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Abstract. We study the local leakage resilience of Shamir’s secret shar-
ing scheme. In Shamir’s scheme, a random polynomial f of degree t is
sampled over a field of size p > n, conditioned on f(0) = s for a secret s.
Any t shares (i, f(i)) can be used to fully recover f and thereby f(0). But,
any t−1 evaluations of f at non-zero coordinates are completely indepen-
dent of f(0). Recent works ask whether the secret remains hidden even
if say only 1 bit of information is leaked from each share, independently.
This question is well motivated due to the wide range of applications
of Shamir’s scheme. For instance, it is known that if Shamir’s scheme is
leakage resilient in some range of parameters, then known secure com-
putation protocols are secure in a local leakage model.
Over characteristic-2 fields, the answer is known to be negative (e.g.,
Guruswami and Wootters, STOC ’16). Benhamouda, Degwekar, Ishai,
and Rabin (CRYPTO ’18) were the first to give a positive answer as-
suming computation is done over prime-order fields. They showed that
if t ≥ 0.907n, then Shamir’s scheme is leakage resilient. Since then, there
has been extensive efforts to improve the above threshold and after a
series of works, the current record shows leakage resilience for t ≥ 0.78n
(Maji et al., ISIT ’22). All existing analyses of Shamir’s leakage resilience
for general leakage functions follow a single framework for which there is
a known barrier for any t ≤ 0.5n.
In this work, we a develop a new analytical framework that allows us
to significantly improve upon the previous record and obtain additional
new results. Specifically, we show:
1. Shamir’s scheme is leakage resilient for any t ≥ 0.69n.
2. If the leakage functions are guaranteed to be “balanced” (i.e., split-

ting the domain of possible shares into 2 roughly equal-size parts),
then Shamir’s scheme is leakage resilient for any t ≥ 0.58n.

3. If the leakage functions are guaranteed to be “unbalanced” (i.e.,
splitting the domain of possible shares into 2 parts of very different
sizes), then Shamir’s scheme is leakage resilient as long as t ≥ 0.01n.
Such a result is provably impossible to obtain using the previously
known technique.

All of the above apply more generally to any MDS codes-based secret
sharing scheme.
Confirming leakage resilience is most important in the range t ≤ n/2, as
in many applications, Shamir’s scheme is used with thresholds t ≤ n/2.



As opposed to the previous approach, ours does not seem to have a
barrier at t = n/2, as demonstrated by our third contribution.
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1 Introduction

Secret sharing schemes, introduced by Shamir [35] and Blakley [6] are methods
that enable a dealer, that holds a secret piece of information, to distribute this
secret among n parties such that any subset of at least t parties can reconstruct
the secret, while subsets that contain fewer than t parties learn nothing about
it.

Secret sharing schemes are extremely useful in various applications across
multiple sub-areas of computer science, including cryptography, complexity, and
distributed computing and storage. Secret sharing schemes are also strongly re-
lated to error correcting codes. We name just a few concrete applications where
secret sharing schemes are a fundamental building block: secure multiparty com-
putation protocols [17, 3, 11], threshold cryptography schemes [16, 13, 34], and
leakage-resilient circuit compilers [21, 15, 33].

At their basic use-case, secret sharing schemes have an “all-or-nothing”-style
security guarantee, wherein an adversary is allowed to corrupt up to t parties but
must know absolutely nothing about the others parties’ shares. While this as-
sumption is often made in an ideal world, it is a very strong assumption in many
practical scenarios. Indeed, it has been long known that side-channel information
is widely available [22, 23].

Research then has focused on designing new leakage resilient cryptographic
protocols in various models of leakage, for example, [30, 14, 31, 2, 7]. However,
it is also worth understanding whether existing schemes are leakage resilient. In-
deed, if an existing method is already leakage resilient, it alleviates the necessity
to design, analyse, and deploy new schemes. In this work, we focus on the latter
and continue the recent line of works studying the leakage resilience of Shamir’s
secret sharing scheme [5, 26, 27, 28, 25, 1], the most well-known and useful secret
sharing scheme.

(Local) leakage resilience of Shamir’s scheme. Shamir’s scheme is very
simple to describe: For a secret s, the dealer samples a random degree t − 1
(univariate) polynomial f over a sufficiently large finite field F, conditioned on
f(0) = s. Then, the dealer gives party i the field element f(i). Evaluations of f
at t different points can be used to fully recover f and thereby s = f(0). Also, it is
known that any< t evaluations of f (excluding f(0)) are completely uncorrelated
with f(0). This scheme is the most commonly used (threshold) secret sharing
scheme, both in theory and in practice. This is mostly due to its simplicity,
elegance, and various useful features it supports like additive homomorphism
(i.e., linearity).



We consider local leakage attacks: In addition to fully learning some of the
shares, the attacker can leak few bits of information about each other parties’
share locally, independently of the other parties’ state. That is, the adversary
can specify t′ < t indices i1, . . . , it′ ∈ [n] and n functions f1, . . . , fn with a short
output. Denoting the shares by π1, . . . , πn, it then receives back πi1 . . . , πit and
f1(π1), . . . , fn(πn), and it needs to guess (something about) f(0).

The motivation of the problem comes from that if Shamir’s scheme is leakage
resilient, then some applications that use it are more secure than what they are
currently known to be. For instance, the work of Benhamouda, Degwekar, Ishai,
and Rabin [4, 5] (who initiated the study of the problem that we consider)
showed that Shamir’s scheme leakage resilience implies that a minor variant
of the Goldreich-Micali-Wigderson’s [17] secure computation protocol is secure
even in a local leakage model. Apart from its applications, understanding the
leakage resilience of Shamir’s scheme is a very natural question on its own right,
especially due to its connection to error correcting codes, and more precisely to
Reed-Solomon codes. (Shamir’s scheme is in particular a Reed-Solomon code.)

State of the art. The local leakage resilience of Shamir’s scheme is far from
being understood. Despite significant efforts, there is essentially only one method
for analyzing it and for this method there are known barriers showing that it
cannot lead to full resolution of the problem. This method, based on Fourier
analysis over prime-order fields, was introduced by [4] and since then all works
improving upon their bound, somewhat incrementally optimize various parts of
the analysis.

For concreteness and simplicity of presentation, we focus on the most studied
case where each leakage function (i.e., each fi) outputs a single bit. Benhamouda
et al.’s [4] original work showed that Shamir’s scheme is leakage resilient as long
as t ≥ 0.907n. Then, Maji et al. [28] and Benhamouda et al. [5] independently
lowered this threshold to t ≥ 0.8675n and t ≥ 0.85n, respectively. The state of
the art is due to Maji et al. [27] who showed that Shamir’s scheme is leakage
resilient as long as t ≥ 0.78n.

All of the above works, use an analytic proxy (introduced already in [4]’s
original work) for upper bounding the statistical distance between leakage dis-
tributions of different secrets. Maji et al. [28] showed an inherent barrier for this
proof strategy: It is impossible to prove any meaningful result for any t ≤ 0.5n
(which is required to, say, execute secure computation protocols in the honest
majority setting). It is worth noting that Shamir’s scheme is not leakage resilient
if t = O(n/ log n) [32, 28].3

At a very high level, the analytical proxy bounds the statistical distance
between certain distributions via direct expansion and summing up the distances
at every point in the sample space. Then, a triangle inequality is performed

3 Shamir’s scheme uses t · log p bits of entropy if we work over a p-size field, and so
intuitively, the total amount of entropy leaked should not exceed this number. If
we leak just one bit from every share, then n < t · log p is required for security. As
mentioned, log p can be replaced by logn.
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so that each term in the summation could be analyzed and bound by itself.
This triangle inequality, however, is very lossy and causes the proof approach to
provably fail whenever t ≤ 0.5n [28]. Since many of the applications of Shamir’s
scheme require t < n/2 or t < n/3 (for example, BGW [3] or GMW [17] with
fairness) there is currently no path to handle them.

1.1 Our Results

In this work, we introduce a completely new analytical framework that, in par-
ticular, bypasses the barrier of the only previously known approach. We use our
approach to prove several new results that were out of reach previously. At a
very high level, we obtain our improvements because our analysis is roughly an
ℓ2 bound on the distance between the corresponding distributions, whereas the
previous approach is an ℓ1 bound. In particular, we never apply lossy triangle
inequalities.

Using our new framework, we prove several new results for the leakage re-
silience of Shamir’s scheme. In what follows, we assume that the leakage functions
output a single bit, either −1 or 1. Further, we assume that the field size, p, is
at most 2O(n).4

1. We improve the previously best bound on the leakage resilience of Shamir’s
scheme from 0.78n to 0.69n. That is, Shamir’s scheme is leakage resilient as
long as t ≥ 0.69n.

2. We further improve the threshold to 0.58n for all “balanced” leakage func-
tions. That is, assuming that the leakage functions satisfy |E[fi]| ≤ c,5 where
c > 0 a universal constant, then Shamir’s scheme is leakage resilient as long
as t ≥ 0.58n.

3. For the complementary case, where the leakage functions are unbalanced, we
break the t ≥ 0.5n barrier. Specifically, we show that if the leakage functions
satisfy |E[fi]| ≥ C with a specific constant C < 1, then Shamir’s scheme is
leakage resilient as long as t ≥ 0.01n. We show that it is provably impossible
to obtain such a result using the previously known technique.

All of the results above directly generalize to the setting where the adversary
further obtains some of the shares in their entirety.6 Also, we note that all of
the above results apply to any MDS code-based secret sharing scheme (i.e., so
called Massey secret sharing schemes [29]) of which Shamir’s scheme is a special
case obtained by using the Reed-Solomon code (see Section 2.1).

4 Typically, Shamir’s scheme is used with p proportional to n.
5 The bias E[fi] is the proportion of inputs for which fi outputs 1 minus the proportion
of inputs fi outputs −1. Note that intuitively, the balanced case has the highest
leakage of information.

6 This is a standard reduction. The view of a distinguisher that sees t′ of the n shares
in their entirety, can be reduced to a distinguisher for a Shamir secret sharing scheme
over n− t′ parties that sees none of the shares in their entirety.
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Technical highlight. Our analysis completely deviates from the previous ap-
proach that all works followed. In our view this is one of the highlights of this
work and we believe that further improvements and results are achievable with
our framework. We also believe that some of our intermediate technical transi-
tions are of independent interest. We highlight some of the technical ideas behind
our analysis in Section 1.3.

Paper organization. In Section 1.2 we survey some related work. In Sec-
tion 1.3 we highlight some of the main technical ideas underlying our analyses.
In Section 2 we provide preliminary definitions and notation. The main analyt-
ical framework is given in Section 3. The improved bound for Shamir’s scheme
leakage resilience for t ≥ 0.69n is given in Section 4. The bound for t ≥ 0.58n
and balanced leakage functions is given in Section 5. The bound for t ≥ 0.01n
and unbalanced leakage functions is given in Section 6.

1.2 Related Work

While the notion of local leakage may seem rather weak, it can be quite powerful.
In particular, it is not hard to see that if we work over a field F2k of characteristic
2, then a bit of the secret can be learnt by leaking just one bit from each share.
(This is true for any linear secret sharing scheme.) Surprisingly, for Shamir’s
scheme and in some settings of parameters, Guruswami and Wooters [20] showed
that full recovery of a multi-bit secret is possible by leaking only one bit from
each share.

Benhamouda et al. [4] were the first to study the local leakage resilience of
Shamir’s scheme (over prime-order fields) showing that whenever t ≥ 0.907n,
Shamir’s scheme is leakage resilient. Maji et al. [28] and Benhamouda et al. [5]
independently lowered the threshold to t ≥ 0.8675n and t ≥ 0.85n, respectively.
Before the current work, the record was leakage resilience whenever t ≥ 0.78n
due to Maji et al. [27]. Nielsen and Simkin [32] presented an attack that requires
m > t log p/(n − t) bits of leakage from each secret share, where p is the field
size, and then guesses the secret with probability 1/2.

With the lack of progress in analyzing Shamir’s scheme for general leakage
functions, efforts have been made to analyze restricted classes of leakage func-
tions or “random” constructions. Maji et al. [25] considered a leakage family
that is only allowed to leak an arbitrary single bit from each share (given in
their binary representation). This was later generalized to arbitrary bounded-
size families of leakage functions by Maji et al. [26]. Maji et al. [28] also proved
that a random (linear) secret sharing scheme is leakage resilient to one-bit local
leakage when t ≥ 0.5n. This was partially derandomized in [28, 26] who studied
the leakage resilience of Shamir’s scheme with random evaluation points.

All of the above works essentially use the analytic proxy from [4]’s work for
upper bounding the statistical distance between leakage distributions of different
secrets. Maji et al. [28] showed that this technique cannot be used to go below
threshold t = n/2 for general leakage functions.
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New (non-linear) schemes. A large body of work focused on designing new
leakage resilient secret sharing schemes from scratch. Such schemes were con-
structed for the first time by Dziembowski and Pietrzak [14]. Their scheme in-
volved an interactive reconstruction procedure, which was needed for allowing
the reconstruction to access only small part of the shares. Simpler construc-
tions (without the latter efficiency feature) were proposed by Dav̀ı et al. [12]. In
particular, they presented a simple two-party scheme based on any two-source
extractor, such as the inner-product extractor. More general constructions of
leakage-resilient secret-sharing schemes were given by Goyal and Kumar [18, 19],
Srinivasan and Vasudevan [36], Kumar, Meka, and Sahai [24], Chattopadhyay et
al. [10], and Chandran et al. [8, 9]. All of these works, design specialized secret
sharing schemes that have strong leakage resilience properties and/or apply to
more general access structures. It is noteworthy that in all of these works, the
schemes are non-linear, making them less applicable.

1.3 Main Techniques

A bound on the statistical distance. While the previous approaches di-
rectly bound the statistical distance between leakage distributions corresponding
to different secrets via a point-by-point analysis, we rather take a more “average
case” approach. As our starting point, we use the following inequality7. Consider
two random variables X and Y , where X is uniform over a size p set and Y is
arbitrary. Then for all x1, x2 we have

SD(Y |X = x1, Y |X = x2) ≤ p ·
…
E
Y

î
∥P (X|Y )− 1/p∥22

ó
, (1)

where SD(·, ·) stands for statistical distance and P (X|Y ) is the length-p vector
of probabilities of X conditioned on Y . (See Lemma 2.2 for the statement.)
The proof of this inequality follows by applying a Pinsker inequality and then
expanding via the definition of the Kullback–Leibler (KL) divergence.

In our use case, Y is the output of the leakage functions and X is the the
secret. The left hand side captures the advantage of an adversary in guessing
which secret was used given the leakage. The lemma says that this advantage
is upper bounded, roughly, by the average distance of the “distribution of the
secret given the leakage” from random.

After reducing the problem to bounding the right-hand side, the analysis
continues via (discrete) high-order Fourier analysis. We refer to Section 2.4 for
an introduction and preliminaries. After several Fourier analytic manipulations,
we obtain our main technical result “proxy” for analyzing the leakage resilience
of Shamir’s scheme, stated next.

Let f1, . . . , fn : Fp → {±1} be arbitrary leakage functions. Further, assume
that the secret sharing scheme generates shares πi via linear functions ℓi : Ft

p →

7 We suspect that this inequality is well known, but we could not find it in the litera-
ture. Thus, we include a self contained proof.
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Fp. Since each ℓi is linear, we will sometimes view it as a vector which repre-
sents the function by performing inner product with the input. Let ℓ0 be the
function/vector that corresponds to the secret. Lastly, for a set S ⊆ [n], let

fS(x) :=
∏
i∈S

fi(ℓi(x)).

We show that the chance of guessing the secret correctly given the leakage via
the fi’s is at most

2

Ñ
p3

∑
k∈F\{0}

∑
S⊆[n]

∣∣∣f̂S(k · ℓ0)∣∣∣2
é1/4

. (2)

Here, f̂S(α) is a Fourier coefficient of fS corresponding to a frequency α ∈ Ft
p.

(See Theorem 3.1 for the statement.)

Interpretation of Eq. (2). Let S ⊆ [n]. The attacker is able to compute
fS(x) using the leakage information fi(ℓi(x)). The correlation between fS(x) and

exp(2πιkℓ0(x)/p) is by definition f̂S(k · ℓ0). If the attacker arranges functions

fi (of his choice) with |f̂S(k · ℓ0)| large, then by computing fS(x) the attacker
ends up with significant statistical knowledge regarding the secret ℓ0(x). Roughly
speaking, the bound in Eq. (2) states that this attack is in some sense optimal
– the advantage of the attacker is bounded by the aggregation (sum) of the
advantages over all S ⊆ [n] and k ∈ Fp. We note that the additional p factors
in the right hand side of Eq. (2) are presumably an artifact of our proof, and
the (standard) choice to bound the left hand side of Eq. (1) rather than a more
average-case measure of advantage, such as SD(Secret|Leakage,Uniform(Fp)).

General case t ≥ 0.69n. We proceed by bounding Eq. (2) in various ways.
For instance, when t ≥ n/2 and S ⊆ n, we show that

|f̂S(ℓ0)| ≤ O((2/π)2t−|S|). (3)

Plugging this in Eq. (2), and replacing ℓ0 with k · ℓ0, we get a geometric sum
which is exp(−Ω(n)) as long as t ≥ 0.69n and p ≤ exp(O(n)), where the hidden
term in the “O” is some fixed small constant. This confirms leakage resilience.
In order to prove Eq. (3), we split S into half S = L ∪R and consider

f̂S(ℓ0) = E
x

ï
fL(x) · fR(x) · exp

Å
2πι⟨ℓ0, x⟩

p

ãò
(4)

as an inner product of two functions. Using Plancherel’s identity we move to
Fourier representation. Since the ℓi’s are MDS (that is, no short linear com-
bination of the ℓi’s is zero), and the Fourier spectrum of fL is contained in
span{ℓi : i ∈ L} (likewise for R), most summands vanish, being equal to 0 in one
of the Fourier transforms, and allowing to obtain Eq. (3).
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Balanced case t ≥ 0.58n. Assume the fi are completely balanced, that is,
E[fi] = 0. Then, {fS}S⊆[n]\[n−t] is an orthonormal set of functions. To see this,
note that fS · fT = fS△T and that |fS | = 1. It is hence sufficient to verify
E[fS ] = 0 whenever S ̸= ∅. The premise of t-out-of-n secret sharing scheme
implies that as |S| ≤ t, there is no annihilating linear combination of {ℓi}i∈S ,
which yields that E[fS ] = f̂S(0) = 0 through discrete Fourier expansion.

Viewing Eq. (2) as a sum of squares of inner products, we use a variant of
the classical Pythagorean theorem to leverage Eq. (3) to the bound∑

S : S∩[n−t]=I

f̂S(ℓ0)
2 ≤ O((2/π)2t−2|I|)

for any I ⊆ [n− t] (see further details in Lemma 5.3). Finally, we use induction
to relax this argument for quite (and not completely) balanced functions.

Unbalanced case t ≥ 0.01n. This is the simplest of the cases and it applies
whenever the leakage functions fi are sufficiently (but constantly) biased. We
first reduce the problem to bounding ĝ[n](ℓ0) where gi = fi−E[fi]. Then we use
that E[g2i ] = E[f2

i ] − E[fi]2 = ϵi with ϵi > 0 small to proceed with a Cauchy-
Schwarz argument.

2 Preliminaries

For a distribution X we denote by x← X the process of sampling a value x from
the distribution X. For a set X, we denote by x← X the process of sampling a
value x from the uniform distribution on X. The support of the distribution X
is denoted supp(X). For an integer n ∈ N we denote by [n] the set {1, 2, . . . , n}.

2.1 Coding and Secret Sharing

Coding. Let Fp be a finite field of order p. A linear code C over Fp of length
n+ 1 and rank t is a t-dimensional vector space of Fn+1

p . It is often referred to

as a [n+ 1, t]Fp -code. The generator matrix G ∈ Ft×(n+1)
p of C satisfies that for

every −→y ∈ C, there is −→x ∈ Ft
p such that −→xG = −→y . We say that a generator

matrix G is in standard form if G = [It | P] where It ∈ Ft×t
p is the identity

matrix and P ∈ Ft×(n−t+1)
p is the parity check matrix of C. We always assume

that generating matrices are in standard form.

Secret sharing. Secret sharing schemes allow a dealer to distribute a secret
piece of information among several parties such that only qualified subsets of
parties can reconstruct the secret. The most famous scheme is due to Shamir [35].
In this scheme, a secret is shared among n parties such that any 1 < t < n parties
can recover the secret while any t−1 parties learn nothing about the secret. The
scheme is often described as follows: the dealer chooses a random polynomial of
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degree t−1 conditioned on setting the free coefficient to be the secret, and gives
the i-th party the evaluation of the polynomial at the point i (the computation
is done over a field of size p > n). Another way to describe this scheme is by
sampling a codeword from a Reed-Solomon code. In fact, any (linear) code gives
rise to a secret sharing scheme, as we describe next.

Massey secret sharing. Let C ⊆ Fn+1
p be a code. Let s ∈ Fp be a secret that

we wish to share among n parties. Sample a random codeword (s0, . . . , sn) ∈ C
conditioned on s0 = s. Give party i the share si, for i ∈ [n]. If the code C is
linear with associated generating matrix G, this process can be done as follows.
Pick x2, . . . , xt ∈ Fp uniformly at random and set x1 = s be the secret. Let
(y0, . . . , yn) = (x1, x2, . . . , xt) ·G. The secret share of party i is yi. Observe that
since G is in standard form, y0 = s. Since yi is some linear function of {xj}j ,
we usually write yi = ℓi(x) where ℓi : Ft

p → Fp is a linear function.

2.2 Entropy and Distances

Given a random variable X supported in a finite set X , its entropy is

H(X) = −
∑
x∈X

Pr[X = x] · log Pr[X = x].

The conditional entropy of a random variable Y supported in a finite set Y given
that the value of another random variable X supported in a finite set Y

H(Y | X) = −
∑

x∈X ,y∈Y
Pr[X = x, Y = y] · log Pr[X = x, Y = y]

Pr[X = x]
.

Let P and Q be two distributions over a finite set Ω. The statistical distance
between P and Q is

SD(P,Q) =
1

2

∑
x∈Ω
|P (x)−Q(x)|.

We say that P and Q are ϵ-close if SD(P,Q) ≤ ϵ.
The KL-divergence between the distributions P and Q is defined to be

KL(P∥Q) =
∑
x∈Ω

P (x) · log P (x)

Q(x)
= H(P,Q)−H(P ),

where and H(P ) = −
∑

x∈Ω P (x) · logP (x) is the entropy of P and H(P,Q) =
−
∑

x∈Ω P (x) · logQ(x) is the cross entropy of P and Q.
The well-known Pinsker inequality relates the statistical distance and the

KL-divergence of P and Q.

Theorem 2.1 (Pinsker inequality).

SD(P,Q) ≤
…

1

2
· KL(P∥Q).
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Using Pinsker’s inequality, we prove the following useful inequality.

Lemma 2.2. Let X,Y be (possibly dependent) random variables. Assume that
X is uniformly distributed in a set X of size p. Then, for every x1, x2 ∈ X , it
holds that

SD(Y |X = x1, Y |X = x2) ≤ p ·
…

E
Y

î
∥P (X|Y )− P (X)∥22

ó
,

where P (X) is the length-p vector of probabilities of X.

Proof. For X distributed uniformly over X and for every x1, x2 ∈ X (assuming
x1 ̸= x2), applying the triangle inequality, we have that

(SD(Y |X = x1, Y |X = x2))
2 ≤

2∑
k=1

2 · (SD(Y |X = xk, Y ))
2

≤
∑
x∈X

2 · (SD(Y |X = x, Y ))
2
.

By Pinsker’s inequality (Theorem 2.1), the above can be bounded by

≤
∑
x∈X

KL (Y |X = x∥Y )

Let Y be the support of Y . By definition of KL divergence, we expand the above
as

=
∑
x∈X

∑
y∈Y

Pr[Y = y|X = x] · log Pr[Y = y|X = x]

Pr[Y = y]

=
∑
x∈X

∑
y∈Y

Pr[X = x|Y = y] · Pr[Y = y]

Pr[X = x]
· log Pr[X = x|Y = y]

Pr[X = x]

= p ·
∑
x∈X

E
y←Y

ï
Pr[X = x|Y = y] · log Pr[X = x|Y = y]

1/p

ò
Since log x ≤ x− 1 and by linearity of expectation, we get

≤ p2 ·
∑
x∈X

E
y←Y

ï
Pr[X = x|Y = y] ·

Å
Pr[X = x|Y = y]− 1

p

ãò
= p2 · E

y←Y

[∑
x∈X

Pr[X = x|Y = y] ·
Å
Pr[X = x|Y = y]− 1

p

ã]
= p2 · E

Y

î
∥P (X|Y )− P (X)∥22

ó
,

where the last equality holds since
∑

x∈X Pr[Z = x](Pr[Z = x] − 1/p) =∑
x∈X (Pr[Z = x] − 1/p)2 for a random variable Z supported on a set X of

size p. ⊓⊔
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2.3 Leakage Resilient Secret Sharing

We consider the local leakage resilience notion, following Benhamounda et al. [4]
and [5, Definition 4.1]. In this model, in addition to fully learning some of the
shares, the attacker can leak few bits of information about each other parties’
share locally and independently of the other parties’ state.

Consider a t-out-of-n secret sharing scheme with shares ranging in a set
X of size p. Denote by Share(s) the function that takes as input a secret s
and outputs n shares π1, . . . , πn (fed with uniform randomness). We say that
the scheme is (t′,m, ϵ)-local leakage resilient if for any two secrets s0, s1, any
f1, . . . , fn : X → {−1, 1}m and any subset of parties Θ ⊆ [n] of size at most t′,
it holds that the distributions

({πi}i∈Θ, f1(π1), . . . , fn(πn)) | π1, . . . , πn ← Share(s0)

and

({πi}i∈Θ, f1(π1), . . . , fn(πn)) | π1, . . . , πn ← Share(s1)

are ϵ-close in statistical distance.

Assuming that t′ = 0. Following all previous works in this area, in our
technical part, we assume that t′ = 0. This is justified since it can be made
somewhat without loss of generality, up to a loss in parameters. Specifically,
since we consider MDS code-based secret sharing schemes, once some t′ shares
are fully leaked, the rest behaves as an MDS code except on fewer parties. That
is, if we fully leak t′ shares, then we remain with an identical secret sharing
scheme on n − t′ parties. So, if we prove (0,m, ϵ)-leakage resilience for a t-out-
of-n scheme, then it implies a (t′,m, ϵ)-leakage resilience for a t-out-of-(n − t′)
scheme.

2.4 Fourier Analysis

We introduce basic notation and recall facts from Fourier analysis. We inter-
changeably write Fp either for the field with p (prime) elements, or the group
Z/pZ, or the set of numbers {0, 1, . . . , p − 1} where the meaning is clear from
the context.

The characters of the group Fp are the complex-valued functions χa : Fp → C,
where a ranges over Fp, defined as χa(x) = exp(2πιax/p). For a complex number
z ∈ C, we let z be its complex conjugate. The characters are an orthonormal
basis with respect to the inner product ⟨f, g⟩ = Ex[f(x) · g(x)] with x chosen
uniformly from Fp. The characters inherit the group structure: χa · χb = χa+b

and χ−1a = χa = χ−a. Every function f : Fp → C can then be uniquely written

as a linear combination f =
∑

a∈Fp
f̂(a) · χa with the Fourier coefficients f̂(a)

given by f̂(a) = ⟨f, χa⟩ = Ex[f(x) · χa(x)].
The L2-norm of f is ∥f∥2 = (Ex[|f(x)|2])1/2 and its L∞ norm is ∥f∥∞ =

maxx |f(x)|. The ℓ2 norm of f̂ is ∥f̂∥2 =

…∑
α∈Fp

∣∣∣f̂(α)∣∣∣2. Parseval’s identity is

11



∥f∥22 =
∑

α∈Fp

∣∣∣f̂(α)∣∣∣2. All of the above naturally extends to Fn
p by tensoring.

Explicitly, a character of Fn
p associated with the frequency α ∈ Fn

p is given by
χα(x) := exp(2πι⟨α, x⟩/p), and the Fourier expansion of f : Fn

p → C is given

by f =
∑

α∈Fn
p
f̂(α)χα with f̂(α) ∈ C satisfying f̂(α) = Ex[f(x)χα(x)], where

x ∼ Fn
p is uniformly distributed. In addition, α is interchangeably identified with

the linear function α(x) = ⟨α, x⟩. Plancherel’s identity gives Ex[f(x)g(x)] =∑
α∈Fn

p
f̂(α)ĝ(α) where g : Fn

p → C.
Euler’s formula states that for any real number x, exp(ix) = cos(x)+ i sin(x)

and therefore Re(exp(ix)) = cos(x), where Re(z) = (z + z)/2.

3 Main Analytical Framework

Let ℓ0, . . . , ℓn : Ft
p → Fp be linear functions (i.e., ℓi(x) =

∑t
j=1 ℓijxj), and let

f1, . . . , fn : Fp → {−1, 1} be arbitrary functions. In applications, x is the internal
randomness generating the secret sharing scheme, while ℓi(x) is the i’th share,
with ℓ0(x) the secret. We may sometimes view the ℓi’s as functions and other
times as vectors, depending on the context. We denote

leak(x) := (f1(ℓ1(x)), . . . , fn(ℓn(x))).

Moreover, when ℓi are clear from the context, define the function fS : Ft
p →

{−1, 1} as
fS(x) :=

∏
i∈S

fi(ℓi(x)).

The main theorem of this section is stated next.

Theorem 3.1. Let ℓ0, . . . , ℓn : Ft
p → Fp be n + 1 nonzero linear functions. Let

f1, . . . , fn : Fp → {−1, 1} be arbitrary functions. Then, for every s1, s2 ∈ Fp, it
holds that

SD(leak(X)|ℓ0(X) = s1, leak(X)|ℓ0(X) = s2)

≤

2

Ñ
p3

∑
k∈Fp\{0}

∑
S⊆[n]

∣∣∣f̂S(k · ℓ0)∣∣∣2
é1/4

,

(5)

where X is distributed uniformly over Ft
p.

Proof. Let

(∗) := (SD(leak(X)|ℓ0(X) = s1, leak(X)|ℓ0(X) = s2))
2
.

For X distributed uniformly over Ft
p and for every s1, s2 ∈ Fp, applying

Lemma 2.2, we have that

(∗) ≤ p2 · E
b←leak(X)

î
∥P (ℓ0(X)|leak(X) = b)− P (ℓ0(X))∥22

ó
.

12



For b ∈ {−1, 1}n, let Db : Fp → R be Db = P (ℓ0(X)|leak(X) = b) , that is

Db(k) = Pr
X←Ft

p

[ℓ0(X) = k|leak(X) = b] .

Further, recall that ℓ0 is some nonzero linear function from Ft
p to Fp, and as

such, it satisfies

Pr[ℓ0(X) = k] = 1/p.

We immediately deduce that

(∗) ≤ p2 · E
b←leak(X)

∑
k∈Fp

|Db(k)− 1/p|2
.

Observe that for all b,”Db(0) = E
k←Fp

[Db(k)] =
1

p

∑
k∈Fp

Pr
x←Ft

p

[ℓ0(x) = k|leak(x) = b] =
1

p
· 1.

Therefore, by Parseval’s identity,

∑
k∈Fp

|Db(k)− 1/p|2 =
∑
k∈Fp

|Db(k)−”Db(0)|2 = p
∑

k∈Fp\{0}

∣∣∣”Db(k)
∣∣∣2 .

Hence,

(∗) ≤ p3 · E
b←leak(X)

 ∑
k∈Fp\{0}

∣∣∣”Db(k)
∣∣∣2
 (6)

= p3 ·
∑

k∈Fp\{0}
E

b←leak(X)

ï∣∣∣”Db(k)
∣∣∣2ò (7)

For b ∈ {−1, 1}n, let Ab be the set of x’s with leak(x) = b. Define µ(Ab) =
|Ab|/pt to be its density. For a set A, we let 1A(x) be the indicator function that
outputs 1 if x ∈ A, and 0 otherwise. Likewise, for an event E, we denote 1E as
the indicator that is 1 if E happens and 0 otherwise. For each k ∈ Fp, it holds
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that ”Db(k) = ⟨Db, χk⟩ =
1

p
·
∑
z∈Fp

Db(z) · χk(z)

=
1

p
·
∑
z∈Fp

Pr
x←Ft

p

[ℓ0(x) = z|leak(x) = b] · χk(z)

=
1

p
·
∑
z∈Fp

∑
x∈Ft

p

1x∈Ab

µ(Ab)
·
1ℓ0(x)=z

pt
· χk(z)

=
1

p · µ(Ab)

∑
x∈Ft

p

1

pt
· 1x∈Ab

∑
z∈Fp

1ℓ0(x)=z · χk(z)

=
1

p · µ(Ab)

∑
x∈Ft

p

1

pt
· 1x∈Ab

· χk(ℓ0(x))

=
1

p · µ(Ab)
E

x←Ft
p

î
1Ab

(x) · χk(ℓ0(x))
ó

=
1̂Ab

(k · ℓ0)
p · µ(Ab)

.

In order to simplify 1̂Ab
(k · ℓ0), we denote fS(x) =

∏
i∈S fi(ℓi(x)) and bS =∏

i∈S bi, as well as gb(x) = 2−n
∑

S⊆[n]
(
bS · fS(x)

)
. We prove gb = 1Ab

:

1Ab
(x) =

n∏
i=1

1fi(ℓi(x))=bi =

n∏
i=1

1 + bi · fi(ℓi(x))
2

=
1

2n

∑
S⊆[n]

= gb(x).

In particular,
1̂Ab

(k · ℓ0) = “gb(k · ℓ0).
Plugging it back in (6) we get

(∗) ≤ p3 ·
∑

k∈Fp\{0}
E

b←leak(X)

ï∣∣∣”Db(k)
∣∣∣2ò

= p ·
∑

k∈Fp\{0}
E

b←leak(X)

ñ∣∣∣∣“gb(k · ℓ0)µ(Ab)

∣∣∣∣2
ô

= p ·
∑

k∈Fp\{0}

∑
b∈{−1,1}n,
µ(Ab) ̸=0

|“gb(k · ℓ0)|2
µ(Ab)

,

(8)

where the last equality holds since each b ∈ {−1, 1}n is attained as leak(X) with
probability µ(Ab).

To bound the last term on (8), we separately bound the b’s with µ(Ab) <
C/2n, and b’s with µ(Ab) ≥ C/2n, where C > 0 is a parameter that will be
optimized later. For the first type of summands, we note that always |“gb(k ·

14



ℓ0)| ≤ E |gb| = µ(Ab), as “gb(k · ℓ0) is a Fourier coefficient of gb = 1Ab
. Hence,

|“gb(k ·ℓ0)|2/µ(Ab) is bounded by µ(Ab). For b’s with µ(Ab) ≥ C/2n, we are going
to replace µ(Ab) in the denominator by C/2n.

(∗) ≤ p ·
∑

k∈Fp\{0}

∑
b∈{−1,1}n,

0<µ(Ab)<C/2n

µ(Ab) + p ·
∑

k∈Fp\{0}

2n

C
·

∑
b∈{−1,1}n,
µ(Ab)≥C/2n

|“gb(k · ℓ0)|2
≤ p2 · 2n · C

2n
+ p ·

∑
k∈Fp\{0} Eb←{−1,1}n

ï∣∣∣∑S⊆[n] b
S · f̂S(k · ℓ0)

∣∣∣2ò
C

= p2 · C +
p ·
∑

k∈Fp\{0}
∑

S⊆[n]

∣∣∣f̂S(k · ℓ0)∣∣∣2
C

,

(9)
where the last inequality is Parseval’s identity for functions over {−1, 1}n. Op-
timizing the value of C, we conclude

(∗) ≤ 2 ·

Ã
p3

∑
k∈Fp\{0}

∑
S⊆[n]

∣∣∣f̂S(k · ℓ0)∣∣∣2,
finishing the proof (recall the definition of (∗)). ⊓⊔

Remark 1 (Multi-bit output leakage). It is possible to extend the statement and
analysis of Theorem 3.1 to the setting where each fi outputs more than 1 bit.
(Specifically, the definition of fS would need to be adjusted). We leave this
direction for future research.

4 Leakage Resilience for t ≥ 0.69n

The main theorem we prove in this section is as follows.

Theorem 4.1. Let ℓ0, . . . , ℓn : Ft
p → Fp be n+1 linear functions such that every

t of them are linearly independent. Let f1, . . . , fn : Fp → {−1, 1} be arbitrary
functions. Let fS(x) =

∏
i∈S fi(ℓi(x)). Then, for t ≥ 0.69n, it holds that∑

k∈Fp\{0}

∑
S⊆[n]

∣∣∣f̂S(k · ℓ0)∣∣∣2 ≤ (p− 1) · 2−Ω(n).

Theorem 4.1 is an implication of the following lemma:

Lemma 4.2. Let ℓ0, . . . , ℓn : Ft
p → Fp be n+ 1 linear functions such that every

t of them are linearly independent. Let f1, . . . , fn : Fp → {−1, 1} be arbitrary
functions. If n ≤ 2t and p ≥ n , then∣∣∣f̂[n](ℓ0)∣∣∣ ≤ O((2/π)2t−n). (10)
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To deduce Theorem 4.1 we plug in the above lemma with [n] replaced by S.
That is, because the assumptions of Lemma 4.2 apply to {ℓi}i∈S and {fi}i∈S
from Theorem 4.1, we may deduce (10) with [n] replaced by S, that is,∣∣∣f̂S(ℓ0)∣∣∣ ≤ O((2/π)2t−|S|).

We note that once |S| < t then in fact

f̂S(ℓ0) = 0,

as the Fourier coefficients of fS are supported on characters corresponding to
functionals of the form

∑
i∈S αiℓi with αi ∈ Fp. However, non of these functionals

is being ℓ0, by assumption.

Proof (Proof of Theorem 4.1). For each k ∈ F \ {0} and S ⊆ [n], we bound∣∣∣f̂S(k · ℓ0)∣∣∣ separately. Specifically, Lemma 4.2 implies that for every k ∈ F \ {0}
and S ⊆ [n], it holds that∣∣∣f̂S(k · ℓ0)∣∣∣2 ≤ O

Ä
(2/π)

4t−2|S|ä
. (11)

Hence,

∑
S⊆[n]

∣∣∣f̂S(k · ℓ0)∣∣∣2 ≤ n∑
z=0

Ç
n

z

å
·O
Ä
(2/π)

4t−2zä
= O

Ä
(2/π)

4t ·
Ä
(π/2)

2
+ 1
änä

.

This last term is exponentially small in n as long as t/n is strictly larger than a
constant C that we find next. The ratio of t/n in which the bound is exp(0·n) = 1

corresponds to (2/π)
4t · ((π/2)2 + 1)n = 1, that is

4t log(2/π) = −n
(
log
(
(π/2)2 + 1

))
which means that

C =
t

n
=

log((π/2)2 + 1)

4 log(π/2)
≈ 0.688.

Since we assume t ≥ 0.69n, then∑
k∈Fp\{0}

∑
S⊆[n]

Ä
f̂S(k · ℓ0)

ä2
≤ (p− 1) · 2−Ω(n),

as required. ⊓⊔

We proceed with the proof of Lemma 4.2.
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Notation. Let g : Fp → R be a function. We define the max-norm of its Fourier
spectrum as

∥ĝ∥∞ := max
k∈Fp

|ĝ(k)|.

Lemma 4.3. Let t ≤ n ≤ 2t ℓ0, . . . , ℓn : Ft
p → Fp be linear functions, with every

t of them being linearly independent. Let A,B : Fn−t
p → {−1, 1} and C : F2t−n

p →
{−1, 1} be any functions, write

F (x) = A(ℓ1(x), . . . , ℓn−t(x)) · C(ℓn−t+1(x), . . . , ℓt(x)) ·B(ℓt+1(x), . . . , ℓn(x)),

then

|“F (ℓ0)| ≤ ∥A∥2 ∥B∥2
∥∥∥“C∥∥∥

∞
(12)

Corollary 4.4. Let ℓi be as in Lemma 4.3 and let g1, . . . , gn : Fp → R be arbi-
trary functions, and set m = 2n− 2t, then

|ĝ[n](ℓ0)| ≤
m∏
i=1

∥gi∥2 ·
n∏

i=m+1

∥“gi∥∞ . (13)

Proof. We get the result by applying Lemma 4.3 with

A(z1, . . . , zn−t) = g1(z1) · · · gn−t(zn−t)
B(z1, . . . , zn−t) = gn−t+1(z1) · · · g2n−2t(zn−t)
C(z1, . . . , z2t−n) = g2n−2t+1(z1) · · · gn(z2t−n),

Hence F (x) from Lemma 4.3 is g[n]. Moreover, note that ranging over the entire
input space of A, the inputs to gi in the definition of A are independent of each
other (likewise for B and C). This implies that we have

∥A∥2 =

n−t∏
i=1

∥gi∥2 , ∥C∥∞ =

t∏
i=n−t+1

∥gi∥∞ , ∥B∥2 =

n∏
i=t+1

∥gi∥2 ,

which completes the proof. To see that indeed the inputs of the gi’s are inde-
pendent random variables, recall that n − t ≤ t (likewise 2t − n ≤ t), and the
assumption that any t of the ℓi’s are linearly independent. ⊓⊔

Corollary 4.4 is insufficient for proving Lemma 4.2. It may give a poor upper
bound of 1 when, say, gi ≡ 1. Combining this lemma with the following claim,
we can strengthen this estimate and deduce Lemma 4.2.

Claim 4.5 Let f : Fp → [−1, 1] where E[f ] = µ. Then, for all k ̸= 0 we have

|f̂(k)| ≤ 2

π
cos
(π
2
µ
)
+O(1/p2). (14)
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For completeness we give the proof of the above claim in Appendix A.
At this point the essence of the proof of Lemma 4.2 is already available.

Corollary 4.4 bounds the Fourier coefficient ĝ[n](ℓ0) with a product of 2t − n
Fourier coefficients of gi. In case that |E[gi]| ≤ 2/π, Claim 4.5 gives that actually
∥“gi∥ ≲ 2/π, which gives the required |ĝ[n](ℓ0)| ≤ (2/π)2t−n. Hence, the following
proof focuses on extending this to the case where some of the gi’s have |E[gi]| >
2/π.

Proof (Proof of Lemma 4.2). For the proof, we go through the following gener-
alization of Corollary 4.4.

Let n, t,m, gi, ℓi be exactly as in Corollary 4.4. If additionally M ≥ m =
2n − 2t satisfies that |gi| ≤ 1 for i = 1 . . .M and ∥gi∥2 ≤ 1 for i = M + 1 . . . n,
then

|ĝ[n](ℓ0)| ≤ (2/π)M−m
n∏

i=M+1

∥“gi∥∞ . (15)

We note that Eq. (15) interpolates between Corollary 4.4 (M = m) which we
will prove later, and Lemma 4.2 (M = n) which is what we are trying to prove.
The proof is by induction on M .

A minor detail that we omit is that the 2/π in Eq. (15) should be replaced
by 2/π + O(1/p2), where the error term stems from Eq. (14). Since we raise
2/π+O(1/p2) to a power smaller than n, the ratio between the bounds we state,
and the actual bounds we get is 1 +O(n/p2). Though, as we assume p ≥ n, the
overall effect of this error term translates to a 1 + O(1/n) multiplicative factor
appearing in the bound in Eq. (10).

Base case. The M = m case of Eq. (15) is already covered in Corollary 4.4.

Induction step. To prove Eq. (15) for some values of n, t,M (with M >
2n− 2t), we suppose it holds whenever M is replaced by smaller values (maybe
with different n, t).

In the case where ∥”gM∥∞ ≤ 2/π +O(1/p2) we immediately deduce Eq. (15)
by applying it with M ′ = M − 1 (and same n, t).

In the case where ∥”gM∥∞ ≥ 2/π, we first deduce that µ := E[gM ] satisfies
|µ| > 2/π, as Eq. (14) shows that regardless of the value of µ, we have all other
Fourier coefficients of gM smaller than 2/π (note that |gM | ≤ 1 by assumption).
Plugging in

2/π ≤ |µ| ≤ 1 (16)

we see g := gM − µ satisfies ∥ĝ∥∞ ≤
2
π cos(π2µ).

The decomposition gM = µ+ g translates to

ĝ[n](ℓ0) = µŸ�(g[n]\{M})(ℓ0) + ¤�(g · g[n]\{M})(ℓ0). (17)

We henceforth bound each of the summands in Eq. (17) using the induction
hypothesis, and deduce Eq. (15).
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The bound on Ÿ�g[n]\M · µ(ℓ0) is obtained by applying Eq. (15) with
(n′, t′,M ′) = (n − 1, t,M − 1) (note that M ′ ≥ 2n′ − 2t′ by the assumption
M > 2n− 2t):

|Ÿ�g[n]\M · µ(ℓ0)| ≤ |µ|(2/π)M
′−(2n′−2t′)

n∏
i=M+1

∥“gi∥∞
= |µ|(2/π)M−m+1

n∏
i=M+1

∥“gi∥∞ . (18)

The bound onŸ�g[n]\M · g(ℓ0) is obtained by applying Eq. (15) with (n′′, t′′,M ′′) =
(n, t,M − 1):

|Ÿ�g[n]\M · g(ℓ0)| ≤ (2/π)M
′′−(2n′′−2t′′) ∥ĝ∥∞

n∏
i=M+1

∥“gi∥∞
= (2/π)M−m−1 ∥ĝ∥∞

n∏
i=M+1

∥“gi∥∞ . (19)

Note that while |gM | ≤ 1 it is not necessary that |g| ≤ 1. However, the application
of Eq. (15) is valid as ∥g∥2 ≤ ∥gM∥2 ≤ 1.

In order to combine the two estimates in Eqs. (18) and (19), and conclude
with Eq. (15) we must show

|µ|(2/π)M−m+1
n∏

i=M+1

∥“gi∥∞ + (2/π)M−m−1 ∥ĝ∥∞
n∏

i=M+1

∥“gi∥∞
≤ (2/π)M−m

n∏
i=M+1

∥“gi∥∞ .

Dividing by the common factor 2M−m
∏n

i=M+1 ∥“gi∥∞, our task boils down to
verifying

2

π
|µ|+ π

2
∥ĝ∥∞ ≤ 1.

Recall ∥ĝ∥∞ ≤
2
π cos(π2µ), so we only need to check

2

π
|µ|+ cos(

π

2
µ) ≤ 1.

This inequality is not true in general (witnessed by µ = ±1/4), but in the present
case 2/π ≤ |µ| ≤ 1 it does hold. To see that, notice cos(π2µ) = sin(π2 (1− |µ|)) ≤
π
2 (1− |µ|), hence it is sufficient to check that

2

π
|µ|+ π

2
− π

2
|µ| ≤ 1.

In the range of Eq. (16), this inequality is most tight at |µ| = 2
π , where it reads

0.98 ≈ (
2

π
− π

2
)
2

π
+

π

2
≤ 1,
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completing the proof. ⊓⊔

Proof (Proof of Lemma 4.3). Set

I = {1, . . . , n− t},
K = {n− t+ 1, . . . , t},
J = {t+ 1, . . . , n},

and denote

A′(x) = A((ℓi(x))i∈I), B′(x) = B((ℓj(x))j∈J), C ′(x) = C((ℓk(x))k∈K)

As we are required in Eq. (12) to bound |¤�(A′ ·B′ · C ′)(ℓ0)|, we present¤�(A′ ·B′ · C ′)(ℓ0) =
∑

α+β+γ=ℓ0

Â′(α)B̂′(β)Ĉ ′(γ), (20)

where α, β, γ ∈ Ft
p correspond to Fourier characters.

Note that Â′(α) may be nonzero only when α ∈ span{ℓi : i ∈ I}. This is
because the Fourier expansion of a product, is the convolution of Fourier expan-
sions, so that

Â′(α) =
∑
ai∈Fp∑

i∈I aiℓi=α

∏
i∈I
“gi(ai).

The analogous claims hold also to B̂′(β) and to Ĉ ′(γ). Hence, for B̂′(β)Ĉ ′(γ)
to be non-zero we must have β + γ ∈ span{ℓi : i ∈ J ∪K}. Since |J ∪K| = t,
{ℓi}i∈J∪K are linearly independent, and so every α may have at most one pair

of (β, γ) with α+ β + γ = ℓ0 and B̂′(β)Ĉ ′(γ) ̸= 0.
Since each of α and β appear at most once in any nonzero term of the sum

in Eq. (20), we may find a matching α ∼ β, so that if α (or β) appears in a
nonzero term, it must be the term indexed by (α, β, ℓ0 −α− β). Hence, we may
rewrite Eq. (20) as

A′ ·B′ · C ′ =
∑
α∼β

Â′(α)B̂′(β)Ĉ ′(ℓ0 − α− β).

We bound the Ĉ ′(ℓ0 − α− β) term in the last equation by
∥∥∥Ĉ ′∥∥∥

∞
. Note that C

depends on ≤ t indpendent variables {ℓi(x)}i∈K and hence
∥∥∥Ĉ ′∥∥∥

∞
=
∥∥∥“C∥∥∥

∞
.

Hence, ∣∣∣∣¤�(A′ ·B′ · C ′)(ℓ0)
∣∣∣∣ ≤∑

α∼β

|Â′(α)||B̂′(β)| · ∥C ′∥∞ .

Therefore, it is sufficient to show that∑
α∼β

|Â′(α)||B̂′(β)| ≤ ∥A∥2 · ∥B∥2 . (21)
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Cauchy-Schwarz inequality shows that∑
α∼β

|Â′(α)||B̂′(β)| ≤
 ∑

α

|Â′(α)|2 ·
 ∑

β

|B̂′(β)|2.

Notice that we used that each of α and β appears exactly once in the sum.
Plugging in Parseval’s identity, we find∑

α∼β

|Â′(α)||B̂′(β)| ≤ ∥A′∥2 ∥B
′∥2 .

However, since each t of the ℓi’s are independent, and both A and B depend on
n − t ≤ t variables, we have ∥A′∥2 = ∥A∥ as well as ∥B′∥2 = ∥B∥. Hence we
deduce Eq. (21), as required. ⊓⊔

5 Balanced Leakage Resilience for t ≥ 0.58n

It is intuitive that in order for an attacker to leak the most information from
the shares, they should leak the most from each share, that is choose functions
fi : Fp → {−1, 1} which are unbiased, that is Pr[fi = 1] ≈ 1/2.

We do not know to formalize this intuition. All the more so, we show security
in broader range of parameters when the functions are unbiased. We believe this
‘unbiased’ regime is instructive – first because almost all functions are unbiased,
and second because our proxy Theorem 3.1 may (conceivably) be improved in
the biased regime. Meanwhile, in the unbiased case, we expect even the most
deleterious part in Theorem 3.1, that is (9), to be quite tight.

The main theorem we prove in this section is as follows.

Theorem 5.1. Let ℓ0, . . . , ℓn : Ft
p → Fp be n + 1 linear functions such that ev-

ery t of them are linearly independent. Let C > 0 and let f1, . . . , fn : Fp → R be
functions satisfying

– ∥fi∥2 ≤ 1,

–
∥∥∥“fi∥∥∥

∞
≤ 2

π +O(1/p2),

– |E[fi]| ≤ C.

If n ≤ p, then

∑
S⊆[n]

∣∣∣f̂S(ℓ0)∣∣∣2 ≤ (1 + π2/4)n−te1.5Cn

Å
2

π
+O

Å
1

p2

ãã2t

. (22)

Corollary 5.2. Let ℓi be as in Theorem 5.1 and let f1, . . . , fn : Fp → {−1, 1}
be functions satisfying |E[fi]| ≤ 1/1000. Then, for t ≥ 0.58n, it holds that∑

k∈F\{0}

∑
S⊆[n]

∣∣∣f̂S(k · ℓ0)∣∣∣2 ≤ O(p) · 2−Ω(n). (23)
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Proof. The functions fi satisfy the requirements in Theorem 5.1 by Claim 4.5,
with C = 1/1000.

The bound (22) is exponentially small in n so long as

−(2t log(2/π) + (n− t) log(1 + π2/4) + 1.5Cn) ≥ Ω(n),

that is

t/n >
log(1 + π2/4) + 1.5C

2 log(π/2) + log(1 + π2/4)
≈ 0.57995.

As usual we omitted the O(1/p2) term, which contributes a 1 + O(n/p2) mul-
tiplicative factor. Since we assume t/n ≥ 0.58 the bound (22) is exponentially
small in n.

Finally, ℓ0 may be replaced by k · ℓ0 for any k ̸= 0, thus yielding the O(p)
factor in the right hand side of Eq. (23). ⊓⊔

In the proof, we use the following variant of the Pythagorean theorem:

Lemma 5.3. Let v =
∑

i vi be a vector such that ⟨vi, vj⟩ = 0 whenever i ̸= j.
Further let {uj} be a set of vectors satisfying ⟨vi, uj⟩ = 0 whenever i ̸= j. Further
assume that |⟨vi, ui⟩| ≤ β ∥vi∥, then∑

j

|⟨v, uj⟩|2 ≤ β2 ∥v∥2 . (24)

Proof (Proof of Lemma 5.3). By direct calculation:∑
j

|⟨v, uj⟩|2 =
∑
j

|⟨
∑
i

vi, uj⟩|2 =
∑
j

|⟨vj , uj⟩|2

≤
∑
j

β2 ∥vj∥2 = β2 ∥v∥2 ,

where the last equality is the Pythagorean theorem. ⊓⊔

We demonstrate the core of the proof of Theorem 5.1, by restricting ourselves
to the case E[fi] = 0. Later, we will reduce to this case.

Lemma 5.4. Theorem 5.1 holds if C = 0, that is, if E[fi] = 0 for all i = 1 . . . n.

Proof (Proof of Lemma 5.4). Let I ⊆ [n− t]. We will later show that Lemma 5.3
implies the following inequality:

∑
H⊆[n]\[n−t]

|’fI∪H(ℓ0)|2 ≤
Å
2

π
+O(1/p2)

ã2(t−|I|)
. (25)
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Using Eq. (25), we obtain∑
S⊆[n]

∣∣∣f̂S(ℓ0)∣∣∣2 =
∑

I⊆[n−t]

∑
H⊆[n]\[n−t]

∣∣∣’fI∪H(ℓ0)
∣∣∣2

≤
∑

I⊆[n−t]

Å
2

π

ã2(t−|I|)
· (1 +O(1/p2))n

= O

(
n−t∑
i=0

Ç
n− t

i

åÅ
2

π

ã2(t−i)
)

= O

ÇÅ
2

π

ã2t

(1 + π2/4)n−t
å
.

To derive Eq. (25), we consider the vector space of functions Ft
p → C associated

with the inner product ⟨f, g⟩ = E[fḡ]. Let

uJ(x) = fJ(x) · χℓ0(x) = fJ(x) · exp
Å
2πιℓ0(x)

p

ã
for J ⊆ [n] \ [n− t]. Note that ÷f · fH(ℓ0) = ⟨f, uH⟩, and in particular

|’fI∪H(ℓ0)|2 = |⟨fI , uH⟩|2, (26)

hence the bound from Eq. (24) is relevant for proving Eq. (25).

Let v := fI , we apply Lemma 5.3 with v, uJ and with β =
(
2
π +O(1/p2)

)t−|I|
.

For this we need to decompose v =
∑

J vJ so that ⟨vJ , vJ′⟩ = 0 whenever J ̸= J ′.
Since ℓn−t+1, . . . , ℓn are linearly independent, each linear function α : Ft

p →
Fp can uniquely be written as α = ℓ0 +

∑n
i=n−t+1 αiℓi. We denote the dual-

support by
supp∗(α) = {i ∈ [n] \ [n− t] : αi ̸= 0}.

For J ⊆ [n] \ [n− t] we write

vJ =
∑

α : supp∗(α)=J

v̂(α)χα.

Since ℓn−t+1, . . . , ℓn is a basis of linear functions, we have v =
∑

J vJ , as every
linear function has some dual-support. Moreover, two distinct vJ ’s are orthog-
onal, because their Fourier spectrum are disjoint. Moreover, ⟨vJ′ , uJ⟩ ≠ 0 only
if J ′ = J . To see this, note the the Fourier-spectrum of uJ = fJ is contained in
ℓ0+

∑
j∈J(Fp \ {0})ℓj . This is the crucial place in which this proof requires that

E[fj ] = 0 (for all j ∈ [n] \ [n − t]). This fact implies that the Fourier spectrum
of vJ′ and uJ can intersect only if J = J ′.

Finally, to apply Lemma 5.3 we need to verify

|⟨vJ , uJ⟩| ≤ β ∥vJ∥ , (27)
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with β = (2/π +O(1/p2))t−|I|.

First, recall Eq. (26) that ⟨vJ , uJ⟩ = ÷vJ · fJ(ℓ0); hence we must bound÷vJ · fJ(ℓ0). Recall further that vJ constitutes only from a part of the Fourier
decomposition of v = fI . Since v depends only on {ℓi(x)}i∈I , also vJ is a func-
tion of these variables.

We split the proof of Eq. (27) into two cases.
Case |J | < t − |I|. Since |I ∪ J | < t, {ℓi}i∈I∪J∪{0} are linearly independent,
therefore there is no vanishing linear combination of ℓi, i ∈ I∪J , and the Fourier
spectrum of v = fI is disjoint from that of uJ , hence vJ = 0 and in particular

|⟨vJ , uJ⟩| = 0 ≤ β ∥vJ∥ .

Case |J | > t − |I|. In this case, we use Lemma 4.3 with the linear func-
tions {ℓi}i∈{0}∪I∪J , namely n′ = |I| + |J | in that lemma. Specifically, we set
A((ℓi)i∈I) := vJ . We arbitrarily split the product uJ = χℓ0(x) ·

∏
j∈J fj(ℓj(x))

and the associated linear functions between B and C, with B depending on n′−t
variables, and C on 2t− n′. We get

|⟨vJ , uJ⟩| = |÷vJ · fJ(ℓ0)| ≤ ∥A∥2 ∥B∥2 ∥∥∥“C∥∥∥∞ .

Note that ∥A∥2 = ∥vJ∥ as well as ∥B∥ ≤ 1 (recall the assumption ∥fi∥2 ≤ 1).

For
∥∥∥“C∥∥∥

∞
, we note that C is a product of 2t − n′ functions. Since we assume

n′ = |I|+ |J | ≥ t, C is a product of at most t functions. Using again that every
t ℓi’s are linearly independent, and that E[fi] = 0, every Fourier coefficient
of C is a product of 2t − n′ Fourier coefficients of the corresponding fi’s. As
2t−n′ = 2t− (|I|+ |J |) ≥ 2t− (|I|+ t) = t− |I| functions with E[fi] = 0. Hence
we have through Claim 4.5,∥∥∥“C∥∥∥

∞
≤
(
2/π +O(1/p2)

)t−|I|
.

We summarize

|÷vJ · fJ(ℓ0)| ≤ Å 2

π
+O(1/p2)

ãt−|I|
∥vJ∥ ,

which proves Eq. (27), and concludes the proof. ⊓⊔

For the proof of Theorem 5.1 we need the following simple lemma, which,
roughly speaking, reduces our attention to unbiased functions.

Definition 5. Let ℓ0, . . . , ℓn : Ft
p → Fp be n+ 1 linear functions. For functions

f1, . . . , fn : Fp → R define

B(f1, . . . , fn) :=
∑
S⊆[n]

∣∣∣f̂S(ℓ0)∣∣∣2 .
Lemma 5.6. Let ℓi and fi be as in Definition 5. If µ := E[f1], then

B(f1, f2, . . . , fn) ≤ (1 + |µ|+ µ2)B(f1 − µ, f2, . . . , fn). (28)
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Note that B does not depend on the order of the fi’s, given that ℓi are ordered
accordingly. Hence the index 1 is not special in Eq. (28).

Proof. Write f ′i = fi except when i = 1 in which case f ′1 = f1 − µ.

B(f1, . . . , fn) =
∑
S⊆[n]

∣∣∣f̂S(ℓ0)∣∣∣2
=
∑
1/∈S

∣∣∣f̂S(ℓ0)∣∣∣2 +∑
1∈S

∣∣∣f̂S(ℓ0)∣∣∣2
=
∑
1/∈S

∣∣∣f̂ ′S(ℓ0)∣∣∣2 +∑
1∈S

∣∣∣f̂ ′S(ℓ0) + µ÷f ′S\{1}(ℓ0)∣∣∣2 . (29)

Note the final term has the form |a+ µb|2. It can be bounded as

|a+ µb|2 = |a|2 + µ2|b|2 + 2µRe(ab) ≤ (1 + |µ|)|a|2 + (|µ|+ µ2)|b|2.

Plugging it back in Eq. (29), we get

B(f1, . . . , fn) ≤
∑
1/∈S

∣∣∣f̂ ′S(ℓ0)∣∣∣2 + (1 + |µ|)
∑
1∈S

∣∣∣f̂ ′S(ℓ0)∣∣∣2 + (|µ|+ µ2)
∑
1/∈S

∣∣∣f̂ ′S(ℓ0)∣∣∣2
= (1 + |µ|+ µ2)

∑
1/∈S

∣∣∣f̂ ′S(ℓ0)∣∣∣2 + (1 + |µ|)
∑
1∈S

∣∣∣f̂ ′S(ℓ0)∣∣∣2
≤ (1 + |µ|+ µ2)B(f ′1, . . . , f

′
n).

⊓⊔

Proof (Proof of Theorem 5.1). Given f1, . . . , fn, we will show that

B(f1, . . . , fn) ≤ (1 + π2/4)n−te1.5Cn

Å
2

π
+O

Å
1

p2

ãã2t

.

Using Lemma 5.6 repeatedly, we get that

B(f1, . . . , fn) ≤ B(f1 − µ1, . . . , fn − µn) ·
n∏

i=1

(1 + |µi|+ µ2
i ),

with µi := E[fi]. Note that (1+ |µi|+µ2
i ) ≤ exp(1.5|µi|), and because we assume

|µi| ≤ C we get

B(f1, . . . , fn) ≤ e1.5CnB(f1 − µ1, . . . , fn − µn). (30)

Note that the functions f1 − µ1, . . . , fn − µn satisfy the requirements of
Lemma 5.4. Hence,

B(f1 − µ1, . . . , fn − µn) ≤ (1 + π2/4)n−t
Å
2

π
+O

Å
1

p2

ãã2t

. (31)

The combination of Eq. (30) and Eq. (31) concludes the proof. ⊓⊔
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6 Unbalanced Leakage Resilience for t ≥ 0.01n

Contrast to the previous section, if the leakage functions are sufficiently biased,
then the security of the scheme applies to an even broader regime of parameters

Recall that we define B(f1, . . . , fn) :=
∑

S⊆[n] f̂S(ℓ0)
2.

Theorem 6.1. Let ℓ0, . . . , ℓn : Ft
p → Fp be n + 1 linear functions such that ev-

ery t of them are linearly independent. Let C > 0 and let f1, . . . , fn : Fp →
{−1, 1} be functions satisfying

|E[fi]| ≥ C for i = 1 . . . n.

Then,

B(f1, . . . , fn) ≤ 15n ·
Å
1− C2

5

ãt

. (32)

Corollary 6.2. In the setting of Theorem 6.1, if |E[fi]| ≥ 1 − 2/15n/t, then
B(f1, . . . , fn) ≤ (4/5)t, and consequently the advantage of an adversary to guess
the secret is exponentially small given the leakage, assuming p = 2o(n).

Proof. Setting C = 1− α (for α defined below) in Theorem 6.1 we have

B(f1, . . . , fn) ≤

(
15 ·

Å
1− C2

5

ãt/n
)n

≤
Ä
15 · (2α/5)t/n

än
.

This bound is exponentially small in n as long as α < 5
2·15n/t . Hence, α = 2/15n/t

is sufficient. The result follows from Theorem 3.1. ⊓⊔

Example 3. Shamir’s secret sharing scheme with n ≤ 100t and p = 2o(n) is
resilient against binary leakage functions that each of them discloses at most
H(1/15100) bits of information (corresponding to |E[fi]| ≥ 1 − 2/15100). Here,
H(q) = −q log2(q)− (1− q) log2(1− q).

Proof (Proof of Theorem 6.1). Let µi := E[fi]. Note that |µi| ≤ 1, hence repeated
applications of Lemma 5.6 yield that

B(f1, . . . , fn) ≤ 3nB(f1 − µi, . . . , fn − µn). (33)

Hence, we restrict our attention to bounding B(g1, . . . , gn) =
∑

S⊆[n] ĝS(ℓ0)
2

with gi = fi − µi.
Recall the definition

ĝS(ℓ0) = E
x

∏
j∈S

gj(x) · exp
Å−2πιℓ0(x)

p

ã .

If |S| < t, the fact that ℓ0 is not a linear combination of less that t of the other
linear functions implies ĝS(ℓ0) = 0, hence we consider |S| ≥ t.
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Splitting an S with |S| ≥ t as S = U ⊔ V with |U | = t, the Cauchy-Schwarz
inequality implies |ĝS(ℓ0)| ≤ ∥gU∥2 ∥gV ∥2:

|ĝS(ℓ0)| = |⟨gUgV , χℓ0⟩| = |⟨gU , gV χℓ0⟩| ≤ ∥gU∥2 ∥gV · χℓ0∥2 = ∥gU∥2 ∥gV ∥2 .

In order to bound ∥gV ∥2, note that ∥gi∥∞ ≤ ∥fi∥∞ + |µi| ≤ 2, hence

∥gV ∥2 ≤ ∥gV ∥∞ ≤ 2|V |.

In order to bound ∥gU∥2, note that {ℓi}i∈U are independent linear functions,
hence

∥gU∥2 =
∏
i∈U
∥gi∥2 .

However, Parseval’s identity implies that

∥gi∥22 = E[f2
i ]− E[fi]2 ≤ 1− C2,

and hence

∥gU∥2 ≤ (1− C2)t/2.

We deduce that gS(ℓ0)
2 ≤ 22(|S|−t)(1− C2)t, and overall

B(g1, . . . , gn) ≤
n∑

k=0

Ç
n

k

å
22(k−t)(1− C2)t ≤ (1− C2)t · 5n−t.

Combining with Eq. (33), we conclude with

B(f1, . . . , fn) ≤ 15n ·
Å
1− C2

5

ãt

.

⊓⊔

6.1 A Barrier of Previous Methods

It is already known that previous methods cannot prove local leakage resilience
of Shamir’s scheme for any t ≤ n/2 for general leakage functions. Indeed, [28]
showed a particular leakage function for which a proxy quantity in their analysis
becomes too large. The leakage function is the quadratic-residue function. This
leakage function is balanced and therefore cannot be used to claim that previous
techniques cannot be used to derive a result similar to what we get in Example 3.
We show an unbalanced variant of the quadratic-residue function for which a
similar barrier for previous techniques can be shown. We refer to Appendix B
for details.
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A Proof of Claim 4.5

Let f : Fp → [−1, 1] have E[f ] = µ. Then, for all k ̸= 0, we must show that

|f̂(k)| ≤ 2

π
cos
(π
2
µ
)
+O(1/p2). (34)

Note f̂(k) is a complex number, which we write as f̂(k) = |f̂(k)| · eiθ with

θ ∈ [−π, π] and |f̂(k)| ≥ 0 a positive real number. It is sufficient we prove

e−iθf̂(k) = |f̂(k)| ≤ 2

π
cos
(π
2
µ
)
+O(1/p2).

Note that

e−iθf̂(k) = Re(e−iθf̂(k)) = Re(e−iθ E
x∼Fp

[f(x) exp(−2πkxi/p)])

= E
x∼Fp

[f(x)Re(exp(−(2πkx/p+ θ)i))] = E
x∼Fp

[f(x) cos(2πkx/p+ θ)]

= E
x∼Fp

[f(x/k) cos(2πx/p+ θ)]

We define the function g : Fp → [−1, 1] having g(x) = f(x/k) which satisfies
E[g] = E[f ] = µ and

e−iθf̂(k) = E
x∼Fp

[g(x) cos(2πx/p+ θ)]︸ ︷︷ ︸
F (g)

(35)

We now find a function g that maximizes F (g) among functions satisfying E[g] =
µ, and show this value is upper bounded by the right hand side of (34).

Intuitively, a g that maximizes F (g) “should” have g(x) larger as cos(2πx/p+
θ) is larger (among x ∈ {0, 1, . . . , p − 1}) and smaller when cos(2πx/p + θ) is
smaller. This intuition can be formalized as follows. Write P (x) := cos(2πx/p+
θ). If P (y) ≤ P (z) and both −1 < g(y) and g(z) < 1, we may outflow a small
quantity from g(y) (thus decreasing it) while increasing g(z), so that both E[g]
is preserved and (35) grows. Specifically, letting ν = min{g(y)+1, 1− g(z)} and
defining g′ : Fp → [−1, 1] as

g′(x) = g(x) + ν(1{x=z} − 1{x=y}),

has |g′| ≤ 1 and E[g′] = E[g] = µ and

F (g′, θ) = F (g) + ν(P (z)− P (y)) > F (g).

Hence, for all µ ∈ [−1, 1] there is a function gµ which maximizes F (gµ, θ) under
the condition E[gµ] = µ, that has |g(x)| = 1 for all points x ∈ Fp, except for
at most one point x′. Moreover, gµ(x) is monotonically non-decreasing in P (x).
We must show

F (gµ, θ) ≤
2

π
cos
(π
2
µ
)
+O(1/p2).

28



Consider first the case where µ = −1 + 2
p t, for some positive integer t. In this

case, gµ(x) = 1 on t x’s with largest P (x), and gµ(x) = −1 on the remaining
p− t x’s.

For the purpose of computing F (gµ, θ), these x’s for which gµ(x) = 1 can be

described as m ≤ x ≤ m+t−1 for some integer m. Using that
∑p−1

x=0 cos(2πx/p+
θ) = 0, we see that∣∣∣∣∣∣ ∑

x : gµ(x)=1

cos(2πx/p+ θ)

∣∣∣∣∣∣ =
∣∣∣∣∣∣ ∑
x : gµ(x)=−1

cos(2πx/p+ θ)

∣∣∣∣∣∣
and so

F (g) =
2

p

m+t−1∑
x=m

cos(2πx/p+ θ) =
2

p

sin(πt/p) cos((2m+ t− 1)π/p+ θ)

sin(π/p)
(36)

where the last equality follows from an elementary trigonometric summation.
Using that | cos | ≤ 1 and that t = p/2(1 + µ) we get

F (g) ≤
∣∣∣∣2 sin((1 + µ)π/2)

p sin(π/p)

∣∣∣∣ · 1 =
2 cos(πµ/2)

p sin(π/p)
. (37)

Using that 1/ sin(ϵ) = 1
ϵ +O(ϵ) for |ϵ| ≤ 1 in Eq. (37), we get

F (g) = 2 cos
(π
2
µ
)
· (1/π +O(1/p2) =

2

π
cos
(π
2
µ
)
+O(1/p2),

as required. For the case of general µ ∈ [−1, 1], it holds that F (gµ) is a piecewise-
linear function in µ. Thus, the almost-coincidence of F (gµ)(1) with 2

π cos(π2µ)
on µ ∈ −1 + 2

pZ, implies a similar O(1/p2) approximation for interpolated µ

values, as 2
π cos(π2µ) has bounded second derivative (Taylor-approximation type

estimate).

B Details for a Barrier of Previous Methods

As pointed out in [28], previous studies of the leakage resilience of Shamir’s
secret sharing scheme aim at upper bounding some proxy quantity, which can
be too large if n ≥ 2t. Their analytic proxy is8∑

c∈ℓ⊥\{0}

n∏
i=1

|‹fi(ci)|, with ‹fi(ci) = ®“fi(ci) ci ̸= 0

1 ci = 0,
(38)

where ℓ⊥ is the set of all linear combinations c ∈ Fn
p for which the equation∑n

i=1 ciℓi = 0 holds. In particular, |ℓ⊥| = pn−t. See Section 2.3 for the interpre-
tation of what Eq. (38) bounds.

8 The proxy found in [28, Section 5] is
∑

b∈{−1,1}n
∑

c∈ℓ⊥\{0}
∏n

i=1 |
÷1+bifi

2
(ci)|. How-

ever syntactially different from Eq. (38), it is identical.
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In order to show that the quantity in Eq. (38) may be large if n ≥ 2t, Maji
et al. [28] presented the quadratic-residue function

fi(s) = f(s) :=

®
1 s = y2 (mod p)

−1 otherwise

which satisfies |“fi(α)| ∼ √1/p for all α ∈ Fp. Hence, Eq. (38) is a sum of pn−t

terms, each of the order of p−n/2, thus being > 1 if n > 2t.
In order to see the similar barrier in the case where the fi’s are constantly

biased (that is, as in the setting of Example 3), consider some constant µ < 1
(the bias), and set

gi(s) = g(s) := (1− µ)fi(s) + µ.

Note that the range of g is [−1, 1], unlike f whose range is {−1, 1}. Anyways, it
follows that |ĝ(α)| ≳ (1− µ)/

√
p for all α. Also, E[g] = µ+ (1− µ)E[f ] ≈ µ.

Substituting gi in place of fi in (38), we get pn−t summands, each of the
order of (1− µ)n/pn/2, thus being

(1− µ)npn/2−t.

In case t = (1/2− ϵ)n, the sum in Eq. (38) is hence at least

(1− µ)npϵn ≫ 1, (39)

for any constant ϵ > 0. This gives a barrier on how effective Eq. (38) can be if
t = (1/2− ϵ)n.

Note however that g does not strictly output a single bit. We sketch how
to fix this issue (since this section only points out a barrier with previous ap-
proaches, we skip technical details.) Observe that g is an average of functions
whose range is {−1, 1}. Then, we notice that Eq. (38) is a convex function of
the gi’s (as a composition of convex functions). If we hence choose gi randomly
(and independently across i’s) from a distribution whose mean is g, we get in
expectation a value larger than Eq. (39). Note that it is important to surely
have gi with mean ≈ µ. For this, we note that g is two-valued with values 1
and 2µ − 1. By rounding µ-fraction out of these s with g(s) = 2µ − 1 to have
gi(s) = 1, and the rest with gi(s

′) = −1, we guarantee E[gi] = µ. That is, the
number of s’s we round to 1 is

p · µ · (1− E[f ])
2

.

There is a fine net of µ’s in [−1, 1] for which this quantity turns out an integer.
We may choose any µ with that property.
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