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Abstract

There exists a mismatch between the theory and practice of cryptography in the presence
of leakage. On the theoretical front, the bounded leakage model, where the adversary learns
bounded-length but noiseless information about secret components, and the random probing
model, where the adversary learns some internal values of a leaking implementation with
some probability, are convenient abstractions to analyze the security of numerous designs.
On the practical front, side-channel attacks produce long transcripts which are inherently
noisy but provide information about all internal computations, and this noisiness is usually
evaluated with closely related metrics like the mutual information or statistical distance.
Ideally, we would like to claim that resilience to bounded leakage or random probing implies
resilience to noisy leakage evaluated according to these metrics. However, prior work (Duc,
Dziembowski and Faust, Eurocrypt 2014 & J. Cryptology 2019; Brian et al., Eurocrypt
2021 & IEEE Trans. Inf. Theory 2022) has shown that proving such reductions with useful
parameters is challenging.

In this work, we study noisy leakage models stemming from hockey-stick divergences,
which generalize statistical distance and are also the basis of differential privacy. First, we
show that resilience to bounded leakage and random probing implies resilience to our new
noisy leakage model with improved parameters compared to models based on the statistical
distance or mutual information. Then, we establish composition theorems for our model,
showing that these connections extend to a setting where multiple leakages are obtained
from a leaking implementation. We also show that our results generalize and improve on
the main results of Brian et al. We complement our theoretical results with a discussion
of practical relevance, highlighting that (i) the reduction to bounded leakage applies to
realistic leakage functions with noise levels that are decreased by several orders of magnitude
compared to Brian et al., and (ii) the reduction to random probing usefully generalizes the
seminal work of Duc, Dziembowski, and Faust, although it remains limited when the field
size in which masking operates grows (i.e., hockey-stick divergences can better hide the field
size dependency of the noise requirements, but do not annihilate it).
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1 Introduction
Side-channel attacks leverage properties of cryptographic implementations to obtain partial
information about supposedly secret components, such as the long-term keys of authentication
or encryption schemes. Several textbook versions of well-known algorithms are easily broken in
practice via side-channel attacks. For example, textbook RSA is vulnerable to timing attacks,
whereby an adversary measures the time elapsed during encryption and/or decryption [Koc96].
Over the past two decades, various types of (usually simple) side-channel attacks have been
employed with devastating effects on most (symmetric and asymmetric) cryptographic algo-
rithms, including also tracking power consumption [KJJ99], the emission of electromagnetic
radiation [AARR03], and cache-based attacks [OST06]. Small embedded devices are natural
targets, but side-channel attacks have been extended to hardware implementations [MBKP11]
and high-frequency devices [BGRV15]. They can also be applied remotely [MDB21], and new
attacks keep on being discovered [LCCR22]. In general, more complex and high-frequency targets
and more remote and less invasive adversarial conditions make the side-channel measurements
less informative.

The devastating effect of these attacks have led to the study of generic solutions to prevent
them, which we can roughly divide in two directions:

• Primitive-level countermeasures aim to design cryptographic algorithms of which (parts
of) the implementation, that are usually denoted as leakage-resilient [DP08], remain secure
even in the presence of bounded leakage. Such countermeasures typically leverage the
frequent refreshing of the algorithms’ secret state, which limits the side-channel attack
surface and makes it more realistic to expect that a state’s leakage is (intrinsically) bounded.

• Implementation-level countermeasures rather aim to limit the leakage for the parts of
the cryptographic algorithms that are not leakage-resilient, such as the initialization of a
secret state with a long-term secret key. In this case, where the adversary can continuously
accumulate information on the same secret, masking (a.k.a. secret sharing) [CJRR99] is
usually considered as the most viable option.1 It allows amplifying the implementation
noise exponentially in the number of shares at the cost of (roughly) quadratic overheads.

These solutions can then be combined so that leakage-resistant modes of operation can efficiently
mix parts of the implementation where bounded leakage is obtained via cheap countermeasures
(or no countermeasures at all) and a limited number of calls to parts of the implementation that
require masking [BBC+20].

Most works on the formal study of leakage-resilience conveniently assume that the adversary
is allowed to learn arbitrary bounded-length information about secret components. In particular,
the adversary is allowed to choose a function f : {0, 1}∗ → {0, 1}ℓ, for a predetermined leakage
bound ℓ, and to learn the bounded leakage f(sk) ∈ {0, 1}ℓ, where sk is a secret key. We will
refer to this model as the bounded leakage model. The survey of Kalai and Reyzin [KR19] is an
excellent source on prior work on bounded leakage-resilience.

One of the main reasons behind the widespread usage of the bounded leakage model is that
formally proving the security of a cryptographic algorithm in this model is more approachable
than for most other leakage models. However, bounded leakage does not directly capture
real-world side-channel attacks [SPY13]. For example, transcripts produced via power analysis
are typically much longer than the secret key under attack but, unlike bounded leakage, are
inherently noisy. Motivated by this limitation, several models for noisy leakage have been
studied in the literature. On the practical front, the most popular measure of a given leakage’s
“noisiness” is mutual information [SMY09, PGMP19]. More precisely, throughout this paper we

1There are, however, primitive-level alternatives to this initialization problem, such as using a leakage-resilient
PRF for this part of the computation [FPS12, BSH+14, DEM+20].
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write log for the base-2 logarithm and ln for the natural logarithm, and define the Kullback-
Leibler divergence between two distributions P and Q supported on a common finite set X as
DKL(P∥Q) = ∑

x∈X P (x) log
(

P (x)
Q(x)

)
. If X denotes the secret and Z is leakage from X, then

the mutual information between X and Z, defined as I(X; Z) = DKL(PXZ∥PX ⊗ PZ) where
PXZ is the joint distribution of X and Z and PX ⊗ PZ is their product distribution (i.e.,
(PX ⊗ PZ)(x, z) = PX(x) · PZ(z)), captures the mutual dependence between X and Z. Ideally,
we would like to design cryptographic schemes that are secure against all noisy leakages Z
satisfying I(X; Z) ≤ δ for δ as large as possible.

Another closely related noise measure is the statistical distance [DDF19] (a.k.a. the total
variation distance) between the joint distribution PXZ and the product distribution PX ⊗ PZ ,
denoted as SD(PXZ ; PX ⊗ PZ). For general distributions P and Q supported on a finite set
X , we define SD(P ; Q) = 1

2
∑

x∈X |P (x) − Q(x)|. The two measures are related via Pinsker’s
inequality, which implies that

SD(PXZ ; PX ⊗ PZ) ≤
√

ln 2
2 · I(X; Z). (1)

This means that a scheme which is leakage-resilient against all leakages Z such that SD(PXZ ; PX⊗
PZ) ≤ δ is resilient against all leakages Z such that I(X; Z) ≤ 2δ2

ln 2 . Other noise measures have
been considered, including the average conditional min-entropy [NS12] and the average ℓ2-norm
between the marginal distribution PX and the conditional distributions PX|Z=z [PR13].2

A similar situation can be observed in the context of implementation-level countermeasures
and masking. There, one typically considers a stateful cryptographic circuit Γ(k) (where k is
the secret key) in the presence of adversaries that interact with the circuit via the input-output
interface over several rounds, and continuously get leakage from the circuit wires in each round.
Abstract leakage models have been introduced, such as the threshold probing model [ISW03]
(in which the adversary can probe a bounded number of wires in the circuit) and the random
probing model [DDF19] (in which the adversary can recover intermediate values in the circuit
only with some probability). But despite the security of masked implementations is conveniently
analyzed in these models, actual implementations are again better reflected by the noisy leakage
model [PR13], which instead bounds the noisiness of the information retrieved from intermediate
values based on the statistical distance and the mutual information metrics.

1.1 Reductions as a Bridge from Theory to Practice

As a result of the above discussion, on the one hand, there are many (primitive-level or
implementation-level) cryptographic schemes that can be proven secure in the presence of
bounded leakage or threshold/random probing. On the other hand, real-world side-channel
attacks yield leakage whose noisiness can be measured by means of mutual information and
statistical distance, but that is not bounded in length and leaks about all intermediate values.
In this light, it is a fundamental question to study the connection between different leakage
models, towards understanding whether cryptographic schemes formally proven secure under
less realistic leakage assumptions remain secure against more realistic ones.

In the context of primitive-level countermeasures, progress towards answering the above
question comes from a recent work of Brian, Faonio, Obremski, Ribeiro, Simkin, Skórski, and
Venturi [BFO+22], which studied the relationship between the bounded leakage model and
various notions of noisy leakage in a very general setting. More precisely, they consider a
general simulation paradigm. Given a secret distribution X on X and a leakage Z from X, they
ask if there exists a simulator Sim which is allowed to choose any bounded leakage function

2The statistical distance term SD(PXZ ; PX ⊗PZ) corresponds (up to a multiplicative 1/2 factor) to the ℓ1-norm
between PXZ and PX ⊗ PZ .
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g : X → {0, 1}ℓ, learns g(X), and, after post-processing of g(X), outputs a simulated leakage Z ′

such that
SD(PXZ ; PXZ′) ≤ ε,

for a small “simulation error” term ε. In other words, no adversary can distinguish (with
non-negligible advantage) between the real secret-leakage pair (X, Z) and the fake pair (X, Z ′)
where Z ′ is produced with only the help of a single query of ℓ-bounded leakage. On the positive
side, using this paradigm, they showed that many cryptographic schemes resilient to ℓ bits of
bounded leakage are also resilient to ℓ′-min-entropy noisy leakage [NS12] (i.e., the class of all
leakages Z on a secret X such that Z drops the min-entropy of X by at most ℓ′ bits), with
ℓ′ ≈ ℓ and small ε (as a function of the security parameter).3

In the context of implementation-level countermeasures, Duc, Dziembowski, and Faust showed
an interesting reduction between the more abstract threshold probing model and the more realistic
noisy leakage model, using random probing as a useful intermediate abstraction [DDF19], which
has then been (in part heuristically) connected to practical side-channel attacks [DFS15a].

1.2 Limitations of Statistical Distance and Mutual Information

Although [BFO+22] derived positive results for some types of noisy leakages, they also showed
that it is impossible to obtain non-trivial simulation theorems for noisy leakages based on
statistical distance and mutual information via bounded leakage. The reason behind this is
simple and instructive. Define the class of δ-SD-noisy leakages of X to be the set of all random
variables Z such that

SD(PXZ ; PX ⊗ PZ) ≤ δ. (2)

First, note that it is trivial to simulate Z with error δ even without access to bounded leakage
from X. In fact, by Equation (2), the simulator can simply output Z ′ sampled independently
according to the marginal PZ . To complement this, [BFO+22] also shows that increasing the
amount of bounded leakage available does not help in decreasing the error much compared
to the trivial simulator. Indeed, there exist secret-leakage distributions PXZ such that Z is
δ-SD-noisy leakage from X, but Z cannot be simulated with error ε < δ/2 even with n− 1 bits
of leakage from X. More precisely, let X be uniform over {0, 1}n, and consider what we call
the catastrophic leakage Z from X defined as follows: with probability δ, set Z = X; otherwise,
set Z = ⊥.4 It holds that Z is δ-SD-noisy leakage from X. To see intuitively why we cannot
simulate Z with error below δ/2 from n− 1 bits of bounded leakage from X, suppose that we
query X to learn the (n− 1)-bounded leakage (X(1), X(2), . . . , X(n− 1)), where X(i) is the i-th
bit of X. If we wish to simulate Z, then we need to output X with probability approximately δ.
However, this means that in that case we will have to guess X(n), and we will fail and be caught
by the adversary with probability approximately δ · 1/2 = δ/2. A similar argument yields an
impossibility result for simulating the analogous notion of δ-MI-noisy leakage (i.e., all random
variables Z such that I(X; Z) ≤ δ), see [BFO+22, Theorem 15].

From a practical perspective, the above is unsatisfactory because without countermeasures
δ decreases poorly with noise (e.g., see [DFS15a, Equation (7)]). Since good simulation can
only be obtained by making δ exponentially small, it implies that formal security guarantees
require extremely high noise levels that are not intrinsically present in actual implementations.
As a result, the only way to exploit the reduction to bounded leakage is to rely on masking
even for the leakage-resilient parts of an implementation. This goes against the aforementioned
expectation that bounded leakage can be ensured without expensive countermeasures in this
case, thanks to frequent state refreshing.

3More precisely, H̃∞(X|Z) ≥ H∞(X) − ℓ′ where H∞(X) = − log(maxx Pr[X = x]) denotes the min-entropy
of X and H̃∞(X|Z) = Ez∼Z

[
2−H∞(X|Z=z)] denotes the average conditional min-entropy of X given Z.

4This corresponds to the random probing model of [ISW03, DDF19] in a large (n-bit) field.
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A similar limitation can be found in the reduction from noisy leakage to random probing of
Duc, Dziembowsi and Faust [DDF19], where δ-SD-noisy leakage from a secret supported on a set
X can only be simulated with random probes having parameter δ · |X |, although this “field size
loss” does not seem to be observed for practically-relevant leakage functions [PGMP19, BCG+23].

1.3 A High-Level Overview of Our Contributions

In this paper, we show that the above limitations are not an insurmountable barrier towards
general simulation theorems for practical noisy leakage models, but rather an invitation for
further refining the statistical distance and mutual information metrics as empirical measures of
quality for side-channel attacks.

Starting with the limitations of the simulation via bounded leakage, the issue with statistical
distance and mutual information is that they cannot distinguish between innocent leakages such
as “Z = X(1) with probability 1” and catastrophic leakages such as “Z = X with probability
1/n and Z = ⊥ otherwise”. Positing that such edge cases are the main impediment standing in
front of practically useful simulation theorems, we explore ways to circumvent them in order to
better match practical side-channel attacks. Towards this goal, we study noisy leakage models
based on hockey-stick divergences [SV16, Section VII], a well-known family of divergences that
generalizes statistical distance (and is a special case of f -divergences).

Definition 1 (t-hockey-stick divergence). For a real number t ≥ 0, the t-hockey-stick divergence
between two distributions P and Q supported on a discrete set X , denoted by SDt(P ; Q), is
defined as5

SDt(P ; Q) = sup
S

[P (S)− 2t ·Q(S)],

where the supremum is taken over all sets S ⊆ X .

Equivalently, we have SDt(P ; Q) ≤ δ if and only if

P (S) ≤ 2t ·Q(S) + δ (3)

for all sets S ⊆ X . It is easy to see that SD0 = SD, i.e., the 0-hockey-stick divergence is
the statistical distance. These divergences form the basis of differential privacy6 [DMNS06],
something which we exploit in our results.

Following the previous approach for SD-noisy leakage, considering hockey-stick divergences
leads to a noisy leakage model which is a two-parameter generalization of the SD-noisy leakage
model: we say that Z is (t, δ)-SD-noisy leakage from X if SDt(PXZ ; PX ⊗PZ) ≤ δ. In a nutshell,
the additional parameter t in our model allows us to avoid the catastrophic examples that sever
the connection between bounded leakages and SD-noisy leakages. We use it to establish several
properties of (t, δ)-SD-noisy leakage which we expect will be useful in practical applications.
This includes: (i) a simulation theorem for (t, δ)-SD-noisy leakage from bounded leakage, and
(ii) a composition theorem for (t, δ)-SD-noisy leakages, which allows one to argue about the
combination of multiple (t, δ)-SD-noisy leakages. Crucially, proving (ii) relies on showing that (i)
holds even for a more general leakage model than (t, δ)-SD-noisy leakage, which we discuss later.

We also argue how the (t, δ)-SD-noisy leakage model can be interpreted as an “average-
case on X” (and, we believe, conceptually more natural) version of the dense leakage model
of [BFO+22]. In particular, our improved analysis behind (i) leads to a more general simulation
theorem compared to the main theorem of [BFO+22]. In turn, this implies improved simulation
theorems for noisy leakage models that can be captured with better parameters as special cases
of (t, δ)-SD-noisy leakage compared to the dense leakage model.

5Hockey-stick divergences are usually defined with an et factor as opposed to the 2t factor we use here. We
opt for the latter because it leads to cleaner theorem statements; this change has no other consequences.

6A randomized mechanism M is (ε, δ)-approximately differentially private if and only if
SDε log e(PM(x); PM(x′)) ≤ δ for all pairs of databases (x, x′) that differ in only one coordinate [BO13].
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As a complement, we also study a natural reverse variant of (t, δ)-SD-noisy leakage, which
we call (t, δ)-RevSD-noisy leakage, in which the roles of the distributions PXZ and PX ⊗ PZ are
swapped (i.e., we require that SDt(PX ⊗ PZ ; PXZ) ≤ δ, and note that SDt is not symmetric).
We then show a simulation theorem for RevSD-noisy leakage from the random probing leakage
model. This simulation theorem is a strict generalization of the main result of [DDF19] (which
we obtain as a special case by setting t = 0), and it allows us to mitigate the field size loss
incurred in their simulation by random probing.

We conclude the paper by investigating the t and δ parameters that can be obtained for
realistic leakage functions and noise levels. Compared to prior work [BFO+22], our concrete
evaluations allow us to put forward considerable improvements of the simulation error for
modest amounts of bounded leakage, both for the Hamming weight function and variants of
which the deterministic part is bijective (ruling out trivial simulation). Combined with our
composition theorems, these results can even be used to state formal guarantees for leakage-
resilient modes of operation based on physical assumptions that can be matched by parallel
hardware implementations (e.g., of the AES), confirming the intuition that bounded leakage can
be ensured without (expensive) masking techniques.

We also discuss the practical impact of our improved reduction from (t, δ)-RevSD-noisy
leakage to random probing. Although it remains conceptually contrasted since the δ parameter
can only be used to hide the field size dependency in the reduction of [DDF19], we show that
the good scaling of the δ parameter in the noise level of realistic leakage functions makes this
mitigation relevant, especially if masking is implemented in small fields (e.g., F28 for the AES).
This contribution is a more consolidating one, since Prest et al. already proposed a noisy leakage
model allowing to get rid of the field size penalty (at the cost of using a metric that scales worse
with the noise than the mutual information or statistical distance) [PGMP19]. It nevertheless
illustrates the unifying nature of hockey-stick divergences for cryptography in the presence of
leakage.

2 More Detailed Overview of our Contributions
We now proceed with a more technical overview of our results, followed by a discussion about
their practical implications. Our main new noisy leakage model is defined analogously to the
notion of SD-noisy leakage as follows.

Definition 2 ((t, δ)-SD-noisy leakage). Let X be a random variable over X . Then, we say that
a randomized function f : X → Z is a (t, δ)-SD-noisy leakage function from X if, denoting
Z = f(X), it holds that

SDt(PXZ ; PX ⊗ PZ) ≤ δ.

We denote the set of (t, δ)-SD-noisy leakage functions from X by SDt,δ(X), and we also say that
Z = f(X) is (t, δ)-SD-noisy leakage from X.

Since SD0 = SD, we recover δ-SD-noisy leakage as (t = 0, δ)-SD-noisy leakage. The useful
properties (simulation via bounded leakage, composition) that we establish for (t, δ)-SD-noisy
leakage actually hold as is for an even broader class of noisy leakages also inspired by hockey-stick
divergences, which we call GSD-noisy leakage (the “G” standing for “Generalized”). We refrain
from defining it formally here, and instead present the relevant definition later in Section 4.
All of our results are established directly for (t, δ)-GSD-noisy leakage, as this leads to a much
cleaner technical discussion, and they carry over automatically to (t, δ)-SD-noisy leakage which
we use for our practical applications.
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2.1 Simulation via Bounded Leakage

As discussed above, it is trivial to simulate δ-SD-noisy leakage from even 0 bits of bounded
leakage with statistical error δ. Moreover, by [BFO+22], this cannot be improved much, even if
we allow n− 1 bits of bounded leakage (assuming that X ∈ {0, 1}n). As our first technical result,
we establish the following simulation theorem for (t, δ)-SD-noisy leakage from bounded leakage.

Theorem 1 (Informal). For any X and α > 0, it is possible to simulate the class of (t, δ)-SD-
noisy leakage functions from X using ⌈t + log ln(1/α)⌉ bits of bounded leakage from X, with
statistical error α + δ.

For formal statements and proofs, see Section 5. In that section, we show that this theorem
holds for an even more general leakage model.

Given Theorem 1, we may see the parameter t as controlling the number of bits of bounded
leakage required for simulation, and the parameter δ as controlling the statistical simulation error.
At first sight, it may seem that we are not improving over the trivial simulator for δ-SD-noisy
leakage, which also has error δ and uses 0 bits of bounded leakage. However, this is not the case
as the additional parameter t now affords us significant freedom. In particular, we expect that
when fitting concrete, widely used models for real-world side-channel attacks (e.g., Hamming
weight leakages with additive Gaussian noise) into the (t, δ)-SD-noisy leakage model, we can
significantly decrease δ by slightly increasing t, therefore trading some extra bits of bounded
leakage for a much smaller statistical simulation error. Our empirical evaluation in Section 9,
confirms this behavior.

Theorem 1 can be used to automatically establish that a broad class of cryptographic
primitives resilient to bounded leakage are also resilient to (t, δ)-SD-noisy leakage for good
choices of t and δ. As a concrete example, suppose that we have a symmetric-key PRNG that is
γ-resilient to ℓ-bounded leakage with ℓ = log(n) for some security parameter n [Pie09]. This
guarantees that no adversary with access to arbitrary log(n)-bounded leakage from the secret
key can predict the next pseudorandom block with advantage more than γ. Then, combining this
with Theorem 1 (where X plays the role of the secret key) immediately implies that, given any
parameters α, δ > 0, the same scheme is γ′-resilient to (t, δ)-SD-noisy leakage with γ′ = γ + δ + α
and t = log(n)− log ln(1/α).

2.2 Composition Theorems

There exist situations where the physical implementation of a cryptographic scheme may provide
the adversary with several samples of noisy leakage. For example, a (round-based) hardware
implementation of the AES will provide a few leakage samples per round, typically correlated
with the Hamming weight of the intermediate value manipulated by the device. In such a case,
it can be useful to have access to formal composition theorems for the noisy leakage model being
used, so that we can formally argue about the combination of these multiple leakage samples. At
an abstract level, consider the scenario where m noisy leakage samples Z1, . . . , Zm are computed
from a secret random variable X. If we know that each Zi is (ti, δi)-SD-noisy leakage from X,
and that for each i ̸= j it holds that Zi and Zj are conditionally independent given X, then
what can we say about the noisiness of the global leakage Z = (Z1, . . . , Zm)?

We prove the following composition theorem for (t, δ)-SD-noisy leakages that shows that such
noisy leakages compose nicely, yielding a global leakage that is also simulatable via bounded
leakage with good parameters.

Theorem 2 (Informal). Suppose that Z1, . . . , Zm are conditionally independent given a secret
random variable X and the samples Zi are (ti, δi)-SD-noisy leakage from X for i ∈ [m]. Then, for
any α > 0, the global leakage Z = (Z1, . . . , Zm) can be simulated using ⌈log ln(1/α) +∑m

i=1 ti⌉
bits of bounded leakage from X with statistical error α +∑m

i=1 δi.
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For formal statements and proofs, see Section 6.1. As mentioned before, establishing this
result requires us to show that Theorem 1 actually holds for the more general model of GSD-noisy
leakage that we introduce in Section 4.

For concrete leakages, the parameter t should be small, of the order log(n) for a security
parameter n. On the other hand, δ will be negligible in the noise level. Therefore, the blow-
up in the simulation error compared to the original δi’s will also be small. Note that since
practical leakage functions are often close to a deterministic function of X corrupted by additive
noise [SLP05], the conditional independence condition boils down to an independent noise one,
which is a standard approximation. Note also that the ti’s in Theorem 2 do not need to be
integer-valued. Not having to round each ti to its ceiling can provide significant gains with
respect to simulation when composing many noisy leakages.

Advanced composition. Given the relationship between hockey-stick divergences and dif-
ferential privacy, it is natural to wonder whether a composition theorem akin to advanced
composition in differential privacy [DRV10], which features improved scaling with the number of
leakages, holds in some parameter regime. We prove such an advanced composition theorem
for a natural symmetric strengthening of the (t, δ)-SD-noisy leakage model. This result has
limitations analogous to advanced composition in differential privacy (it is only relevant when t is
small), and so is less practically relevant than Theorem 2. Therefore, we see it as a consolidation
of our theoretical understanding of the (t, δ)-SD-noisy leakage model. We discuss advanced
composition in Section 6.2.

2.3 (t, δ)-SD-Noisy Leakage and Dense Leakage

It is interesting to compare Theorem 1 with the simulation result obtained alternatively by
determining the parameters of (t, δ)-SD-noisy leakage with respect to the general dense leakage
model of [BFO+22], and then applying their main simulation theorem for dense leakage. As we
discuss in more detail in Section 5, this “indirect” approach leads to a worse simulation theorem,
which is due both to how dense leakage is defined in [BFO+22] (it is, in a sense, a “worst-case”
leakage model) and to their sub-optimal analysis of rejection sampling simulators (which are
also the basis of Theorem 1).

Motivated both by this and by the improved analysis behind Theorem 1, we explore the
relationship between (t, δ)-SD-noisy leakage and dense leakage further in Section 7.1. We show
that (t, δ)-SD-noisy leakage captures an “average-case on X” version of the dense leakage model
of [BFO+22] (their main unifying leakage model) as a special case. To complement this, we also
show that (t, δ)-SD-noisy leakage is captured by this average-case version of dense leakage up to
a small constant loss in parameters. Therefore, the (t, δ)-SD-noisy leakage model is essentially
equivalent to an average-case version of the dense leakage model.

As we discuss more carefully in Section 7.1, this relationship shows, in a precise sense,
that our Theorem 1 is a more general simulation theorem than the main simulation theorem
for dense leakage of [BFO+22]. Since the (t, δ)-SD-noisy leakage model captures other noisy
leakage models with better parameters than dense leakage (and based on slightly cleaner
proofs), our simulation theorem (t, δ)-SD-noisy leakage leads to improved simulation theorems
for these models. We exemplify this through a detailed discussion of the “Uniform-Noisy” leakage
model [DHLW10, BFO+22]. Furthermore, through the relationship above, we see that Theorem 2
also implies nice composition guarantees for the dense and average dense leakage models.

(t, δ)-SD-Noisy Leakage and Mutual Information. As further consolidation, in Section 7.2
we discuss the relationship between (t, δ)-SD-noisy leakage and noisy leakages based on mutual
information, which is a popular metric in practice. Pinsker’s inequality (Equation (1)) implies that
all “δ-MI-noisy” leakages Z from X (i.e., leakages satisfying I(X; Z) ≤ δ) are (t = 0, δ′ =

√
δ/2)-
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SD-noisy leakages from X. Interestingly, the extension of Pinsker’s inequality to hockey-stick
divergences SDt with t > 0 [SV16, Theorem 33] provides a better relationship with mutual
information and implies that, for any t > 0, all δ-MI-noisy leakages from X are also (t, δ′ = δ/t)-
SD-noisy leakages from X. Coupled with Theorem 1, we get a simulation theorem for δ-MI-noisy
leakages from bounded leakage where the simulation error decays linearly with the amount
of bounded leakage. The fact that the simulation error decays only linearly is not surprising
given that the δ-MI-noisy leakage model, like the (t = 0, δ)-SD-noisy leakage model, includes
“catastrophic” leakage functions, as showcased in the negative result of Brian et al. [BFO+22,
Theorem 15] (whose simulation error lower bound is consistent with the simulation error achieved
by our simulation theorem).

2.4 Simulation via Random Probing

As already briefly mentioned above, a previous success story in linking practical noisy leakage
models and theoretically-minded leakage models stems from work of Prouff and Rivain [PR13]
and Duc, Dziembowski, Faust, and Standaert [DDF19, DFS15a] on compilers for leakage-resilient
arithmetic circuits. Most relevant to our setting, Duc, Dziembowski, and Faust [DDF19] showed
that the leakage-resilient circuit compiler of Ishai, Sahai, and Wagner [ISW03], which efficiently
transforms any given arithmetic circuit into an equivalent circuit resilient to threshold probing
leakage from the wires during computation, also yields a circuit resilient to SD-noisy leakage on
the wires.7 The key lemma behind the main result of [DDF19] (from which their applications to
circuit computation easily follow) states that δ-SD-noisy leakage from a uniform secret X over
X can be perfectly simulated by p-random probing leakage from X with p = δ|X |.8 The linear
dependence of p on the support size |X | in this simulation has been noted to be unsatisfactory and
avoidable for concrete applications of this result [DFS15a, PGMP19, BCG+23]. We extend the
key lemma of [DDF19] for δ-SD-noisy leakage to a more general notion of reverse (t, δ)-SD-noisy
leakage. In particular, this extension allows us to alleviate the “support size penalty” in the
noisy-to-probing leakage simulation. The notion of reverse (t, δ)-SD-noisy leakage we use is
similar to (t, δ)-SD-noisy leakage, and can also be seen as a natural generalization of δ-SD-noisy
leakage.

Definition 3 ((t, δ)-RevSD-noisy leakage). Let X be a random variable over X . Then, we
say that a randomized function f : X → Z is a (t, δ)-RevSD-noisy leakage function from X if,
denoting Z = f(X), it holds that

SDt(PX ⊗ PZ ; PXZ) ≤ δ.

We denote the set of (t, δ)-RevSD-noisy leakage functions from X by RevSDt,δ(X), and we also
say that Z = f(X) is (t, δ)-RevSD-noisy leakage from X.

We next highlight the connection we prove between RevSD-noisy leakage and random
probing leakage, which generalizes the key lemma of [DDF19, Lemma 2] mentioned above (which
corresponds to the t = 0 case).

Theorem 3 (Informal). Let X be uniform over X and suppose that Z is (t, δ)-RevSD-noisy
leakage from X. Then, Z is perfectly simulatable by p-random probing leakage from X with
p = (1− 2−t) + δ · 2−t · |X |.

For formal statements and proofs, see Section 8.
7A tuple (Z1, . . . , Zℓ) is τ -threshold probing leakage from (X1, . . . , Xℓ) if Zi = Xi for at most τ indices i ∈ [ℓ],

and Zi = ⊥ otherwise.
8Suppose that X is supported on X . Then, Z ∈ X ∪{⊥} is p-random probing leakage from X if Pr[Z = X] = p

and Pr[Z = ⊥] = 1 − p.
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This result generally improves on [DDF19, Lemma 2]. However, there still exists a tradeoff
between the need to keep the t parameter small so that (1− 2−t) is small and the fact that the
scaling of the δ parameter with respect to the noise level of the implementation gets worse for
small t values (recall that for t = 0 we have that (t, δ)-RevSD-noisy leakage is equivalent to
δ-SD noisy leakage). The empirical results of Section 9 nevertheless confirm that Theorem 3 can
lead to sweet spots for practically-relevant leakage functions and noise levels.

We additionally present a reduction that trades the aforementioned field size penalty for
positive statistical simulation error in Section 8.2. We outline how to apply these reductions in
order to obtain leakage-resilient circuit compilers tolerating RevSD-noisy leakage from circuit
wires in Section 8.3.

2.5 Practical Interpretation

Informally, the positive observations we obtain in the paper essentially stem from the fact
that (t, δ)-SD-noisy and RevSD-noisy leakage scale much better with the implementation noise
than δ-SD-noisy leakage (or the mutual information). This is because these former metrics are
computed by integrating the (joint and product) leakage distributions over the whole leakage
support. By contrast (t, δ)-SD-noisy (resp., RevSD-noisy) leakage are computed by integrating
these distributions in regions where the joint (resp., product) distribution is 2t times larger than
the product (resp., joint) one. With modest t and realistic noise levels, these regions have small
probability, explaining a faster decrease of δ.

This better scaling directly has strong impact for PRNGs like the one of [Pie09] and its
many follow-ups. Say, for example, that we want to ensure 128-bit security using the reduction
of [BFO+22]. Ensuring 2−128 simulation error would require a noise variance in the 2128 ≈ 1039

range, which no device offers intrinsically.9 Even tolerating lower (e.g., 64-bit) security keeps
the required parameters completely impractical. The only solution is then to use masking to
“amplify” the noise to this level, which is expensive and contradicts the goal of leakage-resilience,
where re-keying aims to maintain high physical security without masking.

In contrast, we highlight in Section 9 that for (t, δ)-SD-noisy and RevSD-noisy leakage it
is possible to simulate with 2−128 simulation error by combining a modest amount of bounded
leakage (typically, log(n)/c with c a small constant) with noise levels that are concretely
reachable (e.g., in the 103 range) and may even be intrinsically present in hardware/parallel
implementations.

To give a concrete illustration, assume for simplicity that masking with d shares raises the
noise variance to a power d at the cost of quadratic implementation overheads. This means
that for a leaking device with noise variance ≈ 103 (which provides ≈ 2−128 simulation error
with our reduction), the reduction of [BFO+22] would require 13-share masking to ensure the
same simulation error (since (103)13 = 1039), leading to a factor 132 = 169 of implementation
overheads.

Finally, despite our reduction to random probing being limited to smaller t values whenever
one wants to ensure a low probing probability, we also show in Section 9 that Theorem 3
can lead to useful results in the case of small- to medium-sized fields (e.g., F28 for the AES),
since reasonable noise levels can then be used to hide the field size dependency of the noise
requirements with δ.

9The noise requirements of a masked implementation are more accurately expressed in terms of a side-channel
Signal-to-Noise Ratio (SNR) [Man04], which we defer to Section 9 to keep this overview of our contributions
concise.
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3 Preliminaries

3.1 Notation

We use uppercase calligraphic letters, such as S and T , to denote sets. We write log for the
base-2 logarithm and ln for the natural logarithm. Random variables are denoted by uppercase
roman letters such as X, Y , and Z. Given a random variable X, we denote its probability
distribution by PX , its expected value by E[X], and its variance by V(X). We write x ∼ P to
mean that x is sampled according to the distribution P . Given two random variables X and Z,
we denote their joint probability distribution by PXZ and their product distribution by PX ⊗PZ ,
i.e., (PX ⊗PZ)(x, z) = PX(x) ·PZ(z), where PX and PZ are the marginal distributions of X and
Z, respectively. Note that if X and Z are independent, then PXZ = PX ⊗ PZ . For a set finite
set S and a distribution P , we write P (S) = ∑

x∈S P (x).

3.2 The Leakage Simulation Paradigm

In this section, we formally define our notion of simulation of one family of leakages by another
family. We follow the definition from [BFO+22].

Definition 4 (Leakage simulation [BFO+22]). Given a random variable X supported on X and
two families F(X) and G(X) of leakage functions from X, we say that F(X) is ε-simulatable
from G(X) if for all f ∈ F(X) there is a (possibly inefficient) randomized algorithm Simf such
that

SD(P(X,Z); P(X,SimLeak(X,·)
f

)) ≤ ε, (4)

where Z = f(X) and the oracle Leak(X, ·) accepts a single query g ∈ G(X) and outputs g(X),
and SimLeak(X,·)

f denotes the output of the simulator with access to this oracle.
Furthermore, when G(X) is the family of all ℓ-bounded leakage functions g : X → {0, 1}ℓ and

Equation (4) holds, we say that F(X) is ε-simulatable from ℓ bits of bounded leakage.

3.3 A Basic Property of Hockey-Stick Divergences

We state here a basic but useful property of hockey-stick divergences, generalizing an analogous
property for the statistical distance.

Lemma 1. Let P and Q be any two distributions supported on X . Define the set

B = {x : P (x) > 2tQ(x)}.

Then,
SDt(P ; Q) = P (B)− 2tQ(B) =

∑
x∈X

max(0, P (x)− 2tQ(x)).

Proof. First, note that for any fixed t ≥ 0 we may write

δ = sup
S⊆X

[P (S)− 2tQ(S)]. (5)

Now, for any such set S we have that

P (S)− 2tQ(S) =
(
P (S \ B)− 2tQ(S \ B)

)
+
(
P (S ∩ B)− 2tQ(S ∩ B)

)
≤ 0 + (P (B)− 2tQ(B))
= P (B)− 2tQ(B).
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To see the inequality, first note that for any x ∈ S \ B we have that P (x)− 2tQ(x) ≤ 0, and so
P (S \ B)− 2tQ(S \ B) ≤ 0. Furthermore,

P (S ∩ B)− 2tQ(S ∩ B) =
∑

x∈S∩B
(P (x)− 2tQ(x)) ≤

∑
x∈B

(P (x)− 2tQ(x)) = P (B)− 2tQ(B),

since each term P (x)− 2tQ(x) for x ∈ B is positive by construction of B. This shows that the
set B is the worst case scenario, and so, by Equation (5), we conclude that

δ = PXZ(B)− 2t(PX ⊗ PZ)(B).

Finally, the rightmost equality in the lemma statement follows immediately by noting that
max(0, P (x)− 2tQ(x)) is always non-negative, and is positive if and only if x ∈ B.

4 The Generalized SD-Noisy Leakage Model
In this section we first recall the definitions of (t, δ)-SD-Noisy and (t, δ)-RevSD-Noisy leakage
that we already discussed in Section 2, and then introduce the more general (t, δ)-GSD-Noisy
leakage model.

Definition 2 ((t, δ)-SD-noisy leakage). Let X be a random variable over X . Then, we say that
a randomized function f : X → Z is a (t, δ)-SD-noisy leakage function from X if, denoting
Z = f(X), it holds that

SDt(PXZ ; PX ⊗ PZ) ≤ δ.

We denote the set of (t, δ)-SD-noisy leakage functions from X by SDt,δ(X), and we also say that
Z = f(X) is (t, δ)-SD-noisy leakage from X.

Definition 3 ((t, δ)-RevSD-noisy leakage). Let X be a random variable over X . Then, we
say that a randomized function f : X → Z is a (t, δ)-RevSD-noisy leakage function from X if,
denoting Z = f(X), it holds that

SDt(PX ⊗ PZ ; PXZ) ≤ δ.

We denote the set of (t, δ)-RevSD-noisy leakage functions from X by RevSDt,δ(X), and we also
say that Z = f(X) is (t, δ)-RevSD-noisy leakage from X.

Intuitively, in the generalized definition below we measure the leakage quality by bounding the
hockey-stick divergence between the distributions PXZ and PX ⊗Q for any suitable distribution
Q over Z (not necessarily the marginal PZ).

Definition 5 ((t, δ)-GSD-noisy leakage). Let X be a random variable over X . Then, we say that
a randomized function f : X → Z is a (t, δ)-GSD-noisy leakage function from X if, denoting
Z = f(X), there exists a distribution Q on Z such that

SDt(PXZ ; PX ⊗Q) ≤ δ.

We denote the set of (t, δ)-GSD-noisy leakage functions from X by GSDt,δ(X), and we also say
that Z = f(X) is (t, δ)-GSD-noisy leakage from X.

In the next sections we establish useful properties of these leakage models. In Section 5, we
establish simulation theorems for (t, δ)-GSD-noisy leakage (and thus for (t, δ)-SD-noisy leakage
too) from bounded leakage. In particular, this yields Theorem 1. We explore connections
to an average notion of the dense leakage model from [BFO+22] in Section 7.1. Then, in
Section 6 we prove composition theorems for these models, yielding Theorem 2 in particular.
We explore advanced composition for a symmetric version of GSD-noisy leakage in Section 6.2.
The relationship between RevSD-noisy leakage and the random probing model is studied in
Section 8. Empirical evaluations of these different leakage models are discussed in Section 9.

13



5 Simulating GSD-Noisy Leakage via Bounded Leakage
In this section we prove our main simulation theorem, which states (using the language from
Definition 4) that the class of (t, δ)-GSD-noisy leakages is (α + δ)-simulatable from ℓ = t +
log ln(1/α) bits of bounded leakage for any α > 0. This immediately implies Theorem 1. The
simulator we use to establish this result is based on rejection sampling. It is a close variant of
the simulator used in [BFO+22] with a (key) new, more streamlined and tighter, analysis. The
rejection sampling simulator is described in Algorithm 1 for some (t, δ)-GSD-noisy leakage Z
from X witnessed by a distribution Q in the sense that for all sets S it holds that

PXZ(S) ≤ 2t · (PX ⊗Q)(S) + δ.

Function Leak(x, r)
for i := 0 to 2ℓ − 1 do

Sample z according to Q using the random tape r

with probability min
(

2−t · PXZ(x, z)
(PX ⊗Q)(x, z) , 1

)
do

return i
end

end
return 2ℓ

end
Function SimLeak(x,·)

r ← a random tape
i := Leak(x, r)
z′ ← the i-th sample according to Q using random tape r
return z′

end
Algorithm 1: The (t, ℓ)-rejection sampling simulator for the (t, δ)-GSD-noisy leakage
Z = f(X), where Q is a distribution on Z such that PXZ(S) ≤ 2t · (PX ⊗Q)(S) + δ for
all sets S.

Remark 1 (Differences with respect to the simulator from [BFO+22]). We outline the main
differences with respect to the simulator from [BFO+22]. First, in our simulator the zi’s are
sampled according to Q, and not necessarily PZ . Moreover, we always output the last sample if
we have rejected all previous samples. Finally, and of particular importance to our improved
analysis, we accept a given sample z and stop with probability min

(
2−t · PXZ(x,z)

(PX⊗Q)(x,z) , 1
)
. This

means that if 2−t · PXZ(x,z)
(PX⊗Q)(x,z) ≥ 1 then we accept z and stop with probability 1. In contrast,

the simulator from [BFO+22] rejected z automatically in this case.

Remark 2 (Complexity of our simulator). We discuss the computational complexity of our
simulator, as it may be relevant for some (non-information-theoretic) reductions from noisy
leakage-resilience to bounded leakage-resilience. Computing the ℓ leakage bits in Algorithm 1
requires sampling and rejecting 2ℓ samples in the worst case. Assuming that we have efficient
procedures for sampling according to Q and for computing the functions PZ|X=x(·) for any x
and Q(·), which is a reasonable assumption when Q = PZ (i.e., when focusing on (t, δ)-SD-noisy
leakage) for the noise distributions commonly used to model real-world side-channel attacks, we
conclude that our simulator is efficient whenever ℓ is logarithmic in our parameter of interest.
According to our simulation theorem, this holds when t is logarithmic, which is also the setting
we study empirically in Section 9.

14



We begin by proving the following two lemmas which are stating useful properties of our
rejection sampling simulator in Algorithm 1.

Lemma 2. Let R(x) = 1− Ez∼Q

[
min

(
2−t · PXZ(x,z)

(PX⊗Q)(x,z) , 1
)]

be the sample rejection probability
for the (t, ℓ)-rejection sampling simulator on input X = x, and let PSim|X=x be the conditional
distribution for the simulator’s output on input X = x. Then,

PSim|X=x(z) =
2ℓ−2∑
i=0

R(x)i min
(
2−tPZ|X=x(z), Q(z)

)
+ R(x)2ℓ−1Q(z)

≥ 1−R(x)2ℓ

1−R(x) min
(
2−tPZ|X=x(z), Q(z)

)
.

Proof. In the first iteration, the simulator samples a given z and accepts it with probability

px(z) = min
(

2−t PXZ(x, z)
(PX ⊗Q)(x, z) , 1

)
·Q(z)

= min
(

2−t PXZ(x, z)
PX(x) , Q(z)

)
= min

(
2−tPZ|X=x(z), Q(z)

)
,

and rejects otherwise. The probability that the first round does not result in an “accept” is
1−Ez∼Q[px(z)] = R(x). Extending this, the probability of accepting and outputting z in the
first round is px(z), the probability of rejecting in the first round and accepting and outputting
z in the second round is R(x) · px(z), and, in general, the probability of rejecting in the first
r − 1 rounds and accepting and outputting z in the r-th round is R(x)r−1 · px(z). However, in
the last iteration the sample is always output, whether it would be rejected or accepted – the
probability of reaching this stage and observing output z is R(x)2ℓ−1 ·Q(z). Summing over the
2ℓ stages of the algorithm gives the first equation for PSim|X=x(z).

For the inequality, notice that Q(z) ≥ min
(
2−tPZ|X=x(z), Q(z)

)
, and so

PSim|X=x(z) ≥
2ℓ−1∑
i=0

R(x)i min
(
2−tPZ|X=x(z), Q(z)

)
.

We obtain the desired inequality by summing this partial geometric series.

Lemma 3. Let f be a (t, δ)-GSD-noisy leakage function from X and Z = f(X). Let Q be the
associated distribution. Then, the (t, ℓ)-rejection sampling simulator’s rejection probability equals

R(x) = 1−
∑
z∈Z

min
(
2−tPZ|X=x(z), Q(z)

)
,

and satisfies 1− 2−t ≤ R(x) ≤ 1 and EX [R(X)] ≤ 1− 2−t(1− δ).

Proof. The acceptance probability 1−R(x) is

1−R(x) = Ez∼Q

[
min

(
2−t PXZ(x, z)

(PX ⊗Q)(x, z) , 1
)]

=
∑
z∈Z

min
(

2−t PXZ(x, z)
(PX ⊗ PQ)(x, z) ·Q(z), Q(z)

)

=
∑
z∈Z

min
(
2−tPZ|X=x(z), Q(z)

)
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≤
∑
z∈Z

2−tPZ|X=x(z)

= 2−t,

which gives the first equation and the lower bound on R(x). On the other hand, we have
R(x) ≤ 1 because it is a probability. Taking expectation over X gives

1− EX [R(X)] =
∑
x∈X

PX(x)
∑
z∈Z

min
(
2−tPZ|X=x(z), Q(z)

)
= 2−t

∑
x∈X ,z∈Z

min
(
PXZ(x, z), 2t(PX ⊗Q)(x, z)

)
= 2−t

∑
x∈X ,z∈Z

(
PXZ(x, z)−max

(
0, PXZ(x, z)− 2t(PX ⊗Q)(x, z)

))

= 2−t

1−
∑

x∈X ,z∈Z
max

(
0, PXZ(x, z)− 2t(PX ⊗Q)(x, z)

)
≥ 2−t(1− δ), (6)

where the final inequality holds by Lemma 1, since SDt(PXZ ; PX ⊗Q) ≤ δ as f is a (t, δ)-GSD-
noisy leakage function from X.

The following result immediately implies Theorem 1.

Theorem 4. Let f be a (t, δ)-GSD-noisy leakage function from X. Let Z = f(X) and Z ′ denote
the output of the (t, ℓ)-rejection sampling simulator on input X. Then, we have that

(X, Z) ≈ε (X, Z ′)

for ε = e−2ℓ−t + δ. In particular, for any α > 0 the class of (t, δ)-GSD-noisy leakage functions
from X is (α + δ)-simulatable from ℓ bits of leakage when

ℓ ≥ t + log ln(1/α).

Proof. We must bound the statistical distance between the true secret-leakage joint distribution
PXZ and the fake joint distribution PXZ′ , where Z ′ denotes the simulator’s output. This will be
achieved by first bounding, for any given x, the statistical distance D(x) between the conditional
distributions PSim|X=x and PZ|X=x using Lemma 2. Then, we use Lemma 3 to obtain the desired
bound on the original statistical distance. We have that

D(x) =
∑
z∈Z

max
(
0, PZ|X=x(z)− PSim|X=x(z)

)

≤
∑
z∈Z

max
(

0, PZ|X=x(z)− 1−R(x)2ℓ

1−R(x) min
(
2−tPZ|X=x(z), Q(z)

))

≤
(

1− 1−R(x)2ℓ

1−R(x) · 2
−t

)∑
z∈Z

max
(
0, PZ|X=x(z)

)

+ 1−R(x)2ℓ

1−R(x)
∑
z∈Z

max
(
0, 2−tPZ|X=x(z)−min

(
2−tPZ|X=x(z), Q(z)

))

= 1− 1−R(x)2ℓ

1−R(x) · 2
−t

+ 1−R(x)2ℓ

1−R(x)

(∑
z∈Z

2−tPZ|X=x(z)−
∑
z∈Z

min
(
2−tPZ|X=x(z), Q(z)

))
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= 1− 1−R(x)2ℓ

1−R(x) 2−t + 1−R(x)2ℓ

1−R(x)
(
2−t − 1 + R(x)

)
= R(x)2ℓ

, (7)

where the first inequality follows from Lemma 2, and the second to last equality from Lemma 3.
Next, notice that R(x)2ℓ is a convex function of R(x), and so we can upper bound this by a line
drawn through the lower and upper bounds for R(x). Therefore,

D(x) ≤ (1− 2−t)2ℓ + 1− (1− 2−t)2ℓ

2−t
(R(x)− 1 + 2−t). (8)

Finally, we can use Lemma 3 to get a bound on the statistical distance between PXZ and PXZ′ ,
where Z ′ is the simulator’s output, which equals EX [D(X)]. We have that

EX [D(X)] ≤ (1− 2−t)2ℓ + 1− (1− 2−t)2ℓ

2−t
(EX [R(X)]− 1 + 2−t)

≤ (1− 2−t)2ℓ + 1− (1− 2−t)2ℓ

2−t
(1− 2−t(1− δ)− 1 + 2−t)

= (1− 2−t)2ℓ +
(
1− (1− 2−t)2ℓ

)
δ

= (1− 2−t)2ℓ(1− δ) + δ

≤ e−2ℓ−t + δ.

The first inequality uses Equation (8). The second one follows from Lemma 3. The final
inequality holds because 1 + y ≤ ey for any real y. This yields the first part of the theorem
statement. To see the second part, set ℓ so that α ≥ e−2ℓ−t .

Direct vs. indirect approach. It is natural to wonder how this analysis compares to the
indirect one in which we first establish the parameters of (t, δ)-SD-noisy leakage as dense leakage,
and then apply the known simulation theorem for dense leakage from [BFO+22]. The main
difference is that we would get worse simulation error through this indirect approach. More
precisely, while Theorem 4 guarantees simulation of (t, δ)-GSD-noisy leakage with error α + δ
using t + log ln(1/α) bits of bounded leakage, the indirect approach above would only yield
simulation error α + c ·

√
δ using the same amount of bounded leakage, for a constant c ≥ 1.

Reducing the
√

δ term in the simulation error to δ is a significant improvement for practical
applications.

Intuitively, the reason why the indirect approach via dense leakage can only yield a
√

δ
term in the simulation error is that the definition of dense leakage in [BFO+22] imposes a
“with high probability” constraint on X and Z. Namely, if Z is dense leakage from X, then
with high probability over the choices X = x and Z = z we must have PZ|X=x(z) ≤ T · PZ(z)
for an appropriate “density parameter” T . On the other hand, GSD-noisy leakage imposes
an “in expectation” constraint on X and Z. Namely, if Z is (t, δ)-GSD-noisy leakage from X,
then we only require that Ex∼PX

[SDt(PZ|X=x; Q)] ≤ δ for some distribution Q. One can move
from the “in expectation” constraint to the “with high probability” constraint via Markov’s
inequality. However, this incurs a loss, which causes exactly the δ vs.

√
δ difference between

the two approaches. Our direct analysis of the simulator relies only on the “in expectation”
constraint of GSD-noisy leakage, avoiding this loss.

Another limitation of the indirect approach is that, while we can show that (t, δ)-SD-noisy
leakage is captured by dense leakage (with sub-optimal parameters), it is not clear to us whether
this can also be done for GSD-noisy leakage in general because we may have Q ̸= PZ .

Motivated by these shortcomings and by our improved analysis of the rejection sampling
simulator, we explore the relationship between GSD-noisy leakage and dense leakage further in
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Section 7.1. We discuss how we may interpret the GSD-noisy leakage model as imposing an
“average on X” density constraint between the conditional leakage distributions PZ|X=x and the
distribution Q. In particular, this means that GSD-noisy leakage is a more general model than
the dense leakage model of Brian et al. [BFO+22], and we feel that it is the more conceptually
appropriate definition of “dense leakage”. We also discuss how our Theorem 4 generalizes the
main simulation theorem for dense leakage from bounded leakage of [BFO+22], and Theorem 5
guarantees composition for (average) dense leakages. Moreover, existing noisy leakage models
that were shown to be captured by dense leakage in [BFO+22] are captured by GSD-noisy
leakage with better parameters. This leads to simulation theorems with practically significant
improvements in simulation error. We discuss this for the Uniform-Noisy leakage model.

6 Composition of GSD-Noisy Leakages

6.1 Main Composition Theorem for GSD-Noisy Leakages

In this section we prove our main composition theorem. The theorem below is for two conditionally
independent leakages, and applying it m− 1 times combined with Theorem 4 directly implies
Theorem 2. The approach we take is an adaptation of Dwork and Lei’s proof of basic composition
for differential privacy [DL09].

Theorem 5. Suppose that f1 and f2 are (t1, δ1)-GSD-noisy and (t2, δ2)-GSD-noisy leakage
functions from X, respectively, and that the random variables Z1 = f1(X) and Z2 = f2(X) are
independent when conditioned on X. Then f(X) = (f1(X), f2(X)) is a (t1+t2, δ1+δ2)-GSD-noisy
leakage function from X.

Proof. Let Q1 and Q2 be the distribution on Z1 and Z2 (the supports of Z1 = f1(X) and
Z2 = f2(X), respectively) that establish f1 and f2 as GSD-noisy leakages, respectively. Then,
set Q to be the distribution Q1 ⊗ Q2. To prove our result, we must show that for any set
S ⊆ X × Z1 ×Z2,

PXZ1Z2(S) ≤ 2t1+t2(PX ⊗Q)(S) + δ1 + δ2.

Using Lemma 1, for i ∈ {1, 2} let

δi(x) = SDt(PZi|X=x; Qi) =
∑

zi∈Zi

max(0, PZi|X=x(zi)− 2tiQi(zi)).

In particular, E[δi(X)] = SDt(PXZi ; PX ⊗ Qi) ≤ δi because fi is a (ti, δi)-GSD-noisy leakage
from X. Let Sx = {(z1, z2) | (x, z1, z2) ∈ S} and Sx,z1 = {z2 | (x, z1, z2) ∈ S}. Then,

PZ1Z2|X=x(Sx) = Ez1∼PZ1|X=x
[PZ2|X=x(Sx,z1)]

= Ez1∼PZ1|X=x

[
min

(
1, PZ2|X=x(Sx,z1)

)]
≤ Ez1∼PZ1|X=x

[
min

(
1, 2t2Q2(Sx,z1) + δ2(x)

)]
≤ δ2(x) +

∑
z1∈Z1

PZ1|X=x(z1) min
(
1, 2t2Q2(Sx,z1)

)
≤ δ2(x) +

∑
z1∈Z1

2t1Q1(z1) min
(
1, 2t2Q2(Sx,z1)

)
+
∑

z1∈Z1

max
(
0, PZ1|X=x(z1)− 2t1Q1(z1)

)
min

(
1, 2t2Q2(Sx,z1)

)
≤ δ2(x) + 2t1+t2

∑
z1∈Z1

Q1(z1)Q2(Sx,z1) +
∑

z1∈Z1

max
(
0, PZ1|X=x(z1)− 2t1Q1(z1)

)
= 2t1+t2Q(Sx) + δ1(x) + δ2(x).
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Finally, take the expectation over X to get

PXZ1Z2(S) = Ex∼PX
[PZ1Z2|X=x(Sx)]

≤ Ex∼PX

[
2t1+t2Q(Sx) + δ1(x) + δ2(x)

]
≤ 2t1+t2(PX ⊗Q)(S) + δ1 + δ2.

The theorem statement follows.

6.2 Advanced Composition for Two-Sided GSD-Noisy Leakage

In this section, we show that if leakages fall into the natural symmetric version of GSD-noisy
leakage, which we call two-sided GSD-noisy leakage, then they satisfy a stronger composition
theorem than that given by Theorem 5, akin to advanced composition in differential privacy.
As in differential privacy, advanced composition of two-sided GSD-noisy leakages yields an
improvement over standard composition only for a limited range of parameters, making it less
practically relevant than Theorem 5. We begin by defining the two-sided GSD-noisy leakage
model.
Definition 6 ((t, δ)-2GSD-noisy leakage). Let X be a random variable over X . Then, we
say that a randomized function f : X → Z is a (t, δ)-2GSD-noisy leakage function from X if,
denoting Z = f(X), there exists a random variable Q on Z such that SDt(PX ⊗ PQ; PXZ) ≤ δ
and SDt(PXZ ; PX ⊗ PQ) ≤ δ.

We may see 2GSD-noisy leakage as the natural symmetric variant of the GSD-noisy noisy
leakage model. In fact, Z is 2GSD-noisy leakage from X exactly when it is both GSD-noisy
leakage and RevGSD-noisy leakage from X.

It will be useful to rewrite the condition that Z is (t, δ)-2GSD-noisy leakage from X as
follows: there exists a distribution Q on Z such that for every set T ⊆ X × Z we have that

(PX ⊗Q)(T ) ≤ 2tPXZ(T ) + δ and PXZ(T ) ≤ 2t(PX ⊗ PQ)(T ) + δ.

We will exploit this equivalent rephrasing in the proof of the following advanced composition
theorem for 2GSD-noisy leakage.
Theorem 6. Suppose that Z1, . . . , Zm are (t, δ)-2GSD-noisy leakages from X and conditionally
independent given X. Then, for any γ > 0 it holds that the leakage tuple Z = (Z1, . . . , Zm) is
(t′, δ′)-2GSD-noisy leakage from X with

t′ = 2t(1− 2−t)m + t ·
√

2m ln(1/γ) and δ′ = γ + 2mδ.

We briefly discuss some relevant parameter regimes for this result. These correspond to
when t is (i) a constant smaller than 1/2, (ii) t = m−c with 0 < c < 1/2, and (iii) t = m−c for
c ≥ 1/2. Set γ = δ. If t′ = 1/4, then the global leakage Z is (m/8 +

√
m ln(1/δ), (2m + 1)δ)-

2GSD-noisy leakage from X. In contrast, Theorem 5 only gives that Z is (m/4, mδ)-GSD-noisy
leakage from X for this choice of t. If t = m−1/4 and γ = δ, then the global leakage Z is
(2
√

m + 2m1/4 ln(1/δ), (2m + 1)δ)-2GSD-noisy leakage from X. In this setting, Theorem 5 would
only guarantee that Z is (m3/4, mδ)-GSD-noisy leakage from X. If t = m−1/2 and γ = δ then
Theorem 6 ensures that the global leakage Z is (O(t ·

√
m ln(1/δ)), (2m + 1)δ)-2GSD-noisy

leakage from X.
The behavior above features the same improved scaling with m that we observe in advanced

composition for approximate differential privacy, and it has the same shortcoming in that it kicks
in only when t is small. This makes Theorem 6 less practically relevant than Theorem 5 in our
setting. As we discuss in more detail below, an inspection of the proof reveals that avoiding this
shortcoming seems unlikely. Of course, if t is not small enough we can still enjoy the composition
guarantees from Theorem 5. More precisely, it also holds that Z is (mt, mδ)-GSD-noisy leakage.

Before we prove Theorem 6, we introduce a definition and a lemma.
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Definition 7 ((t, δ)-indistinguishability). We say that two distributions P and Q are (t, δ)-
indistinguishable if SDt(P ; Q) ≤ δ and SDt(Q; P ) ≤ δ.

The following decomposition lemma for this notion of indistinguishability will be useful.
Various similar decompositions of this type are well known in the literature. We state a particular
version with adapted notation.

Lemma 4 ([Ste22, Lemma 23]). If two distributions P and Q are (t, δ)-indistinguishable, then
we can write P = (1− δ)P ′ + δP ′′ and Q = (1− δ)Q′ + δQ′′ for some distributions P ′, P ′′, Q′, Q′′

such that P ′ and Q′ are (t, 0)-indistinguishable.

We proceed to the proof of Theorem 6. We follow the proof sketch for advanced composition
of approximate differential privacy in [Vad17, Lemma 2.4] closely, adapting it to our scenario
and notation and making the argument for δ > 0 explicit for completeness.

Proof of Theorem 6. Since the Zi’s are (t, δ)-2GSD-noisy leakages from X, we know that there
exist distributions Q1, . . . , Qm such that for any x ∈ supp(X) it holds that SDt(PZi|X=x; Qi) ≤
δi,x,L and SDt(Qi; PZi|X=x) ≤ δi,x,R for some δi,x,L, δi,x,R ≥ 0 such that EX [δi,X,L],EX [δi,X,R] ≤ δ.
In particular, this means that PZi|X=x and Qi are (t, δi,x = max(δi,x,L, δi,x,R))-indistinguishable
for all i and x. Note that EX [δi,X ] ≤ δ + δ = 2δ.

Invoking Lemma 4, for each i and x we can write PZi|X=x = (1 − δi,x)P ′
i,x + δi,xP ′′

i,x and
Qi = (1− δi,x)Q′

i,x + δi,xQ′′
i,x for some distributions P ′

i,x, P ′′
i,x, Q′

i,x, Q′′
i,x such that P ′

i,x and Q′
i,x

are (t, 0)-indistinguishable. Now, consider the log-ratios

Li,x(z) = log
(

P ′
i,x(z)

Q′
i,x(z)

)
(9)

defined for z ∈ supp(Q′
i,x) = supp(P ′

i,x).
Since P ′

i,x and Q′
i,x are (t, 0)-indistinguishable, we know that |Li,x(z)| ≤ t for all z. We will

now show that
Ez∼P ′

i,x
[Li,x(z)] ≤ 2t(1− 2−t). (10)

First, note that Ez∼P ′
i,x

[Li,x(z)] = DKL(P ′
i,x∥Q′

i,x) and Ez∼Q′
i,x

[−Li,x(z)] = DKL(Q′
i,x∥P ′

i,x),
where we recall that DKL(·∥·) denotes the Kullback-Leibler divergence (defined with respect to
the base-2 logarithm log) between two probability distributions, and so these quantities are
non-negative. Therefore, to establish Equation (10) it actually suffices to show that

Ez∼P ′
i,x

[Li,x(z)] + Ez∼Q′
i
[−Li,x(z)] ≤ 2t(1− 2−t).

We can rewrite the left-hand expression as

Ez∼P ′
i,x

[Li,x(z)] + Ez∼Q′
i,x

[−Li,x(z)] =
∑

z

(
P ′

i,x(z)−Q′
i,x(z)

)
· Li,x(z)

≤ 2 · SD(P ′
i,x; Q′

i,x) ·max
z
|Li,x(z)|

≤ 2t(1− 2−t),

as desired. The second inequality follows from the fact that (t, 0)-indistinguishable random
variables can be at most (1− 2−t) far apart in statistical distance10 and that Li(z) ≤ t for all z.

For a vector z⃗ = (z1, . . . , zm) ∈ Zm, define

Lx(z⃗) = log
(∏m

i=1 P ′
i,x(zi)∏m

i=1 Q′
i,x(zi)

)
= L1,x(z1) + · · ·+ Lm,x(zm).

10Let V and W be (t, 0)-indistinguishable distributions. Then, we know that SD(W ; V ) =
∑

x
max{0; W (x) −

V (x)}. But W (x) ≤ 2tV (x), and so 2−tW (x) ≤ V (x). Plugging this in we get SD(W ; V ) ≤
∑

x
max(0; W (x)(1 −

2−t)) ≤ 1 − 2−t.
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Recall that |Li,x(zi)| ≤ t for all i and zi and that Ezi∼P ′
i,x

[Li,x(zi)] ≤ 2t(1 − 2−t) for all i by
Equation (10). In particular, this implies that Ez⃗∼P ′

1,x⊗···⊗P ′
m,x

[Lx(z⃗)] ≤ 2t(1− 2−t)m. We can
then apply Hoeffding’s inequality11 to conclude that for any γ > 0 it holds that

Pr
z⃗∼P ′

1,x⊗···⊗P ′
m,x

[
Lx(z⃗) ≤ 2t(1− 2−t)m + t ·

√
2m ln(1/γ)

]
≥ 1− γ. (11)

Set t′ = 2t(1− 2−t)m + t ·
√

2m ln(1/γ). By definition of L, for any set T ⊆ Zm we have that

(P ′
1,x ⊗ · · · ⊗ P ′

m,x)(T ) ≤
∑

y⃗∈T :L(y⃗)≤t′

(P ′
1,x ⊗ · · · ⊗ P ′

m,x)(y⃗) + Pr
z⃗∼P ′

1,x⊗···⊗P ′
m,x

[L(z⃗) > t′]

≤
∑

y⃗∈T :L(y⃗)≤t′

2t′(Q′
1,x ⊗ · · · ⊗Q′

m,x)(y⃗) + γ

≤ 2t′(Q′
1,x ⊗ · · · ⊗Q′

m,x)(T ) + γ.

This means that
SDt′(P ′

1,x ⊗ · · · ⊗ P ′
m,x; Q′

1,x ⊗ · · · ⊗Q′
m,x) ≤ γ.

By symmetry, repeating the argument above with Q′
i,x in place of P ′

i,x and vice-versa allows us
to conclude that

SDt′(Q′
1,x ⊗ · · · ⊗Q′

m,x; P ′
1,x ⊗ · · · ⊗ P ′

m,x) ≤ γ.

Therefore, P ′
1,x ⊗ · · · ⊗ P ′

m,x and Q′
1,x ⊗ · · · ⊗Q′

m,x are (t′, γ)-indistinguishable.
For any z, by the conditional independence of the Zi’s given X we can write

PZ|X=x(z) =
m∏

i=1
PZi|X=x(zi)

=
m∏

i=1
[(1− δi,x)P ′

i,x(zi) + δi,xP ′′
i,x(zi)]

=
(

m∏
i=1

(1− δi,x)
)

(P ′
1,x ⊗ · · · ⊗ P ′

m,x)(z) +
(

1−
m∏

i=1
(1− δi,x)

)
Vx(z) (12)

for some distribution Vx. Likewise, for Q = Q1 ⊗ · · · ⊗Qm we can write

Q(z) =
(

m∏
i=1

(1− δi,x)
)

(Q′
1,x ⊗ · · · ⊗Q′

m,x)(z) +
(

1−
m∏

i=1
(1− δi,x)

)
Wx(z) (13)

for some distribution Wx.
Define αx = 1 − ∏m

i=1(1 − δi,x). By the generalized Bernoulli inequality, we have that
0 ≤ αx ≤

∑m
i=1 δi,x. Then, for any set T ⊆ Zm we have

PZ|X=x(T ) = (1− αx)(P ′
1,x ⊗ · · · ⊗ P ′

m,x)(T ) + αxVx(T )

≤ (1− αx)(2t′(Q′
1,x ⊗ · · · ⊗Q′

m,x)(T ) + γ) +
m∑

i=1
δi,x

= (1− αx)
(

2t′
(

Q(T )− αxWx(T )
1− αx

)
+ γ

)
+

m∑
i=1

δi,x

11The version of Hoeffding’s inequality that we use states that for X1, . . . , Xn independent bounded random
variables such that supp(Xi) ⊆ [ai, bi] for each i and any w ≥ 0 we have Pr[

∑m

i=1 Xi −
∑m

i=1E[Xi] ≥ w] ≤
exp
(
−2w2/

∑m

i=1(bi − ai)2) [Ver18, Theorem 2.2.6]. We are applying Hoeffding’s inequality to the random
variables Li,x(zi) with zi ∼ P ′

i,x, and so bi − ai ≤ 2t for each i and
∑m

i=1Ezi∼P ′
i,x

[Li,x(zi)] ≤
∑m

i=1 2t(1 − 2−t) =
2t(1 − 2−t)m.
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≤ 2t′
Q(T ) + γ +

m∑
i=1

δi,x,

and so SDt(PZ|X=x; Q) ≤ γ+∑m
i=1 δi,x. The first equality uses Equation (12). The first inequality

follows from the fact that P ′
1,x ⊗ · · · ⊗ P ′

m,x and Q′
1,x ⊗ · · · ⊗Q′

m,x are (t′, γ)-indistinguishable
and αx ≤

∑m
i=1 δi,x. The second equality uses Equation (13). Analogously, it holds that

Q(T ) ≤ 2t′
PZ|X=x(T ) + γ +

m∑
i=1

δi,x

for all sets T , and so SDt(Q; PZ|X=x) ≤ γ +∑m
i=1 δi,x.

Finally, taking the expectation over X yields

SDt(PXZ ; PX ⊗Q) = Ex∼PX
[SDt(PZ|X=x; Q)] ≤ γ +

m∑
i=1

EX [δi,X ] ≤ γ + 2mδ.

and
SDt(PX ⊗Q; PXZ) = Ex∼PX

[SDt(Q; PZ|X=x)] ≤ γ +
m∑

i=1
EX [δi,X ] ≤ γ + 2mδ.

We conclude that Z is (t′, γ + 2mδ)-2GSD-noisy leakage from X, as desired.

Can we get better scaling for larger t? We discuss whether one can prove an advanced
composition theorem akin to Theorem 6 but guaranteeing t′ = o(m) even when t is not small. In
short, this seems unlikely beyond improving constant factors. We sketch why below. Notice that
the key steps of the proof consist in deriving the upper bound in Equation (10), and in using this
bound in an application of Hoeffding’s inequality in Equation (11). Concentration inequalities
like Hoeffding’s inequality or Chernoff bounds are known to be optimal up to a constant (e.g.,
see [KY15, Lemma 5.2]), which leaves little room for improvement. Our only hope would be to
improve our upper bound Ez∼P ′

i,x
[Li,x(z)] = DKL(P ′

i,x∥Q′
i,x) ≤ 2t(1− 2−t). However, this is not

possible in general, as there exist families of (t, 0)-indistinguishable distributions P and Q for
growing t such that DKL(P∥Q) = Ex∼P

[
log

(
P (x)
Q(x)

)]
≥ t(1− 2−t)/2.

For example, consider t’s of the form t = log(2r − 1) for an integer r ≥ 1, define P as the
uniform distribution over {0, 1}n, and let S ⊆ {0, 1}n be some set of size |S| = 2n

1+2t . Then, we
define the distribution Q as

Q(x) =
{

2t−n, if x ∈ S,
2−t−n, if x ̸∈ S.

Note that ∑x∈{0,1}n Q(x) = |S| · 2t−n + (2n − |S|) · 2−t−n = 1, and so Q is a valid probability
distribution. Furthermore, P and Q are (t, 0)-indistinguishable, since

2−tP (x) = 2−t−n ≤ Q(x) ≤ 2t−n = 2tP (x)

for all x ∈ {0, 1}n. Finally, we have

DKL(P∥Q) = 1
1 + 2t

· (−t) +
(

1− 1
1 + 2t

)
· t =

(
1− 2−t

1 + 2−t

)
· t ≥ t(1− 2−t)

2 .

7 GSD-Noisy Leakage and Other Leakage Models

7.1 GSD-Noisy Leakage and Average Dense Leakage

In this section we explore the relationship between GSD-noisy leakage and the main dense
leakage model of Brian et al. [BFO+22].
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We begin by introducing the “average dense leakage” model in Section 7.1.1. Then, in
Section 7.1.2 we recall the dense leakage model of [BFO+22] and show how it is captured by
the average dense leakage model. In Section 7.1.3 we show that average dense leakage is a
special case of GSD-noisy leakage, and discuss how Theorems 4 and 5 generalize the main results
of [BFO+22]. We show that GSD-noisy leakage is captured by average dense leakage with only
a small loss in parameters in Section 7.1.4, meaning that GSD-noisy leakage and average dense
leakage are almost equivalent. Finally, in Section 7.1.5 we discuss an example of how Theorem 4
affords practically significant improvements over the main simulation theorem of [BFO+22].

7.1.1 The Average Dense Leakage Model

We provide some motivation before defining the average dense leakage model. Using Lemma 1,
we can equivalently rewrite the inequality SDt(PXZ ; PX ⊗Q) ≤ δ as

∑
x,z

min(PXZ(x, z), 2t(PX ⊗Q)(x, z)) = Ex∼PX

[∑
z

min(PZ|X=x(z), 2tQ(z))
]
≥ 1− δ. (14)

Therefore, the (t, δ)-GSD-noisy leakage model is “average-case” over PX in the sense that it only
requires that for each x, ∑

z

min(PZ|X=x(z), 2tQ(z)) ≥ 1− δx

for some non-negative real numbers (δx)x∈X such that EX [δX ] ≤ δ.
Following [BFO+22], for two distributions P and Q over X , we say that P is t-dense in Q if

P (x) ≤ 2tQ(x) for all x ∈ X . Motivated by the “average-case on X” property of the GSD-noisy
leakage model, our average dense leakage model will impose (approximate) density constraints
between the conditional distributions PZ|X=x and Q in expectation over X. First, we introduce
a notion of approximate density that is weaker than the one of Brian et al. [BFO+22, Definition
3].

Definition 8 (Approximate density). We say that P is (t, δ)-dense in Q if

P ({z : P (z) ≤ 2tQ(z)}) ≥ 1− δ.

We define average dense leakage based on this notion of approximate density.

Definition 9 (Average Dense leakage). We say that a random variable Z supported on Z
is (t, δ)-average dense leakage from X if there exists a distribution Q on Z such that PXZ is
(t, δ)-dense in PX ⊗Q.

We call this model “average dense” because it is equivalent to requiring that the conditional
distributions PZ|X=x are approximately dense in PZ with good parameters in expectation over
x ∼ PX . More precisely, Z is (t, δ)-average dense leakage from X witnessed by Q if and
only if PZ|X=x is (t, δx)-dense in Q for all x and some non-negative real numbers (δx)x∈X
satisfying EX [δX ] ≤ δ. To see why, first recall that PXZ is (t, δ)-dense in PX ⊗ Q if and
only if PXZ(G) ≥ 1 − δ for G = {(x, z) : PXZ(x, z) ≤ 2t(PX ⊗ Q)(x, z)}. Now, for each x let
Gx = {z : PZ|X=x(z) ≤ 2tQ(z)} and δx = 1− PZ|X=x(Gx). By definition, PZ|X=x is (t, δx)-dense
in Q. Furthermore, G = ⋃

x{x} × Gx. As a result,

PXZ(G) = Ex∼PX
[PZ|X=x({z : PZ|X=x(z) ≤ 2tQ(z)})] = 1− EX [δX ], (15)

and so PXZ(G) ≥ 1− δ if and only if EX [δX ] ≤ δ.
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7.1.2 Dense Leakage as Average Dense Leakage

For completeness, we begin by recalling the dense leakage model of [BFO+22] and discuss how
it can be captured as a special case of average dense leakage. We present a definition of dense
leakage with a slight change in notation compared to [BFO+22] for consistency and to avoid
notational conflicts.

Definition 10 (Dense leakage [BFO+22]). Let X and Z be random variables with supports X
and Z, respectively. We say that Z is (t, p, γ)-dense leakage from X if there exists a set T ⊆ X
and sets Sx ⊆ Z satisfying PX(T ) ≥ 1− p and PZ(Sx), PZ|X=x(Sx) ≥ 1− γ for each x ∈ X such
that PZ|X=x(z) ≤ 2tPZ(z) whenever x ∈ T and z ∈ Sx.

The following simple result places dense leakage inside our average dense leakage model.

Theorem 7. If Z is (t, p, γ)-dense leakage from X, then Z is also (t, δ = p + γ − pγ)-average
dense leakage from X.

Proof. Let T ⊆ X and Sx ⊆ Z for x ∈ X be the sets guaranteed by the definition of Z as
(t, p, γ)-dense leakage from X. Then, it suffices to note that

PXZ({(x, z) : PZ|X=x(z) ≤ 2tPZ(z)}) =
∑
x∈X

PX(x) · PZ|X=x({z : PZ|X=x(z) ≤ 2tPZ(z)})

≥
∑
x∈T

PX(x) · PZ|X=x({z : PZ|X=x(z) ≤ 2tPZ(z)})

≥
∑
x∈T

PX(x)(1− γ)

≥ (1− p)(1− γ)
= 1− (p + γ − pγ).

The second inequality uses the fact that PZ|X=x({z : PZ|X=x(z) ≤ 2tPZ(z)}) ≥ PZ|X=x(Sx) ≥
1− γ. The third inequality holds since PX(T ) ≥ 1− p.

7.1.3 Average Dense Leakage as GSD-Noisy Leakage, and Consequences

In this section we begin by showing that average dense leakage is a special case of GSD-noisy
leakage. Then, we discuss consequences of this fact with respect to simulation and composition.

Theorem 8. If Z is (t, δ)-average dense leakage from X, then Z is also (t, δ)-GSD-noisy leakage
from X.

Proof. Let Q be the distribution witnessing that Z is (t, δ)-average dense leakage from X, and
define G = {(x, z) : PXZ(x, z) ≤ 2t(PX ⊗ Q)(x, z)}. Note that PXZ(G) ≥ 1 − γ since Z is
(t, δ)-average dense leakage from X. Then, we have that∑

x,z

min(PXZ(x, z), 2t(PX ⊗Q)(x, z)) =
∑

(x,z)∈G
PXZ(x, z) +

∑
(x,z) ̸∈G

2t(PX ⊗Q)(x, z)

≥
∑

(x,z)∈G
PXZ(x, z)

≥ 1− δ.

The following corollary is an immediate consequence of Theorems 4 and 8.

Corollary 1. For any α > 0, the family of (t, δ)-average dense leakages from X is (δ + α)-
simulatable using ⌈t + log ln(1/α)⌉ bits of bounded leakage from X.
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By the connection in Theorem 7, we have that Corollary 1 generalizes the main simulation
theorem for dense leakage of Brian et al. [BFO+22, Theorem 3]. Indeed, as a special case, by
combining Theorem 7 and Corollary 1 we immediately obtain the following simulation theorem
for dense leakage itself, which improves slightly on the main simulation theorem for dense leakage
of Brian et al.

Corollary 2. For any α > 0, the family of (t, p, γ)-dense leakages from X is (α + p + γ − pγ)-
simulatable using ⌈t + log ln(1/α)⌉ bits of bounded leakage from X.

Because other noisy leakage models can be cast as special cases of average dense leakage and
GSD-noisy leakage with better parameters than with respect to dense leakage, the more general
simulation theorem in Corollary 1 yields practically significant improvements in the simulation
of those noisy leakage models from bounded leakage. We discuss an example of this in detail in
Section 7.1.5.

On another note, combining Theorem 5 and Theorem 8 yields the following analogous
composition theorem for average dense leakage (which also implies a composition theorem for
dense leakage via Theorem 7).

Corollary 3. Suppose that Z1, . . . , Zm are (ti, δi)-average dense leakages from X, and are
conditionally independent given X. Then, for any α > 0, the global leakage Z = (Z1, . . . , Zm) is
(α +∑m

i=1 δi)-simulatable using ⌈log ln(1/α) +∑m
i=1 ti⌉ bits of bounded leakage from X.

7.1.4 GSD-Noisy Leakage as Average Dense Leakage

To further consolidate our viewpoint that GSD-noisy leakage is similar to average dense leakage,
we show that GSD-noisy leakage is captured by average dense leakage with only a small constant
loss in parameters. Therefore, GSD-noisy leakage and average dense leakage are essentially
equivalent models.

Theorem 9. Let Z supported on Z be (t, δ)-GSD-noisy leakage from X supported on X . Then,
Z is also (t + 1, 2δ)-average dense leakage from X.

Proof. Since Z is (t, δ)-GSD-noisy leakage from X, we know that there exists a distribution Q
such that for every set S ⊆ X × Z it holds that

PXZ(S) ≤ 2t(PX ⊗Q)(S) + δ.

For each x in the support of X, define δx as the smallest δ such that for every A ⊆ Z we have
that

PZ|X=x(A) ≤ 2tQ(A) + δ.

By Lemma 1, we have
PZ|X=x(Bx) = 2tQ(Bx) + δx

for Bx = {z : PZ|X=x(z) > 2tQ(z)}, and

PXZ(B) = 2t(PX ⊗Q)(B) + δ

for B = {(x, z) : PXZ(x, z) > 2t(PX ⊗Q)(z)} = {(x, z) : z ∈ Bx}. In particular, this implies that
E[δX ] = δ, since

2t(PX ⊗Q)(B) + δ = PXZ(B)
= Ex∼PX

[PZ|X=x(Bx)]
= Ex∼PX

[2tQ(Bx) + δx]
= 2t(PX ⊗Q)(B) + EX [δX ].
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We now wish to show that PZ|X=x is (t + 1, 2δx)-dense in Q for each x, which would conclude
the argument. For a given C > 0, let Bx,C = {z : PZ|X=x(z) > C ·Q(z)}. By definition of Bx,C ,
we have that

PZ|X=x(Bx,C) > C ·Q(Bx,C).

Moreover, it holds that
PZ|X=x(Bx,C) ≤ 2tQ(Bx,C) + δx.

Combining these two inequalities implies that

PZ|X=x(Bx,C) <
δx

1− 2t/C
.

Choosing C = 2t+1 yields PZ|X=x(Bx,C) < 2δx, which implies that PZ|X=x is (t + 1, 2δx)-dense
in Q.

7.1.5 Uniform-Noisy Leakage as GSD-Noisy Leakage

We give an example of how our results for the GSD-noisy leakage model lead to improved simula-
tion theorems compared to [BFO+22], and with slightly cleaner arguments. We begin by recalling
the “Uniform-Noisy” leakage model of Dodis, Haralambiev, López-Alt, and Wichs [DHLW10].

Definition 11 (ℓ-U-Noisy-leakage). A function f : X → Z is an ℓ-U-Noisy leakage function
if H̃∞(U |f(U)) ≥ H∞(U) − ℓ, where U is the uniform distribution on X . We say that Z is
ℓ-U-Noisy leakage from X if Z = f(X) for an ℓ-U-Noisy function f .

We now analyze the parameters of U-Noisy leakage as a special case of average dense leakage.

Theorem 10. If Z is ℓ-U-Noisy leakage from X, then Z is also (t = ℓ + η, δ = 2−η)-SD-noisy
leakage from X for any η > 0.

Proof. This argument is analogous (but slightly cleaner than) the proof of [BFO+22, Theorem
6]. By Theorem 8, it suffices to show that PXZ is (t = ℓ + η, δ = 2−η)-dense in PX ⊗ PZ . We
can rewrite H̃∞(U |f(U)) ≥ H∞(U)− ℓ as

2ℓ ≥ Ey∼Pf(U)

[
max

x

PU |f(U)=y(x)
PU (x)

]
.

We also have

Ey∼Pf(U)

[
max

x

PU |f(U)=y(x)
PU (x)

]
=
∑

y

Pf(U)(y) max
x

PU |f(U)=y(x)
PU (x)

=
∑

y

max
x

Pf(U)|U=x(y)

≥
∑

y

max
x∈supp(X)

Pf(U)|U=x(y)

=
∑

y

max
x∈supp(X)

PZ|X=x(y)

= Ez∼PZ

[
max

x∈supp(X)

PZ|X=x(z)
PZ(z)

]
.

Therefore, we get that

2ℓ ≥ Ez∼PZ

[
max

x∈supp(X)

PZ|X=x(z)
PZ(z)

]
.
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Fix any η > 0. By an averaging argument, the inequality above implies that there exists a set S
such that PZ(S) ≥ 1−2−η and PZ|X=x(z)

PZ(z) ≤ 2ℓ+η for all x whenever z ∈ S. Letting G = X ×S, we
get that PXZ(G) = PZ(S) ≥ 1− 2−η, and so we conclude that PXZ is (t = ℓ + η, δ = 2−η)-dense
in PX ⊗ PZ .

The following immediate corollary of Theorems 4 and 10 presents a better simulation error
vs. bounded leakage tradeoff than the corresponding simulation theorem of Brian et al. [BFO+22,
Corollary 3] (more precisely, the simulation error is now 2−η + α instead of 2−η/2 + α).

Corollary 4. For any α, η > 0, the family of ℓ-U-noisy leakages from X is (2−η +α)-simulatable
using ⌈ℓ + η + log ln(1/α)⌉ bits of bounded leakage from X.

7.2 GSD-Noisy Leakage and Mutual Information

In this section, we discuss the relationship between the GSD-noisy leakage model and noisy
leakages based on mutual information, which is a popular metric in the literature on side-channel
attacks [SMY09]. We begin by recalling the δ-MI-noisy leakage model.

Definition 12 (MI-noisy leakage). We say that Z is δ-MI-noisy leakage from X if I(X; Z) ≤ δ.

Pinsker’s inequality (Equation (1)) shows that δ-MI-noisy leakages are (t = 0, δ′ =
√

δ ln 2
2 )-

SD-noisy leakages. There exists a more general version of Pinsker’s inequality that allows us to
extend this connection to hockey-stick divergences with t > 0.

Lemma 5 ([SV16, Theorem 30, adapted and specialized], see also discussion after [SV16, Remark
40]). For every t > 0 there exists a constant ct < 1/t such that for every random variables X
and Z it holds that12

SDt(PXZ ; PX ⊗ PZ) ≤ ct · I(X; Z) <
1
t
· I(X; Z).

Remarkably, when t > 0 the square root in the upper bound in Pinsker’s inequality disappears
and is replaced by linear scaling with I(X; Z) (and with 1/t). We obtain the following statement
as a direct consequence of Lemma 5.

Corollary 5. Every δ-MI-noisy leakage from X is also (t, δ′ = δ/t)-SD-noisy leakage from X.

Note that the δ′ term in Corollary 5 decays only linearly with t. This is not surprising, as the
MI-noisy leakage model is a very general model that, similarly to the (t = 0, δ)-SD-noisy leakage
model, encompasses pessimistic leakage functions. Combining Corollary 5 and Theorem 4 yields
the following simulation theorem for δ-MI-noisy leakages.

Corollary 6. For any α > 0, the class of δ-MI-noisy leakages from X is (α + δ/t)-simulatable
from ℓ bits of bounded leakage when ℓ ≥ t + log ln(1/α).

Brian et al. [BFO+22] focused only on the “trivial” simulator for MI-noisy leakage, which
ignores the bounded leakage (i.e., sets ℓ = 0) and outputs z′ independently distributed according
to the marginal PZ . The linear tradeoff between t and the simulation error in Corollary 6
is consistent with the lower bound in [BFO+22, Theorem 15], which states that the class of
δ-MI-noisy leakages from X uniformly distributed on {0, 1}n is not ε-simulatable from n − 1
bits of bounded leakage with any error ε < δ

2n .
12Sason and Verdú [SV16] use the notation Eγ to denote the hockey-stick divergence SDt with t = log γ.
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8 Simulating RevSD-Noisy Leakage via Random Probing
In their seminal work, Duc, Dziembowski, and Faust [DDF19] showed that δ-SD-noisy leakage
from a uniform distribution can be perfectly simulated in the probing leakage model of Ishai,
Sahai, and Wagner [ISW03]. An unsatisfactory and unavoidable feature of this connection is that
the probing noise required to simulate δ-SD-noisy leakage grows linearly with the field size of
the secret [DFS15a]. In this section, we generalize this connection to (t, δ)-RevSD-noisy leakage,
and show that in this alternative model we can alleviate the field size penalty for simulation by
random probing leakage. For completeness, following [DDF19], we discuss applications of these
simulation theorems to leakage-resilient circuit compilers in Section 8.3.

Before stating our results in this direction, we define p-random probing leakage.

Definition 13 (p-random probing leakage [DDF19]). Let X be some random variable supported
on X . We say that a random variable Z supported on X ∪ {⊥} is p-random probing leakage
from X if Pr[Z = X] = p and Pr[Z = ⊥] = 1− p.

8.1 Zero-Error Simulation of Reverse SD-Noisy Leakage via Random Probing

We have the following result.

Lemma 6. Let X be uniformly distributed over X and suppose that Z is (t, δ)-RevSD-noisy
leakage from X. Then, Z is 0-simulatable by p-random probing leakage from X with p =
(1− 2−t) + δ2−t|X |.

Duc, Dziembowski, and Faust [DDF19, Lemma 2] proved this result for the special case
t = 0, which corresponds to δ-SD-noisy leakage.

Proof of Lemma 6. Our argument follows the proof of [DDF19, Lemma 2] closely. For any given
leakage z, we define

π(z) = min
x∈X

PZ|X=x(z).

Note that π(z) ≥ 0 for all z and ∑z π(z) ≤ ∑z PZ(z) = 1. We will also assume that Z is not
independent of X, in which case there is a z such that π(z) < PZ(z), and so ∑z π(z) < 1. When
Z is independent of X it is clear that we can perfectly simulate it using 0-random probing
leakage.

The main component of this argument consists in showing that π is “almost” a probability
distribution, in the sense that ∑z π(z) is approximately equal to 1. More precisely, we have that

1−
∑
z∈Z

π(z) =
∑
z∈Z

PZ(z)−
∑
z∈Z

min
x∈X

PZ|X=x(z)

=
∑
z∈Z

(1− 2−t)PZ(z) +
∑
z∈Z

[2−tPZ(z)−min
x∈X

PZ|X=x(z)]

= (1− 2−t) +
∑
z∈Z

max
x

[2−tPZ(z)− PZ|X=x(z)]

≤ (1− 2−t) +
∑
z∈Z

max
x

max(0, 2−tPZ(z)− PZ|X=x(z))

≤ (1− 2−t) +
∑
z∈Z

∑
x∈X

max(0, 2−tPZ(z)− PZ|X=x(z))

= (1− 2−t) + 2−t · |X | ·
∑
z∈Z

∑
x∈X

max(0, (PX ⊗ PZ)(x, z)− 2tPXZ(x, z))

≤ (1− 2−t) + 2−t · |X | · δ.

The last equality uses the fact that X is uniform, and so PX(x) = 1/|X | for all x ∈ X . The
last inequality uses the fact that Z is (t, δ)-RevSD-noisy leakage from X and Lemma 1. Let
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p = 1−∑z∈Z π(z). By the computation above, we know that 0 < p ≤ (1− 2−t) + 2−t · |X | · δ.
We proceed to show that Z can be perfectly simulated by p-random probing leakage from X.
Denote the p-random probing leakage from X by W . For each x, we have that PW |X=x(x) = p
and PW |X=x(⊥) = 1− p. Consider the randomized function g which receives w ∈ X ∪ {⊥} as
input and acts as follows:

• If w = x for some x ∈ X , then g(w) = z with probability PZ|X=x(z)−π(z)
p ;

• If w = ⊥, then g(⊥) = z with probability π(z)
1−p .

Note that g is well-defined, since ∑z Pg(⊥)(z) = ∑
z

π(z)
1−p = 1−p

1−p = 1 and ∑
z Pg(x)(z) =∑

z
PZ|X=x(z)−π(z)

p = 1−(1−p)
p = 1. We claim that g(W ) and Z have the same distribution

conditioned on X = x. In fact,

Pg(W )|X=x(z) = p ·
PZ|X=x(z)− π(z)

p
+ (1− p) · π(z)

1− p
= PZ|X=x(z).

This implies that (X, Z) and (X, g(W )) are identically distributed, and so Z is 0-simulatable by
p-random probing leakage.

8.2 Low-Error Simulation of Reverse SD-Noisy Leakage via Random Probing

We provide another extension of the key lemma from [DDF19] by allowing simulation of RevSD-
noisy leakage from random probing leakage with positive simulation error. In contrast, [DDF19]
exclusively considered t = 0 and the zero simulation error setting for a uniform secret X.

Lemma 7. Fix t > 0 and suppose that Z is (t, δ)-RevSD-noisy leakage from X. Then, Z is
ε-simulatable by p-random probing leakage from X for ε = 2−tδ and p = 1− 2−t.

Proof. For all x ∈ X define the unnormalized distribution π(z|x) given by

π(z|x) = 1
p
·max(PZ|X=x(z)− 2−tPZ(z), 0)

and normalize it to get a probability distribution π′(z|x) given by

π′(z|x) = π(z|x)∑
z′∈Z π(z′|x) .

Note that ∑
z′∈Z

π(z′|x) ≥ 1
p
·
∑

z′∈Z
[PZ|X=x(z′)− 2−tPZ(z′)] = 1− 2−t

p
= 1,

and so π′(z|x) ≤ π(z|x) for all z ∈ Z.
Now, define the simulation of Z to check for the p-random probing leakage, and if it equals

x ̸= ⊥ to sample Z according to π′(z|x), and otherwise sample Z according to PZ . Let PSim|X=x

be the conditional distribution of the simulator’s output given X = x. Then,

PSim|X=x(z) = p · π′(z|x) + (1− p)PZ(z)
≤ p · π(z|x) + 2−tPZ(z)
= max(PZ|X=x(z), 2−tPZ(z)). (16)

The inequality uses the fact that π′(z|x) ≤ π(z|x) always, as discussed above. Then, we bound
the simulation error SD(PXSim; PXZ) as

SD(PXSim; PXZ) = Ex∼PX

[
SD(PSim|X=x; PZ|X=x)

]
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= Ex∼PX

[∑
z∈Z

max(PSim|X=x(z)− PZ|X=x(z), 0)
]

≤ Ex∼PX

[∑
z∈Z

max(max(PZ|X=x(z), 2−tPZ(z))− PZ|X=x(z), 0)
]

= Ex∼PX

[∑
z∈Z

max(2−tPZ(z)− PZ|X=x(z), 0)
]

= 2−t · SDt(PX ⊗ PZ ; PXZ)
≤ 2−tδ,

where the first inequality uses Equation (16) and the second and fourth equalities use Lemma 1.

8.3 Application to Private Circuits

For completeness, we discuss how to use our zero-error reduction from RevSD-noisy leakage to
random probing (Lemma 6) in order to obtain private circuits, i.e., stateful cryptographic circuits
that maintain privacy even in the presence of an adversary observing RevSD-noisy leakage on
the intermediate values produced during the computation. We start by recalling the definition
of threshold probing leakage from [ISW03].

Definition 14 (Vector τ -threshold probing leakage [ISW03]). Consider a random variable
X = (X1, X2, . . . , Xℓ) where each Xi ∈ X . We say that Z = (Z1, . . . , Zℓ) is τ -threshold probing
leakage from X if each Zi is either Xi or ⊥, and Zi ̸= ⊥ for at most τ indices i ∈ [ℓ].

We can also easily extend the definition of random probing leakage to length-ℓ vectors.

Definition 15 (Vector p-random probing leakage [DDF19]). Consider a random variable
X = (X1, . . . , Xℓ) where each Xi ∈ X . We say that a random variable Z = (Z1, . . . , Zℓ), where
each Zi ∈ X ∪{⊥}, is p-random probing leakage from X if the Zi’s are conditionally independent
given X and for each i ∈ [ℓ] we have Pr[Zi = Xi] = p and Pr[Zi = ⊥] = 1− p.

The following result from [DDF19] links the random and threshold probing leakage models,
and follows from a standard application of concentration inequalities.

Lemma 8 ([DDF19, Lemma 6], adapted). Let X = (X1, . . . , Xℓ) be an arbitrary random
vector supported on Fℓ. Suppose that Z = (Z1, . . . , Zℓ) is p-random probing leakage from
X = (X1, . . . , Xℓ) and let τ = 2pℓ − 1. Then, Z is (ε = e− pℓ

3 )-simulatable from the family of
τ -threshold probing leakages from X.

8.3.1 Leakage-Resilient Stateful Arithmetic Circuits

We proceed to define the circuit model we consider, which corresponds to the one from [ISW03,
DDF19]. Our presentation follows [DDF19, Section 5.1] essentially verbatim.

Stateful arithmetic circuits. A stateful arithmetic circuit Γ is a directed graph whose nodes
represent gates over a finite field F. These gates can be input and output gates (with fan-in 0
and fan-out 0, respectively), addition and subtraction gates (with fan-in 2), multiplication gates
(with fan-in 2), constant gates, random gates (with fan-in 0, producing a uniformly random
element of F in each round), and memory gates (with fan-in 1). As in [ISW03, DDF19], the
fan-out of any of these gates is assumed to be at most 3. There may be cycles in Γ, but they
must contain exactly one memory gate. We denote the number of gates in Γ by |Γ|.
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The computation of Γ proceeds by rounds. Let k be the string containing the symbols stored
in the memory gates before the first round in some predefined order. In the first round, the input
gates of Γ are loaded with an input string a1. Then, Γ produces a (possibly randomized) output
string b1, and the values of the memory gates are updated to some string k1. The computation
in the second round will use some new input string a2 and memory gates with values from the
updated string k1. In general, in the i-th round Γ receives an input string ai, outputs a random
string bi, and updates its memory from ki−1 to ki. We denote the behavior of Γ with initial
memory state k by Γ(k), and its output given inputs (a1, . . . , ar) and initial memory state k by
Γ(k, a1, . . . , ar).

Adversarial models. We will consider adversaries that interact with a circuit Γ(k) via the
input-output interface over several rounds, and possibly get additional leakage from the circuit
wires in each round. A black-box circuit adversary A interacts with Γ(k) only through its
input-output interface. We denote the output of A after such an interaction by out(A

bb
⇄ Γ(k)).

Turning to leakage models, we consider the following adversaries:

• An (r, τ)-threshold probing circuit adversary A interacts with Γ(k) through its input-output
interface over r rounds, and also learns threshold probing leakage from the wires of Γ(k)
in each round. More precisely, letting X = (X1, . . . , Xw) denote the values of the wires of
Γ(k) in the i-th round, A learns any τ -threshold probing leakage Z = (Z1, . . . , Zw) from
X of its choice. We denote the output of A after such an interaction by out(A

thres
⇄ Γ(k)).

• An (r, p)-random probing circuit adversary A behaves similarly to a threshold probing
circuit adversary, except that in each round it learns p-random probing leakage Z =
(Z1, . . . , Zw) from the wire values (X1, . . . , Xw) in each of the r rounds of interaction. We
denote the output of A after such an interaction by out(A

rand
⇄ Γ(k)).

• An (r, t, δ)-Uniform-RevSD-noisy circuit adversary A behaves similarly to a threshold or
random probing circuit adversary, except that in each of the r rounds it specifies randomized
functions f1, . . . , fw such that each fi is a (t, δ)-RevSD-noisy leakage function from UF
(the uniform distribution on F), and learns the leakage (Z1, . . . , Zw) where Zi = fi(Xi)
with Xi denoting the i-th wire value in that round. We denote the output of A after such
an interaction by out(A

noisy−unif
⇄ Γ(k)). The special case with t = 0 corresponds to the

δ-noisy adversary of [DDF19].

• An (r, t, δ)-RevSD-noisy circuit adversary A behaves similarly to the adversaries above.
Suppose that in the j-th round, j ∈ [r], the adversary A selects input aj (which may be
adaptively chosen based on inputs to, outputs from, and leakages from the wires of the
circuit in previous rounds) and the circuit’s memory state is kj . Let Xi,j denote the value
of the i-th wire of the circuit in this round conditioned on input aj and memory kj . Then,
A learns leakage Zi,j from Xi,j , where Zi,j is some (t, δ)-RevSD-noisy leakage from Xi,j

and the Zi,j ’s for i ∈ [w] are conditionally independent given (X1,j , . . . , Xw,j). We denote
the output of A after such an interaction by out(A

noisy
⇄ Γ(k)).

Leakage-resilient implementations of circuits. Ishai, Sahai, and Wagner [ISW03] studied
compilers that turn an arbitrary stateful arithmetic circuit Γ into an equivalent circuit that is
resilient to leakage.

Definition 16 (Leakage-resilient implementation of a circuit). We say that Γ′ is an (r, τ, ε)-
threshold-probing-leakage-resilient implementation of Γ if there exists an encryption function
Enc such that the following two properties hold:
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• Equivalence: For any inputs (a1, . . . , ar), outputs (b1, . . . , br), and initial memory state
k we have that

Pr[Γ(k, a1, . . . , ar) = (b1, . . . , br)] = Pr[Γ′(Enc(k), a1, . . . , ar) = (b1, . . . , br)];

• Leakage-resilience: For any initial memory state k and (r, τ)-threshold probing circuit
adversary A there exists a black-box circuit adversary S interacting with Γ such that

SD(out(S
bb
⇄ Γ(k)); out(A

thres
⇄ Γ′(Enc(k)))) ≤ ε.

We can define an (r, p, ε)-random-probing-leakage-resilient implementation of Γ, an (r, t, δ, ε)-
Uniform-RevSD-noisy-leakage-resilient implementation of Γ, and an (r, t, δ, ε)-RevSD-noisy-
leakage-resilient implementation of Γ analogously by replacing out(A

thres
⇄ Γ′(Enc(k))) by out(A

rand
⇄

Γ′(Enc(k))), out(A
noisy−unif

⇄ Γ′(Enc(k))), or out(A
noisy
⇄ Γ′(Enc(k))), respectively, in the leakage-

resilience condition above.

Ishai, Sahai, and Wagner [ISW03] described and analyzed an efficient compiler that transforms
an arbitrary stateful arithmetic circuit Γ into another stateful arithmetic circuit Γ′ equivalent to
Γ that is resilient to threshold probing leakage. A bit more precisely, this compiler replaces each
gate of Γ by an appropriate gadget consisting of multiple gates. For an integer parameter d > 0
which controls the probing threshold, such a gadget contains at most 3.5d2 + d gates, and this
compiler yields the following theorem.

Theorem 11 (Circuits resilient to threshold probing leakage [ISW03], see also [DDF19, Section
5.3]). Let Γ be an arbitrary stateful arithmetic circuit over F and fix an integer parameter d > 0.
Then, there is a procedure running in time polynomial in |Γ| and |F| that compiles Γ into an
(r, τ = ⌊d−1

2 ⌋ · |Γ|, ε = 0)-threshold-probing-leakage-resilient implementation Γ′ for any r, provided
that the adversary does not probe each gadget (containing at most 3.5d2 + d gates) more than
⌊d−1

2 ⌋ times in each round.

The next result, observed in [DDF19], follows by combining Lemma 8 and Theorem 11. We
include a proof for completeness, since [DDF19] considers only the single-round setting and
argues directly for noisy leakage.

Corollary 7 (Circuits resilient to random probing leakage, implicit in [DDF19, Theorem 1]).
Let Γ be an arbitrary stateful arithmetic circuit over F and fix an integer parameter d > 0.
Then, there is a procedure running in time polynomial in |Γ| and |F| that compiles Γ into an
(r, p, ε)-random probing leakage-resilient implementation Γ′ for p = 1

28d+8 and ε = r|Γ| · e−d/12.

Proof. For a given d > 0, let Γ′ be the threshold-probing-leakage-resilient implementation of Γ
guaranteed by Theorem 11. Each of the |Γ| gadgets of Γ′ contains at most 2(3.5d2 +d) = 7d2 +2d
wires since each gate has fan-in at most 2.

For an arbitrary gadget g of Γ′, define ℓg to be its number of wires. Define also pg = d
4ℓg

and
τg = 2pgℓg − 1. Note that τg = 2pgℓg − 1 = d

2 − 1 ≤ ⌊d−1
2 ⌋. Furthermore, since ℓg ≤ 7d2 + 2d,

we have pg = d
4ℓg
≥ 1

28d+8 = p. Therefore, we can perfectly simulate p-random probing leakage
from X using pg-random probing leakage from X since pg ≥ p.

Let A be an (r, p)-random probing circuit adversary for Γ′. Consider the (r, τ = ⌊d−1
2 ⌋)-

threshold probing adversary A′ for Γ′ which applies the simulator of Lemma 8 instantiated
with ℓ = ℓg and p = pg to (τg ≤ τ)-threshold probing leakage from each gadget g, which
simulates pg-random probing leakage from the wires of g, and uses this to perfectly simulate
p-random probing leakage from the wires of g, as pg ≥ p. The output of this simulator is
(e−pgℓg/3 = e−d/12)-close in statistical distance to p-random probing leakage from the wires of g,
even given the values of all wires in g. Then, A′ emulates the behavior of A given the resulting
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simulated leakages. Since p-random probing leakage from the wires in each gadget and round
is e−d/12-simulatable from τ -threshold probing leakage from those wires even given the wire
values, applying the triangle inequality for statistical distance across all |Γ| gadgets of Γ′ and all
r rounds yields

SD(out(A′ thres
⇄ Γ′(Enc(k))); out(A

rand
⇄ Γ′(Enc(k)))) ≤ r|Γ| · e−d/12. (17)

Furthermore, by Theorem 11 we also know that there exists a black-box adversary S such that

SD(out(S
bb
⇄ Γ′(k)); out(A′ thres

⇄ Γ′(Enc(k)))) = 0. (18)

Combining Equations (17) and (18) with a triangle inequality yields the desired result.

8.3.2 RevSD-Noisy Leakage-Resilient Circuit Compilers

We combine Corollary 7 with Lemmas 6 and 7 to obtain the following compilers for noisy-
leakage-resilient circuits. These corollaries extend the main result of [DDF19, Theorem 1], who
considered only the case t = 0. They are only relevant when t is quite small.

Corollary 8. Let Γ be an arbitrary stateful arithmetic circuit over a finite field F and fix an
integer parameter d > 0. Then, there is a procedure running in time polynomial in |Γ| and |F|
that compiles Γ into an (r, t, δ, ε)-Uniform-RevSD-noisy-leakage-resilient implementation Γ′ for
δ = 2t(28d+8)−1−(2t−1)

|F| and ε = r|Γ| · e−d/12.

Proof. By Corollary 7, we can obtain an (r, p = 1
28d+8 , ε = r|Γ| · e−d/12)-random-probing-leakage-

resilient implementation Γ′ of Γ in time polynomial in |Γ| and |F|. Moreover, by the discussion in
Section 8.3.1, Γ′ is obtained by transforming each gate of Γ into a different gadget consisting of
at most ℓ = 3.5d2 +d gates. Since each gate has fan-in at most 2, there are at most 2ℓ = 7d2 +2d
wires in each gadget.

Let A be an (r, t, δ)-Uniform-RevSD-noisy circuit adversary for Γ′. This means that for the
i-th wire value in the j-th round, Xi,j , the adversary A learns the leakage Zi,j = fi,j(Xi,j), where
fi,j is a (t, δ)-RevSD-noisy leakage function from UF. By Lemma 6, we can perfectly simulate
each Zi,j by (1 − 2−t + δ2−t|F| = p)-random probing leakage from Xi,j , even given Xi,j .13

Therefore, the (r, p)-random probing circuit adversary A′ for Γ′ which applies this simulator to
the p-random probing leakage from each wire and then emulates the behavior of A given the
outputs of the simulators satisfies

SD(out(A′ rand
⇄ Γ′(Enc(k))); out(A

noisy−unif
⇄ Γ′(Enc(k)))) = 0. (19)

Since Γ′ is an (r, p, ε)-random-probing-leakage-resilient implementation of Γ, there exists a
black-box adversary S such that

SD(out(S
bb
⇄ Γ(k)); out(A′ rand

⇄ Γ′(Enc(k)))) ≤ ε. (20)

Applying the triangle inequality to Equations (19) and (20) yields

SD(out(S
bb
⇄ Γ(k)); out(A

noisy−unif
⇄ Γ′(Enc(k)))) ≤ ε,

as desired.
13Lemma 6 implies that for any fixing Xi,j = xi,j we can perfectly simulate the leakage fi,j(xi,j) given p-random

probing leakage from xi,j .
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Corollary 9. Let Γ be an arbitrary stateful arithmetic circuit over F and fix an integer parameter
d > 0. Then, there is an procedure running in time polynomial in |Γ| and |F| that compiles Γ
into an (r, t, δ, ε)-RevSD-noisy-leakage-resilient implementation for any t ∈

[
0, log

(
1 + 1

28d+7

)]
and ε = r|Γ|(e−d/12 + (7d2 + 2d)2−tδ).

Proof. By Corollary 7, we can obtain an (r, p = 1
28d+8 , ε′ = r|Γ| ·e−d/12)-random-probing-leakage-

resilient implementation Γ′ of Γ in time polynomial in |Γ| and |F|, and the number of wires in Γ′

is w ≤ (7d2 + 2d)|Γ|.
Let A be an (r, t, δ)-RevSD-noisy circuit probing adversary for Γ′. Fix a round j ∈ [r] and

suppose that A adaptively chose input aj and that the circuit’s memory state in that round
is kj . Let Xi,j be the random variable corresponding to the value of the i-th wire of Γ′ in the
j-th round conditioned on circuit input aj and memory state kj . The corresponding leakage Zi,j

learned by A from Xi,j is (t, δ)-RevSD-noisy leakage from Xi,j , and the Zi,j ’s are conditionally
independent given Xj = (Xi,j)i∈[w]. Consider the (r, p)-random probing circuit adversary A′

for Γ′ that in the j-th round perfectly simulates (1 − 2−t)-random probing leakage from Xi,j

given p-random probing leakage from Xi,j , which is possible since p = 1
28d+8 ≥ 1 − 2−t when

t ≤ log
(
1 + 1

28d+7

)
, applies to the (1 − 2−t)-random probing leakage from Xi,j the simulator

Simi,j guaranteed by Lemma 7 instantiated with Zi,j and Xi,j , and then behaves like A based
on the outputs (Z ′

i,j)i∈[w] of those simulators.
We argue that

SD(out(A′ rand
⇄ Γ′(Enc(k))); out(A

noisy
⇄ Γ′(Enc(k)))) ≤ r|Γ|(7d2 + 2d) · 2−tδ (21)

via a hybrid argument over the r rounds. For j ∈ [r], consider the hybrid experiment Hybj where
we interact with Γ′ as follows. First, in rounds 1, . . . , j − 1 we learn (t, δ)-RevSD-noisy leakages
from the wires and behave like A. Then, in rounds j, . . . , r we learn p-random probing leakage
from the wires and behave like A′. The output of Hybj consists of the adaptively chosen circuit
inputs a1, . . . , ar, the corresponding circuit outputs b1, . . . , br, the state of the circuit’s memory
in each round k1, . . . , kr, and for rounds j′ ∈ [j − 1] the true noisy leakages (Zi,j′)i∈[w] and for
rounds j′ ≥ j the simulated noisy leakages (Z ′

i,j′)i∈[w] as defined in the previous paragraph.
The initial hybrid Hyb1 corresponds to the interaction between A′ and Γ′. On the other

hand, Hybr+1 corresponds to the interaction between A and Γ′. Furthermore, the only thing that
changes between Hybj−1 and Hybj is how the noisy leakages from the wires are generated in the
j-th round. These noisy leakages are conditionally independent of everything else conditioned
on the wire values in the j-th round. In turn, these wire values depend on Hybj−1 only through
the j-th input aj and the j-th memory state kj . Let Xi,j be random variables corresponding
to the wire values of Γ′ conditioned on an arbitrary fixing of the input aj and memory kj ,
and write Zi,j,x = (Zi,j |Xi,j = x) and Z ′

i,j,x = (Z ′
i,j |Xi,j = x). Write also Xj = (Xi,j)i∈[w],

Zj,xj = (Zi,j,xi,j )i∈[w], and Z ′
j,xj

= (Z ′
i,j,xi,j

)i∈[w]. For brevity, let SD(Hybj−1; Hybj |a⋆
j , k⋆

j ) denote
the statistical distance between Hybj−1 and Hybj conditioned on aj = a⋆

j and kj = k⋆
j . Then,

this discussion shows that

SD(Hybj−1; Hybj |a⋆
j , k⋆

j ) ≤ SD(PXjZj,Xj
; PXjZ′

j,Xj
) (22)

for any a⋆
j and k⋆

j .
We now prove that

SD(PXjZj,Xj
; PXjZ′

j,Xj
) ≤ |Γ|(7d2 + 2d) · 2−tδ. (23)

Combined with Equation (22), this implies that Hybj−1 and Hybj are (|Γ|(7d2 +2d) ·2−tδ)-close in
statistical distance for every j, which then yields Equation (21) via r applications of the triangle

34



inequality across the hybrids Hyb1, . . . , Hybr+1, since out(A′ rand
⇄ Γ′(Enc(k))) is a function of

Hyb1 and out(A
noisy
⇄ Γ′(Enc(k))) is a function of Hybr+1.

If we denote εi,j,x = SD(PZi,j,x ; PZ′
i,j,x

), then we know that

Ex∼PXi,j
[εi,j,x] = SD(PXi,jZi,j ; PXi,jZ′

i,j
) ≤ 2−tδ, (24)

where the last inequality follows from Lemma 7. Consider an arbitrary fixing Xj = xj = (xi,j)i∈[w].
Since the Zi,j,xi,j ’s are independent and so are the Z ′

i,j,xi,j
’s, from w applications of the triangle

inequality for statistical distance across the w wires of Γ′ we obtain

SD(P(Zi,j,xi,j
)i∈[w] ; P(Z′

i,j,xi,j
)i∈[w]) ≤

w∑
i=1

εi,j,xi,j . (25)

Therefore, we have

SD(PXjZj,Xj
; PXjZ′

j,Xj
) = Exj∼PXj

[SD(PZj,xj
; PZ′

j,xj
)]

≤ Exj∼PXj

[
w∑

i=1
εi,j,xi,j

]

=
w∑

i=1
Exj∼PXj

[εi,j,xi,j ]

=
w∑

i=1
Exi,j∼PXi,j

[εi,j,xi,j ]

≤
w∑

i=1
2−tδ

≤ |Γ|(7d2 + 2d) · 2−tδ, (26)

where the first inequality uses Equation (25) and the second to last inequality uses Equation (24).
This establishes Equation (23), and hence Equation (21) as discussed above.

Finally, since Γ′ is an (r, p, ε′)-random-probing-leakage-resilient implementation of Γ, there
exists a black-box adversary S such that

SD(out(S
bb
⇄ Γ(k)); out(A′ rand

⇄ Γ′(Enc(k)))) ≤ ε′ = r|Γ| · e−d/12.

Combining this inequality with Equation (21) via the triangle inequality yields the desired
result.

9 Empirical Evaluations
We complete the paper by investigating and discussing the practical implications of our findings.
For this purpose, we start by describing how to compute the parameters t and δ of our new
leakage model in Section 9.1. We then describe our evaluation settings in Section 9.2 and
use them to discuss reductions to bounded leakage and random probing in Section 9.3 and
Section 9.4, respectively.

9.1 Parameter Computation for Noisy Leakages

Given PXZ for two random variables X and Z, we want to determine for which parameters t
and δ we have that Z is (t, δ)-SD-noisy leakage from X. To this end, we may use Lemma 1.
More precisely, this lemma implies that for any given t ≥ 0 the corresponding minimal δ ∈ [0, 1]
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is obtained by computing δ = PXZ(B) − 2t(PX ⊗ PZ)(B), where B = {(x, z) | PXZ(x, z) >
2t(PX ⊗ PZ)(x, z)}. The same lemma can be used to compute the parameters of RevSD-noisy
leakages analogously by just swapping the roles of the product and the joint distributions.

In many scenarios the process described above (i.e., computing the δ parameter in practice)
can be further optimized. For example, if the deterministic part of Z takes on only a small amount
of values we can go over all fixings of Z = z, compute δz = PXZ|Z=z(B)− 2t(PX ⊗ PZ|Z=z)(B),
and recombine as δ = ∑

z∈Z PZ(z) ·δz. Moreover, note that this procedure also provides an upper
bound for the δ parameter for Z as (t, δ)-GSD-noisy leakage from X by the choice Q = PZ .

In certain cases we may obtain an even smaller δ value by choosing the distribution Q
carefully. In the following, we nevertheless focus on the (t, δ)-SD-noisy model, which leads to
simple and intuitive results for our leakage application, and we leave the study of improved
parameter estimation algorithms for GSD-noisy leakage as an interesting problem for future
work.

9.2 Evaluation Settings

As a usual starting point, we considered the setting where leakages are written as the sum of a
deterministic function d and a Gaussian noise R [SLP05]:

Z = d(X) + R. (27)

In this setting, the amount of noise in the leakages is conveniently captured by the Signal-to-
Noise Ratio (SNR) [Man04], defined as the ratio between the variance of the leakage function’s
deterministic part and the variance of the noise:

SNR = V(d(X))
V(R) · (28)

As a complement to the textbook Hamming weight leakages, we considered noisy linear leakages
where the deterministic function can be written as

d(X) =
n∑

i=1
βi X(i),

with X(i) the i-th bit of X and the βi’s are real-valued coefficients. It generalizes the Hamming
weight function where βi = 1 for all i’s. In order to evaluate the impact of leakage models that
significantly deviate from the Hamming weight model, we considered two linear functions with
coefficients that gradually deviate from one, and measured the distance between these models
and the Hamming weight one with Pearson’s correlation coefficient. The least variable model
(with correlation 0.9) is illustrated and compared to the Hamming weight one in Figure 1, for
n = 8. The more variable model (with correlation 0.5) goes significantly beyond the deviations
experimentally observed in [HMM+23].

9.3 Simulating SD-Noisy Leakage via Bounded Leakage

We first computed the δ parameter (i.e., the simulation error) as a function of the SNR, for target
values X of different bit sizes n and different amounts of bounded leakage t in the simulation for
Hamming weight leakages.

This enables straightforward optimizations since d(X) can only take n + 1 values and has
variance n/4 in this case. The δ parameter can therefore be easily evaluated for large (e.g., up
to 128-bit) values, which we report in Figure 2.

Comparing the three first plots with the lower right one allows us to put forward the massive
advantage of the (t, δ)-SD-noisy leakage model over δ-SD-noisy leakages (i.e., the t = 0 case).
As outlined in introduction, reducing the simulation error using the techniques from [BFO+22]
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Figure 1: Joint distribution of the noisy Hamming weight leakage function and exemplary noisy
linear leakage function for different SNR values (with bit size n = 8).

can only be done by reducing the SNR. But this scales badly because the MI and SD metrics of
unprotected implementations decrease linearly with the noise variance and standard deviation,
respectively [DFS15a]. The introduction of the t parameter circumvents this issue since as the
noise increases, it allows limiting the area where the joint distribution is 2t times larger than the
product one to the extreme Hamming weights (i.e., the set B in Section 9.1), which only occur
with exponentially small probability.

Quite naturally, a simulation using t = log(n) bits of bounded leakage is not specially
impressive for (noiseless) Hamming weight leakages since a trivial simulator perfectly succeeds in
this case. As a first step towards confirming the generality of our results, the figure also shows
that simulation with negligible errors can also be obtained with t = log(n)/2 or t = log(n)/3
bits of bounded leakage, at the cost of increasing the noise (i.e., decreasing the SNR).

For example, for n = 128, SNR = 10−3 and t = log(n)/2, we have δ ≈ 2−128 with t = 3.5 and
Theorem 1 indicates that we can simulate with statistical error 2−128 + α with 3.5 + log ln(1/α)
bits of bounded leakage from X. Comparing the right plots of Figure 2, we can see that for
the same SNR, using the SD (i.e., t = 0) would lead to δ ≈ 2−7, and SNRs in the 2−128 range
would be required to reach a 2−128 simulation error. Plugging in these numbers in our PRNG
example of Section 2.1 finally shows that our results have direct application to leakage-resilient
constructions under reasonable noise requirements.

We similarly evaluated the aforementioned linear leakage models that deviate from the
Hamming weight one. Those models are interesting abstractions since they are bijective without
noise, meaning that the trivial simulation would require n bits of bounded leakage to succeed.
Nevertheless, Figure 3 shows results that are very similar to Figure 2. This can be explained by
looking at Figure 1 where it is clear that the amount of noise needed to “hide” the deviation of
the linear model from the Hamming weight one is much lower than the amount of noise needed
to simulate. For example, the lower plots of Figure 1 correspond to a SNR of 10 which is the
rightmost point of the plots in Figure 3. This confirms that our simulation theorem applies to
broad classes of leakage functions.14

14This time we only computed the δ parameter for n = 8 because computing it (exactly) for larger n values is
computationally intensive. By approximating the product distribution as a Gaussian, it is nevertheless possible to
obtain efficient approximations of the δ parameter for larger n values, which should become accurate as the noise
increases, and which we leave as a scope for further investigations.
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Figure 2: Estimation of the δ parameter for SD-noisy leakages, in function of the SNR for
Hamming weight leakages (with bit sizes n and an amount of bounded leakage t).

Figure 3: Estimation of the δ parameter for SD-noisy leakages, in function of the SNR for linear
leakages (with bit sizes n and an amount of bounded leakage t).

Discussion. Based on the previous results, the last mile for implementers is to ensure SNRs
in the 10−3 range. Under the (heuristic but usual) assumption that side-channel adversaries
are computationally-bounded and can only exploit the signal of small (e.g., 8-bit to 32-bit)
targets, a round-based hardware implementation of the AES, as can be found on off-the-shelf
microcontrollers, should already be enough for this purpose [UvWBS20]. Assuming (unrealistic)
computationally unbounded adversaries able to characterize a full 128-bit state, one should
consider more specialized architectures such as the unrolled ones in [BGSD10], where low SNRs
are due to physical reasons (i.e., the weak leakage of the combinatorial logic) rather than
algorithmic ones (i.e., computational limitations).

Similar observations can be made about composition. Taking the AES case study again, a
round-based implementation will produce a ciphertext in 10 cycles, and each cycle will provide
the adversary with a few leakage samples (typically correlated with the Hamming weight of the
intermediate value). Denoting the intermediate AES results after i rounds as Xi = ρi(P, K),
with P the plaintext, K the master key and ρ the round function, we can assume for simplicity
that the adversary will collect leakage samples of the form Zi = f(Xi) and that every Zi is (t, δ)-
SD-noisy. Since the Xi’s are bijectively connected to K, the application of Theorem 2 implies
that one would need 10 times more bounded leakage to simulate in this case (with simulation
error multiplied by 10). Based on such a (worst-case) analysis, one should favor (low-latency)
unrolled implementations to ensure high security levels. But this theorem again assumes that the
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leakage of all computations in an implementation are equally easy to exploit, which is not true
for computationally-bounded adversaries [GGSB20]. So a reasonable rule-of-thumb to obtain
less conservative results would be to apply composition results with only a fraction of the AES
rounds, in which case round-based implementations should already lead to high security levels
at lower implementation cost.

Note that the practical estimations in this section leverage two additional assumptions. First,
the estimation of t and δ assume a uniformly distributed X. This is a natural assumption in
side-channel analysis since the adversary has in general no efficient ways to force intermediate
computations to values of her choice (e.g., extreme Hamming weights). This is even enforced in
leakage-resilient constructions where the block cipher inputs are fixed by design [DP08, BBC+20,
BMPS21]. But, of course, our theoretical results are applicable to non-uniform distributions
as well. Besides, we recall that our composition theorem assumes the noise part of the leakage
samples Zi to be independent, which is a standard approximation.

So, overall, we can conclude that the requirements that our simulation and composition
theorems impose are reachable for actual hardware implementations using known techniques
and at non-negligible but affordable cost. Besides, and most importantly, they formally confirm
that it is possible to simulate noisy leakages from bounded leakage with exponentially small
error without masking (as witnessed by Figures 2 and 3), which in turn formally confirms the
interest of the re-keying techniques used in leakage-resilient cryptography.

9.4 Simulating RevSD-Noisy Leakage via Random Probing

As a final investigation, Figure 4 reports the t and δ parameters corresponding to RevSD-noisy
leakage, in a setting similar to Figure 2. The upper left plot is for t = log(n)/2 and it is used to
confirm that the trends for this model are similar to the ones of SD-noisy leakages (essentially
for the same reason that increasing the t parameter leads to computing δ by integrating over
low-probability areas, where the product distribution is 2t times larger than the joint distribution).

Figure 4: Estimation of the δ parameter for RevSD-noisy leakages, in function of the SNR for
Hamming weight leakages (with bit sizes n and an amount of bounded leakage t).

Concretely, though, the relevant t values are lower than in the simulation via bounded leakage.
This is because the p parameter of the random probes in Theorem 3 is at least (1− 2−t). Hence,
Figure 4 provides values for t = 0.5 (which corresponds to p > 0.3), t = 0.25 (which corresponds
to p > 0.15) and t = 0.125 (which corresponds to p > 0.08). Assuming n = |X | = 256 (as
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when masking the AES S-box) and a SNR of 10−3, we see that even for t = 0.125 we have
δ ≈ 2−13, which is significantly below the field size and therefore amortizes the penalty term
δ · 2−t · |X | ≈ 0.02, only impacting the security level mildly. Assuming |X | = 2 as in a bitslice
cipher, this penalty term falls down to 2 · 10−4.

As mentioned in introduction, Prest et al. already proposed a noisy leakage model that
is tightly connected to the random probing model, using the Average Relative Error (ARE)
metric [PGMP19]. They provide an approximate closed-form formula for this metric in the
context of Hamming weight leakages with Gaussian noise (that becomes accurate for large noise
levels / low SNRs):

ARE(X|Z) = n

σ
√

2π
,

where σ is the leakage noise’s standard deviation. Since the SNR of the Hamming weight leakage
function equals n/4

σ2 , we can directly compare the two approaches in this case. For this purpose,
we plot in Figure 5 the random probing probability p in function of the SNR using the ARE and
our reduction, for different values of the t parameter. It leads to the following main observations:

• By adapting the t parameter to the SNR, the 1− 2−t term (reflected by the plateau’s on
the left parts of the plots) is not dominating.

• The loss compared to the ARE increases with the field size, but is smaller than the field
size (e.g., for n = 8, we lose a factor ≈ 2 rather than 28).

Figure 5: Reductions to random probing using the ARE and RevSD metrics in function of the
SNR for Hamming weight leakages and bit sizes n = 1, 2, 4 and 8.

So despite not improving the state of the art for such a realistic leakage function (as in the
case of bounded leakage), our reduction gets reasonably close while improving the seminal one of
Duc, Dziembowski and Faust with new techniques, confirming the unifying nature of hockey-stick
divergences for cryptography in the presence of leakage. Besides, it is worth recalling that the
ARE is a worst-case metric whereas the (G)SD and Rev(G)SD metrics are average-case metrics.
So the results of Prest et al. and our results conceptually differ in the sense that the former
deal with the field size loss in the metric whereas the latter deal with it in the reduction to the
random probing model. Therefore, both types of models shed different light on the same issue.

We finally mention two recent works that tackled the tightness of the reduction from the noisy
leakage model to the random probing model. First, in [BDF24], Brian, Dziembowski, and Faust
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show how to get rid of the field size loss at the cost of a quadratic loss on the noise parameter,
leveraging the average random probing model of [DFS15b]. Second, in [BCGR24], Béguinot,
Cheng, Guilley, and Rioul study a variant of the ARE metric (coined “Doeblin coefficients”) that
is better connected to the attacks’ success.15 They additionally show that a loss when moving
from the (average-case) noisy leakage model to the (worst-case) random probing model is in
general unavoidable.
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