) with H0(KA,KB); while in Game 7, the simulator
replaces it with a random string K uniformly distributed in {0, 1}n3(λ).
Due to definition, the only case that the adversary queries (KA,KB) to
H0 is when the adversary knows nothing of H0(KA,KB), thus from the
adversary’s view, H0(KA,KB) is uniformly distributed in {0, 1}n3(λ), and K
is well-distributed. And for H1, I.EOTA1 , I.EOTB1 , I.EOTA2 , I.EOTB2 queries,
the responses are identical in either game, both satisfying the consistency
conditions.
Therefore, from the adversary’s view, Game 6 and Game 7 are indistinguish-
able unless collision event for H0 occurs, which is bounded by q2

|{0,1}n3(λ)| .
Hence we have

|Pr[Game 6 = 1]− Pr[Game 7 = 1]| ≤ q2

2n3(λ)
≤ negl(λ)

Claim 9. Game 7 ≈ Game 8.

Proof. Let (I.symKG, I.symSHK) be the function pair that samples from
TsymNIKE. We note that in Game 7, the simulator responds all of the adversar-
ial interfaces just using tables and the algorithms (Π.symKG,Π.symSHK) at
honest interfaces, it never directly calls the real oracles at honest interfaces.
We immediately observe that S8 is identical to the simulator in the ideal
game, which refers to

|Pr[Game 8 = 1]− Pr[Ideal Game = 1]|

Therefore, it is rest to prove that Game 7 and Game 8 are close.
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H0, H1 are random oracles, I.EOTA1 , I.EOTB1 are random in-
jections, I.EOTA2 , I.EOTB2 are random algorithms satisfying
I.EOTA2(SK0, b,EOTB1(SK)) = LoRb(I.EOTB2(SK,EOTA1(SK0, b))) for
any SK0 in {0, 1}"1(λ), SK in {0, 1}"3(λ) and b ∈ {0, 1}.
Conditioned on the oracles H1, H0 have no collisions, for any
SK0, SK1 in {0, 1}"1(λ), it’s oblivious that the distributions of
Π.symKG(SK0) and I.symKG(SK0) are identical, and the distributions
of Π.symSHK(SK1,Π.symKG(SK0)) and I.symSHK(SK1, I.symKG(SK0))
are identical; and the shared key property holds for both Π.symSHK and
I.symSHK.
Let Collision denote the event that there exists collision in the oracles
H1, H0, I.EOTA2 , I.EOTB2 . The probability that H1 has collision is bounded
by q2

2!3(λ) ; The probability that H0 has collision is bounded by q2

2n3(λ) ; The
probability that I.EOTA2 has collision is bounded by q2

2n3(λ) ; The probability
that I.EOTB2 has collision is bounded by q2

22n3(λ) .
If none of the collision occurs, we can replace (Π.symKG,Π.symSHK) with
(I.symKG, I.symSHK), which represents Game 8. Moreover, we can bound the
probability of collision by

Pr[Collision] ≤ q2

2"3(λ)
+

q2

2n3(λ)
+

q2

2n3(λ)
+

q2

22n3(λ)
≤ negl(λ),

which refers to

|Pr[Game 7 = 1]− Pr[Game 8 = 1]| ≤ Pr[Collision] ≤ negl(λ)

Combining all claims together, we have

|Pr[Real Game = 1]−Pr[Ideal Game = 1]| ≤ q2

2"2(λ)
+

2q2

2"3(λ)
+

5q2

2n3(λ)
+

q2

22n3(λ)
≤ negl(λ),

thus we complete the entire proof.

D Proof of Theorem 4 and Theorem 5

D.1 Proof of Theorem 4

Proof. In the proof, the simulator can directly use information from the queries
to adversarial interface as the queries for honest interface, such that the simula-
tor’s responses to adversarial interface is consistent with that of honest interfaces.
Therefore, no PPT algorithm can distinguish real world game and ideal world
game, namely.

The simulator S in the ideal game has the external oracle access to ideal PKE
scheme I.PKE = (I.KGen, I.Enc, I.Dec); the simulator S will provide the following
interfaces for the external differentiator D.
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Simulator S

SOT1(SK, b):
Case 1: if ∃(SK, b,PK) ∈ TOT1 ,

return PK;
Case 2: if b = 0, query I.KGen with SK and obtain PK;

return PK;
Case 3: otherwise, P̃K← Y; TOT1 = TOT1 ∪ (SK, b, P̃K),

return P̃K.

SOT2(m0,m1,PK, SK):

Case 1: if ∃(m0,m1,PK, SK, C) ∈ TOT2 ,
return C;

Case 2: if m0 = m1, query I.Enc with (PK,m0, SK) and obtain C; TOT2 =
TOT2 ∪ (m0,m1,PK, SK, C),

return C;
Case 3: if m0 (= m1, randomly sample C ← C, TOT2 = TOT2 ∪
(m0,m1,PK, SK, C),

return C.

SOT3(SK, b, C):
Case 1: if ∃(SK, b, C,m) ∈ TOT3 ,

return m;
Case 2: if b = 0, query I.Dec with (SK, C) and obtain m; TOT3 = TOT3 ∪
(SK, b, C,m),

return m;
Case 3: if b = 1, randomly sample m̃←M, TOT3 = TOT3 ∪ (SK, b, C, m̃),

return m̃.

D.2 Proof of Theorem 5

Proof. The simulator in the ideal game is described below. The simulator S has
the external oracle access to ideal OT protocol I.2OT = (I.OT1, I.OT2, I.OT3); the
simulator S will provide the following interfaces for the external differentiator
D.
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Simulator S

SH0(SK,m1):

Case 1: if ∃(SK,m1, r0) ∈ TH0 ,
return r0;

Case 2: if ∃(PK0,m0, r0, C0) ∈ TEnc ∧ (PK1,m1, r1, C1) ∈ TEnc ∧ (K0,PK0, Q1) ∈
TE ∪ TE−1 ∧ (K1,PK1, Q0) ∈ TE ∪ TE−1 ∧ (C0, C1, w) ∈ TP0 ∪ TP−1

0
, s.t.

I.OT2(Q0‖Q1,m0,m1, SK) = w,
return r0;
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Case 3: otherwise, randomly sample r0 ← R; TH0 = TH0 ∪ (SK,m1, r0);
return r0.

SH1(SK,m0):

Case 1: if ∃(SK,m0, r1) ∈ TH1 ,
return r1;

Case 2: if ∃(PK0,m0, r0, C0) ∈ TEnc ∧ (PK1,m1, r1, C1) ∈ TEnc ∧ (K0,PK0, Q1) ∈
TE ∪ TE−1 ∧ (K1,PK1, Q0) ∈ TE ∪ TE−1 ∧ (C0, C1, w) ∈ TP0 ∪ TP−1

0
, s.t.

I.OT2(Q0‖Q1,m0,m1, SK) = w,
return r1;

Case 3: otherwise, randomly sample r1 ← R; TH1 = TH1 ∪ (SK,m0, r1);
return r1.

SH2(SK, b):
Case 1: if ∃(SK, b, Q1−b) ∈ TH2 ,

return Q1−b;
Case 2: if ∃(Q1−b,K) ∈ TH3 ∧ (K,PK, Q1−b) ∈ TE ∪ TE−1 ∧ (SK,PK) ∈ TKGen,

return Q1−b;
Case 3: if ∃(Q1−b,K) ∈ TH3 ∧ (K,PK, Q1−b) ∈ TE ∪ TE−1 ∧ (PK,m, r, C) ∈
TEnc ∧ (SK, C,m) ∈ TDec,

return Q1−b;
Case 4: otherwise, query I.OT1 with (SK, b), obtain Q = Q0‖Q1; TH2 = TH2 ∪
(SK, b, Q1−b);

return Q1−b.

SH3(Q):
Case 1: if ∃(Q,K) ∈ TH3 ,

return K;
Case 2: if ∃(K,PK, Q) ∈ TE ∪ TE−1 ,
return K;
Case 3: otherwise, randomly sample K ← K, TH3 = TH3 ∪ (Q,K).

SE(K,PK):
Case 1: if ∃(K,PK, Q) ∈ TE ∪ TE−1 ,

return Q;
Case 2: if ∃(SK, b, Q1−b) ∈ TH2 ∧ (Q1−b,K) ∈ TH3 ∧ (SK,PK) ∈ TKGen,
query I.OT1 with (SK, b), obtain Q = Q0‖Q1, TE = TE ∪ (K,PK, Qb),
return Qb;
Case 3: otherwise, randomly sample Q← C, TE = TE ∪ (K,PK, Q),
return Q.

SE−1
(K,Q):

Case 1: if ∃(K,PK, Q) ∈ TE ∪ TE−1 ,
return PK;

Case 2: if ∃(SK, b, Q1−b) ∈ TH2 ∧(Q1−b,K) ∈ TH3 , s.t. I.OT1(SK, b) = (Q,Q1−b)
or I.OT1(SK, b) = (Q1 − b,Q),
run SKGen(SK) and obtain PK,

return PK;
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Case 3: otherwise, randomly sample PK← PK, TE−1 = TE−1 ∪ (K,PK, Q),
return Q.

SP0(C0‖C1):
Case 1: if ∃(C0, C1, w) ∈ TP0 ∪ TP−1

0
,

return w;
Case 2: if ∃(PK0,m0, r0, C0) ∈ TEnc ∧ (PK1,m1, r1, C1) ∈ TEnc ∧ (K0,PK0, Q0) ∈
TE∪TE−1∧(K1,PK1, Q1) ∈ TE∪TE−1∧(SK,m1, r0) ∈ TH0)∧(SK,m0, r1) ∈ TH1),
query I.OT2 with (Q0‖Q1,m0,m1, SK), obtain w; return w;
Case 3: otherwise, randomly sample w ← C × C, TP0 = TP0 ∪ (C0, C1, w),
return w.

SP−1
(w):

Case 1: if ∃(C0, C1, w) ∈ TP0 ∪ TP−1
0

,
return C0, C1;

Case 2: if ∃(PK0,m0, r0, C0) ∈ TEnc ∧ (PK1,m1, r1, C1) ∈ TEnc ∧ (K0,PK0, Q0) ∈
TE∪TE−1∧(K1,PK1, Q1) ∈ TE∪TE−1∧(SK,m1, r0) ∈ TH0)∧(SK,m0, r1) ∈ TH1),
s.t.I.OT2(Q0‖Q1,m0,m1, SK) = w,

return C0‖C1;
Case 3: otherwise, randomly sample C0, C1 ← C, TP−1

0
= TP−1

0
∪ (C0, C1, w),

return C0, C1.

SKGen(SK):
Case 1: if ∃(SK,PK) ∈ TKGen,

return PK;
Case 2: if ∃(PK,m, r, C) ∈ TEnc and ∃(SK, C,m) ∈ TDec,

return PK;
Case 3: if ∃(SK, b, Q1−b) ∈ TH2∧∃(Q1−b,K) ∈ TH3∧∃(K,PK,Q1−b) ∈ TE∪TE−1 ,

return PK;
Case 4: otherwise, sample PK← PK, TKGen = TKGen ∪ (SK,PK);

return PK.

SEnc(PK,m, r):
Case 1: if ∃(PK,m, r, C) ∈ TEnc,

return C;
Case 2: if ∃(SK,PK) ∈ TKGen and ∃(SK, C,m) ∈ TDec,

return C;
Case 3: if ∃(SK,m1, r0) ∈ TH0 ∧ (K,PK,Q1) ∈ TE ∪ TE−1 ∧ ∃(K̃, ˜PK,Q0) ∈
TE ∪ TE−1

Subcase 3.1: if ∃(C0, C1, w) ∈ TP0 ∪ TP−1
0

, , s.t. I.OT2(Q0‖Q1,m,m1, SK) = w;
TEnc = TEnc ∪ (PK,m, r, C0);

return C0;
Subcase 3.2: if !(C0, C1, w) ∈ TP0 ∪ TP−1

0
,

quey I.OT2 with (Q0‖Q1,m,m1, SK) and obtain w, run SP−1
0 (w) and obtain

W = (C0, C1), TP−1
0

= TP−1
0
∪ (C0, C1, w), TEnc = TEnc ∪ (PK,m, r, C0);

return C0;
Case 4: if if ∃(SK,m0, r1) ∈ TH1 ∧ (K,PK,Q0) ∈ TE ∪ TE−1 ∧ ∃(K̃, ˜PK,Q1) ∈
TE ∪ TE−1 ,
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Subcase 4.1: if ∃(C0, C1, w) ∈ TP0 ∪ TP−1
0

s.t. I.OT2(Q0‖Q1,m0,m, SK) = w,
TEnc = TEnc ∪ (PK,m, r, C1);

return C1;
Subcase 4.2: if !(C0, C1, w) ∈ TP0 ∪ TP−1

0
,

quey I.OT2 with (Q0‖Q1,m0,m, SK) and obtain w, run SP−1
0 (w) and obtain

W = (C0, C1),
TP−1

0
== TP−1

0
∪ (C0, C1, w), TEnc = TEnc ∪ (PK,m, r, C1);

return C1;
Case 5: otherwise, randomly sample C ← C, TEnc = TEnc ∪ (PK,m, r, C);

return C;

SDec(SK, C):
Case 1: if ∃(SK, C,m) ∈ TDec,

return m;
Case 2: if ∃(PK,m, r, C) ∈ TEnc and ∃(SK,PK) ∈ TKGen,

return m;
Case 3: if ∃(C,C1, w) ∈ TP0 ∪ TP−1

0
,

query I.OT3 with (w, SK, 0) and obtain m0; TDec = TDec ∪ (SK, C,m0);
return m0;

Case 4: if ∃(C0, C, w) ∈ TP0 ∪ TP−1
0

,
query I.OT3 with (w, SK, 1) and obtain m1; TDec = TDec ∪ (SK, C,m1);

return m1;
Case 5: otherwise, randomly sample m←M, TDec = TDec ∪ (SK, C,m),

return m.

E Proof of Theorem 6
Proof. Here, we give full proof of Theorem 6, that the constructed Π.2OT in
Sec. 5 is indifferentiable from ideal two round OT.

In the real world, the differentiator D has oracle access to
(Π.OT1,Π.OT2,Π.OT3) via the honest interface and oracle access to (H0,
E1, E−11 , E2, E−12 , I.EOTA1 , I.EOTA2 , I.EOTB1 , I.EOTB2) via the adversarial
interface. In contrast, in the ideal world, the differentiator D has oracle access to
(I.OT1, I.OT2, I.OT3) via the honest interface and access to S via the adversarial
interface. Therefore, to establish a proof, we need to build an explicit (and
efficient) simulator S that simulates the rest oracles (H0, E1, E−11 , E2, E−12 ,
I.EOTA1 , I.EOTA2 , I.EOTB1 , I.EOTB2) properly by making queries to (I.OT1,
I.OT2, I.OT3).

Namely, for any PPT differentiator D, the view of D in the real game is
computationally close to the view in the ideal game. To do so, we will go through
with a sequence of hybrid games, where in each game, the simulator responds
to all of the queries (both honest and adversarial) in a slightly different way and
the last game is the same as the ideal world. Note that the differentiator D can
make at most q queries to the oracles, where q = poly(λ).

First, we describe our simulator S in the ideal game.
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Simulator S

The simulator S will provide the following interfaces for the external differentiator
D:
SH0(Q,m0,m1, S̃K):

Case 1: if ∃(Q,m0,m1, S̃K, e) ∈ TH0 ,
return e;

Case 2: if ∃(∗, e, ∗, ∗, w) ∈ TP0 ∪ TP−1
0

where w = I.OT2(Q,m0,m1, S̃K),
return e;

Case 3: otherwise, query the external I.OT2 with (Q,m0,m1, S̃K) to obtain e;
TH0 = TH0 ∪ (Q,m0,m1, S̃K, e);
return e.

SE1(e, P̃K):

Case 1: if ∃(e, P̃K, P̂K) ∈ TE1 ∪ TE−1
1

,
return P̂K;

Case 2: if ∃(Q,m0,m1, S̃K, e) ∈ TH0 and ∃(S̃K, P̃K) ∈ TEOTB1
and

∃(P̂K, e, ∗, ∗, w) ∈ TP0 ∪ TP−1
0

where w = I.OT2(Q,m0,m1, S̃K),
return P̂K;

Case 3 : otherwise, randomly sample P̂K, TE1 = TE1 ∪ (e, P̃K, P̂K);
return P̂K.

SE−1
1 (e, P̂K):

Case 1: if ∃(e, P̃K, P̂K) ∈ TE1 ∪ TE−1
1

,
return P̂K;

Case 2: if ∃(Q,m0,m1, S̃K, e) ∈ TH0 and ∃(S̃K, P̃K) ∈ TEOTB1
and

∃(P̂K, e, ∗, ∗, w) ∈ TP0 ∪ TP−1
0

where w = I.OT2(Q,m0,m1, S̃K),
return P̃K;

Case 3 : otherwise, randomly sample P̃K, TE−1
1

= TE−1
1
∪ (e, P̃K, P̂K);

return P̃K.

SE2(K,m):
Case 1: if ∃(K,m,C) ∈ TE2 ∪ TE−1

2
,

return C;
Case 2: if ∃(Q,m,m1, S̃K, e) ∈ TH0 and ∃(S̃K, Q,K,K1) ∈ TEOTB2

and
∃(P̂K, e, C, ∗, w) ∈ TP0 ∪ TP−1

0
where w = I.OT2(Q,m,m1, S̃K),

return C;
Case 3: if ∃(Q,m0,m, S̃K, e) ∈ TH0 and ∃(S̃K, Q,K0,K) ∈ TEOTB2

and
∃(P̂K, e, ∗, C, w) ∈ TP0 ∪ TP−1

0
where w = I.OT2(Q,m0,m, S̃K),

return C;
Case 4: otherwise, randomly sample C; TE2 = TE2 ∪ (K,m,C);

return C.

SE−1
2 (K,C):
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Case 1: if ∃(K,m,C) ∈ TE2 ∪ TE−1
2

,
return m;

Case 2: if ∃(Q,m,m1, S̃K, e) ∈ TH0 and ∃(S̃K, Q,K,K1) ∈ TEOTB2
and

∃(P̂K, e, C, ∗, w) ∈ TP0 ∪ TP−1
0

where w = I.OT2(Q,m,m1, S̃K),
return m;

Case 3: if ∃(Q,m0,m, S̃K, e) ∈ TH0 and ∃(S̃K, Q,K0,K) ∈ TEOTB2
and

∃(P̂K, e, ∗, C, w) ∈ TP0 ∪ TP−1
0

where w = I.OT2(Q,m0,m, S̃K),
return m;

Case 4: otherwise, randomly sample m; TE−1
2

= TE−1
2
∪ (K,m,C);

return m.

SEOTA1 (SK, b):
Case 1: if ∃(SK, b, Q) ∈ TEOTA1

,
return Q;

Case 2: otherwise, query I.OT1(SK, b), obtain Q; TEOTA1
= TEOTA1

∪ (SK, b, Q);
return Q.

SEOTB1 (S̃K)):

Case 1: if ∃(S̃K, P̃K) ∈ TEOTB1
,

return P̃K;
Case 2: if ∃(SK, 0, P̃K,K0) ∪ (SK, 1, P̃K,K1) ∈ TEOTA2

and ∃(S̃K, Q,K0,K1) ∈
TEOTB2

,
return P̃K;

Case 3: otherwise, randomly sample P̃K; TEOTB1
= TEOTB1

∪ (S̃K, P̃K);
return S̃K, P̃K.

SEOTA2 (SK, b, P̃K):

Case 1: if ∃(SK, b, P̃K,Kb) ∈ TEOTA2
,

return Kb;
Case 2: if ∃(SK, b, Q) ∈ TEOTA1

and (S̃K, P̃K) ∈ TEOTB1
and (S̃K, Q,K0,K1) ∈

TEOTB2
,

return Kb;
Case 3: otherwise, randomly sample Kb, TEOTA2

= TEOTA2
∪ (SK, b, P̃K,Kb) ;

return Kb;

SEOTB2 (Q, S̃K):

Case 1: if ∃(Q, S̃K,K0,K1) ∈ TEOTB2
,

return K0,K1;
Case 2: if ∃(SK, 0, P̃K,K0) ∈ TEOTA2

and (K1,m1, C1) ∈ TE2 ∪ TE−1
2

and
∃(Q,m0,m1, S̃K, e) ∈ TH0 and ∃(P̂K, e, C0, C1, w) ∈ TP0 ∪ TP−1

0
where

w = I.OT2(Q,m0,m1, S̃K),
return K0,K1;

Case 3: if ∃(SK, 1, P̃K,K1) ∈ TEOTA2
and (K0,m0, C0) ∈ TE2 ∪ TE−1

2
and

∃(Q,m0,m1, S̃K, e) ∈ TH0 and ∃(P̂K, e, C0, C1, w) ∈ TP0 ∪ TP−1
0

where

80



w = I.OT2(Q,m0,m1, S̃K),
return K0,K1;

Case 4: if ∃(K0,m0, C0)∧(K1,m1, C1) ∈ TE2∪TE−1
2

and ∃(Q,m0,m1, S̃K, e) ∈ TH0

and ∃(P̂K, e, C0, C1, w) ∈ TP0 ∪ TP−1
0

where w = I.OT2(Q,m0,m1, S̃K),
return K0,K1;

Case 5: otherwise, randomly sample K0,K1, TEOTB2
= TEOTB2

∪ (Q, S̃K,K0,K1)
;

return K0,K1;

SP0(P̂K, e, C0, C1):

Case 1: if ∃(P̂K, e, C0, C1, w) ∈ TP0 ∪ TP−1
0

,
return w;

Case 2: if ∃(K0,m0, C0)∧(K1,m1, C1) ∈ TE2∪TE−1
2

and ∃(Q,m0,m1, S̃K, e) ∈ TH0

and ∃(S̃K, P̃K) ∈ TEOTB1
and ∃(e, P̃K, P̂K) ∈ TE1 ∪ TE−1

1
,

query I.OT2(Q,m0,m1, S̃K), obtain w;
return w;

Case 3: otherwise, randomly sample w, TP0 = TP0 ∪ (P̂K, e, C0, C1, w) ;
return w.

SP−1
0 (w):

Case 1: if ∃(P̂K, e, C0, C1, w) ∈ TP0 ∪ TP−1
0

,
return (P̂K, e, C0, C1);

Case 2: if ∃(K0,m0, C0)∧(K1,m1, C1) ∈ TE2∪TE−1
2

and ∃(Q,m0,m1, S̃K, e) ∈ TH0

and ∃(S̃K, P̃K) ∈ TEOTB1
and ∃(e, P̃K, P̂K) ∈ TE1 ∪ TE−1

1
, such that w =

I.OT2(Q,m0,m1, S̃K);
return (P̂K, e, C0, C1);

Case 3: otherwise, randomly sample (P̂K, e, C0, C1), TP−1
0

= TP−1
0
∪

(P̂K, e, C0, C1, w) ;
return (P̂K, e, C0, C1).

The detailed proof process is very similar to that of Theorem 3.
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