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Abstract. We consider protocols for secure multi-party computation
(MPC) built from FHE under honest majority, i.e., for n = 2t+1 players
of which t are corrupt, that are robust. Surprisingly there exists no robust
threshold FHE scheme based on BFV to design such MPC protocols.
Precisely, all existing methods for generating a common relinearization
key can abort as soon as one player deviates. We address this issue, with
a new relinearization key (adapted from [CDKS19, CCS’19]) which we
show how to securely generate in parallel of the threshold encryption key,
in the same broadcast. We thus obtain the first robust threshold BFV
scheme, moreover using only one broadcast for the generation of keys
instead of two previously.
Of independent interest, as an optional alternative, we propose the first
threshold FHE decryption enabling simultaneously: (i) robustness over
asynchronous channels with honest majority; (ii) tolerating a power-of-
small-prime ciphertext modulus, e.g., 2e; and (iii) secret shares of sizes
quasi-independent of n.

1 Introduction

The generation and use of vast volumes of data to fuel innovative scientific break-
throughs pose a number of challenges in terms of data collection and efficiency.
One potential solution lies in the delegation of data processing to public cloud
service providers equipped with substantial computing resources. Nonetheless,
concerns surrounding the privacy and security of outsourced data and analysis
persist. In recent years, there have been notable advancements in cryptographic
methods designed to enhance secure computation. Of these techniques, Mul-
tiparty Computation (MPC) and Fully Homomorphic Encryption (FHE) have
received growing interest due to significant technical breakthroughs.

Threshold FHE (ThFHE). Fully Homomorphic Encryption (FHE) allows for
the execution of arbitrary computations on encrypted data without the need
for decryption. Over the years, several generations of FHE schemes have been
proposed, with the latest based on the ring-learning-with-errors (RLWE) assump-
tion gaining traction through implementation, and standardization [ACC+21].
Extending these constructions to multiple participants brings up the question of
which key to encrypt under. Encrypting inputs under individual keys prevents
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homomorphic evaluation, while a single key for all players creates a single point
of failure for privacy if compromised. To remove this single point of failure and
accommodate a broader range of use cases involving multiple players, threshold
FHE (ThFHE) schemes have been developed [AJL+12], in which a secret key is
split into a number of shares, so that only a threshold of players collaborating
together can decrypt an encrypted secret.

ThFHE-based MPC. In scenarios involving multiple users, ThFHE-based tech-
niques present a promising set of solutions for secure multiparty computation
(MPC), where a set of n players collaborates to compute any function on their in-
puts, while preserving the confidentiality of the latter, due to their minimal com-
munication overhead [AJL+12]. Instantiating an MPC protocol from a ThFHE
scheme is not straightforward, and involves multiple steps:

Distributed Key Generation (DKG): a protocol in which the players collab-
oratively generate a common threshold encryption key ek for a FHE scheme,
and where each player also receives a share of the secret key sk.
Input Distribution: players subsequently encrypt their respective inputs us-
ing the common threshold encryption key and broadcast the ciphertexts;
Evaluation: players (locally) perform homomorphic computations on the ci-
phertexts to evaluate the desired function;
Threshold Decryption: players finally jointly execute a threshold decryption
protocol using their secret key shares to uncover the computation’s output.

Robustness. In the realm of multiparty protocols, an often neglected yet crucial
attribute is robustness, specifically referring to the need for a protocol to produce
a correct output in a constant number of rounds whenever it is executed, even
in the presence of malicious behavior. In the context of ThFHE-based MPC, the
robust generation of threshold keys is proving challenging, and is our main goal.

1.1 Results

Main result: the first robust threshold BFV scheme and robust MPC.
In this work, we construct trBFV, the first robust threshold FHE scheme based
on the BFV [Bra12; FV12] cryptosystem, and propose an MPC protocol as in-
formally stated in Theorem 1 below.

Theorem 1 ((Informal) Robust MPC). Consider n = 2t + 1 players, of
which t are maliciously corrupt. There exists a robust protocol in 2 broadcasts
+ 1 asynchronous P2P rounds that UC implements secure evaluation of any
arithmetic circuit.
This result follows from our main contribution detailed in Section 1.1.1.

1.1.1 Robust relinearization key generation. To evaluate a circuit, play-
ers first perform a distributed key generation (DKG) protocol to establish a
common threshold encryption key, which basically consists of each player Pi
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DKG

– Compute (ski, eki, rlk0,i)← KeyGen(1λ)

– Secret share ski → {sk(j)i }j∈[n], and dis-
tribute the share sk

(j)
i to Pj ∀j ∈ [n]

– Broadcast (eki, rlk0,i)

Compute ek =
∑
j∈S ekj , ski =

∑
j∈S sk

(i)
j and rlk0 =

∑
j∈S rlk0,j

RlkGen

– rlki ← RlkKeygen(rlk0, ski)
– Broadcast (rlki)

Compute rlk =
∑
j∈S′ rlkj (if S = S′)

DKG

– Compute (ski, eki)← KeyGen(1λ)

– Secret share ski → {sk(j)i }j∈[n], and dis-
tribute the share sk

(j)
i to Pj ∀j ∈ [n]

– Broadcast (eki)

RlkGen

– Compute rlki ← `−RlkKeygen(ski)
– Broadcast (rlki)

Compute ek =
∑
j∈S ekj , ski =

∑
j∈S sk

(i)
j and rlk =

∑
j∈S rlkj

[MTBH21]/[KJY+20]/[Par21]
(Non-robust) Our Protocol

(Robust)

DKG & RlkGen

– S: Set of indices of non-aborting players of round 1
– S′ ⊆ S: Set of indices of non-aborting players of round 2

Round 1

Round 2

Fig. 1: We present on the left-hand side the overall construction of previous
DKG&RlkGen protocols [KJY+20; Par21; MTBH21]. First, each player Pi runs KeyGen
to produce keys (ski, eki, rlk0,i). The secret key ski is secret-shared into n shares
{sk(j)i }

n
j=1, and each sk

(j)
i is distributed to Pj . The last two elements are broadcast

and contributions are added together over the set S of indices of non-aborting players
to form the common threshold encryption and intermediate relinearization keys ek and
rlk0, as well as a key share ski. Then, players run RlkKeygen with their secret key ski
and rlk0 to produce a contribution rlki that is broadcast. Once added together over
the set S′ of indices of non-aborting players of this second round, players can compute
the relinearization key rlk =

∑
j∈S′ rlkj if S = S′. On the right-hand side, we present

a sketch of our protocol. More specifically, to obtain robustness, players run in parallel
KeyGen and our new relinearization key generation algorithm `−RlkKeygen. This is
possible because the latter requires only one round.

i) sampling a key pair (ski, eki), ii) using a (n, t)-linear secret sharing scheme
((n, t)-LSS, see Definition 3) to divide ski into n shares such that only autho-
rized subsets of t + 1 of them can be used to reconstruct the original key, iii)
broadcasting its contribution eki, and distributing the shares of ski to the play-
ers. Then iv), players can set a threshold encryption key ek =

∑
i∈S eki and

secret key shares as the sum over the set S of the indices of players that have
correctly sent their contributions.

To perform homomorphic computation, BFV (along with other RLWE-based
FHE schemes such as CKKS [CKKS17]) requires the generation of an additional
common “relinearization key” rlk. For a secret key sk, it is described for BFV
[FV12] as being of the following form:

(1) rlk = (sk2w − sk · r+ e(rlk), r)

where r is a uniform random string, e(rlk) some noise, and w a decomposition
basis of dimension some l, i.e w = (w0, w1, . . . , wl−1)T . Generating this relin-
earization key in a distributed way proves to be more complex than in the case of
the threshold encryption key. Indeed, the presence of the term sk2w introduces
a non-linearity. To overcome the challenge posed by the squaring of sk, various
RlkGen protocols [KJY+20; Par21; MTBH21] for generating rlk, have been pro-
posed. We briefly discuss these RlkGen protocols to emphasize the novelty of our
work. Overall, they have the following informal structure:
• In round 1: each player Pi generates a contribution rlk0,i using its key ski.
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• In round 2: each player Pi sums together the contributions rlk0 =
∑
i∈S rlk0,i,

where S denotes the set of indices of non-aborting players in the first round.
Then, each Pi uses an algorithm RlkKeygen to compute a final contribution
rlki ← RlkKeygen(rlk0, ski) and broadcasts rlki.

Finally, the relinearization key is defined as rlk =
∑
i∈S′ rlki, where S

′ is the
set of indices of non-aborting players in this second round.

However, this generic protocol, illustrated in Fig. 1, has a major drawback,
in that it is not robust; if some players take part in some of the rounds, but not
all, then no rlk is generated. Specifically, [KJY+20; Par21; MTBH21] required
S and S′ to be equal for RlkGen to output. Otherwise, if the generation were
done with non-equal sets S and S′, then the resulting rlk would be incompatible
with the ek produced in the first round as ek =

∑
i∈S eki, making the overall

key generation non-robust.
We overcome this issue by introducing a new `−RlkKeygen algorithm for

generating an alternative relinearization key adapted from the multikey FHE
scheme of [CDKS19]. It departs from all previous approaches because it only
applies a linear map to the secret key sk, not a squaring. This allows, as shown
in Fig. 1, to design a RlkGen protocol to generate rlk in only one round that
operates in parallel of the DKG, and to obtain a robust overall key generation.

Remark 1. Mouchet et al. [MBH23] recently presented a framework to use the
n-out-of-n relinearization key generation introduced in [MTBH21] in a (t + 1)-
out-of-n threshold manner. However, to make it efficient, the authors assumed
that players are able to determine (or optimistically guess) a set of at least t+1
online players, in order to first convert Shamir shares into additive ones before
performing the relinearization key generation. This caused the protocol to stale
if one of the selected players did not provide its share. Recently, [MCPT24] pro-
posed a retry mechanism that addressed the latter challenge posed in [MBH23],
at the cost, however, of a non-constant number of rounds, contrary to what we
expect for our robustness requirement.

1.1.2 Alternative threshold decryption enabling q power of a small
prime. Most previous threshold FHE schemes used the following mainstream
approach for threshold decryption. To decrypt a ciphertext c, each player Pi did
the following:
• First, it used its secret key share ski to compute its “decryption share” ci of c,
and added some locally generated “smudging noise” esm,i to prevent leakage of
any secret information, before sending the noisy decryption share c̃i = ci+esm,i.

• Second, each player used t + 1 of the received noisy decryption shares to
reconstruct the output.
As a result, when the secret sharing was instantiated with Shamir [Sha79],

the added smudging noises were multiplied by Lagrange coefficients during re-
construction. As explained in [BGG+18], this led to the use of a large n!2 scaling
factor, in order to clear-out the denominators of the Lagrange coefficients. Over-
all, this imposed the bit-size of the ciphertext modulus q to be O(n log n), which
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resulted in a n× blowup of the ciphertext length. [BGG+18] also required the
modulus q to be prime in order for the multiplied noise to be uniformly dis-
tributed modulo q.

A way around both these limitations is proposed in [BGG+18] with another
threshold decryption protocol based on a {0, 1}-LSSD scheme1, which, instead
of the Lagrange coefficients used in Shamir, employs binary coefficients to re-
construct the output from the noisy decryption shares. This allowed removing
the extra n in the modulus bit-size, i.e. log q = O(log n). However, this also led
to a significant space overhead, as the size of each secret key share is at least
O(n4.2). Cheon et al. [CCK23] introduced a new scheme denoted TreeSSS, but
with each share still of size O(n2+o(1)).

Although this mainstream approach could be used in our protocol, we now propose
an alternative optional approach for threshold decryption. It enables simultane-
ously (i) a n!3× smaller total smudging noise, (ii) a modulus q which is possibly
a power of a small prime, e.g., 2e, thereby allowing efficient implementations
[CH18; GIKV23], and (iii) secret shares of sizes quasi-independent of n. It is
obtained by the novel combination of two existing ingredients. First, players
pre-generate common secret-shared smudging noises that can be obtained in
amortized constant overhead via some distributed protocol. To decrypt c, play-
ers use their secret key shares to perform all-at-once the decryption of c, added
with one secret-shared smudging noise. This first ingredient, that allows us to
remove the n!2 scaling factor, was introduced by [GLS15]2, but was never later
used to our knowledge. Second, in order to enable q of small size 2e, we detail
a Shamir sharing over Z/2eZ, i.e., embed polynomials into Galois rings exten-
sions [Feh98; ACD+19]. Notice that this last ingredient, alone, would not have
been applicable. Indeed, without the first ingredient, i.e., with the mainstream
approach, then it would have been required that q has no factor in common with
n!. In short, our scheme instantiated with Shamir and pre-shared noise achieves
a modulus size in O(log n) while maintaining shares of size O(1), unlike related
works as shown in Table 1.

1.1.3 Other threshold schemes with smaller noise but incompatible
with MPC. Some recent works [CSS+22; BS23] addressed an orthogonal size
dependency, by replacing the statistical distance used to analyze the noise during
the threshold decryption by the Rényi divergence. In more detail, the threshold
decryption of a ciphertext c allows recovering the plaintext, but also reveals a
small decryption noise term that depends on the given ciphertext and the se-
cret key. It is precisely to prevent information leakage about the secret key that
some smudging noise is added to the decryption shares. As shown in Table 1,
previous works [BGG+18; CCK23] required the ratio between the smudging
noise and the size of the decryption noise to be superpolynomial in the security

1D stands for “derived” scheme [JRS17], which is stated equivalently as “with strong
reconstruction” in [BS23].

2With whom we do not compare ourselves since they do not generate a rlk key.
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Table 1: Threshold FHE schemes for n players, using modulus q. The last column
indicates the size of the shares owned by a player, and the modulus-to-noise ratio
refers to the ratio between the modulus and decryption noise of a ciphertext.

LSS Scheme Simulation
Security

Modulus-to
noise ratio

Modulus Size
O(log q)

Share Size

[BGG+18] {0, 1}-LSSD
X Superpoly O(log n) O(n4.2)

Shamir O(n · log n) O(1)

[CCK23] Shamir X Superpoly O(log n) O(n2+o(1))

[BS23] {0, 1}-LSSD % Poly O(log n) O(n4.2)

Our Scheme
Shamir X Superpoly O(n · log n) O(1)

{0, 1}-LSSD X Superpoly O(log n) O(n4.2)
Shamir with

pre-shared noise X Superpoly O(log n) O(1)

parameter. This, in turn, required the RLWE problem to be secure with a su-
perpolynomial modulus-to-noise ratio, which required larger RLWE parameters.
Recently, [CSS+22; BS23] proposed threshold FHE schemes with a polynomial
modulus-to-noise ratio. However, the latter do not come without their own draw-
backs. Importantly, [BS23] made clear that their scheme is not usable in MPC,
i.e., do not offer composability guarantees. On the contrary, our approach pro-
duces a threshold decryption functionality in the simulation paradigm, making
it usable as a black box in complex protocols.

1.1.4 Historical Remarks. For BGV [BGV12], Choudhury et al. [CLO+13]
proposed a robust threshold decryption for t < n/3, however restricted to small
values of

(
n
t

)
due to its use of Pseudo-Random Secret Sharing (PRSS) to enable

a non-interactive Shamir sharing of the smudging noise term. This mechanism
was recently borrowed in [DDE+23], which appeared one year after this work.

2 Model
2.1 Notations. All logarithms are in base two. We denote x $←− D the sam-
pling of x according to distribution D . Cardinality of a set X is denoted as |X|.
For a finite set E, we denote U(E) the uniform distribution on E. The set of
positive integers [1, . . . , n] is denoted [n]. For two vectors u,v (in bold) we de-
note 〈u,v〉 the dot product and, for a third vector w, we denote u<·>(v,w) :=(
〈u,v〉 , 〈u,w〉

)
. We denote by λ the security parameter throughout the paper.

We consider a positive integer d, denoted the lattice dimension; a monic poly-
nomial f of degree d; k < q positive integers denoted plaintext and ciphertext
moduli; and R := Z[X]/f(X). We denote Rk = R/(k.R) and Rq = R/(q.R) the
residue rings of R modulo k and q. We denote d.e, b.c, b.e the rounding to the
next, previous, and nearest integer respectively, and [.]k the reduction of an inte-
ger modulo k into Rk. When applied to polynomials or vectors, these operations
are performed coefficient-wise. Let ∆ = bq/kc be the integer division of q by
k. All linear forms are succinctly specified as linear combinations, e.g., let (xi)i
denote labels of some variables (xi)i, then,

∑
i lixi denotes

{
(xi)i →

∑
i lixi

}
.
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2.2 Players and Corruptions. We consider n = 2t+1 players P = (Pi)i∈[n],
which are probabilistic polynomial-time (PPT) machines, of public identities. We
consider the Universal Composability (UC) model [Can01] with static corrup-
tions. We consider a PPT machine, denoted as the Environment Env. It fully
controls an entity denoted the “adversary” A. At the beginning of the execu-
tion, A may corrupt up to t players of its choice. They behave as arbitrarily
instructed by A. We assume that A corrupts exactly t players, of which we de-
note the indices by I ⊂ [n]. The remaining ones are called honest and indexed
by H = [n] \ I . A notifies Env of every message received by corrupt players and
from (simulated) functionalities. For simplicity, we present our protocol in the
semi-malicious corruption model of [AJL+12], widely adopted since [GLS15].

2.3 Formalizing Eventual Delivery in UC. We now explain the high-
level idea of the mechanism, denoted fetch-and-delay, used to formalize eventual
delivery following [KMTZ11; CGHZ16]. Every ideal functionality F , when it
needs to eventually deliver (ssid, v) to some entity P , engages in the following
interaction. It notifies A of the output id (ssid), and initializes a counter Dssid←
1, which captures the delivery delay. Upon receiving (delay) from A , it sets
Dssid ← Dssid + 1. Upon receiving (fetch) from P, it sets Dssid ← Dssid − 1, as
well as for all other counters related to pending outputs for P . In addition, we
specify that it leaks (fetch) to A. It is left implicit that entities fetch as much
as they can all. Since A is PPT, at some point it gets exhausted from pressing
the button delay. So, after sufficiently many fetches, the counter drops down to
0. Then F can deliver (ssid, v) to P .

2.4 BC: Broadcast with eventual termination. We formalize in Fig. 5 in
Appendix A.1 the ideal functionality of broadcast. It is parametrized by a sender
S and by a set of receivers. It has the following properties: (Termination) all
honest receivers eventually output, and (Consistency) any two honest receivers
output the same value. Finally, (Validity) if the sender S is honest and inputs
value x, all honest receivers output the same value x.

2.5 (Asynchronous) Authenticated Message Transmitting FAT. We
formalize in Fig. 6 the ideal functionality of asynchronous public authenticated
message transmitting with eventual delivery delay, denoted as FAT. It is
parametrized by a sender S and a receiver R, hence the terminology authen-
ticated. It delivers every message sent within a finite delay D, hence the termi-
nology eventual delivery, although D can be adaptively increased by A. It leaks
the content of every message to A, hence the terminology public.

2.6 Bulletin Board PKI: bPKI. We present in Fig. 7 of Appendix A.3 the
ideal functionality of a bulletin board of public keys, denoted as bPKI. Upon
receiving a key pki from any player Pi ∈ P , it stores (Pi, pki) and leaks this
information to the adversary A. Then, it waits until it receives a public key from
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every honest player in P , and sets a timeout. After it elapsed, sets to ⊥ the keys
of the players which did not give a key, and eventually delivers pk← (pki)i∈[n].

2.7 Global Uniform Random String GURS. It samples uniformly at ran-
dom a sequence of bits of length κ, denoted URS, then outputs it to all players.
It is further formalized in Fig. 8 of Appendix A.4, along with discussions on
implementation.

2.8 Ideal Functionality of MPC FC. The ideal functionality of MPC that
we aim to UC implement, is formalized as FC in Fig. 2. It returns to an output
learner L the evaluation of an arithmetic circuit C : (Rk ∪ {⊥})n → Rk over
inputs in Rk. For simplicity: C has n input gates, one single output gate, and
FC expects one single input from each player, and delivers the output to L.

The functionality works as follows. Upon receiving an input mi from any
player Pi, it stores (Pi,mi)

3 and leaks this information to A. Before FC delivers
the evaluated output, it needs to wait for the inputs to be submitted. However,
the adversary A can choose to never instruct corrupt players to send their inputs.
To remedy this, the functionality i) waits until it receives an input from every
honest player, ii) sets a timeout TA, then iii), after it elapsed, sets to ⊥ the
inputs of the (corrupt) players that did not give an input. Once the timeout
expires, the output evaluation is delivered following a finite delay chosen by A.

3 Cryptographic Ingredients

We now detail the main ingredients needed for the remainder of the paper.

3.1 Preliminaries

Ring Learning with Errors. Let Ψq and Xq be distributions over Rq. The de-
cisional -Ring Learning with Errors (RLWE) [LPR13a] assumption with param-
eter (Rq,Xq, Ψq) can be stated as follows: for a fixed secret sample s←Xq, then
any polynomially long sequence of samples in R2

q of the form (ai, bi = s ·ai+ei)i,
where ai ← U(Rq), and ei ← Ψq, is computationally indistinguishable from a
uniform random sequence of elements of R2

q .

Gadget Decomposition. For later use in Section 4, let us define the widely
used, e.g., [GSW13; CDKS19], gadget toolkit :
1. Gadget vector: g = (g0, g1, ..., gl−1) ∈ Rlq ; and integers l and (small) Bg;
2. The gadget decomposition denoted g−1(.): on input any x ∈ Rq, decomposes

it into a vector u = (u0, ..., ul−1) ∈ Rl of (small) coordinates, i.e, ‖ui‖ ≤ Bg
for all 0 ≤ i ≤ l − 1, such that Σl−1

i=0ui.gi = x (mod q).

Smudging Lemma ([AJL+12]). ForB1, B2 positive integers and e1 ∈ [−B1, B1]
a fixed integer, sample e2 uniformly at random in [−B2, B2]. Then the distribu-
tion of e2 is statistically indistinguishable from that of e2+e1 if B1/B2 = negl(λ).

3Where mi denotes the label of variable mi



Robust Multiparty Computation from RLWE 9

FC

Output format Initialize an empty vector m = {>}n.
• Initialize outpout−available← false. //delivery flag.
• When all mi 6= >, ∀i ∈ [n], set outpout−available = true.

Formalizing timeout for inputs of corrupt players

• Initialize a counter TA ← 1 // the timeout.
• Upon receiving delay−inputs from A, TA ← TA + 1.
• Upon receiving fetch from L, TA ← TA − 1.
• When TA = 0 for the first time, freeze forever TA = 0. Then, for all i ∈ I : if
mi = >, then set mi ← ⊥.

Input (Only accessible while outpout−available = false) On input (input, m̃i ∈ Rk)
from any Pi ∈ P for the first time, or possibly from A if Pi is corrupt, set
mi ← m̃i, then store (input,S ,mi), and eventually-deliver (stored,mi) to each
player P ∈ P . //eventually-delivers” consists of the fetch-and-delay mechanism
explained in Section 2.3.

Formalizing eventual delivery

• Initialize a counter DR ← 0 // the delivery delay.
• Upon receiving fetch from L, DR ← DR − 1.
• When DR = 0 for the first time, if no output was delivered yet to L, wait
until outpout−available = true, then deliver y = C(m) to L.

Fig. 2: Functionality of secure circuit evaluation. Each mi is identified by a label mi.

3.2 Linear Secret Sharing, abstracted-out as ideal FLSS functionality

The main ingredient in building a robust threshold FHE scheme is using a (n, t)-
linear secret sharing scheme ((n, t)-LSS formally defined in Definition 3), that
enables to divide a secret s into n shares, with the property that only authorized
subsets of t+ 1 of them can be used to reconstruct the original secret. Interest-
ingly, thanks to the linear property of the sharing, if secrets m1, . . . ,mn have
been secret-shared, on input some linear form Λ, one can compute Λ({mi}i) on
the shared inputs. In this section, we abstract this through a functionality FLSS.
A detailed description is available in Appendix B.

3.2.1 Functionality FLSS. We specify, in Fig. 3, an ideal functionality for
LSS, denoted FLSS. It is parametrized by i) a set P of n players, ii) a list S
of entities of the (possibly malicious) senders, where each S ∈ S has a list of
inputs: (xS,α)α∈XS , identified by input labels (xS,α)α∈XS . We denote XS the list
of indices α of inputs of sender S . Finally iii), we consider an output learner L.

Setup. Before any sender starts interacting with FLSS, it needs to wait until
(Setup, P ) is stored ∀P ∈ P . However, the adversary A can choose to never
instruct corrupt players to setup. To remedy this, we follow the fetch-and-delay
mechanism explained in Section 2.3 and introduce a timeout TA.

Input. Upon receiving (ready) from the functionality, a sender S ∈ S can
then send its inputs (xS,α)α∈XS of labels (xS,α)α∈XS , after which FLSS notifies
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FLSS

Participants: A set S of senders, an output learner L, and a set P of players.
Inputs (For each S ∈ S ): a list (xS,α)α∈XS , where each input xS,α is identified
by a unique predefined ’label’ xS,α.
Setup
– On input (Setup) from any P ∈ P for the first time, or possibly from A if P

is corrupt: stores (Setup, P ), and eventually-delivers (Setup, P ) to each player
P ∈ P . //eventually-delivers” consists of the same fetch-and-delay mechanism
as explained in Section 2.3.

– Initialize a counter TA ← 1 //Timing for setup
• Upon receiving delay−Setup from A, TA ← TA + 1.
• Upon receiving fetch from any P ∈ P , TA ← TA − 1.
• When TA = 0 for the first time, freeze forever TA = 0. Then, send ready to

every S ∈ S .
Input On input (input, xS,α, xS,α ∈ Rq) from any S ∈ S for the first timea,
or possibly from A if S is corrupt: first, if xS,α = ⊥ then set it to 0, store
(input,S , xS,α), and eventually-deliver (stored, xS,α)

b to each player P ∈ P .
A delaying eventual delivery
– Initialize D ← 1 // Delivery delay
– Upon receiving delay from A, set D ← D + 1

Bookkeeping requests from honest players
– Initialize HOpeners← {}c

– Upon receiving (LCOpen, ssid = Λ) from any honest player Pi ∈ P , set
HOpeners← HOpeners∪{Pi}, set D ← D− 1 and leak (LCOpen, ssid = Λ,Pi)
to A.

LCOpen
• [Early Opening] If |HOpeners| ≥ 1 and if all xS,α appearing with nonzero

coefficient in Λ are stored, then,
1. if L is corrupt, leak y := Λ((xS,α)S,α) to A;
2. if L is honest, upon receiving (open−order, Λ) from A, if no output was

delivered yet to L, then send (ssid = Λ, y := Λ((xS,α)S,α)) to L.
• [Collective Opening] If |HOpeners| ≥ t + 1 and D ≤ 0 and no output was

delivered yet to L, and if all xS,α appearing with nonzero coefficient in Λ are
stored, then send (ssid = Λ, y := Λ((xS,α)S,α) to L.
aOnce a sender S (or A) send an input xS,α with label xS,α, the former cannot

be subsequently updated.
bAppended with “xS,α = ⊥” when this is the case.
cRecall that we consider in this description an unique Λ. If multiple are con-

sidered, then several sets HOpenersΛ must also be considered.

Fig. 3: Sharing with Linear Combination functionality for a single linear form Λ
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it to all the players. The former cannot be subsequently updated; once sent, the
sender S is committed to the submitted values.

Opening. Let HOpeners be a set of players, initially empty. Any player Pi can
call LCOpen for some linear form Λ, and is then included in HOpeners (related
to the linear form Λ). When |HOpeners| ≥ t + 1, and if FLSS has stored all the
inputs appearing with nonzero coefficient in Λ, then FLSS eventually delivers its
evaluation. We denote this mechanism a collective opening. Now consider the
scenario where one isolated honest player would start the LCOpen protocol, i.e.
revealing its share of the evaluation. Since it is hard to prevent t corrupt players
from also publicly disclosing consistent shares, this results in the evaluation being
publicly opened. We qualify such an event as an early opening. In practice,
we give to A the power to send an (open−order) to FLSS, which triggers an
immediate delivery of the evaluation to all players, as soon as one honest player
requests (LCOpen).

3.2.2 Implementation of FLSS. Our main goal is to build a protocol ΠLSS

that implements FLSS, i.e. that enables, after a unique round of broadcast, play-
ers to have a common view on a set of shared secrets. Subsequently, they can
perform the opening of the evaluation of any linear map over the shared se-
crets, using only one step of all-to-all asynchronous peer-to-peer messages. ΠLSS

is detailed in Fig. 13 in Appendix B.4. Overall it can be outlined as follows.
First, each player generates then registers its public key to bPKI. To send a

secret s to FLSS, i.e., to share it, the first step is to generate a (n,t)-linear secret
sharing of s. Let [s(i) : i ∈ [n]] be the vector of shares obtained. Encrypt each
share s(i) under Pi’s public key. The n-sized vector of ciphertexts obtained is
called a public verifiable secret sharing (PVSS)4. To open a linear map Λ over
a set of shared secrets (sj)j : every player Pi decrypts its encrypted shares as
(s

(i)
j )j , then evaluates Λ on them. By linearity of the LSS scheme, the result is a

partial opening share z(i) of Λ((sj)j). Then it sends z(i) to all, via asynchronous
channels. Finally, from any t+ 1 partial opening shares, the desired linear com-
bination Λ((sj)j) is efficiently reconstructible.

The main technical challenge we face is that we consider efficient homomor-
phic encryption schemes in which the ciphertext space is a polynomial ring Rq.
In turn, this requires an efficient linear secret sharing scheme over polynomial
rings. For this, different options exist, that are further detailed in Appendix B.2:

1. First, one can consider a class of Linear Secret Sharing Schemes, denoted as
{0, 1}−LSSD, in which the reconstruction coefficients are always binary. We
refer to [JRS17] for an example of the construction of such a scheme, which
leads to a significant space overhead, as each share is now of size O(n4.3).

To remove this overhead, one can naturally think of using Shamir [Sha79].
However, this scheme is instantiated over a field F and involves the computation

4The terminology verifiable, is because when compiling to fully malicious se-
curity, it should be appended NIZKs of knowledge of plaintexts and of a degree t
polynomial. State of the art implementations of PVSS can be found in [GV22].



12 A. Urban and M. Rambaud

of Lagrange coefficients, which requires inverting elements of the form αi − αj ,
where αi and αj are public-points. Working over a field guarantees that all non-
zero elements are units, hence that these coefficients exist. Our goal in (2) and
(3) below is to sketch a variant of this classical case that works over polynomial
rings. More details can be found in Appendix B.2.2.

2. Second, we recall the claim known since [Feh98], that it is possible to construct
a Shamir scheme over polynomial rings as long as αi − αj is invertible (see
Definition 8), which exists when the prime factor q is of size at least n+1. We
refer to [KJY+20, IV. A] for an example of construction.

3. Finally, we discuss the full generalization to any q, including the useful case
where q is a power q = pe of a prime, itself possibly small p 6 n ([CH18;
GIKV23]). We detail in Appendix.B.2.2 Rpe−Shamir, a Shamir scheme variant
over Galois extensions of polynomial rings, following [Feh98; ACD+19].

We prove in Proposition 13 that ΠLSS (Fig. 13) does UC-implement FLSS.

4 `−BFV, with Linear Relinearization Key Generation

In this section, we introduce `−BFV, a variant of BFV[FV12] with a linear relin-
earization key generation. First, we recall the BFV FHE scheme in Section 4.1.
Then, we describe our new relinearization key generation in Section 4.2, before
explicitly detailing `−BFV in Section 4.3. Finally in Section 4.4, we explain how
to perform homomorphic operations with this new key.

4.1 BFV [FV12]

We now describe the BFV cryptosystem, departing from [FV12; Bra12], by spec-
ifying that the key generation algorithm takes a public uniform random string
(URS) denoted a as input, whereas in [FV12] a is instead sampled locally. The
reason is that, for our DKG to operate (see Section 5.1), some form of additivity
will be required between the keys. Let Xq be the key distribution5, Ψq the error
distribution (or BEnc,q for the encryption) over Rq, with coefficients distributed
according to a centered discrete Gaussian with standard deviation σ (resp σEnc)
and truncated support over [−B,B] (resp BEnc) where σ and B are cryptosystem
parameters.
• BFV.KeyGen(a ∈ Rq): Sample e(ek) $←− Ψq and sk $←−Xq, and output ek ←

(−a · sk+ e(ek), a) = (b, a) and sk.
• BFV.Enc(ek = (b, a), m ∈ Rk): Sample the encryption randomnesses
e
(Enc)
0

$←− BEnc,q, e
(Enc)
1

$←− Ψq, and u $←−Xq.
Output c←

(
∆m+ u · b+ e

(Enc)
0 , u · a+ e

(Enc)
1

)
∈ R2

q .
• BFV.Dec(sk, c): Given a ciphertext c = (c[0], c[1]) ∈ R2

q , compute
µ ← c[0] + c[1] · sk. Output m ← [

⌊
k
q
(µ)
⌉
]k := ΩDec(µ) ∈ Rk, where ΩDec

denotes a non-linear decoding function.
5It is typically chosen as R3, where coefficients are uniformly distributed in

{−1, 0, 1}
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We defer to Section 4.4 the algorithm used for evaluation, since they depend on
the chosen relinearization key, of which the choice is our main contribution.

Remark 2. In this paper, we only use the BFV example, but an analogous con-
struction using CKKS [CKKS17] can be obtained with an obvious adaptation.

4.2 New Relinearization Key Generation.

Let us recall that in order to perform homomorphic operations, an extra relin-
earization key denoted rlk is needed. The homomorphic multiplication of two
BFV ciphertexts c1, c2 ∈ R2

q involves two steps:
(a) The first, denoted “tensoring” produces a degree two ciphertext consisting of

three elements:
(2) ĉ =

⌊
k

q
c1⊗c2

⌉
= (ĉ[0], ĉ[1], ĉ[2]) ∈ R3

q .
6

(b) To reduce the degree back to one, a second step, denoted relinearization,
must be carried out using rlk to turn ĉ into a “regular” BFV ciphertext c′ =
(c′[0], c′[1]) which can be decrypted as the product of the plaintexts.

Remember from Section 1.1.1 that the relinearization key rlk used in previous
works [KJY+20; Par21; MTBH21] was quadratic in the secret key. We now
present a new alternative key that is only linear in the secret key.

New Relinearization Key Generation. Our relinearization algorithm heav-
ily leverages the gadget toolkit introduced in Section 3.1. Notably, recall that
g−1 : Rq → Rl is a gadget decomposition corresponding to a gadget vector
g ∈ Rlq. It also makes use of two uniform random strings, that come in the
form of two vectors (a,d1) ∈ R2×l

q , of which a = a[0] is, as described in Sec-
tion 4.1, used to generate encryption keys. We can now define the algorithm
`−BFV.RlkKeygen to generate a relinearization key.

• (d0,d2) ∈ R2×l
q ← `−RlkKeygen(a,d1, sk):

– Sample r ←Xq.
– Sample e

(rlk)
0 ← Ψ lq, and set d0 = −sk · d1 + e

(rlk)
0 + r · g

– Sample e
(rlk)
2 ← Ψ lq and set d2 = r · a+ e

(rlk)
2 + sk · g

and set rlk = (d0,d1,d2).

Interestingly, the overall algorithm to generate rlk is linear over the secret
key sk, unlike previous ones [KJY+20; Par21; MTBH21].

Construction Intuition. The intuitive rationale behind this new algorithm is
that our rlk is none other than a particular case of an existing relinearization
key! Indeed, the recent work of [CDKS19] proposed a n-out-of-n multi -key FHE
scheme from BFV, and, therefore an algorithm to generate relinearization keys,
which operate on multi-key ciphertexts. In this setting, a multi-key ciphertext
associated to n players is of the form c = (c1, c2, . . . , cn), is decryptable by

6Where c1 ⊗ c2 = (c1[0] · c2[0], c1[0] · c2[1]+c1[1] · c2[0], c1[1] · c2[1])
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the concatenated secret keys s = (sk1, . . . , skn), and is relinearizable using the
concatenated n relinearization keys {rlki}i∈[n]. Interestingly, we observe that if
we only consider the particular single-key case (i.e. n = 1), we obtain exactly
our rlk presented in Section 4.2!

Further construction details will be presented in Section 5.3.

4.3 `−BFV

We now describe our new scheme, `−BFV, which features a linear relineariza-
tion key generation. To emphasize its linearity, we define it using linear maps.
Specifically, we introduce ΛEKeyGen and ΛRlkGen to highlight that encryption and
relinearization key generation are linear in the secret key and some randomnesses,
ΛEnc to indicate that encryption is linear in a plaintext and some randomnesses,
and ΛDec to show that decryption is, roughly, linear in the secret key.

We use the same notations as previously in Section 4.1. `−BFV takes two
URSs as inputs: a,d1 ∈ Rlq, and consists of the following PPT algorithms:
• `−BFV.KeyGen(a ∈ Rlq,d1 ∈ Rlq): Sample e(ek) $←− Ψ lq and sk $←−Xq.

Define Λa
EKeyGen : (sk, e

(ek))→(−a · sk+ e(ek),a).

Output ek← Λa
EKeyGen(sk, e

(ek))=(−a · sk+ e(ek),a) = (b,a) and sk.

• `−BFV.RlkKeygen(a ∈ Rlq,d1 ∈ Rlq, sk) Sample r ← Xq, e
(rlk)
0 , e

(rlk)
2 ← Ψ lq,

and define Λa,d1,g
RlkGen : (sk, r, e

(rlk)
0 , e

(rlk)
2 ) → (−sk · d1 + e

(rlk)
0 + r · g,d1, r · a+

e
(rlk)
2 + sk · g).

Output the relinearization key rlk← Λa,d1,g
RlkGen(sk, r, e

(rlk)
0 , e

(rlk)
2 ).

• `−BFV.Enc(ek = (b,a),m ∈ Rk): Set b = b[0] and a = a[0], and sample the
encryption randomnesses e(Enc)0

$←−BEnc,q, e
(Enc)
1

$←−Ψq, and u $←−Xq.
Define Λb,aEnc : (∆m,u, e

(Enc)
0 , e

(Enc)
1 )→

(
∆m+u · b+ e

(Enc)
0 , u · a+ e

(Enc)
1

)
Output c← Λb,aEnc

(
∆m,u, e

(Enc)
0 , e

(Enc)
1

)
∈ R2

q .
• `−BFV.Dec(sk, c): Given a ciphertext c= (c[0],c[1]) ∈R2

q , define Λ
c
Dec : sk →

c[0]+c[1]·sk and compute µ←Λc
Dec(sk).

Output m←
[⌊

k
q
(µ)
⌉]
k
:= ΩDec(µ) ∈ Rk.

4.4 Homomorphic Evaluation of a circuit

We can now augment the definition presented in Section 4.3 with homomorphic
operations. Consider two `−BFV ciphertexts c1, c2 ∈ R2

q and keys ek = (b,a)
and rlk, then we have:

• (Addition) `−BFV.Add(c1, c2): Return c = c1 + c2 ∈ R2
q .

• (Multiplication) `−BFV.Mult(c1, c2, rlk,b): Compute ĉ =
⌊
k
q
c1 ⊗ c2

⌉
∈ R3

q

and return c′ ← Relin(ĉ, rlk,b) (cf Algorithm 1).
• `−BFV.Eval(C, (ci ∈ R2

q)i∈[n]), rlk,b), for a circuit C with n input gates,
return the evaluation obtained by applying `−BFV.Add and `−BFV.Mult
gate by gate, with inputs the (ci)i∈[n].
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New Relinearization. We now present our new relinearization algorithm.

Algorithm 1 Relin

Input: ĉ=(ĉ[0], ĉ[1], ĉ[2])∈R3
q , rlk=[d0|d1|d2]∈(Rlq)3,b∈ Rlq

Output c′ = (c′0, c
′
1) ∈ R2

q

1: c′0 ← ĉ[0]
2: c′1 ← ĉ[1]
3: c′2 ← 〈g−1(ĉ[2]),b〉
4: (c′0, c

′
1)← (c′0, c

′
1) + g−1(c′2)<·>(d0,d1)

5: c′1 ← c′1 + 〈g−1(ĉ[2]),d2〉

Correctness. Correctness follows from the proof of [CDKS19] adapted to our
single-key context. In a nutshell, we have:

g−1(c′2)<·>(d0,d1)<·>(1, sk) ≈ r · c′2 and
〈
g−1(ĉ[2]),d2

〉
· sk ≈ −r · c′2 + ĉ[2] · sk2

and thus,
c′0 + c′1sk ≈ ĉ[0] + ĉ[1]sk+ ĉ[2]sk2

We refer to Appendix C for further details about `−BFV and for a complete
noise analysis.

5 Thresholdizing `−BFV into trBFV

In this section, we outline how the `−BFV scheme presented in Section 4.3 is
transformed into a new robust threshold scheme, which we refer to as trBFV.
The latter scheme will be presented as an end-to-end MPC protocol in Section 7.

As previously discussed in Section 1.1.1, existing protocols for distributed
generation of a relinearization key were not robust. Therefore, after describing
our DKG protocol in Section 5.1, we detail in Section 5.2 the robust distributed
generation of our new relinearization key. Finally, we justify in Section 5.3 sim-
ulatability of our distributed relinearization key generation.

5.1 Distributed Key Generation

Our DKG follows the classical pattern of previous DKGs in one broadcast [FS01;
BDO23]. Provided with a fixed public URS denoted a as input, each player
Pi generates a key pair (eki, ski), sends (input, ski, ski) to FLSS and broadcasts
eki. In the second step, players set a common key without any interaction, as
follows. Denote S the set of indices of non-aborting players, i.e., the ones that
have broadcast a contribution eki and sent an input to FLSS, then:

(3) (ek = (b,a) = (−Σi∈S a · ski + e
(ek)
i ,a)) .

Thus, the corresponding secret key is defined as sk = Σi∈Sski. Concretely, each
player has a share of sk, consisting in the sum over S of its shares of the ski.
In our formalism, each contribution is accessible via FLSS. Note that since the
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adversary sees first the contributions eki of honest players, before it decides on
the contributions of corrupt players, the obtained key pair (sk, ek) can be seen
as generated by using what [BDO23] formalize as the BiasKeyGen subroutine. In
Section 7.2, we will prove that our protocol, as a whole, UC implements MPC.
Hence, it can be replaced by the ideal functionality of MPC. Thus the DKG has
completely disappeared, and its bias is a no-issue.

5.2 Robust Distributed Relinearization Key Generation.

To distributively generate a common rlk, one can leverage the additional linear-
ity provided by our new algorithm presented in Section 4.2. In short, to build a
RlkGen protocol, we let each player Pi compute an additive contribution to the
relinearization key (d0,i,d2,i) ← `−BFV.RlkKeygen(a,d1, ski) and broadcast it.
From the set S of indices of players who have correctly broadcast their additive
contributions to the relinearization key and to the threshold encryption key ek
as in Section 5.1, one can then compute:

(4) rlk := (Σi∈Sd0,i,d1, Σi∈Sd2,i)

5.3 Construction Details & Security

We now justify simulatability of our new rlk generation introduced in Section 5.2,
firstly by giving the reasoning behind its construction, before proving security
in Section 5.3.1.

Detailed Construction Explanation: From multikey to single-key re-
linearization key. Let us slightly abuse future notation and denote RlkKeygen
the linear map used in [CDKS19] to produce a relinearization key. In our con-
text, the secret key sk comes as a sum

∑
i ski of (secret shared) contributions ski

from non-aborting players, so we roughly need a robust protocol that generates
rlk := RlkKeygen(sk). This hints towards the blueprint of our robust distributed
solution to generate rlk: in parallel of linearly secret-sharing its contribution ski
to the secret key and eki to the threshold encryption key, each player Pi broad-
casts the corresponding contribution: rlki = (d0,i,d1,i,d2,i) = RlkKeygen(ski) to
the relinearization key. Then, after it computed the threshold encryption key ek
as in Equation (3), each player sets rlk =

∑
i∈S rlki, where S is the same set,

i.e., of indices of players not aborting in the first round, as the one used to set
ek. However, one hurdle remains in that in the linear map RlkKeygen defined
in [CDKS19], the coefficient of ski, denoted d1,i, actually depends on the player
making the contribution, since d1,i is sampled by Pi. Hence, this prevents addi-
tivity between contributions from different players (in the setting of [CDKS19],
no additivity was needed).

To solve this, we specify instead that d1 is in common and given by a uniform
random string (URS). The reason why fixing a common d1 does actually not de-
grade the security of the distributed protocol compared to [CDKS19], is that d1,
by definition, appears in clear in the public relinearization key. More particularly,



Robust Multiparty Computation from RLWE 17

in the proof of Corollary 2, we will show a reduction from the pseudorandom-
ness of our common rlk defined in Equation (4), into the pseudorandomness of a
single-key rlk, with loss only linear in n. To give an intuition, a toy model of our
reduction is just the well-known reduction from the security of our DKG, into
the security of RLWE. In this toy model, what the adversary sees are n samples
(a, a · ski + e

(ek)
i )i∈[n], all with the same public uniform randomness a but with

different independently sampled secrets ski. So the idea is that the reduction to
RLWE, upon receiving one RLWE challenge sample: (a, a · skn + e

(ek)
n ), simply

generates itself n− 1 other challenges: (a, a · ski + e
(ek)
i )i∈[n−1] with the same a,

and handles them to our adversary.

5.3.1 Security. In Corollary 2, we prove that, despite our specification of
a common d1, the concatenation of all the honestly generated contributions
(d0,i,d2,i)← `−RlkKeygen(a,d1, ski) to the common relinearization key, as well
as the contributions eki = (bi,a) to the threshold encryption key, is indistin-
guishable from a large uniform random string, under the same circular security
assumption as implicitly made in [CDKS19] and detailed in Appendix C.2.

Consider a public sampling of an uniform string (a,d1) ∈ U(Rl×2q ), and
a polynomial number M of independent machines. Each of them generates a
key pair (skm, ekm) by using `−BFV.KeyGen, all using the common public a.
Each machine m generates (d0,m,d2,m) ← `−RlkKeygen(a,d1, skm). Then the
collection of the public data issued by these machines {bm,d0,m,d2,m}m∈[M ],
jointly with the public (a,d1), is still indistinguishable from one sample in
U(R

(l×3)M
q ×Rl×2q ).

Corollary 2 (Security with Common Public Randomness). Consider:
DM0 :=

{{
bm,d0,m,d2,m

}
m∈M ,a,d1 : (a,d1)← U(Rlq)

2, and ∀m ∈ [M ] :

skm ←Xq, (e
(ek)
m , e

(rlk)
0,m , e

(rlk)
2,m )←(Ψ lq)

3, rm ←Xq,bm := −a · skm+ e(ek)m ,

d0,m := −skm · d1 + e
(rlk)
0,m + rm · g, d2,m := rm · a+ e

(rlk)
2,m + skm · g

}
Then the maximum distinguishing advantage AdvλDM

0
between a single sample in

DM0 and in U(R
(l×3)M
q ×Rl×2q ), is bounded by MAdvλD0

.

Proof. Consider a cascade of oracles O 0 := ODM
0
,O 1, . . . ,OM such that each O i

returns the first i components of R(l×3)M
q in U(R

(l×3)i
q ) and the remaining ones

as in DM0 . Then the distinguishing advantage between two consecutive O i is at
most AdvD0

, as a straightforward reduction shows (cf Appendix C.2).

6 Threshold decryption

Recall from Section 4.3 that the decryption can be seen as a two steps process:
(i) first the interactive opening of a linear map defined for `−BFV as,

(5) Λc
Dec :sk→ c[0] + c[1] · sk,
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applied to the (shared) secret key sk, with public coefficients equal to the cipher-
text c, (ii) followed by the local computation of a non-linear decoding function
ΩDec. However, a direct adaptation from this decryption to the threshold set-
ting is not trivial, when ΩDec is nontrivial, as is the case in fully homomorphic
encryption. Indeed, the output µ of (i) allows recovering the plaintext, but also
reveals a small decryption noise term that depends on the given ciphertext and
the secret key, as defined below:

Definition 3 (Decryption noise). Let c ∈ C , m ∈ M and sk ∈ Xq. We
define the “decryption noise” as e(Dec)(c, sk,m) := Λc

Dec(sk)−∆ ·m.

Asharov et al. [AJL+12] demonstrated that the noisy output µ of (i) reveals
too much information about the secret key. Thus, to prevent any information
leakage about the secret key, [AJL+12] introduced the technique of adding ad-
ditional noise to µ before it can be reconstructed. This “smudging” noise esm
is, roughly, sampled uniformly in some large enough interval [−Bsm, Bsm]. Now
consider an arithmetic circuit C, and denote BC the upper-bound on the de-
cryption noise of a ciphertext after evaluation of circuit C. The choice of Bsm is
crucial to both the security and correctness of our MPC protocol. This translates
into the following two requirements:

(a) First, the output of (i) µ = Λc
Dec(sk) must be statistically close enough to the

(scaled) plaintext circuit evaluation ∆ · y. Then, there should exist some level
of noise Bsm, so that adding an uniform noise esm ∈ [−Bsm, Bsm] to both
µ and ∆ · y, makes them indistinguishable, while leaving correct the result:
y = ΩDec(µ+esm). As stated in Lemma 24, the indistinguishability requirement
imposes a level of noise high enough so that BC/Bsm 6 negl(λ) (Equation (8)).

(b) Second, the correctness requirement imposes that BC added with this smudging
noise stays small, i.e. we want that:

BC + n ·Bsm ≤ ∆/2,(6)

as further explained in Appendix C.5.

In Sections 6.0.1 and 6.0.2, we give two methods for opening µ added with such
noise, that are illustrated in Fig. 14.

6.0.1 Mainstream Threshold Decryption Method. The first protocol
follows the approach of [AJL+12] and has been used in most other works [AJL+12;
BGG+18; KJY+20]. Each player Pi locally samples a so-called smudging noise
esm,i

$←− [−Bsm, Bsm] uniformly in some interval to be specified, multiplies it by
n!2 ([BGG+18, Construction 5.11]), then adds it to its opening share of (i), i.e.
µi = Λc

Dec(ski) (see Equation (5)), which it sends. The reason for multiplying by
n!2 is to clear-out the denominators of the Lagrange coefficients applied at re-
construction (see [BGG+18]). Following the previous notation and explanations,
the bound Bsm is chosen in [BGG+18, §5.3.1] such that: BC/Bsm = negl(λ) (for
indistinguishability), and such that BC+n.n!

3 ·Bsm < ∆/2 (for correctness of La-
grange reconstruction-then-rounding, or q/4 instead of ∆/2 in the instantiation
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of [BGG+18] with GSW). In a nutshell, this method introduces an overhead of
n.n!3 on the ciphertext modulus q. This results in a n× blowup of the ciphertext
length.

6.0.2 Improved Threshold Decryption Method. To keep the ciphertext
size small, the second method follows a forgotten approach, which we credit to
[GLS15]. Players do not anymore blur their opening share of µ. Instead, they
now reconstruct all at once the sum of µ and a common shared noise esm, i.e.,
they open the linear map defined as:

(7) Λc
Dec+sm : (sk, esm)→ c[0] + c[1] · sk+ esm

The distributed generation of the noise is simply done by adding secret-shared
contributions esm,i, each sampled in [−Bsm, Bsm]. As a result, the correctness
constraint now imposes only BC + n.Bsm < ∆/2 (Eq. 6). Hence, the cipher-
text expansion factor ∆ has a dependency in n which is only linear, instead of
n.n!3 in the previous method. Since the noise can be used only for one threshold
decryption, players must precompute as much noises as many circuits to be sub-
sequently evaluated. We will formalize this simple Distributed Noise Generation
protocol in the MPC protocol. Concretely, each player Pi secret-shares a contri-
bution esm,i← [−Bsm, Bsm] in the form of a PVSS in the broadcast step. Then,
players define the common shared smudging noise as the sum over the contribu-
tions of the players which did not abort: esm=

∑
i∈S esm,i (as for Equation (3)).

7 MPC protocol

In Fig. 4, we formalize our trBFV scheme as an end-to-end MPC protocol in 2
broadcasts + one asynchronous P2P round, called ΠFLSS

MPC, assuming a bulletin
board PKI and two uniform random strings. For simplicity, we describe and
prove it in the FLSS-hybrid model.

7.1 Protocol ΠFLSS

MPC

We instantiate protocol ΠFLSS

MPC leveraging `−BFV. Notably, we use our alternative
relinearization key generation presented in Section 4.2. Moreover, for security
and correctness, we require Equation (6); and:

BC

Bsm
= negl(λ) and

2dnB

BEnc
= negl(λ) .(8)

where BC is a bound on the noise of a ciphertext after evaluation of circuit C
(Eq.32) and B,BEnc bounds on the encryption randomnesses (see Appendix C.3).
Note that following Section 6, two possibilities exist for threshold decryption:
(1) either by using the mainstream threshold decryption method (Section 6.0.1),
which does not require pre-shared noises, (2) or by using the second improved
method (Section 6.0.2), in which players distributively generate a pre-shared
noise in parallel with the DKG. We use the latter in Fig. 4.
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Protocol ΠFLSS

MPC

Participants: n players P1, . . . , Pn, each with input mi.
Bulletin-board PKI setup and URS setup. Each Pi:
– Sends (Setup) to FLSS and obtains common URSs (a,d1)← GURS.

1 Interactive setup in one step of all-to-all broadcasts.
Upon ready from FLSS, each Pi:
– Distributed Keys Generation - broadcasts:
• Computes (ski, (bi,a)) ← `−BFV.KeyGen(a) and (d0,i,d1,d2,i) ←
`−BFV.RlkKeygen(a,d1, ski).

• Sends (input, ski, ski) to FLSS and broadcasts (bi, (d0,i,d2,i)).
– Distributed Smudging Noises Generation (in parallel of DKG):
• Samples esm,i $←− [−Bsm, Bsm] and sends (input, esm,i, esm,i) to FLSS.

1 Formation of threshold keys (local): Each player:

– Reception of broadcasts: Initializes an empty list S ← {}, and ∀j ∈ [n], checks
if the data received from the broadcast of Pj parses as: (bj , (d0,j ,d2,j)) then
adds j to S. Also, if the distributed smudging noise generation was activated, it
further checks if FLSS did notify (stored, esm,j) (else, it does not add j to S).

– Adding the contributions of non-aborting players: Computes

(9) b = Σj∈Sbj ,

sets the threshold keys: ek =(b =b[0], a =a[0]) and sk =Σi∈Sski, and the noise
esm =Σi∈Sesm,i //accessible through FLSS, via the labels sk, esm, and:

(10) rlk = (Σj∈Sd0,j ,d1, Σj∈Sd2,j)

2 Broadcast of encrypted inputs: Each Pi:

– Samples u $←− Xq, e(Enc)0
$←− BEnc,q and e(Enc)1

$←− Ψq. Computes ci = (∆mi + u · b+
e
(Enc)
0 , u · a+ e

(Enc)
1

)
then broadcasts it.

2 Evaluation (local): Each Pi sets Sc ⊂ [n] the subset of indices of
players from which it received a ciphertext cj . Then it computes c ←
`−BFV.Eval(C, {cj}j∈Sc , rlk,b)

a.
3 Threshold Decryption: Each Pi:

– Given labels (sk, esm) and c, sends
(
LCOpen, Λc

Dec+sm(sk, esm)
)
to FLSS;

– Upon receiving (Λc
Dec+sm, µ) from FLSS, outputs y := ΩDec(µ).

aWithout loss of generality, C sets to ⊥ the non received inputs in [n] \ Sc.

Fig. 4: MPC Protocol ΠFLSS

MPC
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7.2 Proofs of Theorem 1

By Proposition 13, ΠLSS UC implements FLSS. Thus, the following Theorem 4
implies Theorem 1.

Theorem 4. ΠFLSS

MPC instantiated from `−BFV UC implements the ideal function-
ality FC for any semi-malicious adversary, in the (FLSS,BC)-hybrid model with
external resource GURS.

7.2.1 Description of the Simulator Sim ofΠFLSS

MPC. To prove Theorem 4, we
describe a simulator Sim of ΠFLSS

MPC, that initiates in its head, a set of n players and
may initially receive corruption requests from Env for up to t players, indexed by
I ⊂ [n]. It simulates functionalities BC,FLSS following a correct behavior, apart
from the value returned by FLSS during the threshold decryption. Upon every
output from a simulated functionality to a simulated corrupt player, or, upon
every message from a simulated functionality to the simulated A, Sim instantly
forwards it to Env, as would have done the actual A.

Intuition. We now convey the main ideas of Sim by describing them via a se-
quence of incremental changes, starting from a real execution. In the last hybrid,
the view of Env is generated solely by interaction with FC, hence what we are de-
scribing is a simulator. The full details about Sim and the proofs are in Appendix
D.

First, in Hybrid1, we simulate decryption by modifying the behavior of FLSS in
the threshold decryption. There it, incorrectly, outputs µSim := ∆y +Σj∈Sesm,j ,
where y := C((m`)`∈Sc

) is the evaluation of the circuit on the actual inputs.
Indistinguishability follows from the “smudging Lemma” (see Lemma 24).

Then, in Hybrid2, the additive contributions (bi, (d0,i,d2,i)i∈H of honest play-
ers to the keys, are replaced by a sample in U(Rl×3q ). Indistinguishability from
Hybrid1 follows from Corollary 2.

Finally, in Hybrid3, we replace the actual inputs m` of simulated honest play-
ers by m̃` := 0. Importantly, the behavior of FLSS is unchanged, i.e., correct
until 3 included, then outputs µSim := ∆y+Σj∈Sesm,j , where y := C((m`)`∈Sc

)
is still the evaluation of the circuit on the actual inputs. Thanks to the mod-
ifications so far, we can apply Lemma 23 “ IND-CPA under Joint Keys”, which
adapts the one of [AJL+12, Lemma 3.4] in the RLWE setting, and argue that
ciphertexts of chosen plaintexts are indistinguishable from random strings.
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Supplementary Material

A Model: Further Formalism and Discussion

A.1 More on Broadcast BC

Definition 1. A broadcast protocol [FLL21, Definition 1] involves a sender S
and a set of receivers R. It requires the following properties:

(Termination): all honest receivers eventually output;
(Consistency): any two honest receivers output the same value;
(Validity): if the sender S is honest and inputs value m, all honest receivers

output the same value m.

We dub it as BC and formalize it in Fig. 5. Overall, it simply proceeds as
follows. On receiving a message m from the sender S , it sends m to each receiver
R ∈ R by using the fetch-and-delay mechanism introduced in Section 2.3.

BCS→R

• Upon receiving a message (send,m) from S , for each R ∈ R, do the
following. Initialize Dmid ← 1, where mid is a unique message ID, store
(mid, Dmid,m,R) and leak (mid, Dmid, R,m) to A.

• Upon receiving a message (fetch) from R:
1. Set Dmid ← Dmid − 1 for all (mid, Dmid, R,m) stored, and leak

(fetch, R,m) to A.
2. If Dmid = 0 for some stored (mid, Dmid, R,m), deliver the message m

to R and delete (mid, R,m) from the memory.
• Upon receiving a message (delay,mid, R) from A, for some stored

(mid, Dmid, R,m), set Dmid ← Dmid + 1.

Fig. 5: Ideal functionality of reliable broadcast. It is parametrized by a sender S
and a set of receivers R.

A.2 FAT

In Fig. 6, we present our Authenticated Message Transmitting functionality FAT.
Our baseline for FST is the functionality denoted Fed-smt [KMTZ11]. For FAT,
we made the addition to leak the contents of the messages to A. We also incor-
porated two other additions, borrowed from the FNET in [LLM+20]. The first
consists in attaching a unique identifier to each message and counter, in order
to give to A a control on the delay of each message individually. The second
addition consists in forcing explicitly A to press (delay) to augment the delay by
+1, instead of the (equivalent) formalization in which A enters the additional
delay in unary notation.
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FAT /FST

• Upon receiving a message (send,m) from S , initialize Dmid ← 1, where mid
is a unique message ID, store (mid, Dmid,m) and leak (mid, Dmid,m) to A.
FST leaks only (mid, Dmid, |m|).

• Upon receiving a message (fetch) from R:
1. Set Dmid ← Dmid − 1 for all mid stored, and leak (fetch) to A.
2. If Dmid = 0 for some stored (mid, Dmid,m), deliver the message m to
R and delete (mid ,m) from the memory.

• Upon receiving a message (delay,mid) from A, for some stored mid , set
Dmid ← Dmid + 1.

• (Adaptive message replacement) Upon receiving a message ((mid,m) →
m′) from A, if S is corrupt and the tuple (mid, Dmid > 0,m) is stored,
then replace the stored tuple by (mid, Dmid,m

′).

Fig. 6: Ideal functionality of asynchronous public authenticated message transmit-
ting with eventual delivery delay, parametrized by sender S and receiver R. The
straightforward upgrade to obtain asynchronous secure message transmitting FST

is described inline.

A.3 Bulletin board PKI: bPKI

In Fig. 7, we present our bulletin board PKI functionality bPKI.

A.4 GURS

GURS is a particular case of Fcrs in [CLOS02].

A.5 Public-Key Encryption

Definition 2. PKE A public-key encryption scheme consists of the following
algorithms:

– Key Generation (dk, pk) ← EKeyGen(1λ): Given a security parameter λ,
the key generation algorithm outputs the public key pk ∈Pk with the asso-
ciated private key dk;

– Encryption c ← Enc(pk,m): Given a message m and a public key pk, it
outputs the ciphertext c;

– Decryption m′ ← Dec(dk, c): Given a ciphertext c and a private key dk, it
outputs a message m′.

1. Security: For subsequent use later in this work, we now describe in more
detail the semantic security of a PKE scheme E = (EKeyGen,Enc,Dec). Con-
sider the following IND-CPA game:
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bPKI

Output format Initialize an empty vector pk = {>}n.
When all pki 6= >, ∀i ∈ [n], set outpout−available = true.

Formalizing eventual delivery For every R ∈ R, initialize a counter DR ← 0
// the delivery delay.
Initialize outpout−available ← false //the flag telling if the output can be
delivered.
Upon receiving fetch from any R ∈ R, DR ← DR−1. When DR = 0 for the
first time, if no output was delivered yet to R, wait until outpout−available
=true then deliver pk to R.

Formalizing timeout for keys of corrupt players Initialize a counter TA ← 1 //
the timeout.
Upon receiving delay−keys from A, TA ← TA + 1.
Upon receiving fetch from any R ∈ R, TA ← TA − 1.
When TA = 0 for the first time, freeze forever TA = 0. Then, for all i ∈ I :
if pki = >, then set pki ← ⊥.

Honest keys registration Upon receiving the first message (Register, p̃ki) from
an honest key-holder Pi, send (Registered, Pi, p̃ki) to A and set pki ← p̃ki.

Corrupt keys registration Upon receiving a message (Register, (p̃ki 6= >)i∈I)
from A, set pki ← p̃ki ∀i ∈ I .

Fig. 7: The bulletin board of public keys functionality bPKI, parametrized by a set
of n key-holders, of which the corrupt ones are indexed by I ⊂ [n], and by a set
of receivers R. It does not perform any checks on the keys received.

GκURS
On input query from all honest players in P , then samples a sequence of κ
bits uniformly at random then outputs it to each player P ∈ P , then halts.

Fig. 8: Uniform Random String.
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GameAIND-CPA(1
λ)

1 : b $←− {0, 1}
2 : (dk, pk) $←− EKeyGen(1λ)

3 : (m0,m1)← A(1λ, pk)
4 : c← Enc(pk,mb)

5 : b′ ← A(1λ, pk, c, state)
6 : return b = b′

The advantage of A in this game is defined as AdvAEnc = |Pr[b = b′]|.
We say that E is IND-CPA secure if, for any PPT adversary A, it holds that

(11) |2.AdvAEnc − 1| ≤ negl(λ)

2. Correctness: A public-key encryption scheme if said correct is for all mes-
sage m and (dk, pk)← EKeyGen(1λ),

(12) Dec(dk,Enc(pk,m)) = m.

B More on FLSS and Secret Sharing over Rings

In this section, we detail the instantiation of FLSS and the different challenges
we face.

1. We first define in Appendix B.1, what a (n, t)-Linear Secret Sharing scheme
(LSS) is and how it can be used to design a Publicly Verifiable Secret Sharing
scheme (PVSS).

2. We then detail in Appendix B.2, how to implement a LSS scheme over poly-
nomial rings.

3. We later prove in Appendix B.3, that our PVSS scheme is IND-CPA.
4. Finally in Appendix B.4, we detail the implementation of FLSS and its secu-

rity.

B.1 Linear Secret Sharing

We now introduce the concept of linear secret sharing that will prove useful
throughout this work to design multiparty schemes.

Definition 3. ((n, t)-LSS) Let R be a ring. A (n, t)-Linear Secret Sharing Scheme
is defined by the following two algorithms:

– LSS.Share(s ∈ R, n, t)7 → (s(1), . . . , s(n)): For a given secret s ∈ R, the sharing
algorithm generates a vector (s(1), . . . , s(n)) of shares, where s(i) is the share of
player Pi.

7We leave implicit the randomness used for the sharing.
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– LSS.Reco({s(i)}i∈U ,U) → s: For any set U of size t + 1 and shares {s(i)}i∈U ,
the reconstruction algorithm outputs a secret s ∈ R.

To ease notations, we define a sharing of some secret s ∈ R as [s] = {s(1), . . . , s(n)}.

Furthermore, it must satisfy the following properties.

1. Correctness: For any set U of size t + 1, the value s can be efficiently re-
constructed from the set of shares {s(i)}i∈U , i.e. for any projection SU of S ←
LSS.Share(s, n, t), it holds that LSS.Reco(SU ,U) = s with probability 1.

2. Privacy: For all V such that |V | ≤ t, and secrets sL, sR ∈ R, then the shares
of sL and sR output by LSS.Share follow the same distribution. More formally,
we have:

(13)

{
{s(i)R }i∈V ≈ {s

(i)
L }i∈V

∧{s(i)R }i∈[n] ← Share(sR, n, t)

∧{s(i)L }i∈[n] ← Share(sL, n, t)

}
In other words, the set of shares {s(i)}i∈V does not leak anything about the
secret.

3. Linearity: Linear operations (namely additions and subtractions) can be ap-
plied on the shares of different secrets to obtain the shares of the corresponding
operations applied on these secrets. Specifically, when considering two sharings
[x] = {x(1), . . . ,x(n)} and [y] = {y(1), . . . ,y(n)} of some values x, y ∈ R, then
{x(1) + y(1), . . . ,x(n) + y(n)} (resp - for the subtraction) is a sharing of x + y
(resp x− y).

This notion can be generalized to any set of secret values. Consider a linear
map Λ and a set of sharings {[xi]}i∈S of some secrets {xi}i∈S ∈ R. Then, we
have that {Λ({x(1)

i }i∈S), . . . , Λ({x
(n)
i }i∈S)} = [Λ({xi}i∈S)].

Moreover, for our UC proofs to go through, we require in addition the following
two properties (4) and (5), which enable the simulation of shares. They are
satisfied by all linear secret sharings used in practice, e.g., Shamir[Sha79] and the
{0, 1}-LSSD of [JRS17] (renamed {0, 1}-LSS in [BS23]). Of possible independent
interest, we provide a definition (Definition 6) of a subclass of (n, t)−LSS, which
we call (n, t)−LSSD, and which encompasses both Shamir sharing, {0, 1}-LSSD
and the recent TreeSS scheme of Cheon et al. [CCK23]. Then in Proposition 5
we prove that a (n, t)−LSSD scheme satisfies both properties (4) and (5).

4. Simulatability: Additionally, we require the existence of an efficient func-
tion ShSim such that for every PPT adversary A, for any set V such that
|V | ≤ t (and U = [n]\V), and any two secrets sL, sR ∈ R, for (s(1)L , . . . , s

(n)
L )←

LSS.Share(sL, n, t), (s
(1)
R , . . . , s

(n)
R ) ← LSS.Share(sR, n, t) and

{s̃(i)L }i∈U ← ShSim({s(i)R }i∈V , sL),∣∣∣Pr[A({s(i)L }i∈V , {s(i)L }i∈U ) = 1]−

Pr[A({s(i)R }i∈V , {s̃
(i)
L }i∈U ) = 1]

∣∣∣ ≤ negl(λ)(14)
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5. Inference of Shares: Finally, we require the existence of an efficient func-
tion ShInfer such that for every PPT adversary A, for any set (t + 1)-sized
set U (and V = [n] \ U), and any two secrets sL, sR ∈ R, for (s

(1)
L , . . . , s

(n)
L )←

LSS.Share(sL, n, t), (s
(1)
R , . . . , s

(n)
R ) ← LSS.Share(sR, n, t) and

{s̃(i)L }i∈V ← ShInfer({s(i)L }i∈U ),∣∣∣Pr[A({s(i)L }i∈V , {s(i)L }i∈U ) = 1]−

Pr[A({s̃(i)L }i∈V , {s
(i)
L }i∈U ) = 1]

∣∣∣ ≤ negl(λ)(15)

We now discuss a classical example of a linear secret-sharing scheme.

Example: Shamir Secret Sharing. For the purpose of this section, we con-
sider a finite field F and assume that each player Pi ∈ P is associated with a
non-zero element αi ∈ F such that if i 6= j then αi 6= αj . We recall the secret-
sharing scheme of Shamir [Sha79] that implements a (n, t)-LSS scheme based on
polynomial interpolation in a finite field. As a reminder, let us first define what
are Lagrange coefficients.

Definition 4. Given U ⊆ [n] with |U | = t+1, we denote as Lagrange coefficients
the values {λUi }i∈U computed as

(16) λUi =
∏

j∈U ,j 6=i

α0 − αj
αi − αj

Intuitively, Shamir uses polynomial evaluation to share some secret and in-
terpolation to reconstruct it from shares. In more details, to share a value s ∈ F
using Shamir, the dealer samples at random a polynomial f(Y ) ∈ F≤t[Y ] of
degree at most t, such that f(0) = s. The shares corresponding to each player Pi
are then define as the evaluation of f in αi, i.e. s(i) = f(αi). The reconstruction
of the secret is done by doing a Lagrange interpolation at α0 from any set of
t+ 1 shares.

Formally, the scheme can be defined by the following two algorithms:

Shamir.Share(s, n, t): To secret-share a value s ∈ F, sample f1, . . . , ft $←− F and
output s(i) = s+Σt

j=1fjα
j
i for all i ∈ [n].

Shamir.Reco({s(i)}i∈U ,U): To reconstruct s from shares {s(i)}i∈U , compute

(17) s =
∑
i∈U

λUi s
(i)

Correctness of the scheme follows from polynomial evaluation and recon-
struction, while privacy intuitively follows from the fact that any set of t shares
does not leak anything about the secret s.
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B.1.1 Publicly Verifiable Secret Sharing (PVSS) Let PKE = (EKeyGen,
Enc,Dec) be any public key encryption scheme satisfying IND-CPA (see Defini-
tion 2). We introduce the following definition:

Definition 5. (Publicly Verifiable Secret Sharing (PVSS)) Let us consider the
following randomized function PVSS, parametrized by n strings (pkPKEi )i∈[n]. On

input s ∈ Rq compute (s(1), . . . , s(n))← LSS.Share(s), and output
[
PKE.Enc(pkPKEi , s(i))

]
i∈[n]

along with a NIZK proof π of correct sharing for the following relation.
(18)

RShare=
{
x = ({pkPKEi }j∈[n], enc−shares)
w = (s, r, {ρi}i∈[n])

∧{s(i)}i∈[n] ← LSS.Share(s; r)
∧ enc−shares← [Enc(pkPKEi , s(i); ρi)]i∈[n]

}

PVSS is IND-CPA for any A being given at most t secret keys
(
dkPKEi

)
i∈I⊂[n],|I|≤t,

as will be shown in Appendix B.3.

Remark 3. By convention, encryption under an incorrectly formatted public key
pkPKE, e.g., ⊥, returns the plaintext itself.

Remark 4. We describe the MPC protocol in Section 7 in the semi-malicious
model, for which the NIZK proof can be dropped. This leads to the manipulation
of new structures, denoted as Public Secret Sharing, namely a PVSS without a
proof of correctness.

B.2 How to implement a linear Secret Sharing scheme over a
Polynomial Ring

Our goal in this section is to propose instantiations of (n, t)-LSS schemes as
defined in Definition 3 over polynomial rings. There are two main difficulties in
constructing such schemes. First, following Definition 3 one need to be able to
instantiate two efficient functions ShSim and ShInfer from these schemes, which
will turn out to be very important for our UC proofs. Second, these schemes
must be defined over polynomial rings, which turned out to be not obvious,
for example in the case of Shamir. To address these challenges, we follow the
roadmap below:

1. We first introduce in Appendix B.2.1, a subclass of (n, t)−LSS that we denote
as (n, t)−LSSD in Definition 6. The latter will be used as a helper to describe
a common instantiation strategy for ShSim and ShInfer that encompass classic
sharing schemes, eg. the classical {0, 1}−LSSD scheme of [JRS17].

2. Then, we present in Appendix B.2.2 our new Shamir scheme over polynomial
rings, denoted as Rpe−Shamir, and show that it also is a (n, t)−LSSD scheme.

In a nutshell, we show the following:
(19)
Rpe−Shamir ∪ (n, t)−{0, 1}−LSSD ⊂

Prop. 6&9
(n, t)−LSSD ⊂

Definition 6
(n, t)−LSS
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B.2.1 (n, t)−LSSD Following [JRS17], we now define (n, t)−LSSD in Defini-
tion 6, presented as a subclass of (n, t)−LSS (cf Definition 3). This definition will
help us in Proposition 5 to describe efficient simulation and inference strategies
for instantiating (n, t)−LSS schemes.

Definition 6. ((n, t)−LSSD adapted from [JRS17]) A (n, t)-LSSD scheme is
defined by the following two algorithm:

– LSSD.Share(s ∈ Rq, n, t)→ (s(1), . . . , s(n)): There exists a share matrix M ∈
Rp×lq with positive integers p =

∑n
i=1 pi, l and associate a partition Ti of

[p] of size |Ti| = pi to each player Pi, ∀i ∈ [n]. For a given secret s ∈ Rq
the sharing algorithm samples random values r2, . . . , rl←$Rq and generates
a vector (sh1, . . . , shp)

T = M · (s, r2, . . . , rl)T . The share for Pi is a set of
entries s(i) = {shj}j∈T

i

.

– LSSD.Reco({s(i)}i∈U ,M) → s: For any set U ⊆ [n] such that |U | > t, one
can efficiently find the coefficient {cUj }j∈∪

Pi ∈UTi

such that

(20)
∑

j∈∪
Pi ∈UTi

cUj ·M[j] = (1, 0, . . . , 0).

Given such coefficients, the secret can be recovered simply by computing

(21) s =
∑

j∈∪
Pi ∈UTi

cUj · shj .

The coefficients {cUj } are called recovery coefficients.

Our goal is then to show that a (n, t)−LSSD scheme verifies the properties
(4) and (5) of simulatability and inference of a (n, t)−LSS scheme. In order to
achieve this, we first adapt the following definition from [BGG+18].

Definition 7. Let P = {P1, . . . , Pn} be a set of players. We define the following:
• A set of players S ⊆ P is a maximal invalid player set if |S| ≤ t but for every
Pi ∈ P \ S, we have |S ∪ {Pi}| > t.

• A set of players S ⊆ P is a minimal valid player set if |S| > t and for every
S′ ( S, we have |S′| ≤ t.

Let LSS be a (n, t)−LSSD scheme with share matrix M ∈ Rp×lq . For a set of in-
dices T ⊆ [p], we say that T is a valid share set if (1, 0, . . . , 0) ∈ span({M[j]}j∈T ),
and an invalid share set otherwise. We also define the following:
• A set of indices T ⊆ [p] is a maximum invalid share set if T is an invalid
share set, but for any i ∈ [p] \ T , the set T ∪ {i} is a valid share set.

• A set of indices T ⊆ [p] is a minimal valid share set if T is a valid share set,
but for any T ′ ( T , T ′ is an invalid share set.

Proposition 5. From any (n, t)−LSSD scheme, there exists an efficient instan-
tiation of ShSim and ShInfer following Definition 3.
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Proof. We leverage Definition 7 to outline simulation and inference strategies
common to all (n, t)−LSSD schemes as defined in Definition 6, so that we can
use functions ShSim and ShInfer as wrappers independent of the instantiation.

Simulation Strategy : We now detail the overall strategy to implement ShSim,
i.e. the computation of shares {s(i)}i∈[n]\V from {s(i)}i∈V and some secret s.
1. Compute a maximal invalid share set {shj}j∈T ∗ where T ∗ =

⋃
i∈V Ti.

2. To simulate s(i) = {shj}j∈T
i

, compute for all j ∈ Ti:
– If j ∈ Ti

⋂
T ∗, then set s̃hj = shj .

– If j /∈ Ti
⋂
T ∗, then compute a minimal valid share set T ⊆ T ∗∪{j}.

Such set T exists since T ∗ is a maximal invalid share set, and we
have

∑
j ′∈T cj ′ · shj ′ = s. Therefore, as long as j ∈ T , we have:

(22) s̃hj = (cj)
−1s−

∑
j ′∈T\{j}

(cj)
−1cj ′ · shj ′

Finally, set s(i) = {s̃hj}j∈T
i

.
Inference Strategy : To implement ShInfer, i.e the computation of shares
{s(i)}i∈V ,|V |≤t from shares {s(i)}i∈U=[n]\V , one can follow this simple strategy:
1. First, reconstruct s← LSS.Reco({s(i)}i∈U=[n]\V ,U).
2. Then, without lose of generality, choose t shares s(1), . . . , s(t) among
{s(i)}i∈U=[n]\V , and follow the steps described above for the “Simulation
Strategy” with inputs s and these shares.

3. Output the simulated {s(i)}i∈V .

Example of {0, 1}−LSSD [JRS17]

Property 6. The {0, 1}−LSSD scheme described in [JRS17] is a (n, t)−LSSD
scheme.

Proof. This property directly follows from [JRS17, Theorem 3]. Importantly,
one can efficiently instantiate ShSim and ShInfer from it following the strategy
described in the proof of Proposition 5.

Remark 5. Finally, let us note that the recent TreeSS scheme presented in [CCK23]
also is a (n, t)−LSSD scheme following their Proposition F.1. Therefore, the same
reasoning is trivially valid.

B.2.2 Shamir Secret-Sharing inRq The usual Shamir secret-sharing scheme
described in Appendix B.1 is instantiated over a field F. Indeed, Shamir is based
on polynomial interpolation and involves the computation of Lagrange coeffi-
cients, which requires inverting elements of the form αi − αj , where αi and αj
are public-points. Working over a field guarantees that all non-zero elements are
units, hence that these coefficients exist. Our goal is to propose a variant of this
classical case that works over polynomial rings.
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Reminders. It is a known result since [Feh98] that using a ring is possible, as
long as the set of Shamir public-points forms an exceptional sequence [ACD+19;
CDN15] as defined in Definition 8 below.

Definition 8. (From [ACD+19]) For a ring R, the sequence α1, . . . , αn of ele-
ments of R is an exceptional sequence if αi − αj is a unit in R for all i 6= j.

Provided with an exceptional sequence over R, we then have the following
Theorem 7.

Theorem 7. (From [ACD+19]) Let R be a commutative ring and α1, . . . , αn be
an exceptional sequence in R. Then, a Shamir secret-sharing scheme instantiated
in R with Shamir public-points, α1, . . . , αn, is correct and secure.

What remains to be seen is how to build an exceptional sequence from Rq.

Construction of an Exceptional Sequence. To build an exceptional se-
quence for Rq, we distinguish two cases.

The easy case is when all prime factors of q are of size at least n + 1. Then
we have that [0, . . . , n] ⊂ Rq forms an exceptional sequence. Indeed, all i− j for{
(i, j) ∈ [0, . . . , n]2, i 6= j

}
are invertible modulo all the prime factors of q, thus

are invertible modulo q by the Chinese remainders theorem (CRT), and thus in
Rq.

In the general case, we need to enlarge Rq. We do the construction for q = pe a
prime power, itself possibly small p 6 n ([CH18; GIKV23]), then the case of com-
posite q follows from the CRT. The construction is conceptually as follows. Con-
sider an irreducible polynomialQ(T ) ∈ Fp[T ] of degree d := dlogp(n+1)e, then an
arbitrary lift Q in Z/qZ. Finally, embed Rq in the Rq-algebra S := Rq[T ]/Q(T ),
which we may also denote as Gal(Rq, d). Now in S = Gal(Rq, d), we have the
sub-ring B := Z/qZ[T ]/Q, denoted Gal(Z/qZ, d) the "Galois ring extension of
degree d of Z/qZ".

In [ACD+19], they observe that B contains a pd-sized exceptional sequence,
i.e. at least n+ 1 elements, denoted (α0 := 0, α1, ..., αn), such that all pair-wise
differences αi−αj for i 6= j are invertible. From them, we deduce a linear secret-
sharing over B, that we denote LSS[B]. By tensorisation of LSS[B], over Z/qZ,
with any inclusion of Z/qZ-algebras, e.g. Z/qZ ↪→ Rq, we obtain a S-linear
secret-sharing scheme LSS[S] over S := Rq ⊗Z/qZ B. Thus, we can apply to S
and to these evaluation points (αi)i=0,...,n the same previous construction as for
Shamir defined in Appendix B.1. Rq being a sub-ring of S, we have that LSS[S]
particularizes to a Rq-linear sharing over Rq as desired.

Property 8. (Rpe−Shamir) Let e be an integer and p a prime. There exists a
Shamir secret-sharing scheme instantiated in Rpe that is correct and secure.

Property 9. Rpe−Shamir is a (n, t)−LSSD scheme.
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Proof. This directly follows from Definition 6, when considering the Vander-
monde matrix as sharing matrix.

To summarize, we consider an exceptional sequence α1, . . . , αn, where each
αi will be treated as a Shamir public-point. To share a secret s, sample a poly-
nomial h at random in S[X]

(s)
t , then output {h(αi)}i∈[n]. Each share, which is

in S, is therefore encoded as d elements of Rq. Then for reconstruction use the
Lagrange polynomials Πj 6=i(X − αj)/(αi − αj).
Note that, since each share is in S =̃Rdq , we have a size overhead of d. But for
simplicity, in the remaining we do as if shares were in Rq.

Uniformity of any t shares of any given secret.

Property 10. Let p be a prime and e and integer. For every s ∈ Rpe , for
any subset of t indices I ⊂ [n], the distribution of shares (s(i))i∈I output by
Rpe−Shamir.Share(s) is U(Rtpe).

Proof. For any commutative ring R with unit 1, we denote as R[Y ]t the poly-
nomials of degree ≤ t. Let us first introduce, for a set U ⊂ (αi)i∈[0,...,n], the
following map:

– EvalU : h ∈ R[Y ]t → [h(αi), αi ∈ U ]: the map returning the evaluations at
points of U .

By [ACD+19, Thm 3], for every (t+1)-sized U , we have that EvalU is an isomor-
phism. Then, we have the randomized function LSS[R].Share : R −→ Rn, defined
as: on input a secret s ∈ R, sample h ← U

(
R[Y ]

(s)
t

)
then return Eval(α

i

)
i∈[n]

(h)
denoted shares of s.

By surjectivity (isomorphism) of Eval{0}∪I : R[Y ]t → Rt+1 for any t-sized
subset I of indices of (αi)i∈[0,...,n], we have surjectivity (isomorphism) of EvalI :
R[Y ]

(s)
t → Rt for any fixed s ∈ R. Furthermore, the map EvalI being also linear,

we have that it maps the uniform distribution onto the uniform distribution.
When LSS is instantiated with Rpe−Shamir, we have the desired result.

B.3 Proof of IND-CPA of Publicly Verifiable Secret Sharing

Proposition 11 states that any PPT adversary A corrupting at most t play-
ers, has negligible advantage in distinguishing between the encrypted (n, t)−LSS
sharings of any two chosen secrets (sL, sR) ∈ R2

q . Recall that in this section, we
consider any public key encryption scheme PKE = (EKeyGen,Enc,Dec) satisfying
IND-CPA (see Definition 2 and [GV22]).

Proposition 11 (IND-CPA of encrypted sharing). For any integers 0 ≤ t ≤
n, we consider the following game between an adversary APVSS and an oracle O .
O is parametrized by a secret b ∈ {L,R} (left or right oracle).
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GameAPVSS

IND−PVSS

Setup. APVSS gives to O: a subset of t indices I ⊂ [n], and a list of t
public keys (pki)i∈I ∈ (Pk t ⊥)t. For each i ∈ [n]\I , O generates
(dki, pki)← EKeyGen(1λ) and shows pki to APVSS.

Challenge. APVSS is allowed to query O an unlimited number of times
as follows. APVSS gives to O a pair (sL, sR) ∈ R2

q . Depending on b ∈
{L,R}, O replies as either OL or OR:
OL: computes (s(1), . . . , s(n)) ← Share(sL) and returns

(Encpki(s
(i)))i∈[n]

OR: computes (s(1), . . . , s(n)) ← Share(sR) and returns
(Encpki(s

(i)))i∈[n].
Guess. APVSS gets some (Encpki(s

(i)))i∈[n] and outputs b′ ∈ {L,R}. It wins
if b′ = b.

Fig. 9: IND-CPA of encrypted sharing

At some point, APVSS may output a string, e.g., a bit. Then for any PPT
machine APVSS, we want to show that the distinguishing advantage AdvL,R =
|Pr(1← AO L

PVSS)− Pr(1← AO R

PVSS)| is negligible.

In order to prove Proposition 11, our goal is then to bound the advantage
by any adversary APVSS

∗ in the game presented in Fig. 10, by the maximum
advantage of an adversary APKE in the (n-t)-keys variant indistinguishability
game for PKE presented in Fig. 12.

Proof. We now consider the game of IND-CPA of encrypted sharing with plain-
text adversary shares. We denote again its oracles as OL and OR, although now
they return in the clear the t corrupt shares. We first define two apparent mod-
ifications of OL and OR, denoted as cotL and ÕR, which only differ from the
previous, in that they first sample the corrupt shares (s(i))i∈I $←− Rtq8 uniformly
at random, then simulate shares for [n] \ I using the latter and sL or sR.

Actually, by the secrecy of the secret sharing scheme, they produce exactly
the same distribution as OL and OR. We describe them below in Fig. 10, then
formalize the previous claim in Equation (23).

GameAPVSS∗

IND−PVSS∗

Setup. A∗PVSS gives to O: a subset of t indices I ⊂ [n], and a list of t
public keys (pki)i∈I ∈ (Pk t ⊥)t. For each i ∈ [n]\I , O generates
(dki, pki)← EKeyGen(1λ) and shows pki to A∗PVSS.

Query. A∗PVSS is allowed to query O an unlimited number of times as
follows. A∗PVSS gives to O a pair (sL, sR) ∈ R2

q . Depending on b ∈
{L,R}, O replies as either OL or OR:

8Here we do as if all shares were in Rq
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ÕL : samples (s(i))i∈I $←− Rtq and simulates shares for [n]\I . Precisely,
it interpolates ({s(i)}i∈[n]\I) ← ShSim({s(i)}i∈I , sL) and returns(
(s(i))i∈I , (Encpki(s

(i)))i∈[n]\I
)
;

ÕR: samples (s(i))i∈I $←− Rtq and simulates shares for [n] \ I . Precisely,
it interpolates ({s(i)}i∈[n]\I) ← ShSim({s(i)}i∈I , sR) and returns(
(s(i))i∈I , (Encpki(s

(i)))i∈[n]\I
)
;

Guess. APVSS∗ gets some
(
(s(i))i∈I , (Encpki(s

(i)))i∈[n]\I
)
and outputs b′ ∈

{L,R}. It wins if b′ = b.

Fig. 10: IND-CPA of encrypted sharing with plaintext adversary shares.

For any possibly unlimited adversary APVSS
∗ ,

|Pr(1← AÕ L

PVSS
∗)− Pr(1← AO L

PVSS
∗)| = 0 and |Pr((1← AÕ R

PVSS
∗)− Pr(1← AO R

PVSS
∗)| = 0

(23)

To conclude the proof, we introduce an intermediary oracle, defined as ÕZ in
Fig. 11. ÕZ is the common modification of ÕL and ÕR, which sets to 0 the n− t
honest plaintext shares. In particular, it completely ignores the request (sL, sR)
given to it.

ÕZ : samples (s(i))i∈I $←− Rtq; sets s(i) := 0 ∀i ∈ [n]\I ; returns(
(s(i))i∈I , (Encpki(s

(i)))i∈[n]\I
)
;

Fig. 11: Intermediate oracle ÕZ for the game presented in Fig. 10.

From Property 10 of uniform independence of the t plaintext shares
(
s(i))i∈I ,

we conclude that the distinguishing advantage between both ÕL and ÕR, with
ÕZ , is negligible.

Claim 12. The maximum distinguishing advantage with ÕZ is less than the
one for (n− t)-keys IND-CPA for PKE.

We recall the game defining it, from which the Claim should be clear enough.
It is between a challenger APKE, and an oracle OPKE parametrized by a secret
b ∈ {E, 0}.
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GameAPKE

(n−t)−IND-CPA

Setup. For each i ∈ [n− t], OPKE generates (dki, pki)← EKeyGen(1λ) and
shows pki to APKE.

Query. APKE gives to OPKE (n − t) chosen plaintexts (sh)h∈[n−t], then
OPKE replies depending on b ∈ {E, 0}.
OE

PKE returns (Encpkh(sh))h∈[n−t];
O0

PKE returns (Encpkh(0))h∈[n−t].
Guess. APKE gets some (ch)h∈[n−t] and outputs b′ ∈ {E, 0}. It wins if

b′ = b.
Fig. 12: (n− t)-keys IND-CPA

Recall that the distinguishing advantage in this GameAPKE

(n−t)−IND-CPA game, is
upper-bounded by n− t times the advantage for one-message indistinguishabil-
ity, see e.g. [BS20, Thm 5.1].

We now fully formalize the proof of the Claim, as the following straight-
forward reduction from the game (ÕL/ÕZ) (and likewise (ÕZ/ÕR)) into the
n− t-keys IND-CPA game (OE

PKE/O
0
PKE). The reduction works as follows.

1. Upon receiving a set of keys (pkPKEh )h∈H from OPKE, then APKE samples
itself t key pairs (dkPKEi , pkPKEi )i∈I , initiates APVSS

∗ , reorganizes the indices
so that the indices chosen by APVSS

∗ correspond to I , gives to APVSS
∗ the

total n = |H| + |I | public keys and furthermore gives to APKE the t secret
keys (dkPKEi )i∈I .

2. Upon receiving one challenge (sL, sR) fromAPVSS
∗ ,APKE samples (s(i))i∈I $←− Rtq

and interpolates ({s(i)}i∈[n]\I) ← ShSim({s(i)}i∈I , sL) which it gives to its
oracle OPKE as a request.

3. Upon receiving the response ciphertexts (ch)h∈H from OPKE, it then computes
the n-sized vector V consisting of:
– The entries in I equal to the plaintexts (s(i))i∈I that APKE generates

itself.
– The remaining entries are set to the {ch}h∈H received from OPKE.

And sends it to APVSS
∗ as response to its challenge.

4. Upon answer a bit b from APVSS
∗ , then APKE outputs the same bit b to OPKE.

The Claim now follows from the fact that in the case OE
PKE, then APVSS

∗ is
facing the same behavior as ÕL, while in the case O0

PKE, then APVSS is facing the
same behavior as ÕZ . Thus the distinguishing advantage of APKE is the same as
the one of APVSS

∗ , which concludes the proof.

B.4 Implementation of FLSS.

We now detail in Fig. 13 protocolΠLSS that instantiates FLSS in the (BC,FST, bPKI)-
hybrid model. Recall from Section 3.2.1 that we consider a set P of n players, a
set S of senders and an output learner L.
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ΠLSS

Parameters: Any PKE = (EKeyGen,Enc,Dec) and LSS = (Share,Reco) and,
from them, the PVSS algorithm detailed in Definition 5.
Participants: A set S of senders, an output learner L, and a set P of n
players.

ΠLSS.Setup : ∀P ∈ P : (dkPKEP , pkPKEP ) ← PKE.EKeyGen(1λ), send
(Register, pkPKEP ) to bPKI.

ΠLSS.Input :
– Each sender S ∈ S sets (pkPKEP )P∈P as the output delivered by bPKI. For

each α ∈ XS :
• Compute enc−sharesS,α,_ := PVSS

(
(pkPKEP )P∈P , xS,α

)
.

• Broadcast (input, ssid := xS,α, enc−sharesS,α) over BCS .
– ∀Pj ∈ P , upon receiving outputs from all sub-instances of all BCS whose label

ssid = xS,α has nonzero coefficient in Λ: for each output (xS,α, ∗), if ∗ = ⊥ then
set x(j) := 0; else if ∗ = [c

(1)
S,α, . . . , c

(n)
S,α] then set x(j)S,α := PKE.Dec(dkj , c

(j)
S,α).

ΠLSS.LCOpen(Λ) :

– Upon calling LCOpen, each player Pj ∈ P evaluates µ(j) := Λ
(
(x

(j)
S,α)S,α

)
and

send it over FPj ,L
ST to L.

– Upon receiving opening shares (µ(i))i∈U from any (t+1)-set U ⊂ [n] of players,
outputs µ := LSS.Reco

(
µ(i))i∈U ,U).

Fig. 13: Protocol for secret-sharing then delayed linear combination

Proposition 13. Protocol ΠLSS UC implements FLSS

Proof. For simplicity, we construct a simulator for an honest L9 and the opening
of only one evaluation of one linear map. The case of multiple openings is handled
as in [CDN15, p127], when they simulate each new Open.

Game REALA. This is the actual execution of the protocol ΠLSS with adver-
sary A fully controlled by Env (and ideal functionalities bPKI,FST,BC).

Game HybridShSim. (Skipped if L is honest.) In this hybrid, we change the
method of computation of the opening shares of honest players. To do so, we
first define quantities denoted Inferred Corrupt Opening Shares (µ(i))i∈I , non-
withstanding corrupt players may not have any opening shares on their witness
tapes, since they may not send any.

For every input xS,α of some honest S , we simply define
(
x
(i)
S,α
)
i∈I as the

actual shares produced by S when it computes the PVSS of xS,α.
For each output (xS,α, ∗) of BCS from some corrupt S : (i) if ∗ = ⊥ then

we define
(
x
(i)
S,α := 0

)
i∈I , otherwise (ii) this implies that ∗ is a correctly formed

PVSS. Thus in this case, we define as
(
x
(i)
S,α
)
i∈I the plaintext shares read on the

9The case where the output learner is corrupt is easy. Namely, the simulator
plays ΠLSS honestly, then indistinguishability follows from the correctness of ΠLSS.
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witness tape of S .

For all i ∈ I we set µ(i) := Λ
(
(x

(i)
S,α)α∈XS ,S∈S

)
. By linearity of the LSS

scheme, they are equal to the opening shares of ỹ that the (Pi)i∈I would have
sent if they were honest. Finally, we generate the opening shares of honest players
as ShSim(ỹ, (µ(i))i∈I).

Claim 14. REALA ≡ Hybrid0Share.
Proof: Since ShSimI simulates perfectly, they are identical to the ones of the
Real execution.

Game HybridFLSS. (Skipped if L is honest.) This game differs from HybridShSim

in that the input ỹ to ShSim is replaced by the actual y leaked by FLSS.

Claim 15. Hybrid0Share ≡ HybridFLSS .
Proof: By correctness of ΠLSS, y = ỹ so the view of Env is unchanged.

Game Hybrid0Share. We modify HybridFLSS in that each simulated honest sender
plays the protocol as if it had input 0 instead of x.

Claim 16. HybridFLSS ≡ Hybrid0Share.
Proof: Since the private keys dkh of all honest players h ∈ H are not used
anymore, we have that the IND-CPA property of PVSS stated in Proposition 11
applies. Thus the view of Env is indistinguishable from the one in the previous
game.

Game HybridShInfer. If L is honest, this game is identical to Hybrid0Share. Else
(if L is corrupt), we now modify the method to Infer the corrupt shares of
the enc−sharesS,α broadcast by corrupt senders S . First, decrypt the honest
shares of enc−sharesS,α using, again, the honest secret keys (skh)h∈H. From them,
compute the opening shares {µ̃(i)}i∈I and use them to infer the corrupt shares
using ShInferH.

Claim 17. Hybrid0Share ≡ HybridShInfer.
Proof: The inferred shares are identical to the ones in the previous game, by the
property of ShInferH.

What we have achieved is a simulator which interacts only with the environ-
ment and with the ideal functionality of linear combination computation, so this
concludes the proof.



Robust Multiparty Computation from RLWE 41

C Complements on `−BFV

The goal of this section is to provide details regarding what has been introduced
in Section 4. First, in Appendix C.1, we recall some generalities that we will use
throughout this section. Then in Appendix C.2, we detail the circular security
assumption made in [CDKS19], which we use as a basis to demonstrate the
security of our relinearization key generation protocol. Then in Appendix C.3,
we prove, as a warmup, the correctness of the decryption of a fresh encryption.
In Appendix C.4, we detail the homomorphic properties that can be added to
the standalone scheme. Finally in Appendix C.5, we perform a complete noise
analysis after homomorphic evaluation of a circuit.

C.1 Generalities

Notation. We adopt the notations introduced in Section 2.1. For any element
r̃ = Σn−1

i=0 r̃iX
i ∈ R, with R := Z[X]/f(X), we define its infinity norm as ‖r̃‖ :=

maxi |r̃i|. For r ∈ Rq, let us consider the unique representative r̃ = Σn−1
i=0 r̃iX

i ∈
R such that r̃i ∈ [−(q − 1)/2, ..., (q − 1)/2] for all i. Then we define ‖r‖ := ‖r̃‖.

Recall that we denote ∆ = bq/kc, the integer division of q by k. We denote
vectors of some length l (see Section 3) in bold, e.g. a. For such vector r =
(r1, . . . , rl) ∈ Rlq, we define ‖r‖ := maxi |r̃i|. For two polynomials p and h in Rq
whose polynomial modulus is a degree-d power of 2 cyclotomic, we have

(24) ‖ph‖ ≤ d‖p‖‖h‖.

C.2 Circular Security Hardness Assumption of [CDKS19].

The multikey FHE (MFHE) scheme of [CDKS19] has its security based on the
hardness of RLWE with parameter (d, q,Xq, Ψq) since it uses the same encryption
algorithm as BFV. In addition, they make a circular security assumption under
which their MFHE remains secure even if (b, rlk) is given to the adversary. Pre-
cisely, this assumption implies that (b, rlk) is computationally indistinguishable
from the uniform distribution over R4×l

q . We now show that our modified relin-
earization key generation, i.e., with a common public randomness d1, remains
secure under their assumption.

We now detail how this circular security shows up in [CDKS19] with their
notations. For our usage, we now state this assumption under a more con-
crete equivalent form, called Assumption 18. Consider an oracle OD

0

which sam-
ples a $←− U(Rlq) then KeyGenerates one BFV key pair (sk, ek), then samples
d1

$←− U(Rlq), then, using RlkKeygen(a,d1, sk), computes from it one public re-
linearization key rlk = (d0,d1,d2) then outputs the pair (ek, rlk). Then, any
adversary has a negligible advantage in distinguishing this single output from a
single sampling in U(Rl×5q ).
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Assumption 18. Define the distribution:
D0 :=

{
(b,a,d0,d1,d2) : (a,d1)← U(Rlq)

2, sk←Xq, (e
(ek), e

(rlk)
0 , e

(rlk)
2 )← (Ψ lq)

3,

r ←Xq, b := −a sk+ e(ek), d0 := −skd1 + e
(rlk)
0 + r g, d2 := r a+ e

(rlk)
2 + skg

}
Then the maximum distinguishing advantage AdvλD

0

between a single sample in
D0 and in U(Rl×5q ), is negl(λ).

Very briefly, they first define an RLWE-based symmetric encryption scheme
denoted UniEnc, for which they state (p7) and prove (Appendix B.1) indistin-
guishability from uniform randomness of any pair {BFV public key; encryption
of some chosen plaintext encrypted with UniEnc using the BFV secret key}, then
they make the circular security assumption that indistinguishability still holds
if one replaces the chosen plaintext by the BFV secret key itself. More details
are provided in Appendix C.2.1 below.

C.2.1 How Assumption 18 appears in [CDKS19] Assumption 18 ap-
pears in [CDKS19] with the following notations. They define an RLWE-based
symmetric one-time encryption scheme with plaintexts in Rq and ciphertexts in
R3×l
q , denoted UniEnca, parametrized by a ∈ Rlq. In their use case, a ∈ Rlq is

the URS which is also used to generate (sk, (b,a)) ← BFV.KeyGen(a), exactly
as in our MPC setting. Then, they state in their (Security) formula p7, and
prove in Appendix B.1 that for any (chosen plaintext) µ, we have that: for a
sampling a ← U(Rlq), followed by a sampling (sk, (b,a)) ← BFV.KeyGen(a),
followed by one single randomized encryption UniEnca(sk, µ), then the single
output (b,UniEnca(sk, µ)) is indistinguishable from a single sample in U(Rl×5q ).
Next, they assume that (Security) also holds when the chosen µ is replaced by
the secret key sk itself, which is exactly what we spelled-out in Assumption 18.
Concretely, in their UniEnca, the r in our D0 shows up as the secret encryption
randomness, while the d1 is specified in UniEnc to be sampled uniformly when
encrypting.

C.3 Warmup: Correctness & Decryption Noise of a Fresh
Encryption

First following Definition 3 of the “decryption noise”, let us introduce the defini-
tion below:

Proposition 19 (Correctness). Let c = (c[0], c[1]) ∈ R2
q , m ∈ Rk and

sk ∈ Xq. It satisfies the trivial property that if |e(Dec)(c, sk,m)| < ∆
2
, then,

`−BFV.Dec(sk, c) = m.

We now formalize the set in which belong the outputs of `−BFV.Enc. For
any m ∈ Rk, we denote as a “Fresh `−BFV Encryption of m”, any element of R2

q

of the form: c = (∆m+u ·b+e(Enc)0 , u ·a+e(Enc)1 ), where ‖u‖ ≤ 1,
∥∥∥e(Enc)0

∥∥∥ ≤ BEnc

and
∥∥∥e(Enc)1

∥∥∥ ≤ B.
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Let us denote e(fresh) := e(Dec)(c, sk,m) := c[0]+ c[1] · sk−∆m its decryption
noise (Proposition 19). Recall that by definition we have that c[0] + c[1] · sk =
∆m+ e(fresh). With e(ek) = e(pk)[0], we have

c[0] + c[1] · sk = ∆m+ u · e(ek) + e
(Enc)
0 + sk · e(Enc)1

(25)
∥∥e(fresh)∥∥ ≤ BEnc + d‖e(ek)‖+ d ·B · ‖sk‖ := Bfresh

C.4 Correctness & Decryption Noise of Homomorphic Operations

In C.4.1 and C.4.2, we upper-bound the additional noise introduced respectively
by `−BFV.Add and `−BFV.Mult.These bounds are obtained by particularizing
the analysis of [CDKS19] in the single key setting, and turning their variances
into essential upper-bounds.

C.4.1 Noise Analysis of Addition Let us consider two ciphertexts c1 and
c2 such that c1[0] + c1[1] · sk = ∆m1 + e

(Dec)
1 and c2[0] + c2[1] · sk = ∆m2 + e

(Dec)
2 .

Let cAdd = `−BFV.Add(c1, c2) be the homomorphic sum of c1 and c2, and let us
define the "decryption noise of an addition" as e(Add) := e(Dec)(cAdd, sk,m1+m2).

Thus we have cAdd[0] + cAdd[1] · sk = ∆[m1 +m2]k + e(Add), with m1 +m2 =
[m1 +m2]k + k · r for ‖r‖ ≤ 1 and

‖e(Add)‖ = ‖e(Dec)
1 + e

(Dec)
2 + rk(q) r‖ ≤ ‖e(Dec)

1 ‖+ ‖e(Dec)
2 ‖+ rk(q)(26)

where rk(q) denotes the remainder of the integer division of q by k.

C.4.2 Noise Analysis of Multiplication & Relinearization Let us con-
sider two ciphertexts c1 and c2 such that c1[0] + c1[0] · sk = ∆m1 + e

(Dec)
1 and

c2[0] + c2[1] · sk = ∆m2 + e
(Dec)
2 . Recall from Section 4.4 that the multiplication

of two ciphertexts involves two steps that introduce noise: a tensoring operation
followed by a relinearization.

1. Tensoring. First, let ĉ =
⌊
k
q
c1 ⊗ c2

⌉
= (ĉ[0], ĉ[1], ĉ[2]). Let us define the

“decryption noise of a three-terms ciphertext ĉ with respect to secret key sk and
plaintext m1m2”, and denote it e(tens), as:

(27) ĉ[0] + ĉ[1] · sk+ ĉ[2] · sk2 = ∆[m1m2]k + e(tens)

Using [FV12, Lemma 2], we conclude that

‖e(tens)‖ ≤d · k (‖e(Dec)
1 ‖+ ‖e(Dec)

2 ‖) (d · ‖sk‖+ 1) + 2k2 · d2 (‖sk‖+ 1)2.(28)

This shows that the noise is roughly multiplied by the factor 2 · k · d2 · ‖sk‖.
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2. Relinearization. Second, a relinearization is performed using a key, de-
noted rlk, generated distributively by the new `−BFV.RlkKeygen algorithm de-
tailed in Section 4.2. Recall that rlk = (d0,d1,d2) where (d0,d2) ←
`−BFV.RlkKeygen(a,d1, sk).

Consider a degree two ciphertext ĉ with decryption noise e(tens) with respect
to plaintext m (m1 ·m2 in our context) and secret key sk. Let us now recall that
algorithm Relin presented in Algorithm 1, takes as input ĉ = (ĉ[0], ĉ[1], ĉ[2]) ∈ R3

q ,
rlk =

(
d0,d1,d2

)
∈ (Rlq)

3,b ∈ Rlq, and outputs c′ = (c′[0], c′[1]) ∈ R2
q .

Let us denote e(relin) the additional decryption noise of c′, namely:

(29) ĉ[0] + ĉ[1] sk+ ĉ[2] sk2 = c′[0] + c′[1] sk+ e(relin)

Unrolling the Relin algorithm presented in Algorithm 1, we obtain:

‖e(relin)‖ ≤ ‖err1‖+ ‖err2‖ ≤ d · l · n ·Bg ·B + 2d2 · l2 · n2 ·Bg ·B(30)

From Equations (28) and (30) we deduce:

Proposition 20 (Decryption noise of a product). Consider two cipher-
texts c1 and c2 of m1 and m2 respectively under a key

(
b = −a · sk+ e(ek) ,a

)
∈

R2×l
q , with decryption noises (Definition 3) denoted e(Dec)

i := ci[0]+ci[1]·sk−∆mi,
i ∈ {1, 2}. Consider any rlk = (d0,d1,d2) where (d0,d2)← `−RlkKeygen(a,d1, sk),
denote c′ := `−BFV.Mult(c1, c2, rlk,b), then e(Dec)(c′, sk,m1m2) is dominated by
k · d2 · ‖sk‖(‖e(Dec)

1 ‖+ ‖e(Dec)
2 ‖) + 2d2 · l2 · ‖sk‖2 ·Bg ·B.

C.5 Correctness of Threshold Decryption after Homomorphic
evaluation of a Circuit and Noise Analysis

Let us now define then estimate the noise BC introduced during the evaluation
of a circuit C, and formalize at which condition the threshold decryption of an
evaluated ciphertext, does return the correctly evaluated plaintext.

Definition 21 (Decryption noise of a circuit: BC). For any arithmetic
circuit C of depth L, with input gates indexed by n, we consider the largest
norm of the decryption noise e(Dec)(c, sk, y) of a ciphertext c, over the previous
choices, and over the choices: of elements (mi ∈ Rk)i∈[n], and of arbitrary fresh
BFV Encryptions of them (ci)i∈[n]; denoting c := `−BFV.Eval(C, (ci)i, rlk,b)
and y := C((mi)i). From Definition 3 and Fig. 14, it follows that, for any y and
c as above, if the second threshold decryption method is used with a level of
noise Bsm such that:

BC + n.Bsm <
∆

2
(31)

Then: ΩDec

(
c[0] + c[1] · sk

)
= y.

The noise introduced by evaluating C is dominated by the one introduced
by multiplications rather than additions, unless the width is much larger than
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L, which we do not assume in this estimation. Thus we neglect, comparatively,
the impact of n. Using Proposition 20, we estimate an upper bound on the
decryption noise of the evaluated ciphertext as:

CL1 .Bfresh + C2Σ
L−1
i=0 C

i
1 ≤ CL1 .Bfresh + L.C2.C

L−1
1(32)

with C1 = 2.k.d2.‖sk‖ and C2 = 2.d2.l2.‖sk‖2.B.Bg.

C.6 More on Threshold Decryption

We recap in Fig. 14 our protocol for threshold decrypting some ciphertext c, and
highlight the two main approaches introduced in Section 6.

Threshold Decryption protocol
Participants: n players Pi, i = 1, . . . , n;
Inputs: a public ciphertext c; shared secret key sk in FLSS with label sk //
concretely, in the form of a PVSS of sk.
Outputs: decryption Dec(sk, c)
Additional input for 2nd method: secret shared smudging noise
esm ∈ [−n.Bsm, n.Bsm] in FLSS with label esm (usable only for one decryp-
tion).

(1st method - mainstream): Each player Pi, given a ciphertext c and a
secret share ski of the secret key:
• Generates its decryption share of the decryption (i), i.e. µi = Λc

Dec(ski) (see
Equation (5)). Samples a noise esm,i $←− [−Bsm, Bsm]. Then, multicasts over
P2P channels its “noisy decryption share” µi = µi + n!2esm,i. // The n!2

factor is not needed if {0, 1}-LSSD is used [JRS17; CCK23];
• Each player Pi waits until it receives noisy decryption shares from a subset
U ⊂ [n] of indices of t + 1 players: (µj)j∈U . Denote (λUj )j∈U the Lagrange
reconstruction coefficients corresponding to the set U (see Definition 4). It
sets µ =

∑
j∈U λ

U
j µj the smudged decryption and outputs ΩDec(µ).

(2nd method, with smaller noise): Each player Pi:
• Given labels (sk, esm), and a ciphertext c, sends

(
LCOpen, Λc

Dec+sm(sk, esm)
)

(see Equation (7)) to FLSS, obtains µ̃, and outputs m = ΩDec(µ).

Fig. 14: Threshold Decryption Protocol, when the (n, t)-LSS scheme is instantiated
with Shamir.

D Further Details on the Proof of Theorem 1

D.1 Pseudorandomness of `−BFV ciphertexts with uniformly
generated encryption keys

First, we want to prove that considering an encryption key sampled uniformly at
random, the ciphertexts produced by `−BFV.Enc are pseudorandom under the



46 A. Urban and M. Rambaud

RLWE assumption. The reason is that in the context of Hybrid3, i.e., in Lemma
26 the view of Env is very similar to the one of the `−BFV scheme, except that
the key is uniformly random. We formalize it by the game GameSemantic shown
below:

GameSemantic

Setup. The challenger generates samples a, b $←− U(Rq) and sends (a, b) to
A.

Query. A chooses a m ∈ Rk and sends it to the challenger.
Challenge. The challenger picks a random β ∈ {0, 1}.
– If β = 0, it chooses c∗ = (c∗0, c

∗
1)

$←− R2
q uniformly at random.

– If β = 1, it generates a valid ciphertext c∗ = (c∗0, c
∗
1)← `−BFV.Enc(ek =

(b, a),m).
Guess A gets c∗ = (c∗0, c

∗
1) and outputs β′ ∈ {0, 1}. It wins if β′ = β.

Fig. 15: Pseudorandomness of `−BFV ciphertexts with uniformly gener-
ated encryption keys

Lemma 22. Let pp = (Rq, l,Xq, Rk, Ψq,BEnc,q) be parameters suited for our
MPC protocol presented in Section 7.1, i.e. such that Corollary 2 holds and that
satisfies Equation (8). Then for any PPT adversary A, the function
AdvSemantic

A (1λ) :=
∣∣Pr[β = β′] − 1

2

∣∣, denoted as the advantage of A, is negli-
gible in λ.

Proof. In case β = 1, the adversary is returned the pair (∆m+ u · b+ e
(Enc)
0 , a ·

u + e
(Enc)
1 ) ∈ R2

q , where the fixed u $←−Xq and e
(Enc)
0

$←− BEnc,q, e
(Enc)
1

$←− Ψq are
secretly sampled. Subtracting the known ∆m from the left component, the pair
constitutes two RLWE samples, namely: sample a fixed u $←−Xq, then construct
the first RLWE sample with (b ← U(Rq), e

(Enc)
0 ← BEnc,q) and the second one

with (a $←− U(Rq), e
(Enc)
1

$←− Ψq).
Thus, by RLWE for (Xq, Ψq), and thus a fortiori for (Xq,BEnc,q) (Equation

8), the two RLWE samples are indistinguishable from a sample in U(R2
q).

D.2 IND-CPA under joint keys

In [AJL+12, Lemma 3.4], it is proven that an adversary cannot distinguish the
ciphertext of a chosen plaintext from a random string, even if the ciphertext is en-
crypted under a key of the form ek′ = (b+b′,a), where b′ is adaptively generated
by the semi-honest adversary after it saw b. Our goal is to adapt their result in
the RLWE setting. We consider an experiment JointKey(Rq, l,Xq, Rk, Ψq,BEnc,q)
between an attacker A and a challenger defined as:
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JointKey(Rq, l,Xq, Rk, Ψq,BEnc,q)

Setup. The challenger generates samples a,b $←− U(Rlq) and sends (a,b)
to A.
Query. A adaptively chooses t pairs (ski, e

(ek)
i )i∈I for some set I of indices.

Both terms being either ⊥ or such that ‖ski‖=1 and ‖e(ek)i ‖≤ l · B. Define
sk′ :=

∑
i∈I ski where the ⊥ values are set to 0, and likewise for e(ek) :=∑

i∈I e
(ek)
i .

A outputs
{
b′ = −a.sk′+ e(ek), (sk′i)i∈I , (e

(ek)
i )i∈I

}
to the challenger, along

with some m ∈ Rk of its choice.
Challenge. The challenger sets pk = b + b′ and picks a random β ∈
{0, 1}.
– If β = 0, it chooses c∗ = (c∗0, c

∗
1)

$←− R2
q uniformly at random.

– If β = 1, it generates a valid ciphertext c∗ = (c∗0, c
∗
1)← `−BFV.Enc(ek =

(pk[0],a[0]),m).
Guess A gets c∗= (c∗0, c

∗
1) and outputs β′∈{0, 1}. It wins if β′= β.

Fig. 16: IND-CPA under Joint Keys Game

The aim of this result is to be used in the broader context of MPC. That is the
reason why, we consider that the honest key ek = (b,a) is generated uniformly at
random, instead of generated by `−BFV.KeyGen. Moreover, this specific use-case
has an impact on the choice of parameters, which will be discussed in Assumption
2 and Equation (8).

Lemma 23. Let pp = (Rq, l,Xq, Rk, Ψq) be parameters such that Corollary 2
holds and BEnc,q that satisfies Equation (8). Then for any PPT adversary A, we
have:

Pr
[
JointKeyA(Rq, l,Xq, Rk, Ψq,BEnc,q)=1

]
− 1/2 = negl(λ).

Proof. Our goal is to show a reduction, from this IND-CPA under Joint Keys
Game, into the GameSemantic game of security of `−BFV presented in Appendix D.1.
We therefore construct an adversaryA′ playing the former game.A′ uses as black
box an adversary A for JointKey(Rq, l,Xq, Rk, Ψq,BEnc,q), as follows.

1. The challenger gives A′ the value (b,a), and a ciphertext (c0, c1) which is either
chosen as BFV.Enc(ek = (b[0],a[0]), 0) (β = 1) or is a sample in U(R2

q) (β=0).
2. Then A′ gives b to A and gets back

(
b′=−a · sk′ + e(ek), sk′, e(ek),m

)
from A,

where m is a challenge plaintext.
3. Finally, A′ sets (c∗0, c∗1) = (c0 − c1.sk

′, c1) ∈ R2
q , sends it to A and outputs the

bit β′ obtained from A.

It is easy to see that if β = 0, then (c∗0, c
∗
1) is uniformly random. On the other

hand, if β = 1, we can write c0 = u · b+ e
(Enc)
0 ∈ Rq and c∗1 = u · a+ e

(Enc)
1 ∈ Rq

for some u $←−Xq, e
(Enc)
0

$←− BEnc,q, e
(Enc)
1

$←− Ψq, and b = b[0], a = a[0], and with
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e(ek) = e(ek)[0]:

c∗0 = u · b+ e
(Enc)
0 − c1 · sk′ = u · b+ e

(Enc)
0 − (u · a+ e

(Enc)
1 ) · sk′

= u · (b+ b′) + e
(Enc)
0 − e(Enc)1 · sk′ − u · e(ek)

s≡ u · (b+ b′) + e
(Enc)
0

The last equality states a statistical indistinguishability between the distri-
butions of e(Enc)0 − e(Enc)1 · sk′ − u · e(ek) and of e(Enc)0 , which we now prove.

To start with, from equation (24), we have both ‖e(Enc)1 · sk′‖ ≤ dnB and
‖u · e(ek)‖ ≤ dnB. Thus, ‖e(Enc)1 · sk′ − u · e(ek)‖ ≤ 2dnB. But on the other
hand, ‖e(Enc)0 ‖ ≤ BEnc. We conclude since the parameters are chosen such that
2dnB/BEnc = negl(λ) (cf Equation (8)). This conclusion can be formalized as
the “smudging Lemma 24” below, which implies that, in the sum e

(Enc)
0 − e(Enc)1 ·

sk′−u·e(ek), we have that the distribution of −e(Enc)1 ·sk′−u·e(ek) is “smudged-out”
by the one of e(Enc)0 . Therefore, A′ acts indistinguishably from the challenger of
GameSemantic of Lemma 22, thus has the same advantage as A.

The following lemma states that two distributions differing by a small noise,
can be made indistinguishable by adding an exponentially larger “smudging”
noise to both. Its parameters were recently improved in [DDE+23, Lemma 2.3],
in our use-case where the smudging noise comes itself as the sum of several
contributions (sampled uniformly by honest players).

Lemma 24 (Smudging lemma [AJL+12]). For B1, B2 positive integers
and e1 ∈ [−B1, B1] a fixed integer, sample e2 uniformly at random in [−B2, B2].
Then the distribution of e2 is statistically indistinguishable from that of e2 + e1
if B1/B2 = ε, where ε = ε(λ) is a negligible function.

D.3 Description of the simulator

We describe in Fig. 17 our simulator Sim introduced in Section 7.2.1.

D.3.1 Hybrids, and proofs of indistinguishabilities We go through a
series of hybrid games, starting from the real execution REALΠ

MPC

. The view of
Env consists of its interactions with A/Sim, and of the outputs of the actual
honest players. We deal with the latter once and for all in Lemma 25.

Hybrid1 [Simulated Decryption]. FLSS is modified in the threshold decryption:
there it, incorrectly, outputs µSim := ∆.y +Σj∈Sesm,j , where y := C((mi)i∈S

c

) is
the evaluation in clear of the circuit on the actual inputs.

Lemma 25. The outputs of the actual honest players are the same in REALΠ
MPC

and IDEALF
C

,Sim,Env. Also, the views of Env in REALΠ
MPC

and Hybrid1 are com-
putationally indistinguishable.
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Sim
– Setup.

0 Simulates the setup of FLSS.

0 Retrieves (a,d1) from GURS and sends it to all on behalf of GURS
– Distributed Key and smudging noise generation: Simulates a correct be-

havior of FLSS. For every simulated honest Pi ∈ P :
1 Samples ski $←− Xq (never used) and esm,i $←− [−Bsm, Bsm], and sends them

to FLSS.
1 Samples bi $←− U(Rlq) and (d0,i,d2,i) $←− U(Rlq ×Rlq), sends them over BCPi .
As in the protocol, Sim sets S ⊂ [n] the indices of the players, for which no
instance returned ⊥.

– Distribution of encrypted inputs: Simulates correct behaviors to compute
keys b :=

∑
j∈S bj and rlk := (

∑
j∈S d0,j ,d1,

∑
j∈S d2,j) in 1 , define sk =∑

j∈S skj , and:

2 ∀ simulated honest Pi ∈ H: sets m̃i := 0 and samples u $←− Xq,
e
(Enc)
0

$←− BEnc,q and e
(Enc)
1

$←− Ψq. Then sends c̃i = (∆m̃i + u.b + e
(Enc)
0 , u ·

a+ e
(Enc)
1

)
over BCPi .

2 ∀ simulated corrupt Pi ∈ I , upon receiving (ci) from Env, use sk to decrypt
ci into mi and sets m̃i := 0 if mi = ⊥ or m̃i := mi otherwise, and sends
(input, i,mi) to FC.

– Threshold Decryption: Upon being leaked the evaluation y from FC, where by
definition y = C({mi}i∈Sc), then Sim simulates the following incorrect behavior:
• FLSS outputs

(
Λc
dec, µ

Sim := ∆y +Σj∈Sesm,j
)
.

Fig. 17: Description of the simulator
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Proof. It is convenient to prove the two claims at once. The view of Env is iden-
tical in REALΠ

MPC

and Hybrid1 until 3 included. There, for all i ∈ Sc, a fresh
`−BFV encryption ci ofmi under ek = (b, a) is broadcast, following the terminol-
ogy of Appendix C.3. Thus, the evaluated c := `−BFV.Eval(C, {cj}j∈S

c

, rlk,b)
is the same in both views. In the threshold decryption of REALΠ

MPC

, the output
of FLSS is:

µ = c[0] + c[1].Σj∈Sskj +Σj∈Sesm,j ,(33)

with esm,j $←− [−Bsm, Bsm] for all j ∈ S. First, by Definition 21, we have, for some
noise e(Dec), with ‖e(Dec)‖ ≤ BC

c[0] + c[1].Σj∈Sskj = ∆y + e(Dec) .(34)

Since ‖esm,j‖ ≤ Bsm for all j ∈ S, it follows from the choice of parameters
(6) and the final remark in Definition 21, that the output of honest players in
REALΠ

MPC

is y := ΩDec(µ), which proves our first claim. Second, since we specified
‖e(Dec)‖/n.Bsm = negl(λ) (equation (8)), it follows that the distribution of µ,
given by Equation (33) is computationally indistinguishable from the one of
∆y + Σj∈Sesm,j (see Lemma 24 for a further formalization of this fact). But the
latter is by definition µSim, which is exactly the output of FLSS in Hybrid1.

Hybrid2 [Random Keys]. This is the same as Hybrid1 except that the additive
contributions (bi, (d0,i,d2,i))i∈H of honest players to the encryption and relin-
earization keys, are replaced by a sample in U(Rl×3q ). Indistinguishability from
Hybrid1 follows from Corollary 2.

Hybrid3 [Bogus Honest Inputs] This is the same as Hybrid2 except that the
input and randomness distribution on behalf of honest players are computed
with m̃i := 0, instead of with their actual inputs mi. Importantly, the behavior
of FLSS is unchanged, i.e., correct until 3 included, then outputs µSim := ∆y+
Σj∈Sesm,j , where y := C((mi)i∈S

c

) is still the evaluation of the circuit on the
actual inputs.

We now have that Hybrid3 and IDEALF
C

,Sim,Env produce identical views to
Env. Indeed, the behaviours of GURS, of the simulated ideal functionalities (FLSS,BC),
and of the honest players in Hybrid3, are identical to the simulation done by Sim.

Lemma 26. Hybrid2 and Hybrid3 are computationally indistinguishable.

Proof. Since Hybrid2, the secret keys of the honest players (Pi ∈ H) are no longer
used in any computation. Furthermore, since honest players sample their contri-
butions bi to the `−BFV encryption key independently (uniformly at random),
we can assume without loss of generality that corrupt contributions are gener-
ated after having seen the honest ones. We can thus apply Lemma 23 “IND-CPA
under Joint Keys”, which adapts the one of [AJL+12, Lemma 3.4] in the RLWE
setting. It considers a uniform value b in Rq, then the adversary can add to
it the sum (b′,a) of t BFV encryption keys which it semi-maliciously produces
(with the same a). The lemma states that the ciphertext of a chosen message
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under the sum of keys (b + b′,a), is still indistinguishable from a uniformly
random value. The reduction, from multi-message, to this latter single-message
statement, is straightforward.
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