
Fast Unbalanced Private Computing on (Labeled) Set Intersection
with Cardinality

Binbin Tu, Xiangling Zhang, Yujie Bai, and Yu Chen(B)

School of Cyber Science and Technology, Shandong University
{tubinbin,xianglingzhang,baiyujie}@mail.sdu.edu.cn;yuchen@sdu.edu.cn

Abstract. Private computation on (labeled) set intersection (PCSI/PCLSI) is a secure computation
protocol that allows two parties to compute fine-grained functions on set intersection, including cardinality,
cardinality-sum, secret shared intersection, and arbitrary functions. Recently, some computationally
efficient PCSI protocols have emerged, but a limitation of these protocols is the communication
complexity, which scales (super)-linear with the size of the large set. This is of particular concern when
performing PCSI in the unbalanced case, where one party is a constrained device with a small set, and
the other is a service provider holding a large set.
In this work, we first formalize a new ideal functionality called shared characteristic and its labeled
variety called shared characteristic with labels, from which we propose the frameworks of PCSI/PCLSI
protocols. By instantiating our frameworks, we obtain a series of efficient PCSI/PCLSI protocols, whose
communication complexity is linear in the size of the small set, and logarithmic in the large set.
We demonstrate the practicality of our protocols with implementations. Experiment results show that
our protocols outperform previous ones and the larger difference between the sizes of two sets, the better
our protocols perform. For input set sizes 210 and 222 with items of length 128 bits, our PCSI requires
only 4.62MB of communication to compute the cardinality; 4.71MB of communication to compute the
cardinality-sum. Compared with the state-of-the-art PCSI proposed by Chen et al. [1], there are 58×
and 77× reductions in the communication cost of computing cardinality and cardinality-sum.

Keywords: private computation on (labeled) set intersection; shared characteristic (with labels)

1 Introduction

Private Set Intersection (PSI) allows two parties, the sender and the receiver, to compute the intersection
of their private sets X and Y with pre-determined sizes, such that the receiver only learns the interaction
X ∩ Y and the sender learns nothing. Certain real-world applications are closely related to PSI but in fact,
require only partial/aggregate information about the intersection to be revealed. In a notable real-world
deployment, both Google [2,3] and Facebook [4] have implemented PCSI/PCLSI that allows them to compute
some functions of the intersection (labels), where only the results and the intersection size are revealed, but
not the intersection itself. Therefore, more fine-grained PCSI/PCLSI are required, including PCSI-card for
intersection cardinality [5], PCSI-card-sum for intersection cardinality and sum [6,2,7], PCSI-secret-sharing
for secret shared intersection [6,7,1], etc. However, many PCSI/PCLSI are designed for balanced inputs,
resulting in a suboptimal performance for constrained hardware whose input set size is significantly smaller
than the other. Specifically, the communication cost of these protocols increases at least linearly with the size
of the large set. In many real-world scenarios, such as Client-Server cases, the input sets of two parties differ
a lot in size, for instance, one party that can be seen as a client, is a mobile device with limited resources
(e.g., battery, computing power, storage), while the other party is a high-performance server, meanwhile,
the available bandwidth between two parties may be limited. However, most existing PCSI/PCLSI are not
efficient in dealing with the unbalanced case.

There has been a significant amount of work on PSI [8,9,10,11,12] in recent years. The current efficient
PSI [12] is almost as fast as the naive insecure hash-based protocol. In contrast to PSI, most PCSI/PCLSI
realize specific functionalities, such as cardinality, cardinality and sum, etc., based on the general circuit

constructions, while their efficiency is less satisfactory due to the complexity of the corresponding circuit. In
the balanced setting, there are PSI [13,10] and PCSI [2,3,1] with linear complexity. In the unbalanced setting,
there are PSI [14,6,15] with sublinear complexity in the size of the large set, but no such PCSI/PCLSI are
known. Chen et al. [6] first present unbalanced PSI-with-computation by extending their labeled PSI to
output secret shares of the intersection and combining with a secondary MPC protocol to compute cardinality
and cardinality-sum functionalities. However, their protocols are described theoretically for giving circuit
constructions is difficult and not accompanied by detailed experiments. Recently, a new framework of PCSI
has been proposed by [1] from multi-query reverse private membership test (mqRPMT). Then, they develop
mqRPMT with cardinality (mqRPMT∗), from which they construct an unbalanced PCSI∗, while mqRPMT∗

leaks the cardinality to the sender causing that PCSI∗ from mqRPMT∗ also leaks the information and
cannot achieve standard security. As noted by the author [1], their unbalanced protocols cannot combine
with optimizing techniques [14,6,15] causing their instantiations with low efficiency and only serving as a
proof of concept. Furthermore, their protocols consider unbalanced scenarios that are not comprehensive,
missing cases where the sender has the small set, and computing the receiver’s labels. Therefore, how to
realize efficient PCSI/PCLSI in the unbalanced setting and achieve standard security remains open questions.
Motivated by the above discussions, we ask the following question:

Is it possible to design the frameworks of PCSI/PCLSI that enjoy efficient instantiations in the unbalanced
setting, with communication linear in the size of the small set, and logarithmic in the large set?

1.1 Contributions

In this paper, we give an affirmative answer to the above question. Our contributions are summarized as
follows:

1. We formalize a new ideal functionality called shared characteristic and its labeled variety called shared
characteristic with labels, from which we present the frameworks of PCSI/PCLSI protocols in the semi-
honest model by combining with some other primitives such as permuted matrix private equality test
(pm-PEQT), additively homomorphic encryption (AHE) and oblivious transfer (OT).

2. We consider more comprehensive constructions of PCSI/PCLSI including two unbalanced cases, where
one is that the receiver holds the small set, and the other is that the sender holds the small set. Especially,
for PCLSI, each unbalanced case consists of two types of protocols: one is to compute the sender’s labels
and the other is to compute the receiver’s labels.

3. By instantiating our frameworks based on fully homomorphic encryption (FHE), pm-PEQT, AHE, and
OT, we obtain a series of efficient PCSI/PCLSI protocols whose communication complexity is linear in
the size of the small set, and logarithmic in the large set. Thus, our protocols are very efficient when the
set size of one party is much larger than that of the other.

4. We implement our PCSI/PCLSI and compare them with the state-of-the-art protocols. To the best of our
knowledge, this is the first specialized implementation of PCSI/PCLSI for unbalanced scenarios. For set
sizes (|X| = 210 ≪ |Y | = 222) with 128-bit length items, in a single thread and LAN settings: PCSI-card
(PCSI-card-sum) takes 4.62 (4.71) MB of communication and 79.9 (80.03) seconds of computation.
Compared with the PCSI [1], for PCSI-card (PCSI-card-sum), there are roughly 58× (77×) reductions in
the communication cost and 2.64× (2.76×) speedup in the runtime. In particular, the performance of
our PCSI/PCLSI improves significantly in the case of low bandwidth. Our PCSI-card (PCSI-card-sum)
requires 121.09 (122.18) seconds in 1Mbps bandwidth, which is about 20.48× (26.98×) faster than that
of PCSI [1].

1.2 Technical Overview

Now, we overview our frameworks as follows. First, we introduce shared characteristic (SC) functionality
and its labeled variety called shared characteristic with labels (SCwL) (depicted in Figure 1). We defer the
functionalities FSC and FSCwL to Section 3. Next, we present the frameworks of PCSI/PCLSI from SC/SCwL

2

P1(X) P2(Y,U)y1 y2 · · · · · · · · · ymY

u1 u2 · · · · · · · · · umU

x1 x2 · · · xn

x1 ∈ Y x2 /∈ Y xn ∈ Y

r1 r2 · · · rn

e1 e2 · · · en

r′1 r′2 · · · r′n

e′1 e′2 · · · e′n
r′1 = r1

e′1 + e1 ∈ U

r′2 ̸= r2

e′2 + e2 /∈ U

r′n = rn

e′n + en ∈ U

Fig. 1: Shared characteristic (with labels).

by combining with pm-PEQT, AHE, and OT (depicted in Figure 2). By instantiating our frameworks, we
obtain a series of efficient PCSI/PCLSI protocols in the unbalanced setting.

Frameworks of PCSI from SC. SC implies PCSI-card by combining with pm-PEQT. This is because
both parties input the shares from SC into pm-PEQT, which can check whether the corresponding shares are
equal and output a permutated indication vector to the receiver R, and then R reveals the cardinality by
outputting the Hamming weight of the indication vector. PCSI-card-sum and PCSI-secret-sharing can be
constructed by additionally coupling with AHE and OT. We give comprehensive constructions to cover all
possible scenarios in the unbalanced setting, including both cases where the sender S owns the larger set or
the receiver R owns the larger set. We defer the details to Section 4.
Frameworks of PCLSI from SCwL. SCwL is an extension of SC, outputting not only the same shares
for intersection items but also additive shares of the labels of the intersection items. Therefore, following
the frameworks of PCSI from SC, PCLSI protocols including card-sum, secret-sharing, and card-inner-
product, can be constructed based on SCwL, pm-PEQT, AHE, and OT by computing the shares of labels
instead of intersection items. We propose two types of PCLSI protocols including computing S ′s (R′s) labels
corresponding to the intersection items, and each type consists of the two cases that the sender holds the
larger set or the receiver holds a larger set. We defer the details to Section 6.

+SC/SCwL pm-PEQT

PCSI/PCLSI-card PCSI/PCLSI-card-sum PCSI/PCLSI-secret-sharing

AHE+OT AHE

Fig. 2: Technical overview of our frameworks. The rectangles with solid lines denote new notions. The rectangle
with dotted lines denotes the previous notion.

Instantiations. Following the extension of (labeled) PSI [14,6], we informally show basic constructions of SC
based on the FHE as follows. The sender S holding a small set X = {xi}i∈[n] interacts the receiver R holding a
large set Y = {yj}j∈[m]. S uses its public key to encrypt the item xi and sends the ciphertext c = FHE.Enc(xi)
to R; R chooses random non-zero value ri, and homomorphically computes c′ = FHE.Enc(ri + f(xi)), where

3

the polynomial f(x) = Πyj∈Y (x − yj) and returns the new ciphertext to S; S decrypts c′ and gets the
plaintext r′i = ri + f(x). Therefore, if xi ∈ Y, i ∈ [n] both parties get r′i = ri, r

′
i ̸= ri otherwise. Similar to [14],

the basic protocol achieves communication linear in the small set and is independent of the large set, but the
deep depth of the homomorphic circuit leads to high computational costs since the degree of f(x) is related
to the large set size. SCwL can be constructed following labeled PSI [6], and we defer the detail in Figure 9.

1.3 Related Works

Here, we review PCSI frameworks in the balanced/unbalanced setting as follows. Table 1 provides a comparison
of our protocols with the state-of-the-art protocols in the unbalanced setting. n and m denote the size of the
small set and the large set, respectively.

Protocols Communication Computation No generic 2PC

PCSI/PCLSI [7] O(m+ n logn) O(m+ n logn) ✓
PCSI/PCLSI [1] O(m+ n) O(m+ n) ✓

Circuit-PCSI/PCLSI [6] O(n logm) O(m+ n logm) ×
Our PCSI/PCLSI O(n logm) O(m+ n logm) ✓

Table 1: Comparisons of PCSI/PCLSI in the semi-honest setting.

Balanced case. A functionality for computing arbitrary functions of intersection can be implemented using
generic 2PC protocols by expressing the functionality as a circuit. Huang et al. [16] show a sort-compare-shuffle
circuit for using either GMW or Yao’s protocol. Furthermore, Pinkas et al. [17,18,19] develop circuit-based
PCSI by using a special-purpose preprocessing phase before performing general-purpose 2PC and achieve
linear communication complexity.

Garimella et al. [7] propose the permuted characteristic functionality FPC based on oblivious switching
network (OSN), from which they give a PCSI framework including PCSI-card, PCSI-card-sum and PCSI-
secret-sharing. However, the core construction of FPC requires an OSN subprotocol [20], all protocols lead
to super-linear communication. After that, a new framework to perform PCSI from multi-query reverse
private membership test (mqRPMT) is given by [1], and they present two constructions of mqRPMT from
commutative weak pseudorandom function and permuted oblivious pseudorandom function, respectively. Both
constructions can be realized from DDH-like assumptions and achieve linear communication and computation
complexity with the size of the large set.
Unbalanced case. Chen et al. [6] first propose an efficient labeled PSI whose communication is sublinear
in the size of the large set. They show how to extend this construction to enable each party to obtain
secret shared labels associated with intersection items. After that, they show PSI-with-computation in the
unbalanced setting by feeding shares into a downstream generic 2PC to compute any functions over these
labels. However, since it is difficult to design a circuit for computing PCSI-card/card-sum, their extended
protocol is described only theoretically and not accompanied by detailed experiments.

2 Preliminaries

Notation. We denote two parties in our protocols as sender (S) and receiver (R), and their respective input
sets as X and Y with sizes n and m. X = {(xi, vi)}i∈[n] denotes a labeled set with size n where vi is a
label of the item xi. We write (S ≫ R) to denote that S holds the larger set and (S ≪ R) to denote that
R holds the larger set. We use κ and λ to indicate the computational and statistical security parameters,
respectively. [n] denotes the set {1, 2, · · · , n}. We denote vectors by lower-case bold letters, e.g., s, and
matrices by upper-case bold letters, e.g., S. We write s = [si]i∈[n] to denote a vector [s1, · · · , sn]. For a

4

permutation π over n items, we write {sπ(1), · · · , sπ(n)} to denote π({s1, · · · , sn}), where sπ(i) indicates the
i-th element after the permutation. We use m ⊞ c to denote the “addition” of the plaintext in c with the
plaintext m and a⊠ c to denote the “multiplication” of the plaintext in c by scalar a.

2.1 PCSI/PCLSI Functionalities

We review the functionalities of private computing on (labeled) set intersections (PCSI/PCLSI) [7,1] in
Figure 3 and 4.

Functionality FPCSI: On input X = {xi}i∈[n] from S and Y = {yj}j∈[m] from R, where each xi, yj ∈ Zp for some
integer modular p:

– card: Give output k to R, where k = |X ∩ Y |.
– card-sum: Give output (k, s) to R, where k = |X ∩ Y |, s =

∑
xi∈Y xi.

– secret-shares1: Give a = [ai]i∈[k] to S and b = [bi]i∈[k] to R, where zi = ai + bi, i ∈ [k], [zi]i∈[k] is a random
permutation of X ∩ Y .

– card-function: Give output (k, z) to R, where k = |X ∩ Y |, z = g(X ∩ Y), g can be any function.

Fig. 3: Ideal functionality for private computing on set intersection

Functionality FPCLSI: On input labeled sets X = {(xi, vi)}i∈[n] from S and Y = {(yj , uj)}j∈[m] from R, where
xi, yj ∈ {0, 1}∗, vi, uj ∈ Zp for some integer modular p:

– card-sum with S ′s (R′s) labels: Give output (k, s) to R, where k = |X ∩ Y |, s =
∑

xi∈Y vi (s =
∑

yj∈X uj).

– secret-shares with S ′s (R′s) labels: Give additive secret shares a = [ai]i∈[k] to S and b = [bi]i∈[k] to R, where
zi = ai + bi, i ∈ [k], [zi]i∈[k] is a random permutation of S ′s (R′s) labels corresponding to X ∩ Y .

– card-function with S ′s (R′s) labels: Give output (k, z) to R, where k = |X ∩ Y |, z = g(z1, · · · , zk), where g
can be any function, [zi]i∈[k] is a random permutation of S ′s (R′s) labels corresponding to X ∩ Y .

– card-inner-product: Give output (k, d) to R, where k = |X ∩ Y |, d =
∑

xi=yj ,i∈[n],j∈[m] vi · uj .

Fig. 4: Ideal functionality for private computing on labeled set intersection

2.2 Labeled PSI

We now recall the labeled PSI [6], which is following the architecture of [17,14]. Specifically, R holding a
small set Y = {yi}i∈[m] interacts with S holding a large labeled set X = {(xi, vi)}i∈[n] and outputs the labels
of intersection.

First, R inserts Y 2 into a hash table Yc by Cuckoo hashing and each bin Yc[i] consists of at most one
item. S inserts X into a hash table Xb by simple hashing, where the i-th bin is indicated as Xb[i] and each

1 Both parties obtain the intersection cardinality by calculating the number of shares in secret-sharing functionality,
so the “card” symbol is omitted.

2 In [6], both parties first run mp-OPRF functionality to compute all PRF values of two sets X and Y , and all
subsequent steps operate on the PRF values, which we omit for convenience.

5

bin consists of at most B items3. That is, X ∩ Y =
⋃

i(Yc[i] ∩ Xb[i]) =
⋃

i({yi} ∩ Xb[i]), where yi is the
sole item in the bin Yc[i]. Then, both parties encode their respective bins into the plaintext field F, and
compute the label of {yi} ∩ Xb[i] by using fully homomorphic encryption (FHE): R sends an encryption
of yi, denoted as [[yi]], to S; S computes two polynomials fi, gi such that for all xj ∈ Xb[i], fi(xj) = 0 and
if ∃ xj = yi, gi(yi) = vj where vj is a label corresponding to the item xj , otherwise, gi(yi) is a random
element in F; S chooses two random values ri, r

′
i and homomorphically computes [[zi]] = (rifi([[yi]])) and

[[z′i]] = (r′ifi([[yi]]) + gi([[yi]])). Therefore, if yi ∈ Xb[i], [[zi]] is an encryption of 0 and [[z′i]] is an encryption of vj ,
otherwise, [[zi]] and [[z′i]] are encryptions of two random values. Finally, [[zi]] is returned to R, who concludes
that if zi = 0, yi ∈ X and obtains the label z′i = vj , otherwise, yi /∈ X and gets a random value z′i.

After that, Chen et al. [6] also consider PSI-with-computation by extending labeled PSI to output shares4

of intersection and additive secret shares of corresponding labels, which can be forwarded as input to a
secondary MPC protocol. For simplicity, instead of returning [[zi]] and [[z′i]], S returns ciphertexts [[zi + ei]]
and [[z′i + e′i]], where ei and e′i are two random values. When R decrypts the ciphertexts, it will hold shares of
zi and z′i. That is, if two shares of zi are equal, both parties hold the shares of z′i = vj which is a label of xj .
Otherwise, both parties hold the shares of a random value.

2.3 Building Blocks

We briefly review the main technical tools as follows.

Simple hashing. In the simple hashing [21], the hash table consists of m bins B1, · · · , Bm. Hashing is done
by mapping each element x to a bin Bh(x) using a hash function h : {0, 1}∗ → [m] that was chosen uniformly
at random and independently of the input elements. According to the following inequality [22], the maximum
bin size B can be set to ensure that no bin will contain more than B items except with probability 2−λ when
hashing n items into m bins.

Pr[∃ bin size ≥ B] ≤ m

[
n∑

i=B

(
n
i

)
·
(

1

m

)i

·
(
1− 1

m

)n−i
]

Cuckoo hashing. Cuckoo hashing can be used to build dense hash tables by many hash functions [23,24,25,26].
Following [14,6], we use three hash functions and adjust the number of items and table size to reduce the
stash size to 0 while achieving a hashing failure probability of 2−λ. For a detailed explanation, we refer the
reader to [14].

Leveled fully homomorphic encryption. The leveled fully homomorphic encryption supports circuits of
a certain bounded depth. Following [14], our protocols require that the leveled FHE satisfies IND-CPA secure
with circuit privacy [27]. We use an array of optimization techniques of FHE as [14,6,15], such as batching,
windowing, partitioning, and modulus switching to significantly reduce the depth of the homomorphic circuit.
For the implementation, we use the homomorphic encryption library SEAL which implements the BFV
scheme [28] following [14,6,15].

Oblivious transfer. Oblivious transfer (OT) [29] is a two-party protocol between S and R. S with two
input strings (x0, x1) interacts with R holding a choice bit b. The result is that R learns xb, while S learns
nothing about b. Ishai et al. [30] introduce an OT extension that allows for many OT executions at the cost of
computing a small number of public-key operations. We recall 1-out-of-2 OT functionality FOT in Figure 5.

Permuted matrix private equality test. The permuted matrix private equality test (pm-PEQT) [31] is
an extension of private equality test with permutation. The pm-PEQT can be used in vectors by removing the
operations of shuffling rows, in which S holding a vector r = [ri]i∈[n] and a permutation π over [n] interacts
with R holding a vector r′ = [r′i]i∈[n]. As a result, R learns b = [bi]i∈[n] which is an indication bit vector for
shuffled vectors π(r) and π(r′), where if r′π(i) = rπ(i), bi = 1, else bi = 0. We review the ideal functionality of
pm-PEQT with vectors in Figure 6.
3 In the PSI [14,6], they use cuckoo hashing with no stash and three simple hash functions. For same i-bin in the
hash tables Yc and Xb, if an item yi ∈ Yc[i] ∩Xb[i], it belongs to the intersection.

4 This is a special sharing because two shares are equal for intersection item and not equal for non-intersection item.

6

Parameters: Two parties: S and R. Message length κ.
Functionality FOT:

– Wait for input {x0, x1} from S. Wait for input b ∈ {0, 1} from R.
– Give xb to R.

Fig. 5: 1-out-of-2 oblivious transfer functionality

Parameters: Two parties: S with a vector r = [ri]i∈[n] and a permutation π over [n]; R with a vector r′ = [r′i]i∈[n].
Functionality Fpm-PEQT:

– Wait for an input r = [ri]i∈[n] and a permutation π from S, and an input r′ = [r′i]i∈[n] from R.
– Give a bit vector b = [bi]i∈[n] to R, where for all i ∈ [n], if rπ(i) = r′π(i), bi = 1, else, bi = 0.

Fig. 6: Permuted matrix private equality test

3 Shared Characteristic (with Labels)

In this section, we formalize the ideal functionalities named shared characteristic (with labels) (depicted in
Figure 1), show efficient constructions following the extension of (labeled) PSI [14,6], and give the security
proofs.

Shared characteristic. Here, we define the shared characteristic (SC) functionality FSC in Figure 7. Roughly
speaking, a party P1 holding a set X = {xi}i∈[n] interacts with a party P2 holding a set Y = {yj}j∈[m], and
the result is that for each xi ∈ X, i ∈ [n] if xi ∈ Y , P1 and P2 learn the same shares ri = r′i, otherwise, they
learn random values ri ̸= r′i.

Functionality FSC: On input X = {xi}i∈[n] from P1; Y = {yj}j∈[m] from P2:

– Give a random vector r = [ri]i∈[n] to P1 and give a random vector r′ = [r′i]i∈[n] to P2, where if xi ∈ Y , i ∈ [n],
ri = r′i, else ri ̸= r′i.

Fig. 7: Shared characteristic

Shared characteristic with labels. Considering the labeled case, we extend shared characteristic into
shared characteristic with labels (SCwL). The ideal functionality FSCwL is defined in Figure 8, where a party
P1 with a labeled set X = {xi}i∈[n] interacts with a party P2 holding a set Y = {(yj , uj)}j∈[m], and the
result is that for each xi ∈ X, i ∈ [n], if ∃ j ∈ [m] s.t. yj = xi, P1 and P2 learn secret shares (ri, ei) and
(r′i, e

′
i), where ri = r′i and ei + e′i = uj

5, otherwise, P1 and P2 learn random values (ri, ei) and (r′i, e
′
i), where

ri ̸= r′i and ei + e′i ̸= uj .
Constructions of SC and SCwL. Same to the extension of (labeled) PSI [14,6], we show the constructions
of SC/SCwL in Figure 9. Note that we assume that P1 holds the small set, and if P2 holds the small set, both
parties perform the protocols with their roles switched. Additionally, the efficiency of SC/SCwL protocols in

5 The addition operation “+” refers to modular addition, and we omit modular operation in this paper for convenience.

7

Functionality FSCwL: On input X = {xi}i∈[n] from P1; Y = {(yj , uj)}j∈[m] from P2:

– Give two random vectors r = [ri]i∈[n] and e = [ei]i∈[n] to P1 and give two random vectors r′ = [r′i]i∈[n] and
e′ = [e′i]i∈[n] to P2, where for all i ∈ [n], if ∃ j ∈ [m] s.t. yj = xi, there is ri = r′i and ei + e′i = uj , otherwise,
ri ̸= r′i and ei + e′i ̸= uj .

Fig. 8: Shared characteristic with labels

Figure 9 can be improved by optimizing techniques used in [14,6,15], such as batching, windowing, partitioning,
modulus switching, etc. For a detailed explanation, we refer the reader to [14,6,15].
Communication. The windowing technique results in a significant reduction in the homomorphic circuit
depth, at the cost of increasing the communication in step 5 from O(n) to O(n logm). The communication of
the other step is at most O(n). In summary, the communication of SC (SCwL) is O(n logm).

We prove security in the standard semi-honest simulation-based paradigm. For a formal definition of
simulation-based security in the semi-honest setting, we refer the reader to [32]. For all proofs, we exhibit
simulators SimS and SimR for simulating corrupt S and R respectively, and argue the indistinguishability of
the produced transcript from the real execution.

Input: P1 inputs X = {xi}i∈[n] and P2 inputs Y = {(yj , uj)}j∈[m], where xi, yj ∈ {0, 1}∗, uj ∈ Zp for some integer
modular p, n ≪ m:
Output: P1 outputs two vectors (r, e). P2 outputs two vectors (r′, e′).

1. [Setup] Both parties agree on the hashing, mp-OPRF, and FHE parameters.
2. [Hashing] P1 hashes X into table x′

c by Cuckoo hashing, where x′
c consists of nc bins and each bin has one item.

P2 uses the same hash functions to insert Y into table Y′
B×nc

, where Y′
B×nc

consists of nc bins and each bin has
B items.

3. [mp-OPRF] Both parties input their items in hash tables and invoke mp-OPRF functionality. The result is P1

obtains PRF values of x′
c denoted as xc, and P2 obtains a PRF key k. Then, P2 computes PRF values of Y′

B×nc

denoted as YB×nc .
4. [Computing coefficients from YB×nc] P2 chooses random vectors r′ = [r′j]j∈[nc] and e′ = [e′j]j∈[nc]. For j-th

bin yj = [yj,i]i∈[B], j ∈ [nc], P2 computes polynomials Fj(x) = fj(x) + r′j and Gj(x) = fj(x) + hj(x)− e′j , where
for all i ∈ [B], fj(yj,i) = 0 and hj(yj,i) = uj,i

6. Thus, P2 obtains two coefficient matrices A and L, where j-th
column of A and L are the coefficients of Fj and Gj .

5. [Encrypt xc] P1 uses its FHE public key to encrypt each element in xc = [xj]j∈[nc] and sends all ciphertexts
[[xj]], j ∈ [nc] to P2.

6. [Homomorphically Computing] For each [[xj]], P2 homomorphically computes encryptions of all powers
Cj = [[[x1

j]], · · · , [[xB
j]]]. Then, P2 homomorphically evaluates C′

j = CjAj and C∗
j = CjLj , j ∈ [nc], and sends all

ciphertexts to P1.
7. [Decrypt and Output] P1 decrypts the ciphertexts into r = [rj]j∈[nc] and e = [ej]j∈[nc], and then outputs them.

P2 outputs r′ = [r′j]j∈[nc] and e′ = [e′j]j∈[nc].

Fig. 9: Shared characteristic (with labels) protocols. The marked parts are only needed for shared characteristic
with labels protocol.

Theorem 1. The protocols in Figure 9, are secure for FSC/SCwL in the Fmp-OPRF-hybrid model, in the
presence of semi-honest adversaries, provided that the fully homomorphic encryption scheme is IND-CPA
secure.

8

Proof. We prove the security of SC/SCwL protocols and give the simulators SimP1 and SimP2 as follows.

– Corrupt P1. SimP1
(X, (r, e)) simulates the view of corrupt P1 as follows. SimP1

hashes X into x′
c as the

real protocol, and randomly selects PRF values xc, invokes Sim
R
mp-OPRF(x

′
c,xc) and appends the output

to the view. Then, it encrypts (r, e) to simulate the ciphertexts in step 6. The security of mp-OPRF
guarantees the view in simulation is computationally indistinguishable from the real view.

– Corrupt P2. SimP2 (Y, (r′, e′)) simulates the view of corrupt P2 as follows. SimP2 hashes Y into Y′
B×nc

as the real protocol, and randomly selects PRF key k, invokes SimS
mp-OPRF(Y

′
B×nc

, k) and appends the
output to the view. Then, it computes all PRF values and coefficients as real protocol and encrypts nc

random values to simulate the ciphertexts in step 5. The view generated by SimP2 is indistinguishable
from a real view of P2 by the following hybrids:

• Hyb0: P2’s view in the real protocol.
• Hyb1: Same as Hyb0 except that SimP2

runs the Fmp-OPRF simulator to produce the simulated view
for P2. The security of the mp-OPRF protocol guarantees the view in simulation is computationally
indistinguishable from the view in the real protocol. The hybrid is the view output by SimP2

.
• Hyb2: Same as Hyb1 except that the ciphertexts are replaced by encrypting random values generated
by SimP2 . Since the fully homomorphic encryption scheme is IND-CPA secure, the simulation is
indistinguishable from the real view.

4 Private Computing on Set Intersection

In this section, we give the frameworks of PCSI protocols in two cases where one is that S holds the small set
(S ≪ R) and the other is R holds the small set (S ≫ R).

4.1 PCSI (S ≪ R)

Here, PCSI (S ≪ R) is described in Figure 10, including PCSI-card, PCSI-card-sum and PCSI-secret-sharing.

Theorem 2. PCSI (S ≪ R) protocols in Figure 10, including PCSI-card in step 1, PCSI-card-sum in
step 2, and PCSI-secret-sharing in step 3, are secure against semi-honest adversaries in the (FSC, Fpm-PEQT,
FOT)-hybrid model.

Proof. We prove the security of PCSI-card (S ≪ R) and give the simulators SimS and SimR as follows.

– Corrupt Sender. SimS(X) chooses a random vector r, invokes SimP1

SC(X, r) and appends the output to

the view. Then, it chooses a random permutation π, invokes SimS
pm-PEQT(r, π) and appends the output

to the view. Since the views of the underlying SC and pm-PEQT simulator are indistinguishable, the
simulation is indistinguishable from the real view.

– Corrupt Receiver. SimR (Y, k) chooses a random vector r′, invokes SimP2

SC (Y, r′) and appends the
output to the view. Then, it chooses a random vector b = [bi]i∈[n] ∈ {0, 1}n, s.t.

∑n
i=1 bi = k, invokes

SimR
pm-PEQT(r

′,b) and appends the output to the view. The security of SC and pm-PEQT guarantees
the view in simulation is indistinguishable from the real view.

We prove the security of PCSI-card-sum (S ≪ R) and give the simulators SimS and SimR as follows.

– Corrupt Sender. SimS(X) chooses a random vector r, invokes SimP1

SC(X, r) and appends the output to

the view. Then, it chooses a random permutation π, invokes SimS
pm-PEQT(r, π) and appends the output to

the view. After that, it generates (v0i , v
1
i) like the real protocol. Finally, it invokes SimS

OT(v
0
i , v

1
i), i ∈ [n]

and appends the output to the view. The security of SC, pm-PEQT, and OT guarantees the view in
simulation is indistinguishable from the real view.

9

Input: S inputs set X = {xi}i∈[n] and R inputs set Y = {yj}j∈[m], where n ≪ m, xi, yj ∈ Zp for some integer
modular p.
Protocols:

1) S and R play as P1 and P2 to invoke FSC: both parties input X and Y . As a result, S outputs a vector
r = [ri]i∈[n] and R outputs a vector r′ = [r′i]i∈[n].

2) Both parties invoke Fpm-PEQT: S inputs r and a random permutation π over [n], and R inputs r′. The result
is that R gets a bit vector b = [bi]i∈[n], where bi = 1 if rπ(i) = r′π(i), and bi = 0 otherwise.

1. PCSI-card.

3) R computes and outputs k =
∑n

i=1 bi.

2. PCSI-card-sum.

3) S permutes xi, i ∈ [n] with π to obtain xπ(i), and then chooses n random values ei such that
∑n

i=1 ei = 0. S
lets v1i = xπ(i) + ei, i ∈ [n] and v0i = ei.

4) S and R run FOT: for each i ∈ [n], S inputs (v0i , v
1
i) and R inputs bi. Thus, if bi = 1, R obtains ui = v1i ,

otherwise, gets ui = v0i . Finally, R computes and outputs s =
∑n

i=1 ui.

3. PCSI-secret-sharing.

3) S shuffles xi, i ∈ [n] with π to obtain xπ(i), and uses its public key pkS to compute ci = AHE.Enc(pkS , xπ(i)),
i ∈ [n] and sends c = [ci]i∈[n] to R.

4) R removes the ciphertexts when bi = 0: for all i ∈ [n], if bi = 1, lets c′j = ci, j ∈ [k], and then chooses a
random permutation π′ over [k] to permute c′j and obtains c∗π′(j). After that, R chooses a random vector
s′ = [s′j]j∈[k] and computes cπ′(j) ⊞ (−s′j) and sends all ciphertexts back to S.

5) S decrypts the ciphertexts to sj , j ∈ [k] and outputs the plaintexts s = [sj]j∈[k]. R outputs s.

Fig. 10: PCSI (S ≪ R) protocols

– Corrupt Receiver. SimR (Y, k, s) chooses a random vector r′, invokes SimP2

SC(Y, r
′) and appends the

output to the view. Then, it chooses a random vector b = [bi]i∈[n] ∈ {0, 1}n, s.t.
∑n

i=1 bi = k, invokes

SimR
pm-PEQT(r

′,b) and appends the output to the view. After that, it chooses a random values vi, i ∈ [n],

s.t.
∑n

i=1 vi = s. Finally, it invokes SimR
OT(bi, vi), i ∈ [n] and appends the output to the view. The views

of the underlying SC, pm-PEQT, and OT simulator are indistinguishable.

We prove the security of PCSI-secret-sharing (S ≪ R) and give the simulators SimS and SimR as follows.

– Corrupt Sender. SimS(X, s) chooses a random vector r, invokes SimP1

SC(X, r) and appends the output to

the view. Then, it chooses a random permutation π, invokes SimS
pm-PEQT(r, π) and appends the output to

the view. Finally, it encrypts s to simulate the ciphertexts in step 4). The views of the underlying SC and
pm-PEQT simulator are indistinguishable. Thus, the simulation is indistinguishable from the real view.

– Corrupt Receiver. SimR(Y, s′) chooses a random vector r′, invokes SimP2

SC (Y, r′) and appends the
output to the view. Then, it chooses a random vector b = [bi]i∈[n] ∈ {0, 1}n, s.t.

∑n
i=1 bi is equal to

the number of the elements in s′. SimR invokes SimR
pm-PEQT(r

′,b) and appends the output to the view.
Finally, it encrypts random values to simulate the ciphertexts in step 3). The view generated by SimR is
indistinguishable from a real view of R by the following hybrids:

• Hyb0: R’s view in the real protocol.
• Hyb1: Same as Hyb0 except that SimR runs the FSC simulator to produce the simulated view for R.
The security of SC guarantees the view in simulation is computationally indistinguishable from the
view in the real protocol.

• Hyb2: Same as Hyb1 except that SimR runs the Fpm-PEQT simulator to produce the simulated view for
R. The security of pm-PEQT guarantees the view in simulation is computationally indistinguishable
from the view in the real protocol.

10

• Hyb3: Same as Hyb2 except that the ciphertexts in step 3) are replaced by encrypting random values
generated by SimR. Since the AHE is IND-CPA secure, the simulation is indistinguishable from the
real view.

PCSI-card-function. According to PCSI-secret-sharing, S and R get the secret-shared intersection. Thus,
both parties can compute any function of intersection based on generic 2PC.

5 PCSI (S ≫ R)

In this section, PCSI (S ≫ R) is described in Figure 11, including PCSI-card, PCSI-card-sum and PCSI-
secret-sharing.

Input: S inputs set X = {xi}i∈[n] and R inputs set Y = {yi}i∈[m], where xi, yi ∈ Zp for some integer modular p,
n ≫ m.
Protocols:

1) S and R play as P2 and P1 to invoke FSC: Both parties input X and Y , and the result is that S outputs a
vector r = [ri]i∈[m] and R outputs a vector r′ = [r′i]i∈[m].

2) Both parties invoke Fpm-PEQT: S inputs r and a permutation π over [m], and R inputs r′. As a result, R
gets a bit vector b = [bi]i∈[m], where bi = 1 if rπ(i) = r′π(i), and bi = 0 otherwise.

1. PCSI-card.

3) R computes and outputs k =
∑m

i=1 bi.

2. PCSI-card-sum.

3) R uses its public key pkR to compute ci=AHE.Enc(pkR, yi), i ∈ [m] and sends c = [ci]i∈[m] to S.
4) S permutes ci, i ∈ [m] with π to obtain cπ(i), and then chooses m random values ei such that

∑m
i=1 ei = 0. S

lets c1i= cπ(i)⊞ ei =AHE.Enc(pkR, yπ(i) +ei) and c0i = ei, i ∈ [m].
5) S and R runs FOT: for each i ∈ [m], S inputs (c0i , c

1
i) and R inputs bi. Thus, if bi = 1, R gets and decrypts

c1i to mi = yπ(i) + ei. Otherwise, R lets mi = c0i . Finally, R computes and outputs s =
∑m

i=1 mi.

3. PCSI-secret-sharing.

2) S and R switch their roles in Fpm-PEQT: S inputs r and R inputs r′ and a permutation π over [m]. The result
is that S gets a bit vector b = [bi]i∈[m].

3) R shuffles Y with π and uses its public key pkR to compute ci = AHE.Enc(pkR, yπ(i)), i ∈ [m] and sends
c = [ci]i∈[m] to S.

4) S removes the ciphertexts when bi = 0 and for all i ∈ [m], if bi = 1, lets c′j = ci, j ∈ [k], then chooses
a random permutation π′ over [k] to permute c′j . After that, S chooses a random vector s = [sj]j∈[k] and
computes c∗π′(j) ⊞ (−sj) and sends all ciphertexts back to R.

5) R decrypts the ciphertexts to s′j , j ∈ [k] and outputs the plaintexts s′ = [s′j]j∈[k]. S outputs s.

Fig. 11: PCSI (S ≫ R) protocols

Theorem 3. PCSI (S ≫ R) protocols in Figure 11, including PCSI-card in step 1, PCSI-card-sum in
step 2, and PCSI-secret-sharing in step 3, are secure against semi-honest adversaries in the (FSC, Fpm-PEQT,
FOT)-hybrid model.

Proof. We prove the security of PCSI-card (S ≫ R) and give the simulators SimS and SimR as follows.

– Corrupt Sender. SimS(X) chooses a random vector r, invokes SimP2

SC(X, r) and appends the output to

the view. Then, it chooses a random permutation π, invokes SimS
pm-PEQT(r, π) and appends the output

11

to the view. Since the views of the underlying SC and pm-PEQT simulator are indistinguishable, the
simulation is indistinguishable from the real view.

– Corrupt Receiver. SimR (Y, k) chooses a random vector r′, invokes SimP1

SC (Y, r′) and appends the
output to the view. Then, it chooses a random vector b = [bi]i∈[m] ∈ {0, 1}m, s.t.

∑m
i=1 bi = k, invokes

SimR
pm-PEQT(r

′,b) and appends the output to the view. The security of SC and pm-PEQT guarantees
the view in simulation is indistinguishable from the real view.

We prove the security of PCSI-card-sum (S ≫ R) and give the simulators SimS and SimR as follows.

– Corrupt Sender. SimS(X) chooses a random vector r, invokes SimP2

SC(X, r) and appends the output to

the view. Then, it chooses a random permutation π, invokes SimS
pm-PEQT(r, π) and appends the output to

the view. After that, it encrypts random values in place of the ciphertexts in step 3), and then generates
(c0i , c

1
i) like the real protocol. Finally, it invokes SimS

OT(c
0
i , c

1
i), j ∈ [m] and appends the output to the

view. The security of AHE, SC, pm-PEQT, and OT guarantees the view in simulation is indistinguishable
from the real view.

– Corrupt Receiver. SimR (Y, k, s) chooses a random vector r′, invokes SimP1

SC(Y, r
′) and appends the

output to the view. Then, it chooses a random vector b = [bi]i∈[m] ∈ {0, 1}m, s.t.
∑m

i=1 bi = k, invokes

SimR
pm-PEQT(r

′,b) and appends the output to the view. After that, it chooses random values vi, i ∈ [m],

s.t.
∑m

i=1 vi = s. If bi = 1, it encrypts vi to ci, else, lets ci = vi. Finally, it invokes Sim
R
OT(bi, ci), i ∈ [m]

and appends the output to the view. The views of the underlying SC, pm-PEQT, and OT simulator are
indistinguishable. Thus, the simulation is indistinguishable from the real view.

We prove the security of PCSI-secret-sharing (S ≫ R) and give the simulators SimS and SimR as follows.

– Corrupt Sender. SimS(X, s) chooses a random vector r, invokes SimP2

SC(X, r) and appends the output
to the view. Then, it chooses a random vector b = [bi]i∈[m] ∈ {0, 1}m, s.t.

∑m
i=1 bi is equal to the number

of the elements in s. SimS invokes SimR
pm-PEQT(r,b) and appends the output to the view. Finally, it

encrypts random values to simulate the ciphertexts in step 3). The security of AHE, SC, and pm-PEQT
guarantees the view in simulation is indistinguishable from the real view.

– Corrupt Receiver. SimR(Y, s′) chooses a random vector r′, invokes SimP1

SC (Y, r′) and appends the

output to the view. Then, it chooses a random permutation π, invokes SimS
pm-PEQT(r

′, π) and appends
the output to the view. Finally, it encrypts s′ to simulate the ciphertexts in step 4). The views of the
underlying SC and pm-PEQT simulator are indistinguishable. Thus, the simulation is indistinguishable
from the real view.

6 Private Computing on Labeled Set Intersection

In this section, we consider two types of PCLSI protocols: one is to compute S ′s labels and the other is to
calculate R′s labels. Each type further consists of two cases in the unbalanced setting where one is that R
holds the large set (S ≪ R) and the other is that S holds the large set (S ≫ R).

6.1 PCLSI (S ≪ R)

Here, we present two types of PCLSI (with S ′s or R′s labels) protocols in the case that R holds the large set
(S ≪ R).

PCLSI with S ′s labels. We describe PCLSI with S ′s labels (S ≪ R) protocols as follows:

1. PCLSI-card-sum with S ′s labels (S ≪ R) is similar to PCSI-card-sum (S ≪ R) in Figure 10 step 2,
except that S generates the inputs of FOT by using the labels vi instead of the items xi, i ∈ [n].

2. PCLSI-secret-sharing with S ′s labels (S ≪ R) is similar to PCSI-secret-sharing (S ≪ R) in Figure 10
step 3, except that S encrypts its labels vi instead of the items xi, i ∈ [n].

12

Input: S inputs set X = {(xi, vi)}i∈[n] and R inputs set Y = {(yj , uj)}j∈[m], where each uj ∈ Zp for some integer
modular p, xi, yj ∈ {0, 1}∗, n ≪ m:
Protocols:

1) S and R play as P1 and P2 to invoke FSCwL: both parties input X and Y . The result is that S outputs two
vectors (r, e) and R outputs two vectors (r′, e′).

2) Both parties invoke Fpm-PEQT: S inputs r and a permutation π over [n], and R inputs r′. As a result, R gets
a bit vector b = [bi]i∈[n], where bi = 1 if rπ(i) = r′π(i), and bi = 0 otherwise.

1. PCLSI-card-sum.
3) R uses its public key pkR to compute ci = AHE.Enc(pkR, e′i), i ∈ [n] and sends the ciphertexts to S.
4) S permutes ci with π to obtain permuted ciphertexts cπ(i)=AHE.Enc(pkR, e′π(i)), then chooses a random

vector w = [wi]i∈[n] s.t.
∑n

i=1 wi = 0, computes c1i=AHE.Enc(pkR, e′π(i))⊞(wi+eπ(i)) = AHE.Enc(pkR, e′π(i)+

wi + eπ(i)), and lets c0i = wi.
5) S and R invoke FOT: for i ∈ [n], S inputs (c0i , c

1
i) and R inputs bi. As a result, if bi = 1, R obtains the

ciphertext c1i and decrypt it to mi = e′π(i) + wi + eπ(i), otherwise, R lets mi = c0i . Finally, R computes and
outputs

∑n
i=1 mi.

2. PCLSI-secret-sharing.

3) R uses its public key pkR to compute and send ci = AHE.Enc(pkR, e′i) to S.
4) S randomly chooses w = [wi]i∈[n] and computes c′i = AHE.Enc(pkR,e′i)⊞ (wi+ei). Then, S uses its public key

pkS to encrypt −wi and obtains ĉi = AHE.Enc(pkS ,−wi). S shuffles c′i and ĉi with π and sends (c′π(i), ĉπ(i))
to R.

5) R lets c′′j = c′π(i) and ĉ′j = ĉπ(i), j ∈ [k], if bi = 1, and removes the ciphertexts if bi = 0. Then, R decrypts c′′j
to mj , chooses a random permutation π′ over [k], and shuffles mj and ĉ′j with π′. R chooses a random vector
s′ = [s′j]j∈[k], and sends ĉ′π′(j) ⊞ (−s′j +mπ′(j)) to S.

6) S decrypts ĉ′π′(j) ⊞ (−s′j +mπ′(j)) to sj and outputs s = [sj]j∈[k]. R outputs s′.

3. PCLSI-card-inner-product.

3) R uses its public key pkR to compute and send ci = AHE.Enc(pkR, e′i) to S.
4) S permutes ci with π, chooses a random vector w = [wi]i∈[n] such that

∑n
i=1 wi = 0, then lets c1i =

(AHE.Enc(pkR, e′π(i))⊠ vπ(i))⊞ (wi + eπ(i)vπ(i)) = AHE.Enc(pkR, e′π(i)vπ(i) + wi + eπ(i)vπ(i)) and c0i = wi.

5) S and R invoke FOT: for i ∈ [n], S inputs (c0i , c
1
i) and R inputs bi. As a result, if bi = 1, R obtains c1i and

decrypt it to mi = e′π(i)vπ(i) + wi + eπ(i)vπ(i), otherwise, R lets mi = c0i . Finally, R computes and outputs∑n
i=1 mi.

Fig. 12: PCLSI with R′s labels (S ≪ R) protocols

PCLSI with R′s labels. Here, we present the framework of PCLSI with R′s labels (S ≪ R) in Figure 12.

Theorem 4. PCLSI with R′s labels (S ≪ R) in Figure 12, including PCLSI-card-sum with R′s labels in
step 1, PCLSI-secret-sharing with R′s labels in step 2, PCLSI-card-inner-product in step 3 are secure against
semi-honest adversaries in (FSCwL,Fpm-PEQT,FOT)-hybrid model, provided that AHE is IND-CPA secure.

Proof. We prove the security of PCLSI-card-sum with R′s labels (S ≪ R) and give the simulators SimS and
SimR as follows.

– Corrupt Sender. SimS(X) chooses random vectors (r, e), invokes SimP1

SCwL (X, (r, e)) and appends the

output to the view. Then, it chooses a random permutation π, invokes SimS
pm-PEQT(r, π) and appends the

output to the view. After that, it encrypts random values to simulate the ciphertexts in step 3), and then
generates (c0i , c

1
i), i ∈ [n] as the real protocol. Finally, it invokes SimS

OT(c
0
i , c

1
i), i ∈ [n] and appends the

output to the view. The security of AHE, SCwL, pm-PEQT, and OT guarantees the view in simulation
is indistinguishable from the real view.

13

– Corrupt Receiver. SimR(Y, k, s) chooses random vectors (r′, e′), invokes SimP2

SCwL (Y, (r′, e′)) and
appends the output to the view. Then, it chooses a random vector b = [bi]i∈[n] ∈ {0, 1}n, s.t.

∑n
i=1 bi = k,

invokes SimR
pm-PEQT (r′,b) and appends the output to the view. After that, it chooses random values

vi, i ∈ [n], s.t.
∑n

i=1 vi = s. If bi = 0, it defines ci = vi, else, it generates the ciphertext ci by encrypting vi.

Finally, it invokes SimR
OT(bi, ci), i ∈ [n] and appends the output to the view. The views of the underlying

SCwL, pm-PEQT and OT simulator are indistinguishable. Thus, the simulation is indistinguishable from
the real view.

We prove the security of PCLSI-secret-sharing with R′s labels (S ≪ R) and give the simulators SimS
and SimR as follows.

– Corrupt Sender. SimS (X, s) chooses random vectors (r, e), invokes SimP1

SCwL (X, (r, e)) and appends

the output to the view. Then, it chooses a random permutation π, invokes SimS
pm-PEQT(r, π) and appends

the output to the view. After that, it encrypts random values to simulate the ciphertexts in step 4). The
views of the underlying SCwL and pm-PEQT simulator are indistinguishable. Since the AHE is IND-CPA
secure, the simulation is indistinguishable from the real view.

– Corrupt Receiver. SimR(Y, s′) chooses random vectors (r′, e′), invokes SimP2

SCwL (Y, (r′, e′)) and appends
the output to the view. Then, it chooses a random vector b = [bi]i∈[n] ∈ {0, 1}n, s.t.

∑n
i=1 bi is equal to

the number of the elements in s′, invokes SimR
pm-PEQT(r

′,b) and appends the output to the view. After
that, it encrypts random values to simulate the ciphertexts in step 3) and encrypts s to simulate the
ciphertexts in step 5). The security of AHE, SCwL, and pm-PEQT guarantees the view in simulation is
indistinguishable from the real view.

We prove the security of PCLSI-card-inner-product (S ≪ R) and give the simulators SimS and SimR as
follows.

– Corrupt Sender. SimS (X, s) chooses random vectors (r, e), invokes SimP1

SCwL (X, (r, e)) and appends the

output to the view. Then, it chooses a random permutation π, invokes SimS
pm-PEQT(r, π) and appends the

output to the view. After that, it generates (c0i , c
1
i) like the real protocol. Finally, it invokes SimS

OT(c
0
i , c

1
i),

i ∈ [n] and appends the output to the view. The security of SCwL, pm-PEQT, and OT guarantees the
view in simulation is indistinguishable from the real view.

– Corrupt Receiver. SimR(Y, k, s) chooses random vectors (r′, e′), invokes SimP2

SCwL (Y, (r′, e′)) and
appends the output to the view. Then, it chooses a random vector b = [bi]i∈[n] ∈ {0, 1}n, s.t.

∑n
i=1 bi = k,

invokes SimR
pm-PEQT(r

′, b) and appends the output to the view. After that, it chooses random values
vi, i ∈ [n], s.t.

∑n
i=1 vi = s. If bi = 0, it defines ci = vi, else, it generates the ciphertext ci by encrypting vi.

Finally, it invokes SimR
OT(bi, ci), i ∈ [n] and appends the output to the view. The views of the underlying

SCwL, pm-PEQT and OT simulator are indistinguishable. Thus, the simulation is indistinguishable from
the real view.

6.2 PCLSI (S ≫ R)

In this section, we present two types of PCLSI (with S ′s or R′s labels) protocols in the case that S holds the
large set (S ≫ R).

PCLSI with S ′s labels (S ≫ R). Here, we present the framework of PCLSI with S ′s labels (S ≫ R) in
Figure 13.

Theorem 5. PCLSI with S ′s labels (S ≫ R) in Figure 13, including PCLSI-card-sum with S ′s labels in
step 1, PCLSI-secret-sharing with S ′s labels in step 2, PCLSI-card-inner-product in step 3 are secure against
semi-honest adversaries in (FSCwL,Fpm-PEQT,FOT)-hybrid model, provided that AHE is IND-CPA secure.

14

Input: S inputs set X = {(xi, vi)}i∈[n] and R inputs set Y = {(yi, ui)}i∈[m], where each vi, ui ∈ Zp for some integer
modular p, xi, yi ∈ {0, 1}∗, n ≫ m:
Protocols:

1) S and R play as P2 and P1 to invoke FSCwL: both parties input X and Y . The result is that S outputs two
vectors (r, e) and R outputs two vectors (r′, e′).

2) Both parties invoke Fpm-PEQT: S inputs r and a permutation π, and R inputs r′. As a result, R gets a bit
vector b = [bi]i∈[m], where bi = 1 if rπ(i) = r′π(i), and bi = 0 otherwise.

1. PCLSI-card-sum.
3) R uses its public key pkR to compute and send ci = AHE.Enc(pkR, e′i) to S.
4) S permutes ci with π, chooses a random vector w = [wi]i∈[m] such that

∑m
i=1 wi = 0, then lets

c1i=AHE.Enc(pkR, e′π(i))⊞ (wi + eπ(i))=AHE.Enc(pkR, e′π(i)+wi+eπ(i)) and c0i = wi.

5) S and R invoke FOT: for i ∈ [m], S inputs (c0i , c
1
i) and R inputs bi. As a result, if bi = 1, R obtains c1i and

decrypt it to mi = e′π(i) + wi + eπ(i), otherwise, R lets mi = c0i . Finally, R computes and outputs
∑m

i=1 mi.
2. PCLSI-secret-sharing.

3) R uses its public key pkR to compute and send ci = AHE.Enc(pkR, e′i) to S.
4) S randomly chooses w = [wi]i∈[m] and computes c′i = AHE.Enc(pkR,e′i)⊞(wi+ei). Then, S uses its public key

pkS to encrypt −wi and obtains ĉi = AHE.Enc(pkS ,−wi). S shuffles c′i and ĉi with π and sends (c′π(i), ĉπ(i))
to R.

5) R lets c′′j = c′π(i) and ĉ′j = ĉπ(i), j ∈ [k], if bi = 1. Then, R decrypts c′′j to mj , chooses a random
permutation π′ over [k], and shuffles mj and ĉ′j with π′. R chooses a random vector s′ = [s′j]j∈[k], and sends
ĉ′π′(j) ⊞ (−s′j +mπ′(j)) to S.

6) S decrypts ĉ′π′(j) ⊞ (−s′j +mπ′(j)) to sj and outputs s = [sj]j∈[k]. R outputs s′.

3. PCLSI-card-inner-product.

3) R uses its public key pkR to compute and send ci = AHE.Enc(pkR, ui · e′i), c′i = AHE.Enc(pkR, ui), i ∈ [m]
to S.

4) S permutes ci and c′i with π. Then, S chooses random vector w = [wi]i∈[m], such that
∑m

i=1 wi = 0, computes
c1i = AHE.Enc(pkR, uπ(i) · e′π(i)) + (eπ(i) ⊠ AHE.Enc(pkR, uπ(i))) ⊞ wi = AHE.Enc(pkR, uπ(i) · e′π(i) + wi +

eπ(i) · uπ(j)), and lets c0i = wi.
5) S and R invoke FOT: for i ∈ [m], S inputs (c0i , c

1
i) and R inputs bi. As a result, if bi = 1, R obtains the

ciphertext c1i and decrypt it to mi = uπ(i) · e′π(i) + wi + eπ(i) · uπ(i), otherwise, R lets mi = c0i . Finally, R
computes and outputs

∑m
i=1 mi.

Fig. 13: PCLSI with S ′s labels (S ≫ R) protocols

Proof. We prove the security of PCLSI-card-sum with S ′s labels (S ≫ R) and give the simulators SimS and
SimR as follows.

– Corrupt Sender. SimS(X) chooses random vectors (r, e), invokes SimP2

SCwL (X, (r, e)) and appends the

output to the view. Then, it chooses a random permutation π, invokes SimS
pm-PEQT(r, π) and appends the

output to the view. After that, it encrypts random values to simulate the ciphertexts in step 3), and then
generates (c0i , c

1
i), i ∈ [m] as the real protocol. Finally, it invokes SimS

OT(c
0
i , c

1
i), i ∈ [m] and appends the

output to the view. The security of AHE, SCwL, pm-PEQT and OT guarantees the view in simulation is
indistinguishable from the real view.

– Corrupt Receiver. SimR(Y, k, s) chooses random vectors (r′, e′), invokes SimP1

SCwL (Y, (r′, e′)) and
appends the output to the view. Then, it chooses a random vector b = [bi]i∈[m] ∈ {0, 1}m, s.t.

∑m
i=1 bi = k,

invokes SimR
pm-PEQT (r′,b) and appends the output to the view. After that, it chooses random values

vi, i ∈ [m], s.t.
∑m

i=1 vi = s. If bi = 0, it defines ci = vi, else, it generates the ciphertext ci by encrypting vi.

Finally, it invokes SimR
OT(bi, vi), i ∈ [m] and appends the output to the view. The views of the underlying

15

Parameters
Protocols

Comm.
(MB)

Total running time (s)
10Gbps 200Mbps 50Mbps 1Mbps

|X| |Y | T = 1 T = 2 T = 4 T = 8 T = 1 T = 2 T = 4 T = 8 T = 1 T = 2 T = 4 T = 8 T = 1 T = 2 T = 4 T = 8

210

210
[1] 0.07 0.06 0.03 0.02 0.02 0.22 0.19 0.18 0.17 0.23 0.20 0.18 0.18 0.74 0.73 0.72 0.72

Ours 1.72 0.94 0.87 0.86 0.84 4.72 4.62 4.59 4.58 4.85 4.80 4.74 4.67 19.07 19.02 19.01 19.00

212
[1] 0.26 0.22 0.13 0.08 0.08 0.76 0.70 0.68 0.67 0.78 0.73 0.71 0.70 2.89 2.83 2.81 2.80

Ours 1.72 0.93 0.88 0.88 0.85 4.73 4.68 4.66 4.60 4.86 4.84 4.78 4.76 19.38 19.18 19.03 19.01

214
[1] 1.06 0.84 0.45 0.33 0.25 1.96 1.56 1.54 1.29 2.04 1.66 1.46 1.39 10.57 9.90 9.84 9.74

Ours 1.72 1.02 0.92 0.92 0.91 4.74 4.73 4.69 4.62 4.87 4.84 4.84 4.81 20.12 19.40 19.24 19.06

216
[1] 4.23 3.26 1.70 1.00 0.80 5.10 3.35 2.72 2.24 5.23 3.80 3.07 2.55 38.55 37.41 37.01 37.15

Ours 2.08 1.65 1.48 1.46 1.28 5.53 5.52 5.46 5.48 5.71 5.69 5.60 5.58 23.03 22.98 22.90 22.67

218
[1] 16.93 13.18 6.90 3.70 3.00 15.86 9.58 6.20 5.49 17.56 11.20 7.99 7.10 150.54 147.13 145.56 145.34

Ours 2.28 3.81 2.93 2.47 2.30 7.77 6.60 6.10 5.86 7.96 7.09 6.46 6.09 26.90 26.73 25.07 25.03

220
[1] 67.70 52.58 27.60 14.80 11.70 58.73 33.56 20.76 18.10 66.10 41 28.22 25.04 609.47 584.72 578.68 576.90

Ours 2.67 18.83 12.10 8.55 6.65 22.48 16.10 12.81 11.37 22.89 16.30 13.25 11.59 44.57 37.95 34.77 33.17

222
[1] 270.41 211.20 114.65 71.62 58.53 230.07 132.54 86.54 76.05 260.64 162.14 116.86 101.74 2480.26 2378.49 2328.75 2309.41

Ours 4.62 79.90 47.89 32.46 23.34 83.81 52.09 36.34 29.08 84.09 52.31 36.72 29.40 121.09 91.29 76.14 67.97

Table 2: Comparisons of communication (in MB) and runtime (in seconds) between [1] and our PCSI-card
for sets size (|X| = 210, |Y | ∈ {210, 212, 214, 216, 218, 220, 222}) with threads T ∈ {1, 2, 4, 8}, and 10Gbps
bandwidth, 0.2ms RTT; 200Mbps, 50Mbps and 1Mbps bandwidth, 80ms RTT. The best results are marked
in cyan.

SCwL, pm-PEQT and OT simulator are indistinguishable. Thus, the simulation is indistinguishable from
the real view.

We prove the security of PCLSI-secret-sharing with S ′s labels (S ≫ R) and give the simulators SimS and
SimR as follows.

– Corrupt Sender. SimS (X, s) chooses random vectors (r, e), invokes SimP2

SCwL (X, (r, e)) and appends

the output to the view. Then, it chooses a random permutation π, invokes SimS
pm-PEQT(r, π) and appends

the output to the view. After that, it encrypts random values to simulate the ciphertexts in step 3) and
encrypts s to simulate the ciphertexts in step 5). The security of AHE, SCwL, and pm-PEQT guarantees
the view in simulation is indistinguishable from the real view.

– Corrupt Receiver. SimR(Y, s′) chooses random vectors (r′, e′), invokes SimP1

SCwL (Y, (r′, e′)) and appends
the output to the view. Then, it chooses a random vector b = [bi]i∈[m] ∈ {0, 1}m, s.t.

∑m
i=1 bi is equal to

the number of the elements in s′, invokes SimR
pm-PEQT(r

′,b) and appends the output to the view. After
that, it encrypts random values to simulate the ciphertexts in step 4). The views of the underlying SCwL
and pm-PEQT simulator are indistinguishable. Since the AHE is IND-CPA secure, the simulation is
indistinguishable from the real view.

The security proof of PCLSI-card-inner-product (S≫R) is similar to the security proof of PCSI-card-sum
(S≫R) in the theorem 3, except that SimS encrypts two random vectors in place of the ciphertexts of e and
u+ e in the real view.

PCLSI with R′s labels (S ≫ R) We describe PCLSI with R′s labels (S ≫ R) protocols as follows:

1. PCLSI card-sum with R′s labels (S ≫ R) is similar to PCSI-card-sum (S ≫ R) in Figure 11 step 2,
except that R encrypts the labels ui of Y , instead of encrypting the items yi, i ∈ [m].

2. PCLSI-secret-sharing with R′s labels (S ≫ R) is similar to PCSI-secret-sharing in Figure 11 step 3,
except that R encrypts the labels ui of Y , instead of encrypting the items yi, i ∈ [m].

16

Parameters
Protocols

Comm.
(MB)

Total running time (s)
10Gbps 200Mbps 50Mbps 1Mbps

|X| |Y | T = 1 T = 2 T = 4 T = 8 T = 1 T = 2 T = 4 T = 8 T = 1 T = 2 T = 4 T = 8 T = 1 T = 2 T = 4 T = 8

210

210
[1] 0.09 0.09 0.06 0.03 0.05 0.56 0.52 0.51 0.50 0.57 0.54 0.52 0.51 1.45 1.43 1.42 1.42

Ours 1.81 1.08 1.05 1.01 1.01 5.38 5.33 5.32 5.30 5.49 5.49 5.41 5.39 20.61 20.52 20.44 20.43

212
[1] 0.39 0.25 0.14 0.11 0.11 1.27 1.21 1.19 1.17 1.31 1.25 1.22 1.21 4.35 4.30 4.27 4.26

Ours 1.81 1.08 1.06 1.06 1.05 5.38 5.35 5.33 5.31 5.51 5.49 5.45 5.42 20.91 20.70 20.56 20.51

214
[1] 1.47 0.89 0.51 0.37 0.32 2.35 1.95 1.74 1.69 2.49 2.08 1.88 1.82 13.94 14.72 14.61 14.57

Ours 1.81 1.31 1.29 1.13 0.94 5.43 5.32 5.29 5.27 5.74 5.55 5.46 5.46 22.02 21.14 20.80 20.80

216
[1] 5.76 3.50 1.90 1.10 0.90 5.87 4.12 3.33 3.00 6.23 4.62 3.72 3.42 51.36 50.55 50.15 50.04

Ours 2.18 1.75 1.68 1.57 1.31 6.10 5.96 5.63 5.79 6.25 6.19 5.74 5.77 24.61 24.53 24.39 24.31

218
[1] 22.93 13.83 7.40 4.20 3.60 17.38 10.93 7.68 6.72 19.87 13.29 10.05 9.17 202.13 198.94 197.33 196.93

Ours 2.37 4.00 3.06 2.66 2.47 8.15 7.29 6.98 6.32 8.25 7.53 7.05 6.58 28.51 27.19 26.66 26.49

220
[1] 91.70 54.95 29.30 16.60 13.80 63.41 37.89 25.09 22.01 73.69 48.19 35.50 32.63 814.12 789.22 783.27 781.97

Ours 2.77 18.90 12.21 8.64 6.75 23.06 16.20 12.99 11.64 23.22 16.56 13.55 11.72 46.00 39.39 35.71 34.03

222
[1] 366.42 221.60 122.06 81.20 67.53 245.72 147.35 105.25 96.13 287.94 189.52 145.75 130.92 3296.22 3200.74 3149.41 3128.08

Ours 4.71 80.03 48.30 32.86 24.64 84.28 52.89 37.93 30.26 84.39 53.10 38.27 30.53 122.18 92.72 77.00 69.31

Table 3: Comparisons of communication (in MB) and runtime (in seconds) between [1] and our PCSI-card-
sum for sets size (|X| = 210, |Y | ∈ {210, 212, 214, 216, 218, 220, 222}) with threads T ∈ {1, 2, 4, 8}, and 10Gbps
bandwidth, 0.2ms RTT; 200Mbps, 50Mbps and 1Mbps bandwidth, 80ms RTT. The best results are marked
in cyan.

Setting T
Large set size n

210 212 214 216 218 220 222

LAN

1 0.94 0.93 1.02 1.65 3.81 18.83 79.90
2 0.87 0.88 0.92 1.48 2.93 12.10 47.89
4 0.86 0.88 0.92 1.46 2.47 8.55 32.46
8 0.84 0.85 0.91 1.28 2.30 6.6 23.3

WAN

1 19.07 19.38 20.12 23.03 26.90 44.57 121.09
2 19.02 19.18 19.4 22.98 26.73 37.95 91.29
4 19.01 19.03 19.24 22.90 25.07 34.77 76.14
8 19 19.01 19.06 22.67 25.03 33.17 67.97

Speedup 1.00-1.12× 1.01-1.09× 1.05-1.12× 1.02-1.28× 1.07-1.65× 1.34-2.85× 1.78-3.42×
Table 4: Scaling of our PCSI-card with set size and number of threads. Total runtime is in seconds. n = {210,
212, 214, 216, 218, 220, 222} for large set, 210 for small set, and threads T ∈ {1, 2, 4, 8}. LAN setting with
10Gbps network bandwidth, 0.2ms RTT. WAN setting with 1Mbps bandwidth, 80ms RTT.

7 Implementations

In this section, we experimentally evaluate our PCSI/PCLSI protocols and compare with the state-of-the-art
work [1]7 in terms of communication and runtime. Our source code is available upon request.

Experimental setup. We run our experiments on a single Intel Core i7-11700 CPU @ 2.50GHz with 16
threads and 16GB of RAM and simulate network latency and bandwidth by using the Linux tc command.
The simulated network settings include typical LAN (10Gbps bandwidth and 0.2ms round-trip time (RTT))
and WAN (including 200Mbps, 50Mbps, and 1Mbps bandwidth, each with an 80ms RTT). The threads
T ∈ {1, 2, 4, 8}. Following [1], we set computational security parameter κ = 128 and statistical security
parameter λ = 40.

7 PCSI [1] is more efficient than that of [7] (See [1] for a detailed comparison, where [1] achieves a 2.4−10.5× speedup
in the runtime and 10.9− 14.8× reductions in the communication cost) and the unbalanced PCSI [6] are described
theoretically and do not provide source codes.

17

210 211 212 213 214 215 216 217 218 219 220 221 222

10−1

100

101

102

The size of large set |Y | ∈ {210, · · · , 222}

C
o
m
m
u
n
ic
a
ti
o
n
(i
n
M
B
),

|X
|=

2
1
0 PCSI-card [1]

Our PCSI-card

210 211 212 213 214 215 216 217 218 219 220 221 222

10−1

100

101

102

The size of large set |Y | ∈ {210, · · · , 222}

C
o
m
m
u
n
ic
a
ti
o
n
(i
n
M
B
),

|X
|=

2
1
0 PCSI-card-sum [1]

Our PCSI-card-sum

210 211 212 213 214 215 216 217 218 219 220 221 222

10−1

100

101

102

The size of large set |Y | ∈ {210, · · · , 222}

R
u
n
ti
m
e
(s
),

|X
|=

2
1
0
,
1
0
G
b
p
s PCSI-card [1]

Our PCSI-card

210 211 212 213 214 215 216 217 218 219 220 221 222

10−1

100

101

102

The size of large set |Y | ∈ {210, · · · , 222}

R
u
n
ti
m
e
(s
),

|X
|=

2
1
0
,
1
0
G
b
p
s PCSI-card-sum [1]

Our PCSI-card-sum

1Mbps 10Mbps 100Mbps 10Gbps

102

103

The network bandwidth

R
u
n
ti
m
e
(s
),

|X
|=

2
1
0
,
|Y

|=
2
2
2 PCSI-card [1]

Our PCSI-card

1Mbps 10Mbps 100Mbps 10Gbps

102

103

The network bandwidth

R
u
n
ti
m
e
(s
),

|X
|=

2
1
0
,
|Y

|=
2
2
2 PCSI-card-sum [1]

Our PCSI-card-sum

Fig. 14: Comparisons of communication (in MB) and runtime (in seconds) between [1] and our protocols.
Both x-axis and y-axis are in log scale. The first two figures show the communication cost increases as the
size of the large set increases. The middle two figures show the runtime increases as the size of the large set
increases. The last two figures show the runtime decreases as the bandwidth increases.

7.1 Benchmark Comparison

In this section, we compare PCSI-card and PCSI-card-sum with that of [1] in terms of runtime and communi-
cation, and the results are reported in Table 2,3 and Figure 3. We stress that all reported costs are collected
in the same environment.

18

Communication comparison. Our PCSI protocols achieve the lowest communication in the unbalanced
setting. As shown in Figure 14, the larger difference between the two set sizes, the better our protocols
perform. As shown in Table 2, for set sizes (|X| = 210, |Y | = 222), the communication of our PCSI-card
requires 4.62MB, which is about 58× lower than PCSI-card [1] requiring 270.41MB; the communication of
our PCSI-card-sum requires 4.71MB, which is about 77× lower than PCSI-card-sum [1] requiring 366.42MB.
Runtime comparison. As shown in Figure 14, the larger difference between the two set sizes, the better
our protocols perform. As shown in Table 3, for set sizes (|X| = 210, |Y | = 222) with T = 1 in LAN setting,
the runtime of our PCSI-card requires 79.9 seconds, while PCSI-card [1] requires 211.2 seconds, about 2.6×
improvement; the runtime of our PCSI-card-sum requires 80.03 seconds, while PCSI-card-sum [1] requires
221.6 seconds, about 2.77× improvement. The performance of our protocols improves significantly in the case
of low bandwidth. For set sizes (|X| = 210, |Y | = 222) with T = 1 in 1Mbps bandwidth, our PCSI-card requires
121.09 seconds, while PCSI-card [1] requires 2480.26 seconds, about 20.5× improvement; our PCSI-card-sum
requires 122.18 seconds, while PCSI-card-sum [1] requires 3296.22 seconds, about 26.98× improvement.

7.2 Scalability and Parallelizability

We take PCSI-card as an example to demonstrate the scalability and parallelizability of our protocols in
Table 4. PCSI-card scales well in the unbalanced setting. In single-thread, for set sizes (210, 210), (210, 216), and
(210, 222), PCSI-card requires 0.94, 1.65 and 79.9 seconds, respectively. Benchmarking our implementation in
the WAN setting, our PCSI-card also scales well due to the low communication cost: for (210, 222), PCSI-card
requires 4.62MB of communication which is about 58× lower than PCSI-card [1]. Our PCSI-card is amenable
to parallelization. Specifically, on the side of the large set, the server computes all polynomials and ciphertexts
in parallel. For example, when increasing T = 1 to T = 8, our protocol shows a factor of 3.42× improvement
as the running time reduces from 79.9 seconds to 23.3 seconds for set sizes (210, 222). We present the ratio
between the runtime of T = 1 and T = 8 in the last row of Table 4. PCSI-card yields a better speedup when
the large set becomes larger. Since for n = 210, the protocol achieves a moderate speedup of about 1.12, while
considering n = 222, the speedup of about 3.42 is obtained at 8 threads.

8 Conclusion

This work formalizes shared characteristic and its labeled variety called shared characteristic with labels, from
which we propose the frameworks of private computation on (labeled) set intersection (PCSI/PCLSI) protocols.
By instantiating our frameworks in the unbalanced setting, we obtain a series of efficient PCSI/PCLSI protocols
whose communication is linear in the size of the small set, and logarithmic in the large set. Our protocols are
particularly attractive for private set operations in unbalanced scenarios, such as Client-Server cases (the
input sets of two parties differ a lot in size), where they achieve very low communication costs: about 4.62MB
(4.71MB) to compute intersection cardinality (cardinality-sum) for a set of one thousand items with a set of
four million items, which is significantly lower than that of the state-of-the-art protocols.

References

1. Chen, Y., Zhang, M., Zhang, C., Dong, M.: Private set operations from multi-query reverse private membership
test. IACR Cryptol. ePrint Arch. p. 652 (2022)

2. Ion, M., Kreuter, B., Nergiz, A.E., Patel, S., Saxena, S., Seth, K., Raykova, M., Shanahan, D., Yung, M.: On
deploying secure computing: Private intersection-sum-with-cardinality. In: European Symposium on Security and
Privacy (2020)

3. Miao, P., Patel, S., Raykova, M., Seth, K., Yung, M.: Two-sided malicious security for private intersection-sum
with cardinality. In: CRYPTO (2020)

4. Buddhavarapu, P., Knox, A., Mohassel, P., Sengupta, S., Taubeneck, E., Vlaskin, V.: Private matching for compute.
IACR Cryptol. ePrint Arch. p. 599 (2020)

5. Huberman, B.A., Franklin, M.K., Hogg, T.: Enhancing privacy and trust in electronic communities. In: Conference
on Electronic Commerce. pp. 78–86 (1999)

19

6. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic encryption with malicious
security. In: CCS. pp. 1223–1237 (2018)

7. Garimella, G., Mohassel, P., Rosulek, M., Sadeghian, S., Singh, J.: Private set operations from oblivious switching.
In: Public-Key Cryptography (2021)

8. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to
private set intersection. In: CCS. pp. 818–829 (2016)

9. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Spot-light: Lightweight private set intersection from sparse OT
extension. In: CRYPTO. pp. 401–431 (2019)

10. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight oblivious PRF. In: CRYPTO.
pp. 34–63 (2020)

11. Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Oblivious key-value stores and amplification for
private set intersection. In: CRYPTO (2021)

12. Raghuraman, S., Rindal, P.: Blazing fast PSI from improved OKVS and subfield VOLE. In: CCS. pp. 2505–2517
(2022)

13. Meadows, C.A.: A more efficient cryptographic matchmaking protocol for use in the absence of a continuously
available third party. In: IEEE Symposium on Security and Privacy. pp. 134–137 (1986)

14. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic encryption. In: CCS. pp. 1243–1255
(2017)

15. Cong, K., Moreno, R.C., da Gama, M.B., Dai, W., Iliashenko, I., Laine, K., Rosenberg, M.: Labeled PSI from
homomorphic encryption with reduced computation and communication. In: CCS. pp. 1135–1150 (2021)

16. Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better than custom protocols? In:
NDSS (2012)

17. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: Private set intersection using permutation-based
hashing. In: USENIX Security Symposium (2015)

18. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via cuckoo hashing. In: EUROCRYPT
(2018)

19. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI with linear communication. In:
EUROCRYPT (2019)

20. Mohassel, P., Sadeghian, S.S.: How to hide circuits in MPC an efficient framework for private function evaluation.
In: EUROCRYPT (2013)

21. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: Proceedings of
the 23rd USENIX Security Symposium. pp. 797–812 (2014)

22. Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge university press (1995)
23. Pagh, R., Rodler, F.F.: Cuckoo hashing. In: Algorithms - ESA 2001. pp. 121–133 (2001)
24. Devroye, L., Morin, P.: Cuckoo hashing: Further analysis. Inf. Process. Lett. 86(4), 215–219 (2003)
25. Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.G.: Space efficient hash tables with worst case constant access time.

In: STACS 2003. pp. 271–282 (2003)
26. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on OT extension. ACM Trans. Priv.

Secur. pp. 7:1–7:35 (2018)
27. Bourse, F., Pino, R.D., Minelli, M., Wee, H.: FHE circuit privacy almost for free. In: CRYPTO (2016)
28. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptol. ePrint Arch. p. 144

(2012)
29. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptol. ePrint Arch. p. 187 (2005)
30. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: CRYPTO (2003)
31. Tu, B., Chen, Y., Liu, Q., Zhang, C.: Fast unbalanced private set union from fully homomorphic encryption.

IACR Cryptol. ePrint Arch. p. 653 (2022)
32. Lindell, Y.: How to simulate it - A tutorial on the simulation proof technique. In: Tutorials on the Foundations of

Cryptography, pp. 277–346 (2017)

20

	Fast Unbalanced Private Computing on (Labeled) Set Intersection with Cardinality

