
Scalable Multiparty Garbling

Gabrielle Beck1, Aarushi Goel2, Aditya Hegde1, Abhishek Jain1, Zhengzhong Jin3,
Gabriel Kaptchuk4

1Johns Hopkins University, {becgabri, ahegde, abhishek}@cs.jhu.edu
2NTT Research, aarushi.goel@ntt-research.com

3Massachusetts Institute of Technology, zzjin@mit.edu
4Boston University, kaptchuk@bu.edu

Abstract

Multiparty garbling is the most popular approach for constant-round secure multiparty compu-
tation (MPC). Despite being the focus of significant research effort, instantiating prior approaches to
multiparty garbling results in constant-round MPC that can not realistically accommodate large num-
bers of parties. In this work we present the first global-scale multiparty garbling protocol. The per-party
communication complexity of our protocol decreases as the number of parties participating in the pro-
tocol increases—for the first time matching the asymptotic communication complexity of non-constant
round MPC protocols. Our protocol achieves malicious security in the honest-majority setting and relies
on the hardness of the Learning Party with Noise assumption.

1

Contents

1 Introduction 3
1.1 Our Contributions . 4
1.2 Related Work . 5
1.3 Future Directions . 6

2 Technical Overview 6
2.1 Background and Barriers to Scalable Multiparty Garbling 6
2.2 An Honest Majority Template for Scalable Multiparty Garbling 7
2.3 Secret Sharing Bits/Masks . 9
2.4 Choice of Encryption Scheme . 9
2.5 Sub-Protocol for Generating Errors . 10
2.6 Integrating with Goyal et al.’s Share Transformation Protocol [GPS22] 11
2.7 Malicious Security . 12
2.8 Protocol Summary . 13

3 Preliminaries 14
3.1 Security Model . 15
3.2 Secret Sharing . 16
3.3 Error Correcting Codes . 18
3.4 LPN Assumption and LPN Based Encryption . 19

4 LPN Based Garbling Scheme 19

5 Standard Sub-protocols 23
5.1 Sharing Random Vectors . 23
5.2 Common Coin . 25
5.3 Sharing Zero Vectors . 26
5.4 Sharing Random Bit Vectors . 28
5.5 Multiplication . 30
5.6 Share Transformation . 33
5.7 Sharing MAC Keys . 37
5.8 Authenticate Sharing . 40
5.9 Verify Bit Vector Sharings . 40
5.10 Verify Consistency of Sharing . 41
5.11 Verify Correctness of Secrets . 42

6 Main Protocols 43
6.1 Sharing Biased Random Vectors . 43
6.2 Our Constant Round MPC Protocol . 44

7 Protocol Evaluation And Analysis 57
7.1 Practical Protocol Optimizations . 58
7.2 LPN Parameters . 58
7.3 Parameters for Binary Super-Invertible Matrices . 59
7.4 Evaluation of our Semi-Honest Secure Protocol . 59
7.5 Evaluation of Maliciously Secure Protocol . 61

2

1 Introduction

Secure multiparty computation (MPC) [Yao86, GMW87, CCD88, BGW88] is a class of cryptographic proto-
cols that allows mutually distrusting parties to compute a function over hidden inputs. Since the eighties—
when the first feasibility results were established—continuous progress has been made towards improving
the efficiency of MPC protocols along various dimensions. Such improvements have resulted in the cre-
ation of toolchains for MPC (e.g., [MNPS04, BNP08, DSZ15, MR18, HHNZ19]) that are concretly efficiency
for some limited applications; as a result, MPC has been deployed in industry [BGG19, TTS+23], govern-
ment [AOIS21], and for social good [QLJ+19, LJA+18].

Global-Scale MPC. Although enthusiasm for MPC is growing, the ability to deploy MPC is hampered
by existing protocol’s lack of scalability. Existing deployments have been forced to use only a few com-
putational parties co-located in the same geographical area (in an effort to reduce latency). While these
deployment choices make current-generation MPC protocols concretely efficient, they make it harder to
believe the non-collusion assumptions required for maintaining privacy. Specifically, it may be feasible for
an attacker to convince a small number of parties into releasing their view of the protocol. Co-location
either requires the use of cloud computing resources (introducing another attack surface) or that parties
are already geographically close to one another, increasing the chances that they have some pre-existing
relationship. To mitigate these problems, there is a need for MPC protocols that scale, both in terms of the
number of parties, and the robustness to geographical diversity of those parties.

Due to a significant line of recent work [CGH+18, WJS+19, GS20, GSY21, BGJK21, GPS21, EGPS22], we
now know of protocols that scale gracefully as the number of parties increases—state-of-the-art protocols
have the communication complexity independent of the number of parties and are concretely efficient
[GPS21, EGPS22]. Generally, these protocols dictate that parties jointly compute circuits in a gate-by-
gate fashion, meaning that the computation requires communication rounds proportional to the depth of
the circuit being computed. Unfortunately, network latency between parties is a key determinant of the
protocol runtime in gate-by-gate protocols (see, e.g. [WRK17b] for a discussion), so even these state-of-
the-art protocols fall short when protocol participants are gobally distributed.

Constant round MPC protocols [Yao86, BMR90, DI05, GGJS12, LPSY15, KOS16, BLO17, NST17, HSS17,
WRK17b, HOSS18b, HOSS18a, BCO+21] are more appropriate for high latency settings, as the number of
times parties must communicate is independent of the circuit size. There are two well-studied approaches
to constant-round MPC—one based on fully-homomorphic encryption [Gen09] and another based on gar-
bled circuits [Yao86, BMR90]. The latter has been studied more extensively because of its better potential
for efficient solutions (despite incurring asymptotically worse communication).

The second approach follows a template first proposed by Beaver, Micali, and Rogaway (BMR) [BMR90]:
the parties first execute a garbling phase, in which they jointly compute a garbled circuit of the desired
functionality within an MPC protocol. The garbling phase is then followed by an output evaluation phase,
in which the parties exchange inputs and evaluate the garbled circuit. Since garbled gates can be computed
in parallel, the resulting protocol has constant rounds. Throughout this work we refer to the process of
jointly computing the garbled circuit as multiparty garbling.

Barriers to Efficient, Scalable Multiparty Garbling. Although multiparty garbling is a well-studied
approach for constant-round MPC, existing proposals cannot realistically be used to perform global-scale
computations. Asymptotically efficient constructions of the BMR template can be obtained by making
non-black-box use of cryptography used during garbling [BMR90], but representing the cryptography as
circuitry introduces prohibitive overheads.

The best known black-box multiparty garbling protocols, on the other hand, require per-gate total
communication (and computation) that is quadratic in the number of parties [DI05, LPSY15, BLO17, HSS17,
WRK17b, HOSS18b, HOSS18a, BCO+21], meaning these protocols scale poorly with the number of par-

3

ties. As is common in the literature on efficient MPC, these works split the garbling phase into a circuit
independent pre-processing phase and a circuit dependent garbling phase. Recent works [BLO17, BCO+21]
have demonstrated methods that reduce the complexity of the circuit-dependent garbling phase and out-
put evaluation phase to be linear in the number of parties, but still require a pre-processing phase with
quadratic complexity.

Thus, overall, the quadratic barrier stands for efficient multiparty garbling—in both the honest and
dishonest majority settings. This poses a major barrier for global-scale computations; the combination
of the quadratic dependence on the number of parties and the fact that garbling inevitably increases the
circuit size by a multiplicative factor dependent on the security parameter results in impractical solutions,
even for moderately-sized circuits. We therefore ask the following question:

Does there exist an efficient and scalable multiparty garbling protocol?

We answer this question in the affirmative, taking a significant step towards efficient, global-scale,
constant-round MPC.

1.1 Our Contributions

We present a new scalable constant-round multiparty garbling protocol for boolean circuits in the honest-
majority setting, where the total per-party communication complexity (see below) in our protocol decreases
as the number of parties increase. To produce this protocol, we combined several recent advances in
efficient MPC and carefully compose them using bespoke subprotocols. In more detail, our protocol has
the following features:

— Communication Complexity: The total communication complexity of the protocol is independent
of the number of parties (i.e., is O(|C|),1 where C is the circuit being computed), meaning that the per-
party communication actually decreases as the number of parties increases. Similar to prior constant
round MPC protocols [BMR90, DI05, LPSY15, BLO17, NST17, HSS17, WRK17b, HOSS18b, HOSS18a,
BCO+21], our protocol utilizes a single round of broadcast to reconstruct the circuit to all parties, but
otherwise runs over point-to-point channels.2

— Computation Complexity: The per-party computation complexity of the protocol is independent of
the number of parties (i.e., the total computation complexity of the protocol is O(𝑛 |C|)). This computa-
tional complexity is inherent in the constant-round BMR template, as each party needs to evaluate the
garbled circuit.

— Security and Assumptions: Our protocol achieves malicious security against 𝑡 < 𝑛−2ℓ+1
2 corrupt par-

ties, where ℓ ≥ 1 is a tunable parameter induced by the use of packed secret sharing3. The security
of our construction relies on the Learning Parity with Noise over Large Fields (LPN) assumption. The
use of LPN in our construction demonstrates that “less-powerful” assumptions (i.e., ones that are not
known to imply FHE) are sufficient for designing efficient and scalable constant round MPC.

Our protocol is the first constant-round MPC to asymptotically match the best known communication
complexity of concretely efficient, gate-by-gate MPC protocols without using fully-homomorphic encryp-
tion.4 As such, our protocol demonstrates a path towards practical MPC in high-latency settings, where
gate-by-gate protocols typically struggle.

1The O(·) notation suppresses linear terms in the security parameter and other logarithmic terms (independent of circuit size).
2We note that because the broadcast channel is used only in the final round, this broadcast channel is particularly well suited

to implementation via a website, where parties can post their shares and then download the garbled circuit at a later time.
3ℓ corresponds to the number of secrets packed into one share. We refer the reader to Section 3.2 for more details.
4Up to a security parameter factor, introduced from encrypting each gate.

4

Evaluation and Analysis. To evaluate the efficiency of our construction, we (1) implement the semi-
honest secure version of our protocol and use it to evaluate popular MPC benchmark circuits, and (2)
programmatically estimate the concrete computation and communication costs of our maliciously secure
protocol.

Our benchmarks of the semi-honest secure version of our protocol indicates that it is practical and
scalable. Garbling the AES-128 circuit takes around 126s even when 512 parties participate in the protocol,
with the circuit dependent phase constituting just 15.5s. Moreover, the runtimes of the protocol does not
seem to vary significantly with the number of parties and depends mainly on the size of the circuit being
evaluated. Our analysis suggests that our protocol outperforms prior works on multiparty garbling in the
honest majority setting [BO19], especially when run with a large number of parties.

Our estimates for the computation and communication costs of the maliciously secure protocol also
suggest that the runtime of the protocol is practical and mainly depends on the size of the circuit being
evaluated and does not vary significantly with the number of parties. We compare the performance of
our protocols with prior works on efficient, maliciously secure, multiparty garbling [WRK17b, BCO+21].
While prior works suffer from higher asymptotic overhead, our analysis indicates that even the concrete
communication cost of our protocol is lower than those of prior works for 𝑛 ≥ 350. In this setting, our
protocol achieves the lowest communication cost compared to existing solutions for multiparty garbling.
Moreover, since our benchmarks and estimates suggests that runtimes are mostly independent of the num-
ber of parties, we believe our approach provides a viable solution for large scale computations with many
participants.

1.2 Related Work

There is a long history of pushing towards O(|C) |)MPC [DIK10, DIK+08, GIP15], that has recently resulted
in linear round (ie. communication rounds linear in the depth of the circuit) MPC protocols with O(|C) |)
communication complexity that are concretely efficient [BGJK21, GSY21, GPS21, GPS22]. Our work builds
on some of the techniques proposed in these works, but applies them to the constant-round setting. Most
relevant to our protocol, we use the share transformation protocol proposed by Goyal et al. [GPS22] (see
Section 2.6) as a subprotocol in order to achieve our result.

There are two popular templates for achieving constant round MPC. The first relies on multiparty
variants of fully homomorphic encryption [MSs11, AJL+12, GLS15, MW16, BHP17]. While improving the
efficiency of FHE is an active area of research, this approach currently remains very far from practical. The
second template, first proposed by Beaver, Micali and Rogaway (BMR) [BMR90] relies on the observation
that garbling a circuit [Yao86] can be performed in constant depth. In our work, we focus on this second
approach: the problem of multiparty garbling.

The BMR approach has been the subject of significant research and has recently lead to asymptotically
efficient constructions with garbled circuit specifications that can be evaluated quickly in practice [DI05,
GGJS12, LPSY15, LSS16, BLO16, BLO17, NST17, HSS17, WRK17b, HOSS18b, HOSS18a, HSS20, BOSS20,
BCO+21]. While the original approach required non-black-box use of cryptography, Damgård and Ishai
[DI05] proposed a black-box technique for multi party garbling, paving the way towards more efficient
constructions.

Of particular interest, Ben-Efraim, Lindell, and Omri [BLO17] showed how to leverage LWE to garble
a circuit with an evaluation complexity of O(𝑛 |𝐶 |) per-party, improving on the prior O

(
𝑛2 |𝐶 |

)
per-party

complexity of Lindell et al. [LPSY15]. Ben-Efraim et al. [BCO+21] then further optimized the output eval-
uation phase to require only O(|𝐶 |) per-party local computation (after reconstruction) using an LPN based
encryption scheme. Additionally, their protocol features a online garbling phase with total communica-
tion complexity O(𝑛 |𝐶 |), but their circuit independent preprocessing phase still has total communication
complexity O

(
𝑛2 |𝐶 |

)
. They achieve this result by reducing the size of the garbled tables to be constant in

5

the number of parties. Their scheme uses an LPN-based encryption scheme that is both key-homomorphic
and message-homomorphic, further demonstrating linearly homomorphic cryptographic primitives can
produce concretely efficient protocols [BDOZ11, DPSZ12, KPR18, OSV20, CHI+20, CCD+20].

Finally we note that it is possible to garble arithmetic functionalities [AIK11, BMR16], at a high cost.
Ben-Ephraim et al. [Ben18] and Makri et al. [MW19] study the feasibility of computing such function
within a MPC protocol.

1.3 Future Directions

Our current protocol relies on the security of LPN. It would be interesting to see if a similar result—
multiparty garbling with O(|C|) communication complexity—can be achieved with weaker assumptions,
namely just one-way functions or information theoretic techniques for circuits in NC1.

2 Technical Overview

We now give an overview of our techniques for scalable multiparty garbling.

2.1 Background and Barriers to Scalable Multiparty Garbling

BMR Constant Round Protocol Template. In their seminal work, Beaver, Micali, and Rogaway (BMR)
[BMR90] outline a template for constructing constant round MPC. The parties first perform a garbling
phase by taking a generic (i.e. non-constant round) MPC protocol and using it to compute a garbled circuit
of the functionality—rather than computing the function itself. The parties then initiate an output evalua-
tion phase, in which they locally evaluate the garbled circuit to recover the function output. Because the
garbling procedure is not inherently sequential, the tables can all be computed in parallel. Since comput-
ing each garbled table can be done in a constant number of rounds (by using an appropriate encryption
scheme), the resulting protocol is itself constant round. Since the introduction of the BMR template, a long
sequence of works (e.g., [DI05, LPSY15, BLO17, NST17, HSS17, WRK17b, HOSS18b, HOSS18a, BCO+21])
have investigated the efficiency of running protocols within the BMR template, leading to several improve-
ments.

Black-Box Use of Cryptography. Beaver, Micali, and Rogaway’s initial protocol proposed making non-
black box use of the garbling algorithm of the garbled circuit scheme. For a gate 𝑔 with input wires 𝑎, 𝑏
and output wire 𝑐 computing the function 𝑓 : {0, 1}2 → {0, 1}, the row of the garbled table corresponding
to inputs 𝛼, 𝛽 ∈ {0, 1} is computed as

𝑐𝑡𝛼,𝛽 = PRFk𝑎,𝛼 (𝑔) ⊕ PRFk𝑏,𝛽 (𝑔) ⊕ k𝑐,𝑓 (𝛼,𝛽)

where k𝑎,𝛼 is a random key/label associated with the wire 𝑎 and the value 𝛼 ∈ {0, 1}. While conceptually
simple, the explicit circuit representation of PRF will be massive, resulting in an inefficient concrete con-
struction. To obtain an efficient black-box solution, the PRF must somehow be evaluated outside the MPC
protocol without compromising privacy or correctness.

Damgård and Ishai [DI05] devised an intuitive way to accomplish this goal: each partyP𝑚 ∈ {P1, . . . , P𝑛}
independently samples a pair of labels (k𝑚𝑐,0 , k𝑚𝑐,1) for each wire 𝑐 in the circuit. The parties then combine
these independent labels into a single label containing 𝑛 keys within the MPC protocol as

(k1
𝑐,0∥ . . . ∥k𝑛𝑐,0 , k1

𝑐,1∥ . . . ∥k𝑛𝑐,1) .

6

The parties then encrypt the combined labels by feeding locally expanded PRFs into the MPC. Thus the
garbled table for gate 𝑔 with input wires 𝑎, 𝑏 and output wire 𝑐 implementing the function 𝑓 is computed
as follows for inputs 𝛼, 𝛽 ∈ {0, 1} and party index 𝑗 ∈ [𝑛]: 5

𝑐𝑡
𝑗

𝛼,𝛽
=

𝑛⊕
𝑚=1

PRFk𝑚𝑎,𝛼 (𝑔∥ 𝑗) ⊕
𝑛⊕

𝑚=1
PRFk𝑚

𝑏,𝛽
(𝑔∥ 𝑗) ⊕ k𝑗

𝑐,𝑓 (𝛼,𝛽)

In other words, the garbled table for each gate consists of 4𝑛 ciphertexts, where each ciphertext is computed
using 𝑛 keys. Subsequent to the initial presentation of this protocol [DI05], Lindell et al. [LPSY15] showed
that this approach can be extended to the malicious security case by incorporating simple local checks
performed by the parties during the output evaluation phase.

The Main Bottleneck. Unfortunately, the above black-box approach comes at a price. Since each party
contributes to encrypting every other party’s key, the circuit representation of garbling each gate is of size
O
(
𝑛2) .6 Thus, when running the garbling phase, the overall communication complexity will be at least

quadratic in 𝑛 (which clearly doesn’t scale well as 𝑛 grows)—no matter the efficiency of the MPC protocol
used. Thus, reducing the size of the garbled tables is a necessary condition for scalable multiparty garbling.

Roadmap. We use the following roadmap to achieve our result:

— Generic Approach For Honest Majority. We first identify an approach for scalable multiparty garbling in
the honest majority setting. In this approach, we rely on encryption schemes where given shares of
the key, message and randomness, it is possible to non-interactively obtain shares of the corresponding
ciphertext. Such encryption schemes have been used in the recent works by Ben-Efraim et al. [BLO17,
BCO+21] in order to optimize the efficiency of the output evaluation phase.

— Instantiation. We instantiate our approach with an encryption scheme based on the learning parity
with noise (LPN) assumption over large fields. This leads to unique challenges in the honest majority
setting. In particular, we custom design efficient sub-protocols that enable distributed generation of the
cryptographic material used in this encryption scheme. Finally, we show how to augment the above
approach using known techniques [DPSZ12, CGH+18, BGJK21, GPS22] to achieve malicious security.

2.2 An Honest Majority Template for Scalable Multiparty Garbling

Reducing the Number of Ciphertexts. Motivated by the desire to optimize the output evaluation phase
of multiparty garbling, Ben-Efraim et al. [BLO17] demonstrate a method in the dishonest majority setting
for computing garbled tables with a constant number of ciphertexts without relying on non-black box use
of cryptography. At the heart of their approach is a PRF that has key homomorphism [BLMR13]. If each
party has a share of the wire key, encryption can be computed by (1) parties locally evaluating the PRF on
their shares of the key, and (2) homomorphically combining the PRF outputs.

Linearly key-homomorphic PRFs are presently only known based on the Decisional Diffie-Hellman
assumption in the random oracle model [BLMR13]. Ben Efraim et al. [BLO17, BCO+21] devised a way
around the lack of key-homomorphic PRFs by using ring LWE and LPN (over boolean field) based encryp-
tion scheme (that allow parties to locally compute shares of the ciphertext, given shares of key, message
and randomness), instead of a linearly key-homomorphic pseudo-random function. We build upon this

5In the technical overview, we don’t explicitly discuss how rows in the garbled table are permuted. We do this using standard
point-and-permute [BMR90] techniques by sampling random bit-masks for every wire in the circuit.

6Throughout the technical overview, we will generally omit the security parameter from our asymptotic notation, as our focus
is the dependence on the number of parties.

7

approach to achieve better efficiency guarantees in the honest majority setting. When switching to the
honest majority setting, we can leverage threshold secret sharing instead of additive secret sharing.

Following the above general approach of Ben-Efraim et al., we want parties to be able to locally com-
pute shares of a single ciphertext, such that the ciphertext can be reconstructed during the output evalua-
tion phase. Specifically, let the encryption scheme be such that [𝑐𝑡] = ENC ([key], [msg]; [rand]). Further,
let us imagine that for each gate 𝑔 computing the function 𝑓 , in addition to holding secret shares of the
keys corresponding to the input wires 𝑎, 𝑏 and output wire 𝑐 , the parties also hold secret shares of some
randomness for the encryption scheme. We want each party P𝑚 to locally compute its share of the row
𝛼, 𝛽 ∈ {0, 1} as

[𝑐𝑡𝛼,𝛽]𝑚 = ENC
((
[k𝑎,𝛼]𝑚 ⊕ [k𝑏,𝛽]𝑚

)
, [k𝑐,𝑓 (𝛼,𝛽)]𝑚 ; [𝑟𝛼,𝛽]𝑚

)
Here [k𝑎,𝛼]𝑚⊕ [k𝑏,𝛽]𝑚 correspond to shares of the key used to encrypt message k𝑐,𝑓 (𝛼,𝛽) using randomness
𝑟𝛼,𝛽 .

As mentioned earlier, Ben Efraim et al. [BLO17, BCO+21] observe that ring-LWE and LPN based en-
cryption schemes satisfy the above properties and demonstrate how they can be used in the dishonest
majority setting. These properties are also satisfied over threshold secret shares. In Section 2.4, we discuss
which encryption scheme works better for us in the honest majority setting. Moreover, our choice of en-
cryption scheme dictates the distribution from which the keys and randomness are sampled. In Sections 2.5
and 2.6, we also discuss how to obtain threshold secret shares of the keys and randomness sampled from
the appropriate distribution.

Achieving Malicious Security. As observed in prior work, achieving malicious security in multiparty
garbling involves protecting against two types of attacks: (1) malicious adversaries manipulating the MPC
protocol used to compute the garbled circuit, and (2) malicious adversaries injecting errors into the garbled
circuit by using inconsistent inputs.

Towards addressing the first type of attack, we note that a long history of active research on honest
majority malicious security compilers [GIP+14, GIP15, LN17, CGH+18, DOS18, NV18, FL19, GSZ20] has
significantly reduced the overhead of malicious security. In principle, these techniques can be lifted into
the multiparty garbling setting; we note that when we instantiate our protocol, adapting these techniques
will require some care, which we discuss in more detail in Section 2.7.

Let us now discuss defense against the second type of attacks. We note that in the honest majority
regime, when using an encryption scheme with the above property, it is not actually possible for the mali-
cious players to manipulate the value of the ciphertext directly, as the ciphertext within a threshold secret
sharing is uniquely defined by the honest parties’ shares. Indeed, this is much more of an immediate prob-
lem in the dishonest majority setting, where additive shares are more commonly used. However, we need
to ensure that the keys and randomness used in the encryption are sampled from the correct distribution
by preventing the adversary from influencing the sampling process. Fortunately, we observe that our ap-
proach for handling the first type of attacks can also be used to counter this attack. We defer discussion
on how to address these attacks in Section 2.7.

MPC with O(|C|) Communication: With a garbled circuit with gate representations that are constant
in the number of parties, the question is what protocol should the parties use to create the garbled cir-
cuit. Thankfully, MPC protocols with O(|C|) total communication have been the subject of significant
research efforts [DIK+08, DIK10, GIP15, GSY21, BGJK21, GPS21, GPS22]. All of these protocols rely heav-
ily on threshold packed secret sharing schemes [FY92], a “Single-Instruction-Multiple-Data” (SIMD) version
of threshold secret sharing schemes [Sha79]. By operating on O(𝑛) elements at a time and using efficient
multiplication protocols (e.g. [DN07]), these protocols are able to achieve total communication complexity
independent of the number of parties. In particular, we rely on the techniques from a recent work by Goyal
et al. [GPS22], which is an efficient, non-constant round MPC for general circuits.

8

2.3 Secret Sharing Bits/Masks

There is one significant element of the BMR template that we have so far not addressed: the rows of each
garbled table must be permuted so that its position in the table reveals nothing about its value. In practice,
most prior works do this by sampling a random “mask” bit 𝜆𝑐 ∈ {0, 1} associated with each wire 𝑐 . These
bits are then used to select the order of the permutation of the table within the MPC. As such, this requires
us to generate shares of random bits in a larger field7.

We choose to work in a Galois Field of characteristic 2. Techniques used in the dishonest majority
setting [LPSY15, DPSZ12] for sampling shares of random bits are not helpful here, since they require O(𝑛)
communication (for sharing each bit) in the honest majority setting. Efficient honest majority techniques
[DN07, BTH08] are known for generating secret shares of an unknown random value in the field. These
techniques however, necessarily require the field from which random values are sampled to be linear in
the number of parties. More recently, Cascudo et al. [CCXY18] proposed a way to extend these ideas for
generating shares of uniform random binary values 8 embedded in a bigger field F, with a similar efficiency.

We start by recalling the standard technique [DN07, BTH08] used for generating shares of random
values in the field in batches, using a Vandermonde matrix of size 𝑛× (𝑛− 𝑡). Specifically, each party secret
shares a random value in the field, and then each party locally multiplies the shares that it receives from
other parties with the Vandermonde matrix. Since every square sub-matrix of size (𝑛 − 𝑡) × (𝑛 − 𝑡) of a
Vandermonde matrix is invertible and honest parties are expected to secret share truly random values, the
result is that the parties obtain O(𝑛) secret shares of random, independent values. Overall, with O

(
𝑛2)

communication and computation, using the above approach, parties are able to generate O(𝑛) random
sharings.

To generate shares of random bits, it is not sufficient to require the parties to simply start by secret
sharing random bits instead of random values in F. If the Vandermonde matrix contains elements in F (as
is the case in initial works [DN07, BTH08]), even if the parties start with shares of bits, the shares obtained
after multiplying input shares with this matrix will be of elements in F rather than that of bits. To address
this issue, [CCXY18] observed that the generator matrix of any binary linear error correcting code (denoted
by binM) is a super-invertible matrix over F2. The parties can now start by simply secret sharing random
bits and when they multiply these shares with binM, the resulting shares will be of independent, random
bits. This allows us to generate O(𝑛) random bit sharings with O

(
𝑛2) communication and computation.

The same observation can also be used to generate packed secret shares of random bit-vectors. Each
party simply sends packed secret sharing of vectors of random bits to the other parties. Each party then
multiplies the received shares with the super-invertible bit matrix binM. This results in O(𝑛) packed secret
sharings (containing 𝑛 elements in each vector) with O

(
𝑛2) communication and computation. A careful

reader may have observed that this protocol yields shares of bits only if the parties originally start with
sharings of bits (which cannot be guaranteed in the presence of malicious adversaries). As such, this
protocol is only secure against a semi-honest adversary. We discuss malicious security for this protocol in
Section 2.7.

2.4 Choice of Encryption Scheme

LWE and LPN based secret-key encryption schemes are of the form k · A + e + L(m), where k is the
key vector, A is a public matrix, e is the random error vector, m is the message vector and L is a public
linear function. Since, A, L is public, computing the ciphertext only requires linear operations over the

7Recall that protocol based on a polynomial-based secret sharing scheme requires that the field have at least 𝑛 + 1 points,
where 𝑛 is the number of parties. Moreover, the [GPS22] protocol requires working in a field of size O(|C|).

8More generally, Cascudo et al. [CCXY18] proposed an idea for generating shares of random values from any constant-sized
field. In this work, we only focus on sampling from the Boolean field.

9

key vector k, message vector m and the error vector e. This essentially implies that if the parties hold
shares of k, e and the message m, they can locally compute shares of the corresponding ciphertext without
interaction. We note that, depending on the maximum fan-out fanoutmax across all gates in a given circuit,
the number of unique A matrices that we require in general is 8 × fanoutmax [BLO17]. Since these are
public matrices, we can generate them a priori.

Compatibility between the encryption scheme that we use and known efficient techniques for honest
majority MPC will dictate the overall efficiency and scalability of our multiparty garbling scheme. In
instantiating this template, we will use use the straight-forward equivalent of this encryption scheme
based on LPN over a large field (similar assumptions have been used in several recent works [BCGI18,
DGN+17, JLS21]). To justify these choices, we briefly discuss the alternative assumptions that we could
use—LWE and boolean LPN—and demonstrate why LPN over large fields is the most appropriate choice
for our application.

LWE vs LPN. Several prior works prefer LPN over LWE for efficiency reasons. Unlike LPN, LWE is
known to imply FHE and is believed to be a “more-powerful” assumption than LPN. As a result, in general,
parameter sizes in LWE tend to be larger than the ones required in LPN. Moreover, the matrix A in LPN is
the generator matrix corresponding to a probabilistic code generation algorithm. It is possible to choose
matrices, where each column contains a small (constant) number of random non-zero coordinates, without
weakening the security of LPN [Ale03, ADI+17]. Using such a matrix, computing k · A for any vector k
can be done in time linear in the length of k. On the other hand, to the best of our knowledge, no such
optimizations are known in LWE and hence computing k ·A requires time quadratic in the length of k. As
such, we can believe that LPN poses a more fruitful direction for instantiating our template.

LPN over a Boolean Field vs. LPN over a Larger Field. The LPN-based encryption of a message m
requires encoding m using a linear error correcting code ECC.Enc, and adding the result to the output of the
random function k·A+e. As such, the size of an LPN ciphertext depends on both (1) the efficiency of existing
ECC.Enc, and (2) the best known attacks on the LPN assumption. LPN over large fields outperforms LPN
over boolean fields in both criteria: (1) ECC.Enc’s in larger fields tend to have better rates than binary
ECC.Enc, and (2) in the large field setting, there exist variants of the LPN assumption (see [BCGI18, EKM17]
for a detailed discussion) where the best known attack remains the same as in the boolean regime.

As a result, LPN over large fields provides equivalent levels of security with smaller parameter sizes.
We note that this tradeoff is not always absolute: while LPN over larger fields might admit shorter vectors
k, e and a smaller matrix A, representing each element requires multiple bits, which could result in the
total representation that is larger than the equivalent construction from LPN over a boolean field.

We observe that in our setting it is still less efficient to use LPN over a boolean field because the parties
run an MPC protocol to generate and use the cryptographic key material. Recall that since we rely on
techniques from [GPS22], we need to work in a field of size O(|C|). Thus, the parties will have to use a
larger field irrespective of our choice of the cryptographic assumption. As such, LPN over a boolean field
becomes wasteful in the context of our protocol—each bit will be represented in a large field anyhow—
undermining the potential advantage of working with LPN over boolean fields.

2.5 Sub-Protocol for Generating Errors

The errors in our LPN-based encryption are sampled from a Bernoulli distribution over F, i.e., every element
of the error vector is a random non-zero element in F with probability 1

𝑝
and zero with probability 1 − 1

𝑝
,

where 𝑝 is derived from the parameter choices. While efficient distributed protocols for generating shares
of uniform random values in the field are known due to Damgård et al. [DN07] and Beerliova-Trubiniova
et al. [BTH08], to our knowledge, no such protocols are known for generating shares of values from this
biased distribution.

10

To generate shares of biased bits, we use the following observation. Let us assume that 𝑝 is a power
of 2, i.e., of the form 𝑝 = 2𝜏lpn . It is now easy to see that the product of 𝜏lpn random bits will be 1 with
probability 1/𝑝 and 0 with probability (𝑝 − 1)/𝑝 . To implement this idea, the parties can use our random
bit sharing protocol to sample shares of 𝜏lpn random bits and then multiply them to get a sharing of the
appropriately-biased bit. If 𝜏lpn is constant, these multiplications can be done in a constant number of
rounds. Moreover, to ensure that our total communication is O(|C|), we generate these shares in packed
secret sharing form. We choose our LPN parameters to ensure that 𝑝 is a power of 2.

We note that this does not affect our other parameters because we can choose the Reed-Solomon codes
properly to correct a constant fraction of errors. For LPN security, the LPN instance is more secure when
the noise rate is larger, and constant noise rate was referred to as high noise LPN in the literature [Döt15].
Given the above above sub-protocols, we finally discuss how to integrate them with techniques introduced
in [GPS22] and our multiparty garbling template.

2.6 Integrating with Goyal et al.’s Share Transformation Protocol [GPS22]

As discussed earlier, packed secret-sharing scheme (PSS) is a polynomial-based linear secret sharing scheme
that allows sharing a vector of secrets v = {𝑣1, . . . , 𝑣ℓ }, where ℓ ∈ O(𝑛). Essentially, the dealer samples
a random polynomial 𝑞 of appropriate degree, such that for each 𝑗 ∈ [ℓ], 𝑞(slotdef𝑗) = 𝑣 𝑗 and each party
P𝑖 (for 𝑖 ∈ [𝑛]) gets a share 𝑞(𝑝𝑖) (where 𝑝𝑖 is a publicly known field element that is unique to party P𝑖).
Most existing O(|C|) MPC protocols use the same set of slots/points slotdef1 , . . . , slotdefℓ in the polynomial
for embedding secrets in all packed secret sharings used throughout the protocol. Using PSS, it is possible
to evaluate a block of O(𝑛) gates at the same multiplicative depth in the circuit, in one shot.

Goyal et al.’s protocol [GPS22] is a non-constant round, gate-by-gate evaluation style of protocol that
slightly deviates from this approach. In this protocol, a unique slot/field element slotC𝑔 is assigned for
every gate 𝑔 in the circuit and the following invariant is maintained throughout the protocol: let 𝑔1, . . . , 𝑔ℓ
be a block of gates that are evaluated simultaneously using PSS and let z = {𝑧𝑔1, . . . , 𝑧𝑔ℓ } be output of
these gates. Upon evaluating these gates, parties obtain a packed secret sharing of z, where each 𝑧𝑔𝑗 is
embedded at the slot associated with gate 𝑔 𝑗 . Borrowing notion from [GPS22], we use [z |pos] to denote
such a sharing, where pos = {slotC𝑔1, . . . , slot

C
𝑔ℓ
}.

Evaluating a Block of Gates. We now explain in more detail how a block of gates are evaluated in
[GPS22] using PSS. Let d denote the degree of the PSS. Let𝑔1, . . . , 𝑔ℓ be a block of multiplication or addition
gates that we wish to evaluate and let l = {𝑙𝑔1, . . . , 𝑙𝑔ℓ } be the set of left inputs to these gates. Further, let
us assume that that for each 𝑗 ∈ [ℓ], 𝑙𝑔𝑗 was the output of some gate ℎ 𝑗 . Given the above invariant, this
means that for each 𝑗 ∈ [ℓ], there must exist some degree-d packed secret sharing of the form [z𝑗 |pos𝑗]d,
where z𝑗 = {. . . , 𝑙𝑔𝑗 , . . .} and pos𝑗 = {. . . , slotCℎ 𝑗

, . . .}. The next steps are as follows:

1. Bringing all left inputs to the same PSS: In order to evaluate 𝑔1, . . . , 𝑔ℓ simultaneously, the first step is
to bring all left inputs 𝑙𝑔1, . . . , 𝑙𝑔ℓ in the same PSS. This can be done by allowing the parties to locally
multiply each [z𝑗 |pos𝑗]d with a degree-(ℓ−1) PSS of a unit vector e𝑗 (i.e., where only the 𝑗-th term is
1 and all other terms are 0) of the form [e𝑗 |posℎ]ℓ−1, where posℎ = {slotC

ℎ1
, . . . , slotC

ℎℓ
}. The resulting

degree-(d + ℓ − 1) sharing will be such that the value stored at position slotC
ℎ 𝑗

is 𝑙𝑔𝑗 and the values
stored at other positions in posℎ are all 0. Adding all of these multiplied shares will result in shares
of the form [l |posℎ]d+ℓ−1 =

∑
𝑗∈[ℓ] [z𝑗 |pos𝑗]d · [e𝑗 |posℎ]ℓ−1.

2. Transforming to a PSS at default slots: We now want to transform the above sharing [l |posℎ]d+ℓ−1
into a sharing of the form [l |posdef]d, where posdef = {slotdef1 , . . . slotdefℓ } are some default slots used
throughout the protocol that are independent from the ones associated the gates. We will discuss
how this transformation is done shortly.

11

All the above steps are repeated for all the right input wire values r = {𝑟𝑔1, . . . , 𝑟𝑔𝑙 } to obtain a sharing of
the form [r |posdef]d. If 𝑔1, . . . , 𝑔ℓ were a block of addition gates, the parties can simply add their respective
shares in [l |posdef]d and [r |posdef]d to obtain a sharing [z |posdef]d, where z = {(𝑙𝑔1+𝑟𝑔1), . . . , (𝑙𝑔ℓ +𝑟𝑔ℓ)}. If
𝑔1, . . . , 𝑔ℓ were a block of multiplication gates, the parties can use existing multiplication protocols [DIK10]
for computing packed shares [z |posdef]d of the multiplied values, i.e., z = {(𝑙𝑔1 · 𝑟𝑔1), . . . , (𝑙𝑔ℓ · 𝑟𝑔ℓ)}.

Finally, in order to comply with the invariant, the last step in their protocol is to transform [z |posdef]d
into [z |pos]d, where pos = {slotC𝑔1, . . . , slot

C
𝑔ℓ
} are the positions associated with gates 𝑔1, . . . , 𝑔ℓ . Next, we

discuss how this transformation is done.

Share Transformation. Notice that in the above approach, we need to switch between sharings of the
form [x |pos1]𝑑1

and [x |pos2]𝑑2
. This can be done easily if the parties have access to secret sharings of

random vectors of form [r |pos1]𝑛−1 and [r |pos2]𝑑2
. Indeed, given such sharings, the parties can do the

following: (1) locally compute [x + r |pos1]𝑛−1, (2) reconstruct x+ r, (3) compute [x + r |pos2]𝑑2
and finally,

(4) subtract the random sharing to get [x |pos2]𝑑2
.

Prior approaches for generating such correlated random sharings [r |pos1] and [r |pos2] requiredO
(
𝑛2)

communication. Goyal et al. [GPS22] propose a novel idea that enables efficient generation of such cor-
related randomness with O(𝑛) communication. We defer details about how this is done to the technical
sections.

KeyGeneration andGarbling. For our multiparty garbling scheme, we also want to enable the parties to
generate a secret sharing of random keys. In order to do this withO(|C|) total communication, we generate
PSS of a random vector of keys. As discussed in Section 2.3, this can be done quite efficiently using known
techniques [DN07, BTH08]. However, since shares of random values are generated in “batches” using this
technique, when used for generating PSS, the secrets in the resulting packed shares are always stored
at the same slots. While generating we ensure that these slots are always the default positions. This is
also the case when we sample random sharings of bit masks and computing shares of the error vectors.
When computing the ciphertext, we use the above share transformation protocol to move the above PSS
of keys/masks/errors to another PSS where these values are all stored at the different slots associated with
the gates/wires that they correspond to. We can now easily compute the garbling functionality using these
values as input, and by relying on techniques from [GPS22].

2.7 Malicious Security

To ensure malicious security of our above approach, we need to thwart the following type of attacks:

— Attack Type I: The malicious parties can cause the ciphertexts to decrypt to an incorrect value by influ-
encing error generation.

— Attack Type II: Any other potential attacks during the garbling phase (including at the time of key/mask
generation), we need to ensure that the MPC protocol used for all the other computations in the garbling
phase is also secure against malicious adversaries.

We first discuss how to handle the second type of attacks. Genkin et al. [GIP+14, GIP15] observed that
most semi-honest, secret sharing (and packed secret sharing) based MPC protocols are also private against
malicious adversaries until parties reconstruct the output shares. To add full-malicious security to such a
protocol, the parties simply need to verify that the non-linear operations (i.e., non-scalar multiplications)
in the circuit were honestly computed before reconstructing the output.

A recent line of works have showed how to incorporate these malicious security checks efficiently in
the honest majority setting [DPSZ12, DKL+13, CGH+18, FL19]. The most popular kind of check is one
where the parties sample a random sharing of a global MAC key (say kmac), which is essentially a random

12

element in F. Throughout the protocol, the parties perform every computation twice to maintain the
following invariant: for every intermediate value 𝑧 in the computation for which the parties hold a secret
sharing (or packed secret sharing), they also hold a sharing of (kmac ·𝑧). At the end of the parties compute
a random linear combination of all the intermediate values and also compute a linear combination of all
the MAC’ed intermediate values and essentially check whether the outcome of the second combination is
kmac times that of the first combination. When working on a large field (i.e., exponential in the security
parameter), it suffices to use a single MAC key. For smaller fields, the above check needs to be repeated
for different MAC keys (to ensure negligible failure probability).

Goyal et al. [GPS22] demonstrate how the above check seamlessly extends to their protocol and tech-
niques. We rely on similar observations to ensure malicious security of most of our garbling protocol.
Besides error generation, the only other sub-protocol that we use is the random bit sharing protocol for
generating shares of masks. While this sub-protocol is already private against malicious adversaries (which
follows from the observation of Genkin et al. [GIP+14, GIP15]), to ensure security of our garbling protocol,
we also need to ensure it actually outputs valid shares of bits and not any other field element. Indeed, if the
adversary deviates from the protocol description, it could cause the parties to output (potentially invalid
sharings) of any random field elements. The standard technique for checking if any given element 𝑏 is 0
or 1, is to simply check if 𝑏2 ?

= 𝑏. We use the same idea. Upon receiving PSS of bits from the random bit
sharing protocol, the parties multiply this sharing with itself (correctness of this multiplication checked
using the above MAC based check) and at the end, we collective check if the above condition (i.e., 𝑏2 = 𝑏)
is met for all bits that were generated, in a single shot.

To counter the first type of attack (i.e., one that originates from incorrect error generation), we recall
that the two main steps in our error generation sub-protocol are: (1) generating packed shares of random
bits and (2) multiplying these bits. It is easy to see that security and correctness of both these steps can be
ensured using the above ideas.

2.8 Protocol Summary

To summarize all of the ideas presented thus far, before proceeding to the technical sections, we present
a high level overview of our multiparty garbling with reduced number of ciphertexts and for achieving
malicious security. As discussed above, for malicious security at each step of the computation, the parties
have a sharing of the actual intermediate values as well as a sharing of its MAC’ed counterpart. In the fol-
lowing summary, we collectively refer to them as “authenticated sharing” (and we assume that computing
on authenticated shares yields authenticated shares of the outcome).

Circuit Independent Preprocessing:

(1) MAC Key: The parties compute a packed secret sharing of a vector in which each element of
the vector is exactly a global IT-MAC key kmac.

(2) Key-Shares: The parties generate packed secret sharings of at least 2|C| wire keys (2 for each
wire in the circuit) using a randomness generation sub-protocol. We also multiply these keys
with kmac to obtain authenticated packed sharing of the keys.

(3) Mask-Shares: The parties generate packed secret shares of bit-masks that will be used for per-
muting the rows of garbled tables. They authenticate these packed sharings of the masks.
Moreover, as discussed above, the parties also compute authenticated sharings of the square of
these masks.

(4) LPN Errors: The parties generate and authenticate packed secret sharings of LPN errors. They
also compute authenticated sharings of the square of bits that were used to generate these

13

errors.

Online Garbling: For each chunk of ℓ gates, parties using the above packed shares of keys and masks
to compute the following using [GPS22]:

(1) Use Share transformation from [GPS22] to transform authenticated packed shares of keys,
masks and errors to authenticated packed sharings at positions associated with the respective
gates.

(2) Computing Plaintexts: Compute on the above transformed authenticated shares to permute
keys associated with the outgoing wires of the gates according to the functionality of the gates
and the masks, to obtain 4 messages – one for each row of the gate table using techniques from
[GPS22].

(3) Computing Ciphertext: Encrypt each wire value using authenticated shares of keys and errors.

(4) Malicious Security Check: Check if all the above intermediate authenticated shares are consis-
tent and if the outputs of random bit sharing sub-protocol were indeed bits.

Reconstructing the Gabrled and Evaluation Phase:

(1) Input Keys: Exchange inputs to the garbled circuit and obtain the relevant input wire keys.

(2) Reconstructing GC: Reconstruct the garbled tables to all parties.

(3) Output Masks: The parties also reconstruct the masks associated with the output wires.

(4) Evaluation: Using the reconstructed input wire keys, the parties locally evaluate the recon-
structed garbled circuit.

3 Preliminaries

We consider the client-server model for multi-party computation where a set of 𝑛c clients provide inputs
to the functionality and receive outputs, while a set of 𝑛 servers participate in the computation but do not
have any inputs or outputs. A party can have different roles in the computation and the client-server model
corresponds to the standard model if each party plays the role of a single client and a single server. We
denote the set of servers by P = {P1, . . . , P𝑛} and the set of clients by Pc =

{
Pc1, . . . , P

c
𝑛c

}
. For simplicity,

we refer to the servers as parties in our protocols. The party P1 will occasionally play a special role as the
“leader” in our protocols; this assignment is arbitrary and could even change throughout the protocol. We
assume that the parties have access to both point-to-point private and authenticated synchronous channels
and a public synchronous broadcast channel, each of which has “unit” cost.

We consider security against a static adversary A that corrupts 𝑡 servers and 𝑡c clients. Throughout
this work, we use packed Shamir shares [FY92] and we use ℓ to denote the packing constant, which is
the number of secrets packed in a single share. We discuss packed secret sharing in more detail below.
The default degree of our packed secret sharing scheme is d = 𝑡 + ℓ − 1 and the total number of parties is
𝑛 = 2𝑡 + 2ℓ − 1.

We use x to denote a vector and (x)𝑖 to denote the 𝑖-th element in the vector. We use [𝑎, 𝑏] where 𝑎 ≤ 𝑏

to denote the set of integers {𝑎, 𝑎 + 1, . . . , 𝑏}. In this work, we construct an MPC protocol that evaluates
functions that can be represented as a boolean circuit C with AND and XOR gates.9 We abuse notation

9This only captures deterministic functions. However, a randomized function can be transformed into a deterministic one by
asking every party to provide a random input and then XORing the inputs provided by all parties.

14

and use C : {0, 1}𝑊inp → {0, 1}𝑊out to also denote the function that the circuit C represents. The circuit
C has𝑊inp input wires numbered [1,𝑊inp] and client(𝑤) gives the index of the client providing the input
value for wire𝑤 for each𝑤 ∈ [1,𝑊inp]. C has𝐺 gates each with two inputs and one output with arbitrary
fan-out. The gates are topologically ordered from [1,𝐺] and we use left(𝑔) and right(𝑔) to denote the index
of the left and right input wires to gate 𝑔. We number the output wire of the 𝑔-th gate as𝑊inp + 𝑔. Thus,
there are a total of𝑊 =𝑊inp +𝐺 wires in C. Note that since the gates are topologically ordered, we have
left(𝑔) < 𝑊inp + 𝑔 and right(𝑔) < 𝑊inp + 𝑔. The set of circuit output wires are denoted byWout such that
|Wout | =𝑊out. In our protocols, computation is carried out over a finite field F of size |F| ≥ ℓ +𝑊 + 𝑛.

3.1 Security Model

We define secure multiparty computation in the real/ideal paradigm [Gol04]. Informally, a protocol is
considered secure if whatever an adversary can do in the real execution of the protocol, can be done also
in an ideal computation, in which an uncorrupted trusted party assists the computation. In this work, we
consider security against a static adversaryA that corrupts clients and servers at the onset of the protocol
and we aim to construct protocols that achieve unanimous abort where A can cause honest parties to
abort after learning the output of corrupt parties.

Real World. The real world execution of a protocol Π begins with an adversaryA selecting an arbitrary
subset of servers C ⊂ P of size 𝑡 and clients Cc ⊂ Pc of size 𝑡c to corrupt. The servers and clients then
engage in an execution of a real 𝑛-party protocol Π. Throughout the execution of Π, the adversary A
sends all messages on behalf of the corrupt clients and servers, and may follow an arbitrary polynomial-
time strategy. In contrast, the honest clients and servers follow the instructions of Π. At the conclusion
of the protocol, all honest clients and servers terminate with an output obtained in the computations.
Malicious clients may output an arbitrary PPT function of the view of A. This joint execution of Π under
(A, C, Cc) in the real model, on input vector x, auxiliary input 𝑧 and security parameter 𝜅𝑐 , denoted by
REALC,Cc

Π,A(𝑧) (1
𝜅𝑐 , x), is defined as the output of honest clients and servers, and the view of A(𝑧) resulting

from this protocol interaction.

Ideal World. In the ideal world, clients and servers interact with a trusted third party F that receives
inputs from the clients, carries out the computation locally and hands the output back to the clients. The
ideal world adversary Sim can directly interact with F to send inputs and receive outputs of corrupt clients,
as well as ask F to abort.

Sending inputs to trusted party: Each Pc𝑖 ∉ Cc, sends its input 𝑥𝑖 to the trusted party F . For each Pc𝑖 ∈ C,
the adversary Sim may send to the trusted party any arbitrary input. Let 𝑥 ′𝑖 be the value actually
sent as Pc𝑖 ’s input.

Early abort: The adversary Sim can abort the computation by sending an abort message to F . In case of
such an abort, F sends ⊥ to all parties and halts.

Trusted party answers adversary: The trusted party computes (𝑦1, . . . , 𝑦𝑛) = 𝑓 (𝑥 ′1, . . . , 𝑥 ′𝑛) and sends 𝑦𝑖 to
each Pc𝑖 ∈ Pc.

Late abort: The adversary Sim can abort the computation (after seeing the outputs of corrupt parties) by
sending an abort message to F . In case of such an abort, F sends ⊥ to all honest parties and halts.
Otherwise, the Sim sends a continue message to F .

Trusted party answers remaining parties: The trusted party sends 𝑦𝑖 to each honest Pc𝑖 ∈ Pc.

15

Outputs: Honest parties always output the message received from the trusted party and the corrupt parties
output nothing. The adversary Sim outputs an arbitrary function of the initial inputs 𝑥𝑖 where Pc𝑖 ∈
Cc, the messages received by the corrupt parties from the trusted party and its auxiliary input.

The joint execution of F under (Sim, C, Cc), in the ideal model, on input vector x, auxiliary input 𝑧 to
Sim and security parameter 𝜅𝑐 , denoted by IDEALC,CcF,Sim(𝑧) (1

𝜅𝑐 , x) is defined as the output of honest clients
and servers, and the view of Sim.

Having defined the real and ideal models, we say a protocol Π 𝑡-securely realizes F if for every PPT
adversaryA, there exists a PPT simulator Sim in the ideal model such that for every C ⊂ P of size at most
𝑡 and every Cc ⊆ Pc, it holds that{

REALC,Cc
Π,A(𝑧) (1

𝜅𝑐 , x)
}

x,𝑧,𝜅𝑐

c≈
{
IDEALC,CcF,Sim(𝑧) (1

𝜅𝑐 , x)
}

x,𝑧,𝜅𝑐

where (x, 𝑧) ∈ ({0, 1}∗)𝑛+1 and 𝜅𝑐 ∈ N.
As discussed before, clients only participate in our protocol to provide inputs and receive outputs. The

actual computation is carried out by the servers. As observed in prior works [GIP15, GPS22], an advantage
of working in the client-server model is that it suffices to consider adversaries that corrupt exactly 𝑡 servers.
For any 𝑡-secure protocol Π, security against an adversary A′ that corrupts 𝑡 ′ < 𝑡 servers can be reduced
to security against an adversary A that corrupts exactly 𝑡 servers. Intuitively, this works by constructing
A to corrupt 𝑡 − 𝑡 ′ servers in addition to the 𝑡 ′ servers that A′ corrupts. A then runs the 𝑡 ′ servers with
the same strategy asA′ while the remaining 𝑡 − 𝑡 ′ servers follows the steps of the protocol. Since servers
don’t provide inputs, any protocol secure against A is secure against A′.

3.2 Secret Sharing

In this work we use the packed Shamir secret sharing scheme introduced by Franklin and Yung [FY92].
This is a generalization of the Shamir secret sharing scheme [Sha79] where each share corresponds to ℓ

secrets. Let F be a finite field and let {𝑝1, . . . , 𝑝𝑛}, and pos = (slot1, . . . , slotℓ) be 𝑛 + ℓ distinct points in
F. A degree-𝑑 packed Shamir sharing of a secret x = (𝑥1, . . . , 𝑥ℓ) in Fℓ is a vector [x]𝑑 = (𝑠1, . . . , 𝑠𝑛) in F𝑛
which satisfies that there exists a polynomial 𝑝 (·) ∈ F[𝑋] of degree at most 𝑑 such that for each 𝑖 ∈ [1, 𝑛],
𝑝 (𝑝𝑖) = 𝑠𝑖 and for each 𝑖 ∈ [1, ℓ], 𝑝 (slot𝑖) = 𝑥𝑖 . Thus, pos is the set of values which evaluate to the secret x
under 𝑝 (·) and {𝑝𝑖}𝑛𝑖=1 is the set of values which evaluate to the elements of the sharing. The 𝑖-th element
𝑠𝑖 in [x]𝑑 is held by the party P𝑖 . Reconstructing a degree-𝑑 sharing is equivalent to reconstructing the
underlying polynomial 𝑝 (·) which requires 𝑑 + 1 shares and can be done through Lagrange interpolation.

We adopt a similar approach to [GPS22], and use different sets of points pos for the secrets. We use
[x |pos]𝑑 to denote a degree-𝑑 packed Shamir sharing with the secret x stored at positions pos. Specifically,
in our protocol, we require ℓ +𝑊 distinct elements in F denoted by

{
slotdef1 , . . . , slotdefℓ , slotC1 , . . . , slot

C
𝑊

}
where we use posdef = (slotdef𝑖)

ℓ

𝑖=1 as the default positions for storing secrets while slotC𝑤 is used to store
the secret associated with wire𝑤 in C. We define the following procedures for sharing and reconstructing
secrets where pos = (slot1, . . . , slotℓ) is an ordered set of positions and I ⊂ [1, 𝑛].

— share(𝑑, x; pos, r): This procedure computes a degree-𝑑 packed Shamir sharing [x |pos]𝑑 of x ∈ Fℓ
over a random polynomial 𝑝 (·) of degree at most 𝑑 using the uniformly random vector r ∈ F𝑑+1−ℓ
subject to the constraints 𝑝 (slot𝑖) = (x)𝑖 for every 𝑖 ∈ [1, ℓ]. For brevity, we use share(𝑑, x) to denote
share(𝑑, x; posdef, r).

— share(𝑑, x, {𝑠𝑖}𝑖∈I ; pos, r): This procedure computes a degree-𝑑 packed Shamir sharing [x |pos]𝑑 of
x ∈ Fℓ over a random polynomial 𝑝 (·) of degree at most 𝑑 using the uniformly random vector

16

r ∈ F𝑑+1−ℓ−|I | subject to the constraints 𝑝 (slot𝑖) = (x)𝑖 for every 𝑖 ∈ [1, ℓ] and 𝑝 (𝑝𝑖) = 𝑠𝑖 for every
𝑖 ∈ I. For brevity, we use share(𝑑, x, {𝑠𝑖}𝑖∈I) to denote share(𝑑, x, {𝑠𝑖}𝑖∈I ; posdef, r). Informally, we
say that a degree-𝑑 packed Shamir sharing [x |pos]𝑑 of the secret x is computed to be consistent
with the shares {𝑠𝑖}𝑖∈I .

— rec(𝑑, pos, [x |pos]𝑑): This procedure reconstructs the secrets x stored at positions pos in the degree-
𝑑 packed Shamir sharing [x |pos]𝑑 . If the inputs do not form a valid degree-𝑑 packed Shamir sharing,
the procedure outputs ⊥. Informally, we say that a degree-𝑑 packed Shamir sharing [x |pos]𝑑 is
reconstructed to compute the secrets x.

As discussed earlier, our protocols are run by a set of𝑛 servers among which at most 𝑡 may be corrupted
by a static malicious adversary. For the majority of the computation, parties use degree-d packed Shamir
sharings where d = 𝑡 + ℓ − 1. Note that a degree-d sharing requires at least 𝑡 + ℓ shares to reconstruct
the secret. This implies that the shares of the 𝑡 corrupt parties are independent of the secret in this case.
Moreover, the shares of honest parties are completely determined by the secrets and the shares of corrupt
parties since the latter define ℓ and 𝑡 points on the underlying polynomial respectively. We denote a
degree-d packed Shamir sharing [x |pos]d as [x |pos] for an arbitrary set of positions pos and as [x] when
pos = posdef , for brevity.

Note that each party P𝑖 ∈ P has the share ([x |pos]𝑑)𝑖 in the sharing [x |pos]𝑑 . Co-ordinate wise
operations on sharings correspond to parties locally performing the same operation on their shares i.e.,
the vector is simply distributed across parties. We now recall a few properties of packed Shamir sharing
which follow directly from the computation on the underlying polynomials.

— Linear Homomorphism: For all 𝑑 ≥ ℓ − 1, x, y ∈ Fℓ we have [x + y |pos]𝑑 = [x |pos]𝑑 + [y |pos]𝑑 .

— Multiplicative: Let x · y denote the co-ordinate wise multiplication operation between x and y. For
all x, y ∈ Fℓ and 𝑑1, 𝑑2 ≥ ℓ − 1 such that 𝑑1 +𝑑2 < 𝑛, we have [x · y |pos]𝑑1+𝑑2

= [x |pos]𝑑1
· [y |pos]𝑑2

.

The multiplicative property implies that degree-d packed Shamir sharings are multiplication friendly. This
means that for all x, c ∈ Fℓ , all parties can locally compute [c · x |pos]d+ℓ−1 from a degree-d packed
Shamir sharing [x |pos] and the vector c. To do so, parties first locally compute a degree-(ℓ − 1) packed
Shamir sharing [c |pos]ℓ−1 and then use the multiplicative property of packed Shamir sharing to com-
pute [c · x |pos]d+ℓ−1 = [c |pos]ℓ−1 · [x |pos]. For ease of exposition, we denote this as [c · x |pos]d+ℓ−1 =

c · [x |pos].
As in [GPS22], we use this multiplication friendliness to compute a degree-(d + ℓ − 1) packed sharing

where each secret might come from a different degree-d sharing with the only constraint being that the
positions of the secrets are distinct. Specifically, let pos, pos1, . . . , posℓ be a set of positions such that
pos = (slot1, . . . , slotℓ) with the constraint that slot𝑖 ∈ pos𝑖 for each 𝑖 ∈ [1, ℓ]. Consider the procedure
select([x1 |pos1], . . . , [xℓ |posℓ], pos) which computes the following

[x |pos]d+ℓ−1 =

ℓ∑︁
𝑖=1
[e𝑖 |pos]ℓ−1 · [x𝑖 |pos𝑖]

where e𝑖 is a vector with (e𝑖)𝑖 = 1 and (e𝑖) 𝑗 = 0 for all 𝑗 ∈ [1, ℓ] \ {𝑖}. Thus, the secret x in the output
sharing [x |pos]d+ℓ−1 is such that (x)𝑖 is the secret stored at slot𝑖 in [x𝑖 |pos𝑖].

We use information theoretic MACs for verifying the correctness of computation in the MPC protocol
and since we work over a small field F (in contrast to a large field with order exponential in the security
parameter) we use 𝐿mac ≥ 𝜅𝑠/log |F| number of information theoretic MACs of the form [kmac𝑖 · x |pos]𝑑
for each 𝑖 ∈ [1, 𝐿mac] for a given sharing [x |pos]𝑑 to ensure negligible probability of the verification going
through despite malicious behavior. Here, kmac𝑖 corresponds to the MAC key for the 𝑖-th MAC and is

17

a uniformly random value in F. We denote such authenticated sharings by Jx |posK𝑑 and operations on
these sharings translate to performing the same operation on [x |pos]𝑑 and [kmac𝑖 · x |pos]𝑑 for every
𝑖 ∈ [1, 𝐿mac].
Additive Errors to Shares and Secrets. LetA denote the adversary, C denote the set of corrupt parties,
andH be the set of honest parties. As discussed earlier, most of our sub-protocols are semi-honest secure
but guarantee perfect privacy against a malicious adversary. However,A can carry out attacks that affect
the correctness of the sub-protocols. As discussed in [GPS21], the deviation of a fully malicious adversary
can be classified into the following two kinds of attacks.

— The adversary can distribute an inconsistent degree-d packed Shamir sharing.

— The adversary can add additive errors to the secrets of the output sharing.

Specifically, we have 𝑛 − 𝑡 = 𝑡 + 2ℓ − 1 honest parties and the degree of the packed Sharing is d = 𝑡 + ℓ − 1.
Since only d + 1 shares are required to determine the complete sharing, A can carry out an attack such
that the shares of all honest parties no longer lie on a polynomial of degree d. Note that this is not an issue
when 𝑛 = 2𝑡 + 1 and computation is done using degree-𝑡 sharings since the shares of all honest parties
define the complete sharing. In such a case, honest parties having incorrect shares would would only lead
to an additive error on the secret.

We use the same approach as [GPS21] and capture the attacks carried out by a malicious adversary by
accounting for additive errors to the secret and sharings. Let HH be any arbitrary fixed subset of H of
size d + 1, andHC = H \HH . Since |HH | = d + 1, the shares in [x |pos] corresponding to parties inHH
completely determine a degree-d sharing, which we denote by [x |pos]H . Observe that if A introduces
errors to the shares of parties in HH , it translates to an additive error on the secret, which we capture in
our functionalities through the vector 𝜹𝑥 ∈ Fℓ for a secret x. Note that [x |pos]H is by definition a valid
degree-d packed Shamir sharing while [x |pos] can be inconsistent. We will maintain the invariant thatA
can learn the shares of corrupt parties in [x |pos]H and the difference ∆𝑥 = [x |pos] − [x |pos]H . Since the
shares held by honest parties in HH for [x |pos] are equal to those in [x |pos]H by definition, it follows
that the elements in ∆𝑥 corresponding to parties inHH are 0. Moreover, since we maintain the invariant
that A learns the shares of corrupt parties in [x |pos]H , we assume that corrupt parties hold the correct
shares in [x |pos] and only communicate incorrect values during the computation. Thus, ∆𝑥 possibly has
non-zero elements corresponding to parties inHC . Note that the complete sharings [x] and [x]H can be
computed only from the shares of honest parties.

3.3 Error Correcting Codes

Let 𝑄, 𝐿, 𝑑, 𝑞 be integers. An [𝑄, 𝐿, 𝑑]𝑞 error correcting code is a pair of algorithms ECC = (Enc,Dec),
where the encoding algorithm Enc takes a message m ∈ [1, 𝑞]𝐿 as input, and outputs a codeword in [1, 𝑞]𝑄 .
The decoding algorithm Dec takes a potentially corrupted codeword as input, and recovers the message.
The distance of the code is the minimum Hamming distance between any two different codewords. For
an error correcting code with distance 𝑑 , it can correct at most ⌊(𝑑 − 1)/2⌋ Hamming errors. We now
discuss two properties of error correcting codes required in the construction of our protocol. Specifically,
Theorem 1 shows that the generator matrix of a binary linear error correcting code is a binary super-
invertible matrix [DN07], which is in turn used in the construction of our Πbitrand protocol (Section 5.4).

Theorem 1. Let 𝐶 = {c | c = G · m} ⊆ F𝑄 be an [𝑄, 𝐿, 𝑑]-binary linear code with generating matrix
G ∈ F𝑄×𝐿 , then any sub-matrices consisted of (𝑄 − 𝑑 + 1)-rows of G is full rank.

Proof. We prove by contradiction. Suppose the theorem is not true, then there exists a sub-matrix G′ of
(𝑄 −𝑑 + 1)-rows of G, and G′ is not full rank. In that case, there exists an m ≠ 0 such that G′ ·m = 0. Since

18

G′ is a sub-matrix of G, the codeword of m has at least 𝑄 − 𝑑 + 1 zero entries. Hence, the distance of the
code is less than 𝑑 − 1, and we reach a contradiction. □

Theorem2. Let𝐶 be a code with parameters [𝑄, 𝐿, 𝑑]𝑞 and𝐶′ be another code with parameters [𝑄 ′, 𝐿′, 𝑑 ′]𝑞′ ,
where 𝑞 = 2𝐿′ , then the concatenated code 𝐶 ◦ 𝐶′ has parameters [𝑄 · 𝑄 ′, 𝐿 · 𝐿′]𝑞′ with distance at least
𝑑 · 𝑑 ′.

3.4 LPN Assumption and LPN Based Encryption

Our protocols rely on the Learning Parity with Noise (LPN) assumption over large fields that has also been
used in a number of prior works [IPS09, AAB15, ADI+17, BCGI18, JLS21]. Here, we recall a variation of
the assumption stated by Boyle et al. [BCGI18]. Let Ber𝜏lpn denote the Bernoulli distribution over the field
F obtained by sampling a uniformly random element of F with probability 2−𝜏lpn , and 0 with probability
1 − 2−𝜏lpn . Then, the LPN assumption over large fields assumes that it is hard to distinguish the tuple
(A,A · s + e) and a random tuple, where A, s are sampled from the uniform distribution and e is a noise
vector with small Hamming weight sampled from Ber𝜏lpn .

Definition 1 (LPN Assumption). Let C be a probabilistic code generation algorithm such that C(𝐿lpn,
𝑄lpn, F) outputs 𝐴 ∈ F𝐿lpn×𝑄lpn . For dimension 𝐿lpn = 𝐿lpn(𝜅𝑐), number of queries (or block length) 𝑄lpn =

𝑄lpn(𝜅𝑐), and constant noise rate, the LPN(𝐿lpn, 𝑄lpn, 𝜏lpn) assumption with respect to C states that for any
polynomial-time non-uniform adversary A, it holds that

Pr
[
F← A(1𝜅𝑐),A← C(𝐿lpn, 𝑄lpn, F), e← Ber

𝑄lpn
𝜏lpn , s← F

𝐿lpn, b← s · A + e : A(A, b) = 1
]

c≈
Pr

[
F← A(1𝜅𝑐),A← C(𝐿lpn, 𝑄lpn, F), b← F𝑄lpn : A(A, b) = 1

]
.

LPN-based Encryption. We now describe a symmetric key CPA-secure encryption scheme from the
LPN assumption. We use a [𝑄ecc, 𝐿ecc, 𝑑]2 error-correcting code in our construction. Let the message space
beM = F𝐿ecc .

— LPN.Keygen(1𝜅𝑐) : Sample s← F𝐿lpn uniformly at random.

— LPN.Enc(x, s) : To encrypt a message x under the key s, first sample A ← F𝐿lpn×𝑄ecc uniformly at
random and sample 𝝐 ← Ber𝑄ecc

𝜏lpn . Output (A, s · A + 𝝐 + ECC.Enc(x)) as the ciphertext.

— LPN.Dec((A, c), s) : Decrypt the ciphertext c using s by computing ECC.Dec(c − s · A).

Note that security follows from the fact that (A, s · A + 𝝐 + ECC.Enc(x)) is computationally indistin-
guishable from (A, r + ECC.Enc(x)) where r← F𝑄ecc is sampled uniformly at random. Correctness holds
because c−s ·A = 𝝐 +ECC.Enc(x) and if the Hamming weight of the noise 𝝐 is no greater than ⌊(𝑑 − 1)/2⌋,
then the error correcting code can decrypt the message correctly.

4 LPN Based Garbling Scheme

In this section, we present the LPN encryption based garbling scheme used in our MPC protocol. At a high
level, parties run the garbling algorithm defined below in a distributed manner in the MPC protocol. The
resulting garbled circuit is then evaluated locally by each party to compute the output.

19

We use the standard garbled circuit scheme, as used in prior works on multi-party garbling [LPSY15,
BLO17, WRK17b, HSS17, BCO+21], where evaluation of the garbled circuit corresponds to a masked eval-
uation of the circuit. Specifically, the garbling scheme samples a random bit 𝜆𝑤 for every wire 𝑤 . The
evaluation algorithm then uses the garbled circuit to carry out the computation on masked values i.e., it
maintains the invariant that only the masked value 𝜌𝑤 = 𝜆𝑤 + 𝑣𝑤 is revealed to parties for each wire 𝑤 ,
where 𝑣𝑤 denotes the actual value on the wire 𝑤 during a plaintext evaluation of the circuit. Given this
evaluation invariant, the garbling algorithm constructs the garbled circuit such that knowing the masked
values 𝜌left(𝑔) and 𝜌right(𝑔) on the input wires of a gate 𝑔 suffices to compute the masked value 𝜌𝑊inp+𝑔 on
the output wire of the gate. This is done by sampling two labels 𝑘0

𝑤 and 𝑘1
𝑤 for each wire 𝑤 corresponding

to when 𝜌𝑤 is 0 and 1 respectively and encrypting the label on the output wire under the labels on the
input wires in a way that ensures that 𝑘𝜌𝑎𝑎 and 𝑘

𝜌𝑏
𝑏

can be used to obtain 𝑘
𝜌𝑐
𝑐 where 𝑎 and 𝑏 are input wires

to the gate and 𝑐 is the output wire. We note that the rows of the garbled table for each gate, consisting of
the encryptions of the output label, are implicitly permuted due to the randomness of 𝜆𝑎 and 𝜆𝑏 .

We now proceed to describe the garbling scheme GC = (MaskGen,Garble, Encode, Eval).

— GC.MaskGen(C): This is a randomized algorithm that samples the mask 𝜆𝑤 ← {0, 1} uniformly at
random for each wire 𝑤 ∈ [1,𝑊] and outputs {𝜆𝑤}𝑊𝑤=1.

— GC.Garble(C, {𝜆𝑤}𝑊𝑤=1, 1𝜅𝑐): This is a randomized algorithm that computes the garbled circuit using
the masks output by GC.MaskGen. It works as follows:

1. It obtains the labels k𝑏𝑤 ← LPN.Keygen(1𝜅𝑐) by running the key generation algorithm for LPN
encryption for every 𝑤 ∈ [1,𝑊] and 𝑏 ∈ {0, 1}.

2. For each 𝛼, 𝛽 ∈ {0, 1}, and 𝑔 ∈ [1,𝐺], it computes the (2𝛼 + 𝛽)-th row of the garbled table for
the 𝑔-th gate as

ctx𝛼,𝛽𝑔 = LPN.Enc(k𝑏𝑤 ∥𝑏, k𝛼left(𝑔) + k𝛽

right(𝑔))

where 𝑏 = 𝑔(𝜆left(𝑔) + 𝛼, 𝜆right(𝑔) + 𝛽) + 𝜆𝑊inp+𝑔 and 𝑔(·, ·) is the function being computed by the
𝑔-th gate.

3. The output is the garbled circuit G, the input encoding information auxenc, and the output
decoding information auxdec where

G =

{
ctx0,0

𝑔 , ctx0,1
𝑔 , ctx1,0

𝑔 , ctx1,1
𝑔

}𝑊
𝑔=1

auxenc =
{
k0
𝑤, k

1
𝑤, 𝜆𝑤

}𝑊inp

𝑤=1, auxdec = {𝜆𝑤}𝑤∈Wout
.

— GC.Encode(x, auxenc): This is a deterministic algorithm that takes the input and input encoding
information and outputs the input encoding X such that the 𝑤-th element in X is the masked value
of the input and the label corresponding to the masked value i.e., (X)𝑤 = (k𝜆𝑤+𝑥𝑤𝑤 , 𝜆𝑤 + 𝑥𝑤) where
𝑥𝑤 = (x)𝑤 for each 𝑤 ∈ [1,𝑊inp].

— GC.Eval(X,G, auxdec): This is a deterministic algorithm that takes the input encoding X, the garbled
circuit G, and the output decoding information auxdec and computes C(x). It first parses X such that
(X)𝑤 = (k𝜌𝑤

𝑤 , 𝜌𝑤) for each 𝑤 ∈ [1,𝑊inp]. It then iterates over each 𝑔 ∈ [1,𝐺] and in each iteration
decrypts a row of the garbled table by computing

(k𝜌𝑤
𝑤 , 𝜌𝑤) = LPN.Dec(ctx𝛼,𝛽𝑔 , k𝛼left(𝑔) + k𝛽

right(𝑔))

where 𝛼 = 𝜌left(𝑔) , 𝛽 = 𝜌right(𝑔) , and 𝑤 = 𝑊inp + 𝑔. It then uses auxdec to compute the output
𝑣𝑤 = 𝜆𝑤 + 𝜌𝑤 for each 𝑤 ∈ Wout.

20

We now proceed to define the properties of the garbling scheme. For ease of exposition, we split the
circuit input x ∈ {0, 1}𝑊inp into two parts, y and z respectively. We denote the input wires corresponding
to y byW𝑦 and those corresponding to z asW𝑧 . Note that, W𝑦 andW𝑧 is a partition of [1,𝑊inp] and
that the division of the circuit inputs into y and z is arbitrary and without loss of generality. The garbling
scheme satisfies the correctness and security properties defined as follows.

GCSimD
GC,Simgc

(𝑏)
Challenger D

𝑏 ← {0, 1} y

{𝜆𝑤}𝑊𝑤=1 ← GC.MaskGen(C, 1𝜅𝑐)
𝝀𝑧 = {𝜆𝑤}𝑤∈W𝑧

𝝆𝑦 = {𝜆𝑤 + 𝑦𝑤}𝑤∈W𝑦

𝝀′𝑧, 𝝆
′
𝑦, state← Simgc (C,W𝑦, 1𝜅𝑐)

𝝀𝑧, 𝝆𝑦 if 𝑏 = 0

𝝀′𝑧, 𝝆
′
𝑦 if 𝑏 = 1

z

G, auxenc, auxdec ← GC.Garble(C, {𝜆𝑤}𝑊𝑤=1, 1
𝜅𝑐)

X B GC.Encode(y∥z, auxenc)
G′,X′, aux′dec ← Simgc (C(y, z), z, state)

(G,X, auxdec) if 𝑏 = 0
(G′,X′, aux′dec) if 𝑏 = 1

𝑏′

Figure 1: Security Game for the garbling scheme.

— Correctness: For every circuit C and inputs x ∈ {0, 1}𝑊inp , the garbling scheme GC satisfies

Pr[GC.Eval(GC.Encode(x, auxenc),G, auxdec) = C(x)] = 1

where the probability is over the randomness in

(G, auxenc, auxdec) ← GC.Garble(C,GC.MaskGen(C), 1𝜅𝑐).

Proof Sketch. Correctness of GC follows from the correctness of the standard point-and-permute based
garbling. Specifically, evaluation maintains the invariant that for each wire 𝑤 , the masked value 𝜌𝑤 =

𝜆𝑤 + 𝑣𝑤 where 𝑣𝑤 is the value on the wire during a plaintext evaluation of the circuit on the given
inputs. Let the invariant be true on the input wires to the 𝑔-th gate and let 𝛼 = 𝜌left(𝑔) , 𝛽 = 𝜌right(𝑔) , and

21

𝑤 =𝑊inp + 𝑔. During evaluation, LPN.Dec(ctx𝛼,𝛽𝑔 , k𝛼left(𝑔) + k𝛽

right(𝑔)) essentially outputs

𝜌𝑤 = 𝑔(𝜆left(𝑔) + 𝛼, 𝜆right(𝑔) + 𝛽) + 𝜆𝑤
= 𝑔(𝜌left(𝑔) + 𝑣left(𝑔) + 𝜌left(𝑔) , 𝜌right(𝑔) + 𝑣right(𝑔) + 𝜌right(𝑔)) + 𝜆𝑤
= 𝑔(𝑣left(𝑔) , 𝑣right(𝑔)) + 𝜆𝑤
= 𝑣𝑤 + 𝜆𝑤 .

The correctness of GC then follows from the invariant and the fact that the output is computed in
GC.Eval as 𝑣𝑤 = 𝜆𝑤 + 𝜌𝑤 for each 𝑤 ∈ Wout. □

— Security: For every circuit C and PPT distinguisher D, there exists a PPT algorithm Simgc such that
the garbling scheme GC satisfies���Pr

[
GCSimD

GC,Simgc
(0) = 1

]
− Pr

[
GCSimD

GC,Simgc
(1) = 1

] ��� ≤ negl(𝜅𝑐)

where GCSimGC,Simgc (𝑏) is defined in Figure 1 and GCSimGC,Simgc (𝑏) = 1 if 𝑏′ = 𝑏.

Proof Sketch. The proof is similar to that of standard point-and-permute garbling. When run for the
first time, Simgc outputs a uniformly random bit for every {𝜆𝑤}𝑤∈W𝑧

and {𝜌𝑤}𝑤∈W𝑦
. The state output

by the simulator consists of 𝝀′𝑧 , 𝝆′𝑦 , C, and y. The simulator when run again with z and the previously
output state first computes the masked value 𝜌𝑤 = 𝑣𝑤 + 𝜆𝑤 for each 𝑤 ∈ W𝑧 where 𝑣𝑤 corresponds
to the input to wire 𝑤 determined by z. It also samples 𝜌𝑤 uniformly at random from {0, 1} for each
𝑤 ∈ [𝑊inp,𝑊]. Given the masked values 𝜌𝑤 for all wires 𝑤 in the circuit, Simgc can determine the
active path i.e., the ciphertext that is decrypted in the garbled table for each gate. It then samples keys
k𝑤 ← LPN.Keygen(1𝜅𝑐) for every wire 𝑤 in the circuit and computes the garbled circuit for gate 𝑔 by
setting the ciphertext on the active path to an encryption of k𝑊inp+𝑔 and the remaining ciphertexts in
the garbled table to an encryption of 0 under the key kleft(𝑔) + kright(𝑔) . Finally, it computes auxdec =

{𝜆𝑤 = 𝜌𝑤 + 𝑣𝑤}𝑤∈Wout
where 𝑣𝑤 is the output value determined by 𝐶 (y, z).

We now argue indistinguishability of the simulated view. 𝜆𝑤 ∈ {0, 1} is uniformly random in the
garbling scheme and not received by D for 𝑤 ∈ W𝑦 . Similarly, 𝜆𝑤 for internal wires 𝑤 of the circuit is
uniformly random and not part of D’s view which implies that 𝜌𝑤 sampled uniformly at random by the
simulator is indistinguishable to the corresponding masked value computed during the evaluation of
the garbled circuit produced by the garbling scheme. Moreover, it is easy to see that auxdec computed by
the simulator decodes the output labels to the correct output and is indistinguishable from the decoding
information output by the garbling scheme. The only difference then between the simulated view and
that of the garbling scheme is that Simgc sets the inactive ciphertexts to encryptions of 0. However,
this is indistinguishable from an encryption computed by the garbling scheme and can be argued by
a standard hybrid argument where indistinguishability is reduced to the security of the underlying
LPN-based encryption scheme. □

We note that the above security requirement is slightly different from the standard security of garbling
schemes [BHR12]. Specifically, we require the simulator to output 𝝀𝑧 and 𝝆𝑦 without using the output of
the circuit C(y, z). The simulator then takes the circuit output and computes the garbled circuit, encoded
input and decoding information. The modified security guarantee is required to prove the security of
our MPC protocol. However, to the best of our knowledge, existing point and permute garbling schemes
are secure with respect to the above definition and prior works on multi-party garbling [LPSY15, BLO17,
WRK17b, HSS17, BCO+21] require similar modifications to the security definition of a standalone garbling

22

scheme for use in their MPC protocols. In our MPC protocol, the adversary learns the masks 𝝀𝑧 for the
inputs provided by corrupt clients and the masked inputs of honest clients 𝝆𝑦 before it receives the garbled
circuit or the encoding of the inputs.

5 Standard Sub-protocols

In this section, we describe the functionalities and sub-protocols used in the construction of our main MPC
protocol. In some of these sub- protocols, we use sets Scons, Smac, and Szero for bookkeeping purposes in
order to collect sharings that need to later (in the main protocol) be verified for consistency, correctness of
computation, and to ensure that the underlying secret is a zero vector respectively.10 We assume ℓ = 𝑂 (𝑛)
and discuss the asymptotic cost of securely realizing each functionality.

5.1 Sharing Random Vectors

We now describe a protocol Πrand (Protocol 1) for computing a batch of random packed Shamir sharings.
In the protocol, each party first deals a locally sampled random packed sharing and parties then extract
uniformly random packed sharings unknown to the adversary using the super-invertible matrix (e.g., Van-
dermonde Matrix) M𝑛−𝑡,𝑛 . The functionality Frand realized by this protocol is presented in Functionality 1.
Since the corrupt parties are not guaranteed to deal consistent sharings, we model Frand to allow Sim to
specify the additive errors to the shares of honest parties. As discussed in Section 3.2, it suffices to consider
additive errors to the shares of honest parties in HC to model attacks which render the shares of honest
parties inconsistent. Note that Frand does not receive any additive errors to the secrets from Sim since the
secrets corresponding to the output sharings are uniformly distributed. Looking ahead, we ensure that all
parties did indeed deal consistent sharings through the consistency check subprotocol Πcheck-cons described
in Section 5.10.

Complexity Analysis. The total communication complexity of Πrand is O
(
𝑛2) field elements. However,

since each run of the protocol yields O(𝑛 − 𝑡) random packed sharings, the amortized cost of generating
a single packed sharing is O(𝑛) field elements. Similarly the amortized computation complexity of the
protocol per packed sharing is O

(
𝑛2) . The round complexity of the protocol is 1.

Lemma 1. Πrand (Protocol 1) 𝑡-securely realizes 𝑛 − 𝑡 invocations of Frand (Functionality 1).

Proof. Let A denote the adversary and C be the set of corrupt parties. LetH be the set of honest parties,
HH be a fixed subset ofH of size d + 1, andHC = H \HH . We construct a simulator Sim to simulate the
behavior of honest parties.

The simulator Sim works as follows.
10Looking ahead, this will become clearer from context as we describe these sub-protocols and functionalities in more detail.

Functionality 1: Frand

1. Frand receives the shares of the corrupt parties {𝑠𝑖 }𝑖∈C from Sim. It then samples r ← Fℓ uniformly at
random and computes [r]H = share(d, r, {𝑠𝑖 }𝑖∈C).

2. Frand receives a vector ∆ ∈ F𝑛 from Sim such that for all P𝑖 ∉ HC , (∆)𝑖 = 0. It then computes [r] =
[r]H + ∆.

3. Frand distributes the shares [r] to honest parties.

23

Protocol 1: Πrand

1. Every party P𝑖 ∈ P locally samples u𝑖 ← Fℓ uniformly at random, computes [u𝑖] ← share(d, u𝑖), and
then sends the 𝑗-th share ([u𝑖]) 𝑗 to 𝑃 𝑗 for each 𝑗 ∈ [1, 𝑛].

2. Having received their shares in [u1], . . . , [u𝑛], parties locally compute

[r1], . . . , [r𝑛−𝑡] = M𝑛−𝑡,𝑛 · ([u1], . . . , [u𝑛])

and output [r1], . . . , [r𝑛−𝑡].

— Sim sends uniformly random values as the shares of corrupt parties in [u𝑖] for every P𝑖 ∈ H and
receives the shares of honest parties in [u𝑗] for every P𝑗 ∈ C from A.

— It then computes the whole sharing [u𝑗] and [u𝑗]H and computes ∆𝑢 𝑗
= [u𝑗] − [u𝑗]H for every P𝑗 ∈ C.

It sets ∆𝑢 𝑗
= 0 for each P𝑗 ∈ H .

— Note that Sim now knows the shares of corrupt parties in [u𝑖] for every P𝑖 ∈ P. It can thus compute
the shares of the corrupt party in [r𝑗] for each 𝑗 ∈ [1, 𝑛 − 𝑡] by multiplying the shares of the corrupt
parties in [u𝑖] with M𝑛−𝑡,𝑛 . It sends the shares of the corrupt parties in [r𝑗] to the 𝑗-th invocation of
Frand for every 𝑗 ∈ [1, 𝑛 − 𝑡].

— Sim computes
(∆𝑟1, . . . ,∆𝑟𝑛−𝑡) = M𝑛−𝑡,𝑛 (∆𝑢1, . . . ,∆𝑢𝑛)

and sends ∆𝑟 𝑗 to the 𝑗-th invocation of Frand for every 𝑗 ∈ [1, 𝑛 − 𝑡].

We now show thatA’s view in the real world is identically distributed to its view in the simulation. A’s
view in the real world consists of shares of corrupt parties in a random degree-d packed Shamir sharings
dealt by honest parties. However, these shares of the corrupt parties are uniformly distributed. Since
Sim sends uniformly random values to A, it follows that the view of A in the simulation is identically
distributed to that in the real world.

We now show that the shares output by honest parties is identically distributed in the real and ideal
worlds conditioned on the view of A.

— Let MH𝑛−𝑡,𝑛−𝑡 and MC𝑛−𝑡,𝑡 be the sub-matrix of M𝑛−𝑡,𝑛 containing columns with indices in H and C
respectively. We have

(r1, . . . , r𝑛−𝑡) = M𝑛−𝑡,𝑛 (u1, . . . , u𝑛)
= MH𝑛−𝑡,𝑛−𝑡 (u𝑖)P𝑖 ∈H +MC𝑛−𝑡,𝑡 (u𝑖)P𝑖 ∈C .

From the property of super-invertible matrices MH𝑛−𝑡,𝑛−𝑡 is invertible and it follows that given u𝑖 shared
by each corrupt party P𝑖 ∈ C, there is a one-one linear mapping between the output r1, . . . , r𝑛−𝑡 and
secrets shared by honest parties u𝑖 where P𝑖 ∈ H . Since the honest parties share uniformly random
secrets, it follows that the output secrets are uniformly random too. In the ideal world, Frand samples
r ← Fℓ uniformly at random as the secret. Thus, the secrets are identically distributed in the real and
ideal worlds.

— Note that A’s view completely determines the shares of the corrupt parties in [u𝑖] for each 𝑖 ∈ [1, 𝑛]
since it consists of the shares of corrupt parties in sharings dealt by honest parties and shares of honest

24

Functionality 2: Fcoin

1. Fcoin samples 𝑟 ← F uniformly at random.

2. Fcoin sends 𝑟 to Sim.

— If Sim sends continue, Fcoin sends 𝑟 to honest parties.

— Else, Fcoin sends abort to honest parties.

parties in sharings dealt by corrupt parties. Specifically, the latter suffices to compute the whole sharing.
Moreover, since Sim honestly follows the steps of the protocol and computes the shares of corrupt
parties in the output sharings, it follows that the shares of corrupt parties are identical in the real and
ideal worlds.

— In the real world, honest parties receive their shares in [u𝑗] = [u𝑗]H + ∆𝑢 𝑗
for every corrupt party

P𝑗 ∈ P and they compute their output shares as

[r1], . . . , [r𝑛−𝑡] = M𝑛−𝑡,𝑛 · ([u1], . . . , [u𝑛])
= MH𝑛−𝑡,𝑛−𝑡 ([u𝑖]H)P𝑖 ∈H +MC𝑛−𝑡,𝑡 ([u𝑖]H + ∆𝑢𝑖)P𝑖 ∈C
= MH𝑛−𝑡,𝑛−𝑡 ([u𝑖]H)P𝑖 ∈H +MC𝑛−𝑡,𝑡 ([u𝑖]H)P𝑖 ∈C +MC𝑛−𝑡,𝑡 (∆𝑢𝑖)P𝑖 ∈C
= ([r1]H, . . . , [r𝑛−𝑡]H) +MC𝑛−𝑡,𝑡 (∆𝑢𝑖)P𝑖 ∈C .

Since Sim computes the additive errors to the shares of the honest parties in the same way, it follows
that the additive errors to the shares are identical in the real and ideal world.

The degree-d sharing [r] distributed by Frand is completely determined by the secret r, 𝑡 shares of the
corrupt parties and the additive errors to the shares of honest parties inHC . Since the latter are identically
distributed in the real and ideal worlds, it follows that the shares of the honest parties are identically
distributed in the real and ideal worlds.

Thus, the joint distribution consisting of the view of A and the output of honest parties is identically
distributed in the real and ideal worlds which proves the security of Πrand. □

5.2 Common Coin

We now describe a protocol Πcoin (Protocol 2) for publicly sampling random values from the field F. In
the protocol, parties invoke Frand to receive a random packed sharing and then reconstruct it to compute
a uniformly random vector. Each element in the vector then corresponds to a publicly sampled random
value. Thus, an instance of the protocol generates a batch of ℓ random field elements. The functionality
Fcoin realized by this protocol is presented in Functionality 2. Note that the Πcoin realizes Fcoin with abort
since corrupt parties might send incorrect shares during reconstruction at which point honest parties abort.

Complexity Analysis. The total communication complexity of this protocol is O
(
𝑛2) field elements.

However, since each run of the protocol yields O(ℓ) random values, the amortized cost is O(𝑛) field el-
ements per sample since ℓ = O(𝑛). Similarly, the amortized computation complexity of the protocol for
publicly sampling a single random value is O(𝑛). The round complexity of the protocol is 1 assuming the
random sharing has been generated beforehand. Note that the communication complexity of realizing
Fcoin can be significantly improved in practice by using Πcoin to generate a PRF key and then using the
PRF to sample pseudorandom values for parallel invocations of Fcoin.

25

Protocol 2: Πcoin

1. Parties invoke Frand and receive a random sharing [r].

2. Parties send their share in [r] to every other party and each party P𝑖 ∈ P checks if all shares form a
valid degree-d packed Shamir sharing. If not, 𝑃𝑖 aborts. Else, 𝑃𝑖 reconstructs and outputs r.

Lemma 2. Πcoin (Protocol 2) 𝑡-securely realizes ℓ invocations of Fcoin (Functionality 2) in the Frand-hybrid
model.

Proof. Let A denote the adversary and C be the set of corrupt parties. LetH be the set of honest parties.
We construct a simulator Sim to simulate the behavior of honest parties as follows.

— Sim honestly emulates Frand and receives the shares of the corrupt parties and the additive errors to the
shares ∆𝑟 from A. It also receives r ∈ Fℓ , where (r)𝑖 is received from the 𝑖-th invocation of Fcoin.

— It computes the sharing [r] such that the shares of the corrupt parties are the same as those received
from A. It then sends the shares of honest parties in [r] to A and receives the shares of the corrupt
parties from A. If A sent incorrect values, Sim sends abort to all invocations of Fcoin else it sends
continue.

It is easy to see that view ofA in the real and ideal worlds are identically distributed since it interacts
with Frand and receives honest parties shares in a random degree-d sharing in both cases.

Note that honest parties abort in the real world when corrupt parties send incorrect shares. Sim sends
abort to Fcoin in this case in the ideal world. On the other hand, if honest parties are able reconstruct the
secret they output a random vector r. It is easy to see that the same is the case in the ideal world since the
simulator constructs the sharing [r] based on the value received from Fcoin. It follows that the output of
honest parties is identically distributed in the real and ideal worlds conditioned on the view of A.

Thus, from the above argument, it follows that Πcoin 𝑡-securely realizes ℓ invocations of Fcoin. □

5.3 Sharing Zero Vectors

In this section, we describe the protocolΠzero (Protocol 3) to generate degree-(𝑛−1) packed Shamir sharings
of the zero vector. Shares of honest parties in a degree-(𝑛−1) packed sharing are uniformly random to the
adversary despite knowing the secrets and the shares of the corrupt parties and are used to re-randomize
sharings in our MPC protocol (e.g., when parties locally compute non-linear operations on their shares) in
turn ensuring privacy. In the protocol, parties first compute and deal degree-(𝑛−1) packed sharings of zero
and then use a super-invertible matrix M𝑛−𝑡,𝑛 to compute a set of 𝑛 − 𝑡 zero sharings which are uniformly
random to the adversary. The functionality Fzero realized by this protocol is described in Functionality 3.
Note that since the output of Πzero is a degree-(𝑛−1) sharing, Fzero doesn’t receive additive errors to either
shares or secrets from Sim i.e., shares of all honest parties are trivially consistent and there always exists
shares of corrupt parties such that the underlying secret is a zero vector.

Complexity Analysis. The total communication complexity of this protocol is O
(
𝑛2) field elements

which implies that the amortized communication complexity to generate a single packed zero sharing is
O(𝑛) field elements. Similarly, the amortized computation complexity isO

(
𝑛2) per zero sharing. The round

complexity of the protocol is 1.

Lemma 3. Πzero (Protocol 3) 𝑡-securely realizes 𝑛 − 𝑡 invocations of Fzero (Functionality 3).

26

Functionality 3: Fzero

1. Fzero receives the shares of the corrupt parties {𝑠𝑖 }𝑖∈C and computes [𝑜]𝑛−1 = share(𝑛 − 1, 0, {𝑠𝑖 }𝑖∈C).

2. Fzero distributes the shares [𝑜]𝑛−1 to honest parties.

Protocol 3: Πzero

1. Every party P𝑖 ∈ P locally computes a zero sharing [u𝑖]𝑛−1 ← share(𝑛 − 1, (0)ℓ), and then sends the
𝑗-th share ([u𝑖]) 𝑗 to 𝑃 𝑗 for each 𝑗 ∈ [1, 𝑛].

2. Having received their shares in [u1], . . . , [u𝑛], parties locally compute

[o1], . . . , [o𝑛−𝑡] = M𝑛−𝑡,𝑛 · ([u1], . . . , [u𝑛])

and output [o1], . . . , [o𝑛−𝑡].

Proof. Let A denote the adversary and C be the set of corrupt parties. LetH be the set of honest parties.
We construct a simulator Sim to simulate the behavior of honest parties as follows.

— Sim samples uniformly random values as the shares of the corrupt parties in [u𝑖]𝑛−1 dealt by honest
parties P𝑖 ∈ H . It sends these shares to A and receives the shares of honest parties in [u𝑖]𝑛−1 dealt by
corrupt parties for each P𝑖 ∈ C.

— Sim then computes the shares of corrupt parties in [u𝑖]𝑛−1 for each P𝑖 ∈ C by sampling a random
degree-(𝑛−1) packed Shamir sharing of 0 such that the shares of the honest parties are consistent with
those received from A. Thus, Sim now has the corrupt parties shares in [u𝑖]𝑛−1 for each 𝑖 ∈ [1, 𝑛].

— It then computes the shares of the corrupt parties in the output sharing [o𝑖]𝑛−1 for each 𝑖 ∈ [1, 𝑛 − 𝑡]
by multiplying the shares of corrupt parties in {[u𝑖]𝑛−1}𝑛𝑖=1 with M𝑛−𝑡,𝑛 . It sends the shares of corrupt
parties in [o𝑖]𝑛−1 to the 𝑖-th invocation of Fzero for each 𝑖 ∈ [1, 𝑛 − 𝑡].

Since the shares of corrupt parties are uniformly distributed in the real and ideal worlds it follows that
the view of A is identically distributed in both worlds.

We now show that the output of honest parties is identically distributed in the real and ideal worlds
conditioned on the view of A. Note that the A’s view fixes the shares of honest parties in {[u𝑖]𝑛−1}P𝑖 ∈C
and the shares of corrupt parties {[u𝑖]𝑛−1}P𝑖 ∈H . Let MH𝑛−𝑡,𝑛−𝑡 and MC𝑛−𝑡,𝑡 be the sub-matrix of M𝑛−𝑡,𝑛
containing columns with indices inH and C respectively. For an honest party P𝑖 , we have

(([o1]𝑛−1)𝑖 , . . . , ([o𝑛−𝑡]𝑛−1)𝑖) = M𝑛−𝑡,𝑛 (([u1]𝑛−1)𝑖 , . . . , ([u𝑛]𝑛−1)𝑖)
= MH𝑛−𝑡,𝑛−𝑡 (([u𝑗]𝑛−1)𝑖)P𝑗 ∈H

+MC𝑛−𝑡,𝑡 (([u𝑗]𝑛−1)𝑖)P𝑗 ∈C

and since from the property of super-invertible matrices M𝑛−𝑡,𝑛−𝑡 is invertible, given the shares of P𝑖 in
the sharings dealt by corrupt parties, there exists a one-to-one linear mapping between the shares of P𝑖 in
sharings dealt by honest parties and the output shares. Since, there always exists shares of honest parties
for {[u𝑖]𝑛−1}P𝑖 ∈H consistent with A’s view and Sim computes the shares of the corrupt parties as in the
protocol it follows that the shares of honest parties are consistent in the real and ideal worlds.

Thus, the joint distribution consisting of the view of A and the output of honest parties is identically
distributed in the real and ideal worlds proving the security of Πzero. □

27

Functionality 4: Fbitrand

1. Fbitrand receives the shares of the corrupt parties {𝑠𝑖 }𝑖∈C and a vector 𝜹 ∈ Fℓ . It then samples b← {0, 1}ℓ
uniformly at random and computes [𝑏]H = share(d, b + 𝜹, {𝑠𝑖 }𝑖∈C).

2. Fbitrand receives a vector ∆ ∈ F𝑛 from Sim such that for all P𝑖 ∉ HC , (∆)𝑖 = 0 and computes [𝑏] =
[𝑏]H + ∆.

3. Fbitrand distributes the shares [𝑏] to honest parties.

Protocol 4: Πbitrand

1. Every party P𝑖 ∈ P locally samples a vector of bits u𝑖 ← {0, 1}ℓ uniformly at random, computes [u𝑖] ←
share(d, F(u𝑖)), and then sends the 𝑗-th share ([u𝑖]) 𝑗 to 𝑃 𝑗 for each 𝑗 ∈ [1, 𝑛].

2. Having received their shares in [u1], . . . , [u𝑛], parties locally compute

[b1], . . . , [b𝑘] = binM𝑘,𝑛 · ([u1], . . . , [u𝑛])

and output [b1], . . . , [b𝑘].

5.4 Sharing Random Bit Vectors

In this section, we describe the protocol Πbitrand (Protocol 4) for generating packed sharings of random
bit vectors over F. To achieve low communication complexity, each run of the protocol needs to generate
a batch of packed sharings. While a super-invertible matrix [DN07] can serve as a linear randomness
extractor when sampling random values in F, we need a way to sample a random bit while working over
a non-binary field with characteristic 2. Cascudo et al. [CCXY18] proposed a way to generate Shamir
secret shares of uniform random binary values embedded in a bigger field F, with similar efficiency. Their
protocol relies on the fact that the generator matrix of any binary error correcting code is a super-invertible
matrix over F2 (cf. Theorem 1). We observe that such a binary super-invertible matrix can also be used
to generate packed sharings of random bit vectors. We discuss how to generate such a super-invertible
matrix binM𝑘,𝑛 with optimal parameters in Section 7.3. Specifically, we show that there exists binM𝑘,𝑛

such that 𝑘 = 𝑂 (𝑛). Given the existence of a binary super-invertible matrix with appropriate parameters,
Πbitrand works similar to Πrand (Protocol 1) and extracts sharings of uniformly random bit vectors from
sharings dealt by individual parties.

The functionality Fbitrand realized by Πbitrand is presented in Functionality 4. Note that Fbitrand receives
the additive error to the secrets as well as additive error to the shares from Sim, which capture all attacks
an adversary can run in the real world, as discussed in Section 3.2. Looking ahead, we ensure that the
output sharings are consistent and that the underlying secrets are bit vectors using Πcheck-cons and Πcheck-bit
respectively.

Complexity Analysis. The total communication complexity of this protocol is O
(
𝑛2) . However, when

using a 𝑘 × 𝑛 binary super-invertible matrix where 𝑘 = 𝑂 (𝑛), each run of the protocol yields 𝑘 packed
sharings which implies that the amortized communication cost of generating a single packed sharing is
O
(
𝑛2/𝑘

)
which is equal to O(𝑛). Similarly, the amortized computation complexity of the protocol is O

(
𝑛2) .

The round complexity of the protocol is 1 round.

Lemma 4. Πbitrand (Protocol 4) securely realizes 𝑘 invocations of Fbitrand (Functionality 4) against a static

28

malicious adversary that controls 𝑡 parties.

Proof. Let A denote the adversary and C be the set of corrupt parties. LetH be the set of honest parties,
HH be a fixed subset ofH of size d + 1, andHC = H \HH . We construct a simulator Sim to simulate the
behavior of honest parties.

— Sim sends uniformly random values as the shares of corrupt parties in [u𝑖] for every P𝑖 ∈ H and
receives the shares of honest parties in [u𝑗] for every P𝑗 ∈ C from A.

— It then computes the whole sharing [u𝑖] and [u𝑖]H and computes ∆𝑢𝑖 = [u𝑖] − [u𝑖]H for every P𝑖 ∈ C.
It reconstructs the secret u𝑖 from [u𝑖]H and sets 𝜹𝑢𝑖 = u𝑖 if u𝑖 is not a valid bit vector else it sets 𝜹𝑢𝑖 = 0,
for every P𝑖 ∈ C. It sets ∆𝑢𝑖 = 0 and 𝜹𝑢𝑖 = 0 for each P𝑖 ∈ H .

— Note that Sim now knows the shares of corrupt parties for [u𝑖] for every P𝑖 ∈ P. It can thus compute
the shares of the corrupt party in [b𝑗] for each 𝑗 ∈ [1, 𝑘] by multiplying the shares of the corrupt parties
in [u𝑖] with binM𝑘,𝑛 . It sends the shares of the corrupt parties in [b𝑗] to the 𝑗-th invocation of Fbitrand
for every 𝑗 ∈ [1, 𝑘].

— Sim computes

(∆𝑏1, . . . ,∆𝑏𝑘) = binM𝑘,𝑛 (∆𝑢1, . . . ,∆𝑢𝑛)
(𝜹𝑏1, . . . , 𝜹𝑏𝑘) = binM𝑘,𝑛 (𝜹𝑢1, . . . , 𝜹𝑢𝑛)

and sends 𝜹𝑏 𝑗
and ∆𝑏 𝑗

to the 𝑗-th invocation of Fbitrand for every 𝑗 ∈ [1, 𝑘].

Since shares of corrupt parties in the sharings dealt by honest parties are uniformly distributed in the
real world, it follows that the view of A in the real and ideal worlds are identically distributed.

We now show that the output of honest parties is identically distributed in the real and ideal worlds
conditioned on the view of A.

— Let binMH
𝑘,𝑛−𝑡 and binMC

𝑘,𝑡
be the sub-matrices of binM𝑘,𝑛 containing columns with indices in H and

C respectively. We have

(b1, . . . , b𝑘) = binM𝑘,𝑛 (u1, . . . , u𝑛)
= binMH

𝑘,𝑛−𝑡 (u𝑖)P𝑖 ∈H + binMC
𝑘,𝑡
(u𝑖)P𝑖 ∈C .

From Theorem 1, binMH
𝑘,𝑛−𝑡 is left invertible and it follows that given u𝑖 shared by each corrupt party

P𝑖 ∈ C, there is a one-one linear mapping (over F2) between the output b1, . . . , b𝑘 and secrets shared by
honest parties u𝑖 where P𝑖 ∈ H . Since the honest parties share uniformly random bit vectors, it follows
that the output secrets in the real world are uniformly random bit vectors too assuming (ui)P𝑖 ∈C are
bit vectors. However, this might not be the case since corrupt parties might not deal a sharing of bit
vectors. In such a case note that Sim computes exactly the additive error binMC

𝑘,𝑡
(u𝑖)P𝑖 ∈C for the output

secrets and sends it to Fbitrand. Since Fbitrand samples a random bit vector b and computes the sharing
of b + 𝜹𝑏 , it follows that the secrets are identically distributed in the real and ideal worlds.

— Note that A’s view completely decides the shares of the corrupt parties in [u𝑖] for each 𝑖 ∈ [1, 𝑛]
since it consists of the shares of corrupt parties in sharings dealt by honest parties and shares of honest
parties in sharings dealt by corrupt parties. Specifically, the latter suffices to compute the whole sharing.
Moreover, Sim honestly follows the steps of the protocol using the shares of the corrupt parties. It thus
follows that the shares of corrupt parties are identical in the real and ideal worlds.

29

Functionality 5: Fmult

1. Let [𝑥] and [𝑦] be the input degree-d packed Shamir sharings. Fmult takes the shares of honest parties
in [𝑥] and [𝑦] as input.

2. Fmult recovers the whole sharings [𝑥], [𝑥]H , [𝑦], and [𝑦]H . Fmult computes ∆𝑥 = [𝑥] − [𝑥]H and
∆𝑦 = [𝑦] − [𝑦]H . It then sends the shares of [𝑥]H and [𝑦]H for corrupt parties, and ∆𝑥 , ∆𝑦 to Sim.

3. Fmult computes [𝑧]𝑛−1 = [𝑥] · [𝑦] and reconstructs the secrets z.

4. Fmult receives the shares of the corrupt parties {𝑠𝑖 }𝑖∈C and a vector 𝜹𝑧 ∈ Fℓ . It then computes [𝑧]H =

share(d, z + 𝜹𝑧, {𝑠𝑖 }𝑖∈C).

5. Fmult receives a vector ∆𝑧 ∈ F𝑛 from Sim such that for all P𝑖 ∉ HC , (∆𝑧)𝑖 = 0. It then computes
[𝑧] = [𝑧]H + ∆𝑧 .

6. Fmult distributes the shares [𝑧] to honest parties.

— Let binMH
𝑘,𝑛−𝑡 and binMC

𝑘,𝑡
be the sub-matrix of binM𝑘,𝑛 containing columns with indices in H and C

respectively. In the real world, honest parties receive their shares in [u𝑗] = [u𝑗]H + ∆𝑢 𝑗
for every

corrupt party P𝑗 ∈ P and they compute their output shares as

[b1], . . . , [b𝑘] = binM𝑘,𝑛 · ([u1], . . . , [u𝑛])
= binMH

𝑘,𝑛−𝑡 ([u𝑖]H)P𝑖 ∈H + binMC
𝑘,𝑡
([u𝑖]H + ∆𝑢𝑖)P𝑖 ∈C

= binMH
𝑘,𝑛−𝑡 ([u𝑖]H)P𝑖 ∈H + binMC

𝑘,𝑡
([u𝑖]H)P𝑖 ∈C + binMC

𝑘,𝑡
(∆𝑢𝑖)P𝑖 ∈C

= ([b1]H, . . . , [b𝑘]H) + binMC
𝑘,𝑡
(∆𝑢𝑖)P𝑖 ∈C .

Since Sim computes the additive errors to the shares of the honest parties in the same way, it follows
that the additive errors to the shares are identical in the real and ideal world.

The degree-d sharing [b] distributed by Fbitrand is completely determined by the ℓ secrets, 𝑡 shares
of the corrupt parties and the additive errors to the shares of honest parties in HC . Since the latter are
identically distributed in the real and ideal worlds, it follows that the shares of the honest parties are
identically distributed in the real and ideal worlds.

Thus, the joint distribution consisting of the view of A and the output of honest parties is identically
distributed in the real and ideal worlds which proves the security of Πbitrand. □

5.5 Multiplication

In this section, we first describe the protocol Πmult (Protocol 5) to multiply two secret shared vectors and
then describe Πauth-mult (Protocol 6) to multiply two authenticated secret shared vectors (see Section 3.2).

The Πmult protocol described here is identical to the one used in [DN07]. Specifically, parties locally
compute a 2𝑑 = 𝑛 − 1 degree sharing of the product by multiplying their respective shares in the input
packed sharings. The aim of the protocol is to then securely perform a degree reduction so that parties can
output a degree-d packed sharing of the product. The degree reduction is carried out by reconstructing the
degree-(𝑛 − 1) sharing towards P1 after masking it with a random degree-(𝑛 − 1) packed sharing which
ensures privacy of the secrets. P1 then reconstructs the secret and deals a degree-d packed sharing of it.
Parties then locally unmask and output a packed sharing of the product.

The functionality Fmult that Πmult realizes is presented in Functionality 5 and is identical to the one
described in [GPS21]. Specifically, Fmult reconstructs the product z from [x]·[y]. This captures the situation

30

Protocol 5: Πmult ([x], [y])

1. Parties invoke Frand and Fzero to receive a random sharing [r] and a zero sharing [o]𝑛−1 respectively and
locally compute [r]𝑛−1 = [r] + [o]𝑛−1.

2. Parties locally compute [u]𝑛−1 = [x] · [y] + [r]𝑛−1 and send their shares in [u]𝑛−1 to P1.

3. P1 receive the whole sharing [u]𝑛−1, reconstructs the secrets u and computes [u] ← share(d, u). It then
sends the 𝑖-th share ([u])𝑖 to P𝑖 for each 𝑖 ∈ [1, 𝑛].

4. Parties receive their share in [u] and output [z] = [u] − [r].

Protocol 6: Πauth-mult (JxK, JyK,Scons,Smac)

1. Parties invoke Fmult on inputs [x] and [y] to obtain the sharing of the product [z].

2. Parties invoke Fmult on inputs [kmac𝑖 ·x] and [y] to obtain the sharing [kmac𝑖 ·𝑧] for each 𝑖 ∈ [1, 𝐿mac].

3. Parties set JzK = ([z], {[kmac𝑖 · z]}𝐿mac
𝑖=1).

4. Parties set Scons B Scons ∪ {[z]} ∪ {[kmaci · z]}𝐿mac
𝑖=1 and Smac B Smac ∪

{
JzK

}
and output JzK.

in Πmult when the shares of honest parties are inconsistent and thus the locally computed degree-(𝑛 − 1)
product sharing is of the form

[x] · [y] + [r]𝑛−1 = [x]H · [y]H + ∆𝑥 · [y]H + ∆𝑦 · [x]H + ∆𝑥 · ∆𝑦 + [r]𝑛−1.

As discussed in [GPS21], the terms involving ∆𝑥 can introduce linear errors in y in the reconstructed secret
and similarly, the terms involving ∆𝑦 can introduce linear errors in x. Thus, by reconstructing the product
z from [x] · [y], Fmult computes the same secret as in the protocol with possible linear errors when ∆𝑥

or ∆𝑦 are not 0. Note that privacy is still guaranteed in this case since we use a random degree-(𝑛 − 1)
packed sharing as the mask. However, if ∆𝑥 = ∆𝑦 = 0, then [x] = [x]H and [y] = [y]H , and Fmult

computes the correct product z = x ·y. Finally, since P1 might be corrupt, Fmult receives the additive errors
to the secret and additive errors to the shares of the output sharing from Sim. Looking ahead, we first
verify that the input and output sharings are consistent using Πcheck-cons (Protocol 13) which guarantees
that ∆𝑥 = ∆𝑦 = ∆𝑧 = 0, and then verify that the additive error to the secret 𝜹𝑧 = 0 using Πcheck-mac

(Protocol 14) which guarantees correctness of the multiplication.
The protocol Πauth-mult (Protocol 6) helps compute the multiplication of authenticated packed sharings

required for running the MAC check. The setsScons andSmac input to the protocol are used to collect shares
that are later checked for consistency and additive errors using the Πcheck-cons and Πcheck-mac protocols
respectively.

Complexity Analysis. The communication complexity of Πmult, to multiply two input packed sharings,
is O(𝑛) field elements while the computation complexity is O

(
𝑛2) . The round complexity of the protocol

is 2 assuming the random sharings required in the protocol have been generated beforehand.

Lemma 5. Πmult (Protocol 5) 𝑡-securely realizes Fmult (Functionality 5) in the {Frand, Fzero}-hybrid model.

Proof. Let A denote the adversary and C be the set of corrupt parties. LetH be the set of honest parties,
HH be a fixed subset ofH of size d + 1, andHC = H \HH . We construct a simulator Sim to simulate the
behavior of honest parties as follows.

31

— Sim emulates Frand and receives the shares of the corrupt parties in [r] and the additive error to the
shares ∆𝑟 from A. Sim emulates Fzero and receives the shares of the corrupt parties in [o]𝑛−1 from A.
It then computes the shares of the corrupt parties in [r]𝑛−1 by adding the shares of corrupt parties in
[r] and [o]𝑛−1.

— Sim receives the shares of corrupt parties in [x]H and [y]H as well as the vectors ∆𝑥 and ∆𝑦 from Fmult.

— Sim knows the shares of the corrupt parties in [x], [y], and [r]𝑛−1 and can thus compute the shares of
the corrupt parties in [u]𝑛−1. It then samples u ← Fℓ uniformly at random and computes the whole
sharing [u]𝑛−1 such that the shares of the corrupt parties are consistent. It then sends the shares of the
honest parties in [u]𝑛−1 to A.

— Sim receives the shares of honest parties in [u] fromA and computes the whole sharing [u] and [u]H .
It then computes the shares of corrupt parties in [z] using the shares of corrupt parties in [u] and [r]
and sends it to Fmult.

— Sim reconstructs the secret u from [u], computes 𝜹𝑧 = u − u and sends it to Fmult. It computes ∆𝑧 =

[u] − [u]H − ∆𝑟 and sends it to Fmult.

We now show that the view of A is identically distributed in the real and ideal worlds. Since Sim
honestly emulates Frand and Fzero, the only difference in A’s view is that it receives the shares of honest
parties for a random degree-(𝑛 − 1) sharing rather than for [u]𝑛−1 computed as in the protocol. However,
since Frand samples r uniformly at random, u is also uniformly random in the real world. Moreover, since
[o]𝑛−1 and thus [r]𝑛−1 are random degree-(𝑛−1) packed Shamir sharings, [u]𝑛−1 is also a random degree-
(𝑛 − 1) packed Shamir sharing given the secret u and the shares of the corrupt parties. It thus follows that
A’s view is identically distributed in both worlds.

We now show that the output of honest parties is identically distributed in both worlds conditioned
on the view of the adversary.

— Note thatA’s view fixes the value of u and u where u is underlying secret for the shares sent by P1. In
the real world, we have z = u − r. In the ideal world, Fmult reconstructs z from [x] · [y] which is equal
to u − r. Fmult then computes [z]H using z + 𝜹𝑧 as the secret where Sim computes 𝜹𝑧 = u − u. Thus
Fmult computes [z]H over the secret z + u − u = u − r + u − u = u − r which is the same as in the real
world. Thus, the secrets for the output sharing are identically distributed in the real and ideal worlds.

— In the real world, the shares of corrupt parties in the output sharing correspond to [z] = [u] − [r]. Note
that the shares of corrupt parties in [z] are equal to those in [z]H by definition. In the ideal world,
Sim honestly emulates Frand and receives the shares of the corrupt parties in [r] while it computes the
shares of the corrupt parties in [u] from the shares of the honest parties sent by A. It follows that the
shares of corrupt parties are identical in the real and ideal worlds.

— In the real world, [z] = [u] − [r] = [u]H +∆𝑢 − [r]H −∆𝑟 = [z]H +∆𝑢 −∆𝑟 and thus the additive errors
to the output sharing is ∆𝑢 − ∆𝑟 . In the ideal world, Sim computes ∆𝑧 = [u] − [u]H − ∆𝑟 = ∆𝑢 − ∆𝑟 .
Thus, the additive errors to the output shares are identically distributed in the real and ideal worlds.

The degree-d sharing [z] distributed by Fmult is completely determined by the secrets z, 𝑡 shares of the
corrupt parties and the additive errors to the shares of honest parties inHC . Since the latter are identically
distributed in the real and ideal worlds, it follows that the shares of the honest parties are identically
distributed in the real and ideal worlds.

Thus, the joint distribution consisting of the view of A and the output of honest parties is identically
distributed in the real and ideal worlds which proves the security of Πmult. □

32

Functionality 6: Frand-sharing

1. Frand-sharing receives the input pos, pos′, and 𝑓 from the honest parties.

2. Frand-sharing samples s← Fℓ uniformly at random.

3. Frand-sharing receives the shares of the corrupt parties
{
(𝑣𝑖 , 𝑣 ′𝑖)

}
𝑖∈C and a vector 𝜹 ∈ Fℓ . It then computes

[s |pos]𝑛−1 ← share(𝑛 − 1, s, {𝑣𝑖 }𝑖∈C ; pos) and [𝑓 (s) |pos′]H = share(d, 𝑓 (s) + 𝜹,
{
𝑣 ′𝑖
}
𝑖∈C ; pos′).

4. Frand-sharing receives a vector ∆ ∈ F𝑛 from Sim such that for all P𝑖 ∉ HC , (∆)𝑖 = 0. It then computes
[𝑓 (s) |pos′] = [𝑓 (s) |pos′]H + ∆.

5. Frand-sharing distributes the shares of [s |pos]𝑛−1 and [𝑓 (s) |pos′] to honest parties.

5.6 Share Transformation

In this section, we present the protocol Πtrans (Protocol 8) that is used to transform secrets from one set
of positions pos to another set of positions pos′ while applying a linear function 𝑓 on the secrets. The
protocol is identical to the one presented in [GPS22]. The Πauth-trans protocol (Protocol 9) uses Πtrans to
transform authenticated packed sharings from one set of positions to the other while applying a linear
function. The Πrand-sharing protocol (Protocol 7) allows parties to compute pre-processing data required to
run Πtrans. Given pos, pos′, and a linear function 𝑓 , Πrand-sharing outputs a pair of packed sharings over
uniformly random secrets; one where the secrets are shared over pos and the other where the secrets are
shared over pos′ after applying 𝑓 .

Let pos and pos′ be ordered sets such that pos, pos′ ⊂
{
slotC1 , . . . , slot

C
𝑊

}
∪ posdef . The Frand-sharing

functionality (Functionality 6), realized by Πrand-sharing, outputs a pair of sharings ([s |pos]𝑛−1, [𝑓 (s) |pos′])
when given pos, pos′, and 𝑓 as inputs, where s is a vector sampled uniformly at random. In Πtrans, parties
invoke Frand-sharing and use the degree-(𝑛 − 1) sharing to mask the input and reconstruct it towards P1. P1
then reconstructs the secret, locally applies the linear function 𝑓 , and re-shares the transformed (masked)
secrets over pos′. Parties can then locally unmask the secret using their share in [𝑓 (s) |pos′].

The protocol Πauth-trans (Protocol 9) is used to transform secrets in authenticated sharings from one set
of positions to the other while applying a linear function. The set Scons input to the protocol is used to
collect shares that are later checked for consistency using the Πcheck-cons protocol (Protocol 13).

The protocol Πrand-sharing (Protocol 7) realizes the functionality Frand-sharing. Πrand-sharing uses the fact
that share is a linear function and can thus be computed over secret shares. Thus, parties first generate
random sharings for the secrets and randomness used in the share algorithm and then compute share
in a distributed manner using the secret shares. Πrand-sharing achieves low communication complexity by
generating a batch of ℓ pairs of transformed random sharings in each run. Specifically, parties use packed
sharings to compute ℓ parallel instances of share over different inputs (pos𝑖 , pos′𝑖 , 𝑓𝑖) for each 𝑖 ∈ [1, ℓ].
However, this involves multiplying the packed shares with a vector of linear combiners corresponding to
the ℓ parallel instances of share being computed. This is done by utilizing the multiplicative friendliness
property described in Section 3.2, that enables multiplying a publicly known vector with a packed sharing.

Note that Πtrans provides perfect privacy against a malicious adversary but guarantees correctness
only against a semi-honest adversary. Looking ahead, we verify that the output sharings dealt by P1 are
consistent using Πcheck-cons (Protocol 13). However, it is not straightforward to verify the correctness of
the transformation using the MAC check since the secrets are shared over different positions in the input
and output while the MAC check requires that the secrets for all sharings being verified are shared over
the same positions posdef . Consequently, we show that a series of calls to Πtrans only accumulates additive

33

Protocol 7: Πrand-sharing (
{
pos𝑖 , pos

′
𝑖 , 𝑓𝑖

}ℓ
𝑖=1)

1. Parties invoke Fzero 2𝑛 times and obtain zero sharings [o1]𝑛−1, . . . , [o2𝑛]𝑛−1.

2. Parties invoke Frand 𝑛 + 𝑡 times and receive random sharings [u1], . . . , [u𝑛+𝑡].

3. Let s𝑖 =
{
(u𝑗)𝑖

}ℓ
𝑗=1 for each 𝑖 ∈ [1, ℓ] i.e., s𝑖 is the vector consisting of the 𝑖-th secret in u1, . . . , uℓ .

Similarly, let r1
𝑖 =

{
(u𝑗)𝑖

}ℓ+𝑡
𝑗=ℓ+1 and r2

𝑖 =
{
(u𝑗)𝑖

}𝑛+𝑡
𝑗=ℓ+𝑡+1 for each 𝑖 ∈ [1, ℓ]. We define [s𝑖 |pos𝑖]𝑛−1 and

[𝑓𝑖 (s𝑖) |pos′𝑖] as the sharings

[s𝑖 |pos𝑖]𝑛−1 = share(𝑛 − 1, s𝑖 ; pos𝑖 , r
2
𝑖)

[𝑓𝑖 (s𝑖) |pos′𝑖] = share(d, 𝑓𝑖 (s𝑖); pos′𝑖 , r1
𝑖).

Since share is linear, the 𝑗-th share in [s𝑖 |pos𝑖]𝑛−1 can be expressed as a linear combination of elements
in s𝑖 and r2

𝑖 . Specifically, we have

([s𝑖 |pos𝑖]𝑛−1) 𝑗 =
ℓ∑︁

𝑘=1
𝛼
𝑗

𝑖,𝑘
(s𝑖)𝑘 +

𝑛−ℓ∑︁
𝑘=1

𝛼
𝑗

𝑖,ℓ+𝑡+𝑘 (r
2
𝑖)𝑘 =

ℓ∑︁
𝑘=1

𝛼
𝑗

𝑖,𝑘
(u𝑘)𝑖 +

𝑛+𝑡∑︁
𝑘=ℓ+𝑡+1

𝛼
𝑗

𝑖,𝑘
(u𝑘)𝑖 .

Similarly, the 𝑗-th share in [𝑓𝑖 (s𝑖) |pos′𝑖] can be expressed as the linear combination
∑ℓ+𝑡

𝑘=1 𝛽
𝑗

𝑖,𝑘
(u𝑘)𝑖 . Let

𝜶 𝑗

𝑘
= (𝛼 𝑗

1,𝑘 , . . . , 𝛼
𝑗

ℓ,𝑘
) for each 𝑗 ∈ [1, ℓ] ∪ [ℓ + 𝑡 + 1, 𝑛 + 𝑡] and let 𝜷 𝑗

𝑘
= (𝛽 𝑗

1,𝑘 , . . . , 𝛽
𝑗

ℓ,𝑘
) for each 𝑗 ∈ [1, ℓ + 𝑡].

Parties compute

[x𝑗]𝑛−1 =

ℓ∑︁
𝑘=1

𝜶 𝑗

𝑘
[u𝑘] +

𝑛+𝑡∑︁
𝑘=ℓ+𝑡+1

𝜶 𝑗

𝑘
[u𝑘] + [o𝑗]𝑛−1

[y𝑗]𝑛−1 =

ℓ+𝑡∑︁
𝑘=1

𝜷 𝑗

𝑘
[u𝑘] + [o𝑛+𝑗]𝑛−1

and send their shares in [x𝑗]𝑛−1 and [y𝑗]𝑛−1 to P𝑗 for each 𝑗 ∈ [1, 𝑛].

4. Each P𝑖 ∈ P receives the whole sharing [x𝑖]𝑛−1 and [y𝑖]𝑛−1 and reconstructs the secrets x𝑖 and y𝑖 .

5. Each P𝑖 ∈ P outputs its share ([s𝑗 |pos𝑗]𝑛−1)𝑖 = (x𝑖) 𝑗 and ([𝑓𝑗 (s𝑗) |pos′𝑗])𝑖 = (y𝑖) 𝑗 for each 𝑗 ∈ [1, ℓ].

errors to the secret. A transformed sharing can then by verified for correctness by first transforming the
secrets to be shared over posdef and then using the MAC check. For more details, we refer the reader to
Section 6.2.

Complexity Analysis. Πrand-sharing has an amortized communication complexity of O(𝑛) field elements,
an amortized computation complexity of O

(
𝑛2) , and a round complexity of 2 for generating a single pair

of transformed random sharings. Πtrans has a communication complexity of O(𝑛) field elements and a
computation complexity of O

(
𝑛2) for transforming an input packed sharing. The round complexity of

Πtrans, assuming the random sharings have been generated beforehand, is 2.

Lemma 6. Πrand-sharing (Protocol 7) 𝑡-securely realizes ℓ invocations of Frand-sharing (Functionality 6) in the
{Frand, Fzero}-hybrid model.

Proof. Let A denote the adversary and C be the set of corrupt parties. LetH be the set of honest parties,
HH be a fixed subset ofH of size d + 1, andHC = H \HH .

34

Protocol 8: Πtrans ([x |pos]d+ℓ−1, pos
′, 𝑓)

1. Parties invoke Frand-sharing with inputs pos, pos′, and 𝑓 to receive the sharings [r |pos]𝑛−1 and
[𝑓 (r) |pos′].

2. Parties locally compute [x + r |pos]𝑛−1 = [x |pos]d+ℓ−1 + [r |pos]𝑛−1 and send their shares of
[x + r |pos]𝑛−1 to P1.

3. P1 receives the whole sharing [x + r |pos]𝑛−1, reconstructs the secrets x + r, and computes 𝑓 (x + r).

4. P1 computes [𝑓 (x+ r) |pos′] ← share(d, 𝑓 (x+ r), pos′) and sends the 𝑖-th share ([𝑓 (x + r) |pos′])𝑖 to P𝑖 .

5. Parties receive their share in [𝑓 (x + r) |pos′] and output [𝑓 (x) |pos′] = [𝑓 (x + r) |pos′] − [𝑓 (r) |pos′].

Protocol 9: Πauth-trans (Jx |posKd+ℓ−1, pos
′, 𝑓 ,Scons)

1. Parties run Πtrans ([x |pos]d+ℓ−1, pos
′, 𝑓) to receive the transformed sharing [𝑓 (x) |pos′].

2. Parties run Πtrans ([kmac𝑖 · x |pos]d+ℓ−1, pos
′, 𝑓) to receive the sharing [kmac𝑖 · 𝑓 (x) |pos′] for each 𝑖 ∈

[1, 𝐿mac].

3. Parties set Scons B Scons ∪ {[𝑓 (x) |pos′]} ∪ {[kmac𝑖 · 𝑓 (x) |pos′]}𝐿mac
𝑖=1 .

4. Parties output J𝑓 (x) |pos′K = ([𝑓 (x) |pos′], {[kmac𝑖 · 𝑓 (x) |pos′]}𝐿mac
𝑖=1).

At a high level, since the shares of the corrupt parties in the output sharing are uniformly random, it
is straightforward to the simulate A’s view in the ideal world. The remainder of the work done by Sim is
in extracting the additive errors to the secret and additive errors to the shares. Specifically, Sim computes
the errors X𝑖 and Y𝑖 to the secrets x𝑖 and y𝑖 reconstructed by honest party P𝑖 , using the additive errors{

∆𝑢 𝑗

}𝑛+𝑡
𝑗=1 sent by A to Frand as well as from the errors in the shares of honest parties sent by A during

reconstruction. Note that x𝑖 and y𝑖 correspond to the shares of P𝑖 in the output sharing and thus X𝑖 and
Y𝑖 are additive errors to these output shares. The simulator then translates X𝑖 for all parties P𝑖 ∈ P and Y𝑖

for every P𝑖 ∈ HH to an additive error to the secret of the output sharings [𝑓𝑗 (sj) |pos′] for each 𝑗 ∈ [1, ℓ].
The errors Y𝑖 for every P𝑖 ∈ HC is set as the additive errors to the shares in [𝑓𝑗 (sj) |pos′] for each 𝑗 ∈ [1, ℓ].
We proceed to formally describe the simulator Sim.

— Sim honestly emulates Fzero and receives the shares of the corrupt parties in [o𝑖]𝑛−1 for each 𝑖 ∈ [1, 2𝑛].

— Sim honestly emulates Frand and receives the shares of the corrupt parties in [u𝑖] and the additive errors
to the shares ∆𝑢𝑖 for each 𝑖 ∈ [1, 𝑛 + 𝑡].

— Sim computes the shares of the corrupt parties in [x𝑖]𝑛−1 and [y𝑖]𝑛−1 as in the protocol for every
𝑖 ∈ [1, 𝑛]. It also computes ∆𝑥𝑖 =

∑ℓ
𝑘=1 [𝜶

𝑗

𝑘
]
ℓ−1∆𝑢𝑘 +

∑𝑛−ℓ
𝑘=ℓ+𝑡+1 [𝜶

𝑗

𝑘
]
ℓ−1∆𝑢𝑘 and ∆𝑦𝑖 =

∑ℓ+𝑡
𝑘=1 [𝜷

𝑗

𝑘
]
ℓ−1∆𝑢𝑘 .

— For each 𝑖 ∈ [1, 𝑛], Sim does one of the following based on the party P𝑖 towards which the shares
[x𝑖]𝑛−1 and [y𝑖]𝑛−1 are being reconstructed.

– If P𝑖 is corrupt, Sim samples x𝑖 , y𝑖 ← Fℓ uniformly at random and computes the sharing [x𝑖]𝑛−1
and [y𝑖]𝑛−1 such that the shares of the corrupt parties, as computed in the previous step, are
consistent. It then sends the shares of honest parties in [x𝑖]𝑛−1 and [y𝑖]𝑛−1 to A.

35

– If P𝑖 ∈ H , Sim receives the shares of corrupt parties in [x𝑖]𝑛−1 and [y𝑖]𝑛−1 where we use [x]𝑛−1
and [y]𝑛−1 to denote the fact that the shares of corrupt parties might differ from those in [x𝑖]𝑛−1
and [y𝑖]𝑛−1. Sim then computes a degree-(𝑛 − 1) sharing [X𝑖]𝑛−1 as follows. The share of each
party P𝑗 ∈ HH is set to 0 i.e., ([X𝑖]𝑛−1) 𝑗 = 0. The share of each corrupt party P𝑗 ∈ C is computed
as ([X𝑖]𝑛−1) 𝑗 = ([x𝑖]𝑛−1) 𝑗 − ([x𝑖]𝑛−1) 𝑗 . The share of each honest party P𝑗 ∈ HC is computed as
([X𝑖]𝑛−1) 𝑗 = (∆𝑥𝑖) 𝑗 . Sim computes [Y𝑖]𝑛−1 in a similar manner. It then reconstructs the secrets
X𝑖 and Y𝑖 from [X𝑖]𝑛−1 and [Y𝑖]𝑛−1 respectively.

— Sim does the following for the 𝑖-th invocation of Frand-sharing for each 𝑖 ∈ [1, ℓ]

– Sim sends
{
((x𝑖) 𝑗 , (y𝑖) 𝑗)

}
P𝑖 ∈C

to Frand-sharing as the shares of corrupt parties.

– Sim computes a degree-(𝑛 − 1) sharing [𝜹𝑠𝑖]𝑛−1 such that ([𝜹𝑠𝑖]𝑛−1) 𝑗 = (X𝑗)𝑖 for every P𝑗 ∈ H
and ([𝜹𝑠𝑖]𝑛−1) 𝑗 = 0 otherwise. It computes a degree-d sharing [𝜹𝑓𝑖] such that ([𝜹𝑓𝑖]) 𝑗 = (Y𝑗)𝑖
for every P𝑗 ∈ HH and ([𝜹𝑓𝑖]𝑛−1) 𝑗 = 0 otherwise. Sim reconstructs 𝜹𝑠𝑖 and 𝜹𝑓𝑖 and sends 𝜹𝑖 =
𝜹𝑓𝑖 − 𝑓𝑖 (𝜹𝑠𝑖) to Frand-sharing as the additive errors to the secrets.

– Sim sends ∆𝑖 to Frand-sharing where (∆𝑖) 𝑗 = (Y𝑗)𝑖 for every P𝑗 ∈ HC and (∆𝑖) 𝑗 = 0 otherwise.

We now show that the view of A is identically distributed in the real and ideal worlds. The main
difference between the real and ideal worlds is that A sees the shares of honest parties in [x𝑖]𝑛−1 and
[y𝑖]𝑛−1 for every P𝑖 ∈ C whereas in the ideal world Sim generates the shares of the honest parties for a
random degree-(𝑛−1) sharing. However, in the real world, x𝑖 corresponds to the shares of P𝑖 in [s𝑗 |pos]𝑛−1
and y𝑖 corresponds to the shares of P𝑖 in [𝑓𝑗 (s𝑗) |pos′] for each 𝑗 ∈ [1, ℓ]. Since the shares of corrupt parties
in degree-(𝑛−1) and degree-d sharings are uniformly distributed and independent of the secret, the secrets
x𝑖 and y𝑖 are uniformly distributed in the real world. Moreover, since [o𝑖]𝑛−1 and [o𝑛+𝑖]𝑛−1 are random
degree-(𝑛−1) packed Shamir sharings, the sharings [x𝑖]𝑛−1 and [y𝑖]𝑛−1 are random degree-(𝑛−1) packed
Shamir sharings given the secrets x𝑖 , y𝑖 and the shares of the corrupt parties. ThusA’s view is identically
distributed in the real and ideal worlds.

We now show that the output of honest parties is identically distributed in both worlds conditioned
on the view of A. In the real world, every honest party P𝑖 ∈ H takes x𝑖 and y𝑖 that it reconstructs as its
shares for [s𝑗 |pos]𝑛−1 and [𝑓𝑗 (s𝑗) |pos′] respectively for each 𝑗 ∈ [1, ℓ]. We use xi and yi to denote that
the reconstructed values are different from the expected x𝑖 and y𝑖 respectively, due to the additive errors
to the random sharings and the errors x̂i and ŷi introduced byA to the shares of corrupt parties in [x𝑖]𝑛−1
and [y𝑖]𝑛−1 during reconstruction. We have

[x𝑖]𝑛−1 =

ℓ∑︁
𝑘=1

𝜶 𝑖
𝑘
([u𝑘]H + ∆𝑢𝑘) +

𝑛−ℓ∑︁
𝑘=ℓ+𝑡+1

𝜶 𝑖
𝑘
([u𝑘]H + ∆𝑢𝑘) + [o𝑖]𝑛−1 + x̂𝑖

= [x𝑖]𝑛−1 + [X𝑖]𝑛−1

[y𝑖]𝑛−1 =

ℓ+𝑡∑︁
𝑘=1

𝜷𝑖
𝑘
([u𝑘]H + ∆𝑢𝑘) + [o𝑛+𝑖]𝑛−1 + ŷ𝑖

= [y𝑖]𝑛−1 + [Y𝑖]𝑛−1.

This implies that the secrets s𝑗 for the degree-(𝑛 − 1) packed Shamir shares output by parties in the
real world correspond to sj = s𝑗 + 𝜹𝑠 𝑗 where s𝑗 and 𝜹𝑠 𝑗 are defined by the sharings [s𝑗 |pos𝑗]𝑛−1 =

((x1) 𝑗 , . . . , (x𝑛) 𝑗) and [𝜹𝑠 𝑗 |pos𝑗]𝑛−1 = ((X1) 𝑗 , . . . , (X𝑛) 𝑗). On the other hand, since a degree-d sharing
is defined by the shares of parties inHH , the secrets 𝑓𝑗 (s𝑗) for the degree-𝑑 packed sharing output by par-
ties in the real world correspond to 𝑓𝑗 (s) = 𝑓𝑗 (s𝑗) + 𝜹𝑓𝑗 where [𝑓𝑗 (s𝑗) |pos′] and [𝜹𝑓𝑗 |pos′] are defined by

36

the shares
{
(y𝑖) 𝑗

}
𝑖∈HH

and
{
(Y𝑖) 𝑗

}
𝑖∈HH

. The errors X𝑖 to the secrets x𝑖 reconstructed by parties P𝑖 ∈ HC
would then correspond to additive errors ∆𝑓𝑗 to the degree-𝑑 output sharings [𝑓𝑗 (s𝑗) |pos′]. Note thatA’s
view fixes the value of 𝜹𝑠 𝑗 , 𝜹𝑓𝑗 , and ∆𝑓𝑗 . s𝑗 is uniformly random since it is sampled within Frand, which
implies that s𝑗 is uniformly random. In the ideal world, Frand-sharing samples s𝑗 uniformly at random and
so the underlying secrets for the degree-(𝑛−1) sharing are uniformly random in the real and ideal worlds.
Moreover, note that 𝑓𝑗 (s𝑗) − 𝑓𝑗 (s𝑗) = 𝑓𝑗 (s𝑗) +𝜹𝑓𝑗 − 𝑓𝑗 (s𝑗) − 𝑓𝑗 (𝜹𝑠 𝑗) = 𝜹𝑓𝑗 − 𝑓𝑗 (𝜹𝑠 𝑗) = 𝜹 𝑗 which is exactly the
additive error to the secret sent by Sim to Frand-sharing. Since the simulator computes the values of 𝜹𝑠 𝑗 , 𝜹𝑓𝑗 ,
and ∆𝑓𝑗 correctly, it follows that the secrets and additive errors to the shares are identically distributed
in the real and ideal worlds. Moreover, since A’s view fixes the shares of the corrupt parties, it follows
that the shares of honest parties in [𝑓𝑗 (s𝑗) |pos′] are identically distributed in the real and ideal worlds
since degree-d sharings are completely defined by the secrets, the shares of the corrupt parties and the
additive errors to the shares which we have just shown to be identically distributed in the real and ideal
worlds. Finally, [s𝑗 |pos]𝑛−1 is a random degree-(𝑛 − 1) sharing given the shares of the corrupt parties
since [s𝑗 |pos]𝑛−1 is a random degree-(𝑛 − 1) sharing given the shares of the corrupt parties. Sim sends
the shares of the corrupt parties to Frand-sharing and Frand-sharing generates the shares of honest parties in
[s𝑗 |pos]𝑛−1 with the same distribution as in the real world.

Thus, the joint distribution consisting of the view of A and the output of honest parties is identically
distributed in the real and ideal worlds which proves the security of Πrand-sharing. □

5.7 Sharing MAC Keys

In this section, we describe the protocol Πmac-keygen (Section 5.7) that generates packed Shamir sharings of
MAC keys. Specifically, since we re-order and re-pack secrets from different sharings in our MPC protocol,
we require that each MAC key be of the form kmac ·1, where kmac is a random field element and 1 denotes
a vector of all 1s. In other words, the MAC key share is a packed sharing of a secret vector of the form
(kmac, . . . , kmac) where each element is identical. This ensures that packed sharings of the MAC always
correspond to the same key kmac despite arbitrary re-ordering and re-packing of the secrets from different
packed sharings. The protocol is similar to Πrand except that parties also check that all output sharings are
consistent and of the required form. This is done by using a similar approach as [BTH08], where a hyper-
invertible matrix H𝑛,𝑛 is used to transform the shares dealt by each party and 2𝑡 transformed sharings are
reconstructed towards individual parties and checked for correctness. The property of hyper-invertible
matrices, combined with the fact that at least 𝑡 parties that check the transformed sharings are honest
implies that the output sharings are correct if all checks pass. The functionality Fmac-keygen that Πmac-keygen
realizes is described in Functionality 7.

Complexity Analysis. The total communication complexity of the protocol is O
(
𝑛2) field elements.

However, each run of the protocol yields 2ℓ packed sharings and thus the amortized cost per packed sharing
of a MAC key is O(𝑛) field elements. Similarly, the amortized computation complexity of the protocol for
generating a packed sharing of a MAC key is O

(
𝑛2) . The round complexity of the protocol is 3.

Lemma 7. Πmac-keygen (Protocol 10) 𝑡-securely realizes 2ℓ invocations of Fmac-keygen (Functionality 7).

Proof. Let A denote the adversary and C be the set of corrupt parties. LetH be the set of honest parties,
HH be a fixed subset ofH of size d + 1, andHC = H \HH . We construct a simulator Sim to simulate the
behavior of honest parties.

The simulator Sim works as follows.

— Sim sends uniformly random values as the shares of corrupt parties in [𝑢𝑖] for every P𝑖 ∈ H and
receives the shares of honest parties in [u𝑗] for every P𝑗 ∈ C from A. Here we use u𝑗 to denote any
errors that A might have introduced.

37

— It then computes the whole sharing [u𝑗] and [u𝑗]H , reconstructs the secret uj and sets ∆𝑢 𝑗
= [u𝑗] −

[u𝑗]H and 𝜹𝑢 𝑗
= (u𝑗)1 · 1 − u𝑗 for every P𝑗 ∈ C. It sets ∆𝑢 𝑗

= 0 and 𝜹𝑢 𝑗
= 0 for each P𝑗 ∈ H .

— Note that Sim now knows the shares of corrupt parties for [𝑢𝑖] for every P𝑖 ∈ P. It can thus compute
the shares of the corrupt party in [kmac𝑗] for each 𝑗 ∈ [1, 𝑛] by multiplying the shares of the corrupt
parties in [𝑢𝑖] with H𝑛,𝑛 as in the protocol.

— Sim computes (∆1, . . . ,∆𝑛) = H𝑛,𝑛 (∆𝑢1, . . . ,∆𝑢𝑛) and (𝜹1, . . . , 𝜹𝑛) = H𝑛,𝑛 (𝜹𝑢1, . . . , 𝜹𝑢𝑛). Sim samples
kmac𝑖 ← F uniformly at random, computes the sharing [kmac𝑖 +𝜹𝑖] such that the shares of the corrupt
parties are consistent. For every corrupt party P𝑖 ∈ C such that 𝑖 ∈ [1, 2𝑡], Sim sends the shares of
honest parties in [kmac𝑖 + 𝜹𝑖] + ∆𝑖 to A. For every honest party P𝑖 ∈ H such that 𝑖 ∈ [1, 2𝑡], Sim
receives the shares of the corrupt parties for [kmac𝑖] from A. If corrupt parties shares in [kmac𝑖]
are different from those that Sim computed in [kmac𝑖] then Sim sends abort to every invocation of
Fmac-keygen.

— If 𝜹𝑢𝑖 ≠ 0 or ∆𝑢𝑖 ≠ 0 for any P𝑖 ∈ C, Sim sends abort to all invocations of Fmac-keygen. Else, it sends
continue to all invocations of Fmac-keygen. It sends the shares of the corrupt parties in [kmac𝑖] to the
𝑖-th invocation of Fmac-keygen for every 𝑗 ∈ [2𝑡 + 1, 𝑛].

We now show that A’s view in the real world is identically distributed to its view in the simulation.
We use 𝑥 + 𝜹 to denote 𝑥 · 1 + 𝜹 for brevity. The shares of corrupt parties in [𝑢𝑖] for each P𝑖 ∈ H is
uniformly random in the real world since it is a degree-d sharing. Sim sends uniformly random values to
A as the shares of corrupt parties too and so the shares of the corrupt parties are identically distributed.
Let [uj] = [u𝑗 + 𝜹𝑢 𝑗

] + ∆𝑢 𝑗
where u𝑗 = (u𝑗)1 · 1. We have

([kmac1 + 𝛿] + ∆1, . . . , [kmac𝑛 + 𝛿] + ∆𝑛) =
H𝑛,𝑛 ([𝑢1 + 𝜹𝑢1] + ∆𝑢1, . . . , [𝑢𝑛 + 𝜹𝑢𝑛] + ∆𝑢𝑛)

where 𝜹𝑢𝑖 = 0 and ∆𝑢𝑖 = 0 for P𝑖 ∈ H . Thus, 𝜹𝑖 and ∆𝑖 computed by Sim are identical to those in the
real world. Moreover, given the secrets u𝑖 shares by corrupt parties P𝑖 ∈ C, the secrets kmac𝑖 for a 𝑡

sized subset of 𝑖 ∈ [1, 2𝑡] revealed to A are uniformly random since secrets shared by honest parties are
uniformly random. It follows that the view of A in the simulation is identically distributed to that in the
real world.

We now show that the shares output by honest parties is identically distributed in the real and ideal
worlds conditioned on the view of A.

— Let HH𝑛,𝑛−𝑡 and HC𝑛,𝑡 be the sub-matrix of H𝑛,𝑛 containing columns with indices inH and C respectively.
Let [kmac𝑖 + 𝜹𝑖] denote the shares computed by parties in the real world for every 𝑖 ∈ [1, 𝑛], where

Functionality 7: Fmac-keygen

1. Fmac-keygen receives status ∈ {continue, abort} from Sim.

2. If status = continue, Fmac-keygen receives the shares of the corrupt parties {𝑠𝑖 }𝑖∈C from Sim. It then
samples kmac← F uniformly at random and computes [kmac] = share(d, kmac · (1)ℓ , {𝑠𝑖 }𝑖∈C). It then
distributes [kmac] to the honest parties.

3. Else, Fmac-keygen sends abort to honest parties.

38

Protocol 10: Πmac-keygen

1. Every party P𝑖 ∈ P locally samples 𝑢𝑖 ← F uniformly at random, computes [𝑢𝑖] ← share(d, 𝑢𝑖 · 1)a, and
then sends the 𝑗-th share ([𝑢𝑖]) 𝑗 to 𝑃 𝑗 for each 𝑗 ∈ [1, 𝑛].

2. Having received their shares in [𝑢1], . . . , [𝑢𝑛], parties locally compute

[kmac1], . . . , [kmac𝑛] = H𝑛,𝑛 · ([𝑢1], . . . , [𝑢𝑛]).

3. Parties send their shares in [kmac𝑖] to P𝑖 for each 𝑖 ∈ [1, 2𝑡]. P𝑖 receives the whole sharing [kmac𝑖] and
checks if all the shares form a valid degree-d packed Shamir sharing such that the reconstructed secret
is of the form kmac𝑖 · 1 for each 𝑖 ∈ [1, 2𝑡]. If the check fails, P𝑖 sends abort to all parties else it sends
continue to all parties.

4. If no party P𝑖 for any 𝑖 ∈ [1, 2𝑡] sent abort, parties output their shares in [kmac2𝑡+1], . . . , [kmac𝑛].
a1 denotes the vector of all ones (1, . . . , 1).

𝜹𝑖 is the additive error to the secret because of corrupt parties P𝑗 ∈ C that share secrets of the form
u𝑗 = 𝑢 𝑗 · 1 + 𝜹𝑢 𝑗

instead of 𝑢 𝑗 · 1. We have

(kmac1 + 𝜹1, . . . , kmac𝑛 + 𝜹𝑛) = H𝑛,𝑛 (𝑢1 + 𝜹𝑢1, . . . , 𝑢𝑛 + 𝜹𝑢𝑛)
= HH𝑛,𝑛−𝑡 (𝑢𝑖 + 𝜹𝑢𝑖)P𝑖 ∈H + HC𝑛,𝑡 (𝑢𝑖 + 𝜹𝑢𝑖)P𝑖 ∈C
= (kmac1, . . . , kmac𝑛) + HH𝑛,𝑛−𝑡 (𝜹𝑢𝑖)P𝑖 ∈H + HC𝑛,𝑡 (𝜹𝑢𝑖)P𝑖 ∈C

When parties don’t abort, we have 𝜹𝑢𝑖 = 0 for P𝑖 ∈ H and 𝜹𝑖 = 0 for 𝑖 ∈ [𝑛 − 𝑡 + 1, 𝑛]. From the
property of hyper-invertible matrices, it follows that given any 𝑡 outputs and 𝑛 − 𝑡 inputs, one can
linearly compute the remaining 𝑛 − 𝑡 outputs and 𝑡 inputs. If no party sent an abort, we have 𝜹𝑖 = 0 for
a subset of 𝑖 ∈ [1, 2𝑡] of size at least 𝑡 , corresponding to the shares checked by honest parties P𝑖 ∈ H .
Moreover, 𝜹𝑢𝑖 = 0 for each P𝑖 ∈ H . Thus, since 𝑡 outputs and 𝑛 − 𝑡 inputs are known to be zero vectors,
it follows that the remaining 𝑛 − 𝑡 outputs and 𝑡 inputs are also zero vectors.

Moreover, hyper-invertible matrices also guarantee that given 𝑡 inputs, there is a bijection between the
𝑛 − 𝑡 inputs and any 𝑛 − 𝑡 outputs. A’s view consits of the 𝑡 input u𝑗 for each P𝑗 ∈ C. Since the honest
parties share uniformly random secrets, it follows that 𝑛 − 𝑡 outputs are uniformly random. A learns
kmac𝑖 for a subset of 𝑖 ∈ [1, 2𝑡] of size at most 𝑡 . The remaining 𝑛−2𝑡 = 2ℓ output secrets are uniformly
random. In the ideal world, Frand samples kmac𝑖 ← F uniformly at random and secret shares kmac𝑖 · 1
for every 𝑖 ∈ [1, 2ℓ]. Thus, the secrets are identically distributed in the real and ideal worlds.

— Note that A’s view completely decides the shares of the corrupt parties in [u𝑖] for each 𝑖 ∈ [1, 𝑛]
since it consists of the shares of corrupt parties in sharings dealt by honest parties and shares of honest
parties in sharings dealt by corrupt parties. Specifically, the latter suffices to compute the whole sharing.
Moreover, Sim honestly follows the steps of the protocol using the shares of the corrupt parties. It thus
follows that the shares of corrupt parties are identical in the real and ideal worlds.

— Using a similar argument to that used for showing that 𝜹𝑖 = 0 when no party P𝑖 aborts for each 𝑖 ∈
[1, 2𝑡], it can be shown that ∆𝑖 = 0 for each 𝑖 ∈ [2𝑡 + 1, 𝑛] when no party aborts. In the ideal world,
Fmac-keygen does not introduce any additive errors to the shares of honest parties. Thus, the additive
errors to shares of honest parties is identical and 0 in both worlds.

39

Protocol 11: Πauth ([x], {[kmac𝑖]}𝐿mac
𝑖=1 ,Scons,Smac)

1. Parties invoke Fmult on inputs [kmac𝑖] and [x] to receive the sharing [kmac𝑖 · x] for each 𝑖 ∈ [1, 𝐿mac].

2. Parties set Scons B Scons ∪ {[kmac𝑖 · x]}𝐿mac
𝑖=1 .

3. Parties compute JxK = ([x], {[kmac𝑖 · x]}𝐿mac
𝑖=1) and update Smac B Smac ∪

{
JxK

}
.

4. Parties output JxK.

Protocol 12: Πcheck-bit (JbK,Scons,Smac,Szero)

1. Parties run Πauth-mult (JbK, JbK,Scons,Smac) to obtain the authenticated sharing of the product Jb2K.

2. Parties locally compute JoK = Jb2K − JbK.

3. Parties set Szero B Szero ∪ {[o]}.

— It follows from the contrapositive of the argument made above that if 𝜹𝑢𝑖 ≠ 0 for some P𝑖 ∈ C then
there exists 𝜹𝑖 ≠ 0 for a subset 𝑖 ∈ [1, 2𝑡] of size at least 𝑡 +1, as shown above. A similar argument holds
for additive errors to shares of honest parties too. Thus it follows that if the check fails for an honest
party in the real world then the simulator sends abort to Fmac-keygen.

The degree-d sharing [kmac𝑖] distributed by Fmac-keygen is completely determined by the secret kmac𝑖 ,
𝑡 shares of the corrupt parties and the additive errors to the shares of honest parties inHC . Since the latter
are identically distributed in the real and ideal worlds, it follows that the shares of the honest parties are
identically distributed in the real and ideal worlds.

Thus, the joint distribution consisting of the view of A and the output of honest parties is identically
distributed in the real and ideal worlds which proves the security of Πmac-keygen. □

5.8 Authenticate Sharing

The protocol Πauth presented in Protocol 11, takes a degree-d packed Shamir sharing [x] and shares of the
MAC keys as input and outputs an authenticated packed sharing JxK by securely multiplying the secret
with each MAC key.

Complexity Analysis. The communication complexity of the protocol is O(𝑛𝐿mac), the computation
complexity is O

(
𝑛2𝐿mac

)
, and the round complexity is 2 assuming the random shares required for multi-

plication have been generated beforehand.

5.9 Verify Bit Vector Sharings

The protocol Πcheck-bit presented in Protocol 12, is used to check whether the underlying secret of the input
authenticated packed sharing is a vector of bits. This is done by checking if b · b − b = 0 which is true iff
b ∈ {0, 1}ℓ . Note that, Πcheck-bit merely updates the appropriate sets with the sharing to be verified and
the actual check for zero is run later in the main MPC protocol Πmpc (Protocol 16). The communication,
computation and round complexity of Πcheck-bit is identical to the costs of a single run of Πauth-mult.

40

Protocol 13: Πcheck-cons (Scons)

1. Let𝑚 = |Scons | and Scons = {[x𝑖]}𝑚𝑖=1. For each 𝑖 ∈ [1, 𝐿check], parties do the following in parallel

(a) Invoke Frand to receive the random sharing [r𝑖].

(b) Invoke Fcoin 𝑚 + 1 times to receive the random values
{
𝛼𝑖1, . . . , 𝛼

𝑖
𝑚+1

}
.

(c) Locally compute [y𝑖] =
∑𝑚

𝑗=1 𝛼
𝑖
𝑗 [x𝑗] + 𝛼𝑖𝑚+1 [r𝑖].

2. Parties send their shares in [y𝑖] to every other party and receive the whole sharing [y𝑖] for each 𝑖 ∈
[1, 𝐿check]. Each P𝑗 ∈ P checks if the shares in [y𝑖] form a valid degree-d packed Shamir sharing for
each 𝑖 ∈ [1, 𝐿check]. If the check passes for every 𝑖 ∈ [1, 𝐿check], P𝑗 accepts else it aborts.

5.10 Verify Consistency of Sharing

Most of the sub-protocols discussed previously are semi-honest secure but guarantee perfect privacy
against a malicious adversary. One class of attacks that the adversary can carry out to undermine the
correctness of the protocol is to distribute inconsistent degree-𝑑 packed sharings where the shares of all
honest parties don’t lie on a polynomial of degree d. The protocol Πcheck-cons (Protocol 13) adopted from
[GPS22], ensures the consistency of the input sharings while preserving the privacy of the underlying
secrets. The protocol computes a random linear combination of the shares to be verified, masks it with
a random sharing and then publicly reconstructs the sharing. Intuitively, the random linear combination
helps “compress” the inputs while ensuring that if any input sharing is inconsistent then the output sharing
is also inconsistent, with probability 1 − |F|−1. Since we use a field F of order independent of the security
parameter, we repeat the check 𝐿check ≥ 𝜅𝑠

log2 |F |
number of times to amplify the probability and ensure that,

the probability of an adversary successfully affecting correctness without getting detected is negligible.

Complexity Analysis. Πcheck-cons has a communication complexity of O
(
𝑚𝑛𝐿check + 𝑛2𝐿check

)
field ele-

ments, a computation complexity ofO
(
𝑚𝑛𝐿check + 𝑛2𝐿check

)
, and a round complexity of 2 assuming random

sharings have been generated beforehand, where 𝑚 is the number of packed sharings input to the proto-
col. Using PRFs to instantiate Fcoin, as discussed in Section 5.2, improves the communication complexity
to O

(
𝑛2𝐿check

)
making it independent of the number of packed sharings verified.

Lemma 8. If there exists [x] ∈ Scons such that ∆𝑥 ≠ 0 then honest parties abort in Πcheck-cons with
probability at least 1 − |F|−𝐿check .

Proof. From the definition of Frand,
{
𝛼𝑖1, . . . , 𝛼

𝑖
𝑚+1

}
are uniformly random for each 𝑖 ∈ [1, 𝐿check]. We

compute the probability that the check fails for some arbitrary 𝑖 ∈ [1, 𝐿check]. For brevity, we use ∆𝑗 to
denote ∆𝑥 𝑗

and denote r𝑖 as x𝑚+1. Let the 𝑘-th sharing [x𝑘] be inconsistent so that ∆𝑘 ≠ 0 for some
𝑘 ∈ [1,𝑚 + 1]. Since parties abort if the received shares do not form a degree-d packed Shamir sharing and
honest parties always send their shares to all parties, we require

𝑚+1∑︁
𝑗=1

𝛼𝑖𝑗∆𝑗 = 0

despite ∆𝑘 ≠ 0. This is true if

𝛼𝑖
𝑘
=

©«
∑︁

𝑗∈[1,𝑚]
𝑗≠𝑘

𝛼 𝑗 · (∆𝑗)idx
ª®®®¬ · (∆𝑘)−1

idx

41

Protocol 14: Πcheck-mac ({[kmac𝑖]}𝐿mac
𝑖=1 ,Smac)

1. Let𝑚 = |Smac | and Smac =
{
Jx𝑖K

}𝑚
𝑖=1. For each 𝑖 ∈ [1, 𝐿mac], parties do the following in parallel

(a) Invoke Fcoin 𝑚 times to obtain the random values
{
𝛼𝑖1, . . . , 𝛼

𝑖
𝑚

}
.

(b) Send their share in [kmac𝑖] to all parties, receive the whole sharing [kmac𝑖] and reconstruct the
secret kmac𝑖 .

(c) Locally compute

[y𝑖] =
𝑚∑︁
𝑗=1

𝛼𝑖𝑗 [x𝑗]

[kmac𝑖 · y𝑖] =
𝑚∑︁
𝑗=1

𝛼𝑖𝑗 [kmac𝑖 · x𝑗]

and [check𝑖] = [kmac𝑖 · y𝑖] − kmac𝑖 [y𝑖].

(d) Send their share in [check𝑖] to all parties and receive the whole sharing [check𝑖].

2. Parties abort if for any 𝑖 ∈ [1, 𝐿check], the shares in [check𝑖] do not form a valid degree-d packed Shamir
sharing. Else, if the reconstructed value check𝑖 ≠ 0 then parties output reject.

for all idx ∈ [1, ℓ] such that (∆𝑘)idx ≠ 0. Since 𝛼𝑖
𝑘

is uniformly random and sampled after the adversary
introduces the additive errors to the shares, this probability is at most 1

|F | . Thus, the probability that every
iteration fails is at most |F|−𝐿check which in turn implies that the honest parties abort with probability at
least 1 − |F|−𝐿check in case one of the sharings is inconsistent. □

5.11 Verify Correctness of Secrets

A malicious adversary can carry out two types of attacks to undermine the correctness of most of the sub-
protocols discussed above. While consistency of shares distributed by parties is ensured using Πcheck-cons
(see Section 5.10), the protocol Πcheck-mac (Protocol 14) is used to verify the correctness of computation
and ensure that the adversary did not introduce any additive errors to the secret during the computation.
The protocol works by first computing a random linear combination over the MAC sharings and the secret
sharings to compute [kmac · x] and [x] respectively. As in the case of Πcheck-cons, the random linear
combinations “compress” the inputs while ensuring that invalid inputs lead to invalid outputs. The MAC
key kmac is then reconstructed and parties verify if kmac · [x] − [kmac · x] is a sharing of the zero vector.
Since the reconstructed MAC key is publicly known, kmac · [x] can be robustly computed while the MAC
sharings are computed through MPC and can have additive errors to the secrets. However, since the MAC
key was private during the computation, the probability that the adversary’s attack goes undetected is
proportional to |F|−1. Since we use a field F of order independent of the security parameter, we repeat
the check 𝐿mac ≥ 𝜅𝑠

log |F |−1 number of times to amplify the probability and ensure that the probability an
adversary successfully affects correctness without getting detected is negligible.

The protocol is similar to the check described in [CGH+18], except that we directly reconstruct [check𝑖]
instead of using a check-zero functionality. This is not a concern in our protocol because the check is
performed over random values generated during the pre-processing phase. In case of any malicious be-
haviour, parties abort the protocol and so any information learnt by the adversary is only over random
values. When the adversary does not introduce any errors, the reconstructed value is 0 and hence it does
not leak anything about the underlying secrets.

42

Complexity Analysis. Πcheck-mac has a communication complexity of O
(
𝑚𝑛𝐿mac + 𝑛2𝐿mac

)
and a com-

putation complexity of O
(
𝑚𝑛𝐿mac + 𝑛2𝐿mac

)
where 𝑚 is the number of authenticated sharings input to

the protocol. Its round complexity is 3 assuming random sharings have been generated beforehand. Using
PRFs to instantiate Fcoin, as discussed in Section 5.2, improves the communication complexity to O

(
𝑛2𝐿mac

)
making it independent of the number of authenticated sharings verified.

6 Main Protocols

In this section we present the protocols that enable parties to compute and evaluate the garbled circuit of
the LPN based garbling scheme in a distributed and secure manner. We first present a subprotocol Πerror

for generating authenticated packed sharings of secrets sampled from the LPN error distribution. We then
describe our constant round MPC protocol Πmpc.

6.1 Sharing Biased Random Vectors

In this section, we describe a protocol Πerror (Protocol 15) that generates authenticated packed sharings
of vectors where each element is sampled from the LPN error distribution Ber𝜏lpn , which parties require
when computing the garbled circuit in the MPC protocol. The LPN error distribution Ber𝜏lpn is obtained by
sampling a uniformly random element from F with probability 2−𝜏lpn and 0 with probability 1 − 2−𝜏lpn . To
compute a packed sharing of errors, parties first compute a packed sharing of a biased bit vector where
each element is 1 with probability 2−𝜏lpn by generating and multiplying 𝜏lpn uniformly random bit vectors.
Parties then securely multiply the biased bit vector with a random vector to compute the packed sharing
of the errors.

Complexity Analysis. The communication cost for generating a packed sharing of the error is O(𝑛𝐿mac)
since we use the LPN assumption with constant noise rate where 𝜏lpn is a constant. Similarly, the compu-
tation cost for generating a packed sharing of the error is O

(
𝑛2𝐿mac

)
. Assuming the random sharings used

in the protocol have been generated beforehand, the round complexity of the protocol is 6 + log𝜏lpn.

Protocol 15: Πerror ({[kmac𝑖]}𝐿mac
𝑖=1 ,Scons,Smac,Szero)

1. Parties invoke Fbitrand 𝜏lpn times to get random bit vector sharings {[b𝑖]}
𝜏lpn

𝑖=1 .

2. Parties run Πauth ([b𝑖], {[kmac𝑖]}𝐿mac
𝑖=1 ,Scons) to receive authenticated sharings Jb𝑖K for each 𝑖 ∈ [1, 𝜏lpn].

3. Parties run Πcheck-bit (Jb𝑖K,Scons,Smac,Szero).

4. Parties compute JbK where 𝝐 = Π
𝜏lpn

𝑖=1 b𝑖 by running instances of Πauth-mult.

5. Parties invoke Frand and obtain a random sharing [r].

6. Parties invoke Fmult with inputs [b] and [r] to obtain the sharing of the product [𝝐].

7. Parties invoke Fmult with inputs [kmac𝑖 · b] and [r] to obtain the sharing of the product [kmac𝑖 · 𝝐] for
each 𝑖 ∈ [1, 𝐿mac].

8. Parties compute J𝝐K = ([𝝐], {[kmac𝑖 · 𝝐]}𝐿mac
𝑖=1) and update Scons B Scons∪{[𝝐]}∪ {[kmac𝑖 · 𝝐]}𝐿mac

𝑖=1 , and
Smac B Smac ∪

{
J𝝐K

}
.

9. Parties output J𝝐K.

43

Functionality 8: Fmpc

1. Fmpc receives the inputs from all clients. Let x denote the inputs and let C denote the circuit.

2. Fmpc computes y = C(x) and sends it to Sim and receives status ∈ {abort, continue} from Sim.

(a) If status = abort, Fmpc sends abort to all clients.

(b) If status = continue, Fmpc sends y to all clients.

6.2 Our Constant Round MPC Protocol

In this section, we present our constant-round maliciously secure MPC protocol. This protocol consists
of three phases: a circuit independent pre-processing phase, where random sharings used for computing
the garbled circuit are generated, a garbling phase where the garbled circuit is computed in a distributed
manner, and the evaluation phase where clients provide their inputs and the garbled circuit is reconstructed
and evaluated locally. The functionality Fmpc realized by Πmpc is described in Functionality 8.

In Πmpc, wires and gates are grouped together in blocks of size ℓ for the purpose of packed secret
sharing. We use pos𝑤 = (slotC𝑤ℓ+1, . . . , slot

C
2𝑤ℓ) to denote the positions corresponding to the wires in

the 𝑤-th block for each 𝑤 ∈ [1, ⌈𝑊 /ℓ⌉]. We use posleft𝑔 = (slotCleft(𝑔ℓ+1) , . . . , slot
C
left(2𝑔ℓ)) to denote the

set of positions for the left input wires for gates in the 𝑔-th block and posright𝑔 , and posout𝑔 are defined
similarly for positions corresponding to right input wires and output wires of gates in the 𝑔-th block for
each 𝑔 ∈ [1, ⌈𝐺/ℓ⌉]. We use left′(𝑔) = ⌊left(𝑔)/ℓ⌋ (and similarly right′(𝑔)) to denote the index of the block
containing the secret corresponding to the 𝑔-th gate. When garbling a gate, we require that the masks and
keys for the left, right and output wires of gates in the 𝑔-th block are packed together in the same sharings
for every 𝑔 ∈ [1, ⌈𝐺/ℓ⌉]. As discussed in Section 3, the select algorithm can be used to select secrets across
different sharings followed by running Πtrans (Protocol 8) to have the secrets shared over the required
positions. However, when the same wire is input to multiple gates in the same block, the corresponding
secret needs to be repeated appropriately during Πtrans. We use 𝑓 left𝑔 (and similarly 𝑓

right
𝑔) to denote the

function which takes a vector containing the selected secrets corresponding to the left (right) input wires
for gates in the 𝑔-th block as input and maps it to a vector where elements are repeated appropriately to
handle the above case when the same wire is used as the left (right) input wire for multiple gates in the
𝑔-th block. 𝑓𝐼 (x) = x is used to denote the identity function. Finally, in the description of our protocol we
assume that if a party aborts at any point in the protocol, it broadcasts an abort message and any party
that receives such a message aborts too, ensuring unanimous abort.

Circuit Independent Pre-processing Phase. In this phase, parties generate the shares of the MAC keys,
the labels and masks for each wire, and the errors used for computing ciphertexts using the LPN based
encryption scheme. Note that step 2 in Πmpc requires 3 rounds, steps 3, 4, and 5 can be run in parallel and
the random packed sharings and random bit vector sharings used for the entire protocol can be generated
in parallel in the first 2 rounds of the protocol. Thus the round complexity of this phase is 9+log𝜏lpn rounds.
The communication complexity of this phase is O

(
𝑛𝐿mac + 𝑛𝐿lpn𝐿mac

𝑊
ℓ
+ 𝑛𝐿mac𝑄lpn

𝐺
ℓ

)
= O(|C|𝜅𝑠𝜅𝑐 + 𝑛𝜅𝑠)

field elements. Similarly, the computation complexity of this phase is O(𝑛 |C|𝜅𝑠𝜅𝑐).

Garbling Phase. In this phase, parties compute the garbled circuit by encrypting the permuted labels on
the output wire of each gate using the labels on the input wires. This requires first transforming the masks
and labels generated during the pre-processing phase to ensure that the masks and keys for the left, right
and output wires of gates in the same block are packed together and then correctly permuting the labels on
the output wires. Note that permuting the labels on the output wire involves evaluating the gate function

44

Protocol 16: Πmpc

Circuit Independent Pre-processing Phase

1. Parties set Scons = Smac = Szero = ∅.

2. Generate MAC Keys: Parties invoke Fmac-keygen to obtain the sharing [kmac𝑖] for each 𝑖 ∈ [1, 𝐿mac].
Let Kmac = {[kmac𝑖]}𝐿mac

𝑖=1 .

3. Generate Wire Labels: For each 𝑖 ∈ [1, 𝐿lpn], 𝑏 ∈ {0, 1}, and 𝑤 ∈ [1,𝑊 /ℓ], parties do the following

(a) Invoke Frand to obtain the random sharing [k𝑏𝑤,𝑖].

(b) Set Scons B Scons ∪
{
[k𝑏𝑤,𝑖]

}
.

(c) Run Πauth ([k𝑏𝑤,𝑖],Kmac,Scons,Smac) to obtain the authenticated sharing Jk𝑏𝑤,𝑖K.

4. Generate Wire Masks: For each 𝑤 ∈ [1,𝑊 /ℓ], parties do the following

(a) Invoke Fbitrand to obtain the random bit vector sharing [𝝀𝑤].

(b) Set Scons B Scons ∪ {[𝝀𝑤]}.

(c) Run Πauth ([𝝀𝑤],Kmac,Scons,Smac) to obtain the authenticated sharing J𝝀𝑤K.

(d) Run Πcheck-bit (J𝝀𝑤K,Scons,Smac,Szero).

5. Generate LPN Errors: Parties run Πerror (Kmac,Scons,Smac,Szero) to obtain the sharing of the LPN error
J𝝐𝛼,𝛽

𝑔,𝑖
K for each 𝛼, 𝛽 ∈ {0, 1}, 𝑖 ∈ [1, 𝑄lpn], and 𝑔 ∈ [1,𝐺/ℓ].

on the masks for the input wires of the gate. Since AND and XOR gates might be in the same block, we
compute a label assuming all gates in the block are AND gates or XOR gates, and then select the correct
label for each gate in the block. Once the labels on the output wire have been permuted, encryption is
straightforward using the multiplicative friendliness of packed Shamir sharing (Section 3.2). Parties also
prepare sharings of masks on circuit input and output wires to communicate inputs and outputs with
clients in this phase. Finally, parties verify against malicious behavior of corrupt parties and ensure that
the garbled circuit is computed correctly with overwhelming probability. Note that steps 6.a and 6.b can
be run in parallel, steps 6.c and 6.d can be run in parallel, and steps 8.b, 9a, and 9.c can be run in parallel in
this phase. Thus, the round complexity of this phase is 19 rounds. The communication complexity of this
phase is O

(
|C|𝜅𝑠𝜅𝑐 + 𝑛2𝜅𝑠

)
field elements while the computation complexity is O(𝑛 |C|𝜅𝑠𝜅𝑐).

Evaluation Phase. In this phase, parties first reconstruct the mask on the input wires towards the clients
providing the inputs and the clients broadcast the masked input. Parties then reconstruct the appropriate
labels for the circuit input wires, the garbled circuit, and the masks on the circuit output wires. Parties can
then evaluate the garbled circuit locally. Note that once the masked inputs have been provided by clients,
the shares for all secrets to be reconstructed can be broadcast in 1 round. Thus, the round complexity of
this phase is 3 rounds. This phase involves a broadcast of O

(
𝑛𝑄lpn

𝐺
ℓ

)
= O(|C|𝜅𝑐) field elements and has a

computation complexity of O(𝑛 |C|𝜅𝑐).
Thus, the overall round complexity of Πmpc is 31 + log𝜏lpn rounds with a total communication com-

plexity of O
(
|C|𝜅𝑠𝜅𝑐 + 𝑛2𝜅𝑠

)
field elements over point to point channels and O(|C|𝜅𝑐) field elements over

the broadcast channel. The total computation complexity of the protocol is O(𝑛 |C|𝜅𝑐).

45

Protocol 16: Πmpc (continued)

Garbling Phase

6. Transform Masks and Labels:

(a) Parties run Πauth-trans (J𝝀𝑤K, pos𝑤, 𝑓𝐼 ,Scons) to obtain the transformed sharing J𝝀𝑤 |pos𝑤K for each
𝑤 ∈ [1,𝑊 /ℓ].

(b) Parties run Πauth-trans (Jk𝑏𝑤,𝑖K, pos𝑤, 𝑓𝐼 ,Scons) to obtain the transformed sharing Jk𝑏𝑤,𝑖 |pos𝑤K for
each 𝑤 ∈ [1,𝑊 /ℓ], 𝑖 ∈ [1, 𝐿lpn], and 𝑏 ∈ {0, 1}.

(c) For each 𝑔 ∈ [1,𝐺/ℓ], parties locally compute:

J𝝀left
𝑔 |posleft𝑔 K

𝑑+ℓ−1
= select(

{
J𝝀left′ (𝑔ℓ+𝑖) |posleft′ (𝑔ℓ+𝑖)K

}ℓ
𝑖=1

, posleft𝑔)

and run Πauth-trans (J𝝀left
𝑔 |posleft𝑔 K

𝑑+ℓ−1
, posdef, 𝑓

left
𝑔 ,Scons) to obtain the transformed sharing J𝝀left

𝑔 K

corresponding to the masks on the left input wires. Parties similarly compute J𝝀right
𝑔 K and J𝝀out

𝑔 K
corresponding to the masks on the right input wires and output wires. Parties set Smac B Smac ∪{
J𝝀left

𝑔 K, J𝝀right
𝑔 K, J𝝀out

𝑔 K
}
.

(d) For each 𝑔 ∈ [1,𝐺/ℓ], 𝑖 ∈ [1, 𝐿lpn], and 𝑏 ∈ {0, 1}, parties locally compute:

Jleftk𝑏𝑔,𝑖 |posleft𝑔 K
𝑑+ℓ−1

= select(
{
Jk𝑏left′ (𝑔ℓ+𝑗),𝑖 |posleft′ (𝑔ℓ+𝑗)K

}ℓ
𝑗=1

, posleft𝑔)

and run Πauth-trans (Jleftk𝑏𝑔,𝑖 |posleft𝑔 K
𝑑+ℓ−1

, posdef, 𝑓
left
𝑔 ,Scons) to obtain the transformed sharing

Jleftk𝑏𝑔,𝑖K corresponding to the labels for the left input wires. Parties similarly compute Jrightk𝑏𝑔,𝑖K
and Joutk𝑏𝑔,𝑖K corresponding to the labels for the right input wires and output wires. Parties set

Smac B Smac ∪
{
Jleftk𝑏𝑔,𝑖K, Jrightk𝑏𝑔,𝑖K, Joutk𝑏𝑔,𝑖K

}
.

7. Select Plaintexts: Let type𝑔 ∈ Fℓ be such that (type𝑔)𝑖 = 0 if (𝑔ℓ + 𝑖)-th gate is a XOR gate else
(type𝑔)𝑖 = 1. For each 𝛼, 𝛽 ∈ {0, 1}, and 𝑔 ∈ [1,𝐺/ℓ], parties do the following

(a) Run Πauth-mult (J𝝀left
𝑔 K + 𝛼, J𝝀right

𝑔 + 𝛽K,Scons,Smac) and add J𝝀out
𝑔 K to the obtained authenticated

product sharing to compute Js-and𝛼,𝛽𝑔 K.

(b) Locally compute Js-xor𝛼,𝛽𝑔 K = J𝝀left
𝑔 K + J𝝀right

𝑔 K + J𝝀out
𝑔 K + 𝛼 + 𝛽 .

(c) Locally compute Js𝛼,𝛽𝑔 Kd+ℓ−1 = type𝑔 · (Js-and𝛼,𝛽𝑔 K − Js-xor𝛼,𝛽𝑔 K) + Js-xor𝛼,𝛽𝑔 K.

(d) RunΠauth-trans (Js𝛼,𝛽𝑔 Kd+ℓ−1, posdef, 𝑓𝐼 ,Scons) to obtain the transformed sharing Js𝛼,𝛽𝑔 K and setSmac B

Smac ∪
{
Js𝛼,𝛽𝑔 K

}
.

(e) Run Πauth-mult (Js𝛼,𝛽𝑔 K, (Joutk1
𝑔,𝑖K− Joutk0

𝑔,𝑖K),Scons,Smac) and add Joutk0
𝑔,𝑖K to the obtained authen-

ticated product sharing to compute Joutk𝛼,𝛽
𝑔,𝑖

K for each 𝑖 ∈ [1, 𝐿lpn].

8. Compute Ciphertexts: For each 𝛼, 𝛽 ∈ {0, 1}, 𝑔 ∈ [1,𝐺/ℓ], parties first compute(
Jmssg𝛼,𝛽

𝑔,𝑖
K
)𝑄ecc

𝑖=1
= ECC.Enc

((
Joutk𝛼,𝛽

𝑔,𝑖
K
)𝐿lpn
𝑖=1

, Js𝛼,𝛽𝑔 K
)

and then do the following for each 𝑖 ∈ [1, 𝑄ecc]

46

(a) Compute

Jctx𝛼,𝛽
𝑔,𝑖

K
d+ℓ−1

=

𝐿lpn∑︁
𝑗=1

A𝛼,𝛽

𝑔,𝑖, 𝑗
(Jleftk𝛼𝑔,𝑗 K + Jrightk𝛽

𝑔,𝑗
K) + J𝝐𝛼,𝛽

𝑔,𝑖
K + Jmssg𝛼,𝛽

𝑔,𝑖
K.

(b) Run Πauth-trans (Jctx𝛼,𝛽
𝑔,𝑖

K
d+ℓ−1

, posdef, 𝑓𝐼 ,Scons) to obtain Jctx𝛼,𝛽
𝑔,𝑖

K.

(c) Set Smac B Smac ∪
{
Jctx𝛼,𝛽

𝑔,𝑖
K
}𝑄ecc

𝑖=1
.

9. Transform Shares for Input and Output:

(a) For io ∈ {inp, out}, parties compute

J𝜆io𝑤 |pos𝑤′Kd+ℓ−1 = select
(
J𝝀𝑤′ |pos𝑤′K,

{
slotC𝑤

})
and run Πauth-trans (J𝜆io𝑤 |pos𝑤′Kd+ℓ−1, slot

def
1 , 𝑓𝐼 ,Scons) to receive J𝜆io𝑤K for each 𝑤 ∈ [1,𝑊inp] if io =

inp or 𝑤 ∈ Wout if io = out, and 𝑤 ′ ∈ ⌊𝑤/ℓ⌋.

(b) Parties update Smac B Smac ∪
{
J𝜆inp𝑤 K

}𝑊inp

𝑤=1
∪
{
J𝜆out𝑤 K

}
𝑤∈Wout

.

(c) For each 𝑖 ∈ [1, 𝐿lpn], 𝑏 ∈ {0, 1}, 𝑤 ∈ [1,𝑊inp], parties compute

Jinpk𝑏𝑤,𝑖 |pos𝑤′Kd+ℓ−1 = select(Jk𝑏𝑤,𝑖K,
{
slotC𝑤

}
)

and run Πauth-trans (Jinpk𝑏𝑤,𝑖 |pos𝑤′Kd+ℓ−1, slot
def
1 , 𝑓𝐼 ,Scons) to receive Jinpk𝑏𝑤,𝑖K.

(d) Parties update Smac B Smac ∪
{
Jinpk𝑏𝑤,𝑖K

}
for each 𝑤 ∈ [1,𝑊inp], 𝑏 ∈ {0, 1}, and 𝑖 ∈ [1, 𝐿lpn].

10. Verification:

(a) Parties run Πcheck-cons (Scons).

(b) Parties run Πcheck-mac (Kmac,Smac).

(c) Let |Szero | =𝑚 and let Szero = {[o1], . . . , [o𝑚]}. For each 𝑖 ∈ [1, 𝐿check], parties do the following

— Invoke Fcoin 𝑚 times to obtain
{
𝛼𝑖𝑗

}𝑚
𝑗=1

.

— Compute [check𝑖] =
∑𝑚

𝑗=1 𝛼
𝑖
𝑗 [x𝑗].

— Send their share in [check𝑖] to all parties to learn the whole sharing [check𝑖].

Parties abort if for any 𝑖 ∈ [1, 𝐿check], the shares in [check𝑖] do not form a valid degree-d packed
Shamir sharing or if the reconstructed value check𝑖 ≠ 0.

47

Protocol 16: Πmpc (continued)

Evaluation Phase

11. Share Inputs: For each 𝑤 ∈ [1,𝑊inp]

(a) Parties send their shares in [𝜆inp𝑤] to Pcclient(𝑤) .

(b) Pcclient(𝑤) aborts if the received shares do not form a valid degree-d packed Shamir sharing. Else, it
broadcasts 𝜌𝑤 = 𝜆

inp
𝑤 + 𝑣𝑤 .

(c) Parties receive 𝜌𝑤 and broadcast their share in [inpk𝜌𝑤
𝑤,𝑖
] for every 𝑖 ∈ [1, 𝐿lpn].

(d) Parties receive the whole sharing [inpk𝜌𝑤
𝑤,𝑖
] and each P𝑖 ∈ P checks and aborts if the shares do not

form a valid degree-d packed Shamir sharing for every 𝑖 ∈ [1, 𝐿lpn]. Else, P𝑖 reconstructs the secret
inpk𝜌𝑤

𝑤,𝑖
for every 𝑖 ∈ [1, 𝐿lpn]. Let inpk𝜌𝑤

𝑤 = (inpk𝜌𝑤
𝑤,1, . . . , inpk

𝜌𝑤
𝑤,𝐿lpn
).

12. Reconstruct Garbled Circuit: Parties do the following

(a) Broadcast their share in [𝝀out
𝑤] for each𝑤 ∈ Wout and their share in [ctx𝛼,𝛽

𝑔,𝑖
] for each 𝛼, 𝛽 ∈ {0, 1},

𝑔 ∈ [1,𝐺/ℓ], and 𝑖 ∈ [1, 𝑄lpn].

(b) Each P𝑖 ∈ P checks if every sharing received in the previous step forms a valid degree-d packed
Shamir sharing. If the check passes for every sharing then P𝑖 reconstructs the secrets [𝝀out

𝑤] for
each 𝑤 ∈ Wout, and ctx𝛼,𝛽

𝑔,𝑖
for each 𝛼, 𝛽 ∈ {0, 1}, 𝑔 ∈ [1,𝐺/ℓ], and 𝑖 ∈ [1, 𝑄lpn]. If the check fails

for a sharing, P𝑖 aborts.

13. Evaluate Garbled Circuit: Let ctx𝛼,𝛽
𝑔,𝑖

= (ctx𝛼,𝛽
𝑔ℓ+1,𝑖 , . . . , ctx

𝛼,𝛽

2𝑔ℓ) for each 𝛼, 𝛽 ∈ {0, 1}, 𝑔 ∈ [1,𝐺/ℓ], and
𝑖 ∈ [1, 𝑄lpn]. Parties set

G =
⋃

𝛼,𝛽∈{0,1}
𝑔∈[1,𝐺]

{
ctx𝛼,𝛽

𝑔,1 , . . . , ctx
𝛼,𝛽

𝑔,𝑄lpn

}
,

X = (inpk𝜌𝑤
𝑤 , 𝜌𝑤)𝑤∈[1,𝑊inp], auxdec =

{
𝜆out𝑤

}
𝑤∈Wout

and output GC.Eval(X,G, auxdec).

Lemma 9. Let (G,X, auxdec) be reconstructed in Πmpc (step 13) when run with input v for the circuit C.
Let (G′,X′, aux′dec) be such that (G′, aux′enc, aux′dec) ← GC.Garble(C,GC.MaskGen(C, 1𝜅𝑐), 1𝜅𝑐) and X′ ←
GC.Encode(v, aux′enc). If all parties and clients behave honestly, (G,X, auxdec) is identically distributed to
(G′,X′, aux′dec).

Proof Sketch. As in the garbling scheme, the keys (𝑘𝑏𝑤,𝑖)
𝐿lpn

𝑖=1 sampled in Πmpc for each wire𝑤 and 𝑏 ∈ {0, 1}
are uniformly random in F𝐿lpn from the definition of Frand while 𝜆𝑤 for every wire 𝑤 is uniformly random
in {0, 1} from the definition of Fbitrand. Similarly, Πerror outputs sharings where the underlying secret
𝝐 is sampled from Ber𝜏lpn since by multiplying 𝜏lpn uniformly random bits it biases the secret to 0 with
probability 1 − 2−𝜏lpn and a uniformly random value in F with probability 2−𝜏lpn . In the garbling phase,
parties essentially compute ctx𝛼,𝛽𝑔 = LPN.Enc(k𝑏𝑤 ∥𝑏, k𝛼left(𝑔) + k𝛽

right(𝑔)) in secret shared form where 𝑏 =

𝑔(𝜆left(𝑔) +𝛼, 𝜆right(𝑔) +𝛽) +𝜆𝑊inp+𝑔 and 𝑔(·, ·) is the function being computed by the 𝑔-th gate. Finally, in the
evaluation phase, clients broadcast 𝜌𝑤 = 𝜆𝑤 +𝑣𝑤 for each input wire𝑤 and parties reconstruct (inpk𝜌𝑤

𝑤,𝑖
)𝐿lpn
𝑖=1

48

which corresponds to a distributed evaluation of GC.Encode(v, auxenc). It then follows that (G,X, auxdec)
reconstructed in Πmpc are identically distributed to the output of the garbling scheme. □

Theorem 3. Let 𝐿check ≥ 𝜅𝑠
log2 |F |

and 𝐿mac ≥ 𝜅𝑠
log |F |−1 . Πmpc 𝑡-securely realizes Fmpc in the {Frand, Fcoin,

Fbitrand, Fmult, Frand-sharing, Fmac-keygen}-hybrid model.

Proof. Let A denote the adversary and C be the set of corrupt parties. LetH be the set of honest parties,
HH be a fixed subset ofH of size d + 1, andHC = H \HH . We construct a simulator Sim to simulate the
behavior of honest parties.

For a sharing [x], let ⟨x⟩ = (x, {([x])𝑖}P𝑖 ∈C, 𝜹𝑥 ,∆𝑥) denote the secret x, the shares of corrupt parties
in [x], the additive error to the secret 𝜹𝑥 , and the additive error to the shares ∆𝑥 . ⟨x⟩𝑑 ′ is similarly defined
for [x]𝑑 ′ . The simulator Sim described below maintains the invariant that for every sharing [x] in the pre-
processing and garbling phases of Πmpc, Sim knows ⟨x⟩ such that the secret x, the shares of the corrupt
parties, 𝜹𝑥 , and ∆𝑥 are identically distributed to that in the real world. Note that Sim can maintain an
identically distributed secret for every share [x] in the pre-processing and garbling phases because the
protocol only involves sharings of random secrets over F and F2 sampled in the pre-processing phase. We
use ⟨⟨x⟩⟩ to denote (⟨x⟩, {⟨kmac𝑖 · x⟩}𝐿mac

𝑖=1).
We now show that the invariant can be maintained for linear operations on shares. Let [z] = 𝛼 [x]+𝛽 [y]

where 𝛼, 𝛽 ∈ F. We define ⟨z⟩ = 𝛼 ⟨x⟩ + 𝛽 ⟨y⟩ to consist of the secret z = 𝛼x + 𝛽y, the shares of the corrupt
parties

{
([z])𝑖 | ([z])𝑖 = 𝛼 ([x])𝑖 + 𝛽 ([y])𝑖

}
, the additive errors to the secret 𝜹𝑧 = 𝛼𝜹𝑥 + 𝛽𝜹𝑦 , and the

additive errors to the shares ∆𝑧 = 𝛼∆𝑥 + 𝛽∆𝑦 , and z = 𝛼x + 𝛽y. It is easy to see that ⟨z⟩ computed in this
manner is consistent to [z] computed locally by parties in the real world. We now proceed to formally
describe the simulator.

The simulator initializes flag = 0, and Scons = Smac = Szero = ∅ and proceeds as follows:

— GenerateMACKeys: For every invocation of Fmac-keygen, Sim receives the shares of the corrupt parties
and status fromA. If status = reject, Sim sends abort to Fmpc and stops. Else, Sim samples kmac← F
uniformly at random and initializes ⟨kmac⟩ with the secret kmac · 1, 𝜹kmac = 0, ∆kmac = 0, and the
shares of the corrupt parties received from A.

— Generate Wire Labels: For every invocation of Frand, Sim receives the shares of the corrupt parties
and the additive errors to the shares ∆𝑟 from A. It then samples r ← Fℓ uniformly at random and
initializes ⟨r⟩ with the secret r, the shares of the corrupt parties received from A, 𝜹𝑟 = 0, and ∆𝑟 .

To simulate Πauth, Sim needs to emulate the invocations to Fmult, which it does as follows. For every
invocation of Fmult with inputs [x] and [y], Sim knows ⟨x⟩ and ⟨y⟩ due to the invariant. Thus, Sim
sends ∆𝑥 , ∆𝑦 , and the shares of the corrupt parties in [x] and [y] to A and receives the shares of the
corrupt parties in the product sharing [z], the additive errors to the product 𝜹𝑧 , and the additive errors
to the product shares ∆𝑧 . Sim sets z = x · y + 𝜹𝑧 and thus learns ⟨z⟩.
Sim now simulates Πauth by emulating each invocation of Fmult as above. Note that the invariant is
satisfied for every input. It follows that Sim learns ⟨⟨x⟩⟩ when Πauth is called with inputs [x] and
{[kmac𝑖]}𝐿mac

𝑖=1 . Sim updates Scons as in the protocol.

— GenerateWire Masks: For every invocation of Fbitrand, Sim receives the shares of the corrupt parties,
the additive errors to the secrets 𝜹𝑏 and the additive errors to the shares ∆𝑏 from A. If 𝜹𝑏 ∉ {0, 1}ℓ ,
Sim sets flag = 1. It then samples b ← {0, 1}ℓ and initializes ⟨b⟩ with the secret b + 𝜹𝑏 , the shares of
the corrupt parties in [b], additive error of 0 to the secrets, and additive error of ∆𝑏 to the shares.

Sim simulates Πauth as above.

49

To simulate Πcheck-bit, Sim needs to simulate Πauth-mult which it does by emulating calls to Fmult as above
and updating Scons and Smac as in the protocol. Note that Sim knows ⟨⟨x⟩⟩ and ⟨⟨y⟩⟩ when Πauth-mult is
run with inputs JxK and JyK due to the invariant. Sim thus learns ⟨⟨z⟩⟩ for the output JzK of Πauth-mult.

To simulate Πcheck-bit, Sim simulates Πauth-mult as above. It then computes ⟨o⟩ = ⟨b2⟩ − ⟨b⟩ and updates
Szero as in the protocol.

— Generate LPNErrors: Sim simulatesΠerror by emulating Fbitrand, Frand, and Fmult and simulatingΠauth,
Πauth-mult, and Πcheck-bit as above. Since the simulator maintains the invariant when simulating each
subprotocol and emulating each functionality, it follows that the invariant holds true for Πerror and that
the simulator learns ⟨⟨𝝐⟩⟩ for each run of Πerror.

— Transform Masks and Labels: To simulate Πauth-trans, Sim needs to simulate Πtrans which it does as
follows.

– The input sharing for Πtrans is either a degree-d packed sharing or a degree-(d+ ℓ −1) packed sharing
of a secret x. Sim knows ⟨x⟩ in case of the former, from the invariant. On the other hand, a degree-
(d + ℓ − 1) packed sharing in the protocol is obtained from local computation with a publicly known
degree-(ℓ − 1) sharing of a vector of constants. Thus Sim can compute the shares of the corrupt
parties, the secret x, and the additive errors to the secret 𝜹𝑥 in this case too by emulating the local
computation.

– Sim emulates Frand-sharing and receives the shares of the corrupt parties in [r |pos]𝑛−1 and the shares
of the corrupt parties in [𝑓 (r) |pos′]H , the additive error to the transformed output 𝜹𝑓 (𝑟) , and the
additive errors to the transformed sharing ∆𝑓 (𝑟) .

– Sim computes the shares of the corrupt parties in [x + r |pos]𝑛−1. It then samples the secret x+r← Fℓ
uniformly at random and computes 𝑓 (x + r), and the whole sharing [x + r |pos]𝑛−1 such that the
shares of the corrupt parties are consistent. It sends the shares of the honest parties to A.

– Sim receives the shares of the honest parties in [𝑓 (x + r) |pos′] fromA. It then computes the whole
sharing [𝑓 (x + r) |pos′]H from the shares of the parties inHH and sets ∆𝑓 (𝑥+𝑟) = [𝑓 (x + r) |pos′] −
[𝑓 (x + r) |pos′]H . It reconstructs the secret 𝑓 (x + r) from the sharing [𝑓 (x + r) |pos′]H and sets
𝜹𝑓 (𝑥+𝑟) = 𝑓 (x + r) − 𝑓 (x + r).

– Sim then computes ⟨𝑓 (x)⟩ by computing the shares of the corrupt parties in [𝑓 (x) |pos′]H as the
shares of corrupt parties in [𝑓 (x + r) |pos′]H − [𝑓 (r) |pos′]H , the additive error to the secret 𝜹𝑓 (𝑥) =
𝑓 (𝜹𝑥) + 𝜹𝑓 (𝑥+𝑟) − 𝜹𝑓 (𝑟) , the secret 𝑓 (x) + 𝜹𝑓 (𝑥+𝑟) − 𝜹𝑓 (𝑟) and the additive error to the share ∆𝑓 (𝑥) =
∆𝑓 (𝑥+𝑟) − ∆𝑓 (𝑟) .

Sim simulates Πauth-trans by simulating every instance of Πtrans as above. It updates Smac as in the
protocol.

— Compute Plaintexts, ComputeCiphertexts, andTransformShares for Input andOutput: These
steps of the protocol involve either linear operations of shares or instances of Πauth-mult and Πauth-trans
(run after multiplication with a vector of constants) all of which Sim simulates as discussed previously.
Importantly, the invariant is maintained across all these steps.

— Verification: Sim simulates Πcheck-cons as follows.

– Sim emulates Frand as above and learns ⟨r𝑖⟩ for every 𝑖 ∈ [1, 𝐿check].

50

– Sim emulates each invocation of Fcoin by sampling 𝛼 ← F uniformly at random and sending it toA.
If A sends abort, Sim sends abort to Fmpc and stops.

– Note that from the invariant, Sim knows ⟨x⟩ for every [x] ∈ Scons. Sim thus computes ⟨y𝑖⟩ =∑𝑚
𝑗=1 𝛼

𝑖
𝑗 ⟨x𝑗 ⟩ +𝛼𝑖𝑚+1⟨r𝑖⟩ for each 𝑖 ∈ [1, 𝐿check] where 𝛼𝑖𝑗 for 𝑗 ∈ [1,𝑚 + 1] and 𝑖 ∈ [1, 𝐿check] have been

sampled by Sim in the previous step.

– Sim samples y𝑖 ← Fℓ uniformly at random and then computes the whole sharing [y𝑖]H such that the
shares of the corrupt parties are the same as those in ⟨y𝑖⟩ for each 𝑖 ∈ [1, 𝐿check]. It then computes
[y𝑖] = [y𝑖]H + ∆𝑦𝑖 and follows the steps of the protocol.

– If no party aborts at the end of the protocol but there exists ∆𝑥 ≠ 0 for some [x] ∈ Scons then Sim
aborts.

Sim simulates Πcheck-mac as follows.

– Sim emulates Fcoin as described above.

– Sim computes the whole sharing [kmac𝑖] using the secret and the shares of corrupt parties in ⟨kmac𝑖⟩
for each 𝑖 ∈ [1, 𝐿mac]. It then sends the shares of the honest parties in [kmac𝑖] toA and receives the
shares of the corrupt parties for each 𝑖 ∈ [1, 𝐿mac]. If reconstruction of the secret kmac𝑖 fails for any
𝑖 ∈ [1, 𝐿mac], Sim sends abort to Fmpc and stops.

– Note that Sim knows ⟨⟨x⟩⟩ for every JxK ∈ Smac as well as 𝛼𝑖𝑗 for each 𝑗 ∈ [1,𝑚] and 𝑖 ∈ [1, 𝐿mac].
Sim can thus compute ⟨check𝑖⟩ for every 𝑖 ∈ [1, 𝐿mac].

– Sim computes the whole sharing [check𝑖] using the secret and the shares of corrupt parties in
⟨check𝑖⟩ for each 𝑖 ∈ [1, 𝐿mac]. It then sends the shares of honest parties in [check𝑖] to A and
receives the corrupt parties shares in [check𝑖] from A for each 𝑖 ∈ [1, 𝐿mac]. If the shares received
byA are different from those in ⟨check𝑖⟩ for any 𝑖 ∈ [1, 𝐿mac] or if check𝑖 ≠ 0 for some 𝑖 ∈ [1, 𝐿mac],
then Sim sends abort to Fmpc and stops. If 𝜹𝑥 ≠ 0 for any JxK ∈ Smac but check𝑖 = 0 for all
𝑖 ∈ [1, 𝐿mac], Sim aborts.

Sim emulates the check for shares in Szero as follows.

– Sim emulates Fcoin as described above.

– Note that Sim knows ⟨o⟩ for every [o] ∈ Szero as well as 𝛼𝑖𝑗 for each 𝑗 ∈ [1,𝑚] and 𝑖 ∈ [1, 𝐿check].
Sim can thus compute ⟨check𝑖⟩ for every 𝑖 ∈ [1, 𝐿check].

– Sim computes the whole sharing [check𝑖] using the secret and the shares of corrupt parties in
⟨check𝑖⟩ for each 𝑖 ∈ [1, 𝐿check]. It then sends the shares of honest parties in [check𝑖] to A and
receives the corrupt parties shares in [check𝑖] from A for each 𝑖 ∈ [1, 𝐿check]. If the shares re-
ceived by A are different from those in ⟨check𝑖⟩ for any 𝑖 ∈ [1, 𝐿check] or if check𝑖 ≠ 0 for some
𝑖 ∈ [1, 𝐿check], Sim sends abort to Fmpc and stops. Additionally, if flag = 1 and check𝑖 = 0 for each
𝑖 ∈ 𝐿check, Sim aborts.

— Share Inputs: LetW inp
H denote the set of input wires to the circuit corresponding to honest clients

and letW inp
C denote the set of input wires corresponding to corrupt clients. Note that the Sim knows

the shares of the corrupt parties in [𝜆inp𝑤] for every 𝑤 ∈ [1,𝑊inp].

– Sim runs Simgc(C,W inp
H , 1𝜅𝑐) to obtain {𝜆𝑤}𝑤∈Winp

C
, {𝜌𝑤}𝑤∈Winp

H
, and state.

51

– It then computes the whole sharing [𝜆inp𝑤] for each 𝑤 ∈ W inp
C such that the shares of the corrupt

parties are consistent and where 𝜆inp𝑤 is equal 𝜆𝑤 output by Simgc in the previous step. It then sends
the shares of the honest parties in [𝜆inp𝑤] to A for each 𝑤 ∈ W inp

C and receives the shares of the
corrupt parties in [𝜆inp𝑤] for each 𝑤 ∈ W inp

H . If the shares of corrupt parties in [𝜆inp𝑤] sent by A are
incorrect for any 𝑤 ∈ W inp

H , Sim sends abort to Fmpc and stops.

– Sim emulates a broadcast of 𝜌𝑤 for each 𝑤 ∈ W inp
H and receives 𝜌𝑤 from A for each 𝑤 ∈ W inp

C .

– For every 𝑤 ∈ W inp
C , Sim extracts the input of the corrupt clients by computing 𝑣𝑤 = 𝜌𝑤 + 𝜆𝑤 . It

then sends the inputs of the corrupt clients to Fmpc and receives the output C(x).

– Sim then computes (G,X, auxdec) ← Simgc(C(x), {𝑣𝑤}𝑤∈Winp
C
, state).

– Note that the simulator has the corrupt parties shares in [inpk𝜌𝑤
𝑤,𝑖
] for each 𝑤 ∈ [1,𝑊inp], and 𝑖 ∈

[1, 𝑄lpn]. It parses X such that the𝑤-th element (X)𝑤 = (
{
inpk𝜌𝑤

𝑤,𝑖

}𝑄lpn

𝑖=1
, 𝜌𝑤) for each𝑤 ∈ [1,𝑊inp] and

then computes the whole sharing [inpk𝜌𝑤
𝑤,𝑖
] such that the shares of the corrupt parties are consistent

for every 𝑤 ∈ [1,𝑊inp], and 𝑖 ∈ [1, 𝑄lpn]. It sends the shares of the honest parties to A and receives
the shares of the corrupt parties fromA. If the shares of corrupt parties received fromA are different
from the ones held by Sim, Sim sends abort to Fmpc and stops.

— Reconstruct Garbled Circuit: Sim already knows the shares of corrupt parties in [ctx𝛼,𝛽
𝑔,𝑖
] for each

𝛼, 𝛽 ∈ {0, 1}, 𝑔 ∈ [1,𝐺/ℓ], and 𝑖 ∈ [1, 𝑄lpn]. Sim parses G computed in the previous step as G ={
ctx0,0

𝑔 , ctx0,1
𝑔 , ctx1,0

𝑔 , ctx1,1
𝑔

}𝑊
𝑔=1 and each ctx𝛼,𝛽𝑔 =

{
ctx𝛼,𝛽

𝑔,𝑖

}𝑄lpn

𝑖=1
. It then computes the whole sharing

[ctx𝛼,𝛽
𝑔,𝑖
] for each 𝛼, 𝛽 ∈ {0, 1}, 𝑔 ∈ [1,𝐺/ℓ], and 𝑖 ∈ [1, 𝑄lpn] and follows the steps of the protocol.

— Evaluate Garbled Circuit: Sim sends continue to Fmpc and outputs the same value as A.

Lemma 10. The joint distribution consisting of the view of the adversary A and the outputs of honest
parties are computationally indistinguishable in the real and ideal worlds.

Proof. We prove that the distributions are computationally indistinguishable using a hybrid argument.

— Hyb0: This is the real world execution.

— Hyb1: In this hybrid, Sim simulates the circuit independent pre-processing phase as above.

Hyb0
p
= Hyb1: In this hybrid, the simulator emulates calls to Fmac-keygen, Frand, Fmult and Fbitrand in the

pre-processing phase. Since the simulator follows the description of the functionality in all cases, the
shares of corrupt parties and additive errors to the shares are identically distributed in Hyb1 and Hyb0.
Moreover, the simulator can correct compute the shares of corrupt parties and additive errors to the
shares in case of local operations as argued earlier. Thus, Hyb1 and Hyb0 are identically distributed.

— Hyb2: In this hybrid, Sim simulates Πauth-trans as above and honestly emulates Fmult when parties invoke
Πauth-mult in the garbling phase.

Hyb1
p
= Hyb2: Since Sim honestly emulates Fmult, it follows that view of A in Πauth-mult in Hyb1 and

Hyb2 are identically distributed. We next observe thatA’s view for Frand-sharing, invoked in Πauth-trans, is
identically distributed in Hyb1 and Hyb2 since its view only includes sending the shares of the corrupt
parties and the additive errors to the secrets and shares to Sim. The only difference inA’s view during
Πtrans between Hyb1 and Hyb2 is that Sim sends the shares of the honest parties in a random degree-(𝑛−

52

1) packed Shamir sharing instead of actually computing the shares of honest parties in [x + r |pos]𝑛−1.
However, [r |pos]𝑛−1 is a random degree-(𝑛− 1) sharing which implies that [x + r |pos]𝑛−1 is a random
degree-(𝑛 − 1) packed Shamir sharing too. Thus, P1 receives the shares of a random degree-(𝑛 − 1)
packed Shamir sharing in both Hyb1 and Hyb2 and thus the view ofA in Hyb1 and Hyb2 for Πtrans, and
in turn Πauth-trans, is identical. It follows that Hyb1 and Hyb2 are identically distributed.

— Hyb3: In this hybrid, Sim simulates Πauth-mult as above.

Hyb2
p
= Hyb3: In Hyb2, Sim uses the real shares of corrupt parties and the additive errors to the shares

while in Hyb3, these are computed by Sim. However, it is easy to see that the two are identically
distributed since eitherA directly sends the shares of corrupt parties and additive errors to Sim or they
are a linear combination of values sent by A. Thus, Hyb2 and Hyb3 are identically distributed.

— Hyb4: In this hybrid, Sim simulates Πcheck-cons as above.

Hyb3
s≈ Hyb4: Consider an arbitrary 𝑖 ∈ [1, 𝐿check]. Compared to Hyb3, the shares of honest parties

in [y𝑖]H correspond to a sharing of a uniformly random vector y𝑖 instead of the linear combination
y𝑖 =

∑𝑚
𝑗=1 𝛼

𝑖
𝑗x𝑗 + 𝛼𝑖𝑚+1r𝑖 . However, since r𝑖 is uniformly random and unknown to A, the distribution

of y𝑖 in Πcheck-cons is also uniformly random to A. Moreover, ∆𝑦𝑖 is identically distributed in Hyb3
and Hyb4 since 𝛼𝑖𝑗 is uniformly random for every 𝑗 ∈ [1,𝑚]. Since Sim computes the shares of honest
parties as [y𝑖] = [y𝑖]H + ∆𝑦𝑖 it follows that [y𝑖] is also identically distributed in both hybrids. Thus,
the shares of honest parties received by A are identically distributed in Hyb3 and Hyb4.

Finally, Sim aborts in this hybrid, if ∆𝑥 ≠ 0 for any [x] ∈ Scons even if [y𝑖] is a valid sharing for every
𝑖 ∈ [1, 𝐿check]. However, the probability that this happens is |F|−𝐿check from Lemma 8 which is negligible
when 𝐿check ≥ 𝜅𝑠/log2 |F|. Thus, Hyb4 is statistically close to Hyb3.

— Hyb5: In this hybrid, Sim simulates Πcheck-mac as above.

Hyb4
s≈ Hyb5: Note thatA’s view up to this point is independent of the secret x for any ⟨x⟩ known by

Sim since the simulator only uses the shares of the corrupt parties and additive errors to the shares ∆𝑥 ;
both of which are independent of the secret. In essence, Sim starts simulating the secrets in this hybrid.
Compared to Hyb4, the shares of honest parties in [kmac𝑖] now correspond to a sharing of uniformly
random value kmac𝑖 instead of the actual MAC key for each 𝑖 ∈ [1, 𝐿mac]. Moreover, Sim computes the
shares of honest parties based on its computation of check𝑖 for each 𝑖 ∈ [1, 𝐿mac]. Additionally, Sim
aborts if 𝜹𝑥 ≠ 0 for any JxK ∈ Smac.

We first show that {kmac𝑖}𝐿mac
𝑖=1 are identically distributed in Hyb4 and Hyb5 since the view of A until

this point is independent of it. Specifically, A only learns the shares of corrupt parties in [kmac𝑖]
and [kmac𝑖 · x] for any authenticated packed sharing JxK in the pre-processing and garbling phases.
This is easy to see in case of Πauth, Πauth-mult, and Fmac-keygen from the definition of the simulator. In
case of Πauth-trans, Sim sends the shares of honest parties for a random degree-(𝑛 − 1) to A which is
independent of the secrets {kmac𝑖}𝐿mac

𝑖=1 . Finally, in case of Πcheck-cons, Sim sends the shares of honest
parties in a random degree-d sharing which is again independent of the MAC keys. Thus, the shares
of honest parties for [kmac𝑖] received by A are identically distributed in Hyb4 and Hyb5 for each
𝑖 ∈ [1, 𝐿mac].
We next show that the shares of honest parties in [check𝑖] are identically distributed in both hybrids for
each 𝑖 ∈ [1, 𝐿mac]. Consider any arbitrary 𝑖 ∈ [1, 𝐿mac]. We first show that check𝑖 , as computed by Sim
in Hyb5 is identically distributed to that in Hyb4. Since parties only perform local computation on their
shares in Πcheck-mac to compute their shares in [check𝑖], the shares of corrupt parties are identically
distributed in both hybrids. Thus, the shares of honest parties in [check𝑖] are identically distributed

53

in both hybrids since they are completely determined by the secret and the shares of corrupt parties.
We now proceed to prove that check𝑖 is identically distributed in both hybrids. In Hyb4, check𝑖 is
computed using secrets sampled by Frand, Fmac-keygen, and Fbitrand and computed in Fmult and Πtrans.
In Hyb5, Sim samples and computes the secrets itself. However, Sim samples the secrets identical to
the functionality and receives any additive errors to the secret fromA in case of Frand, Fmac-keygen, and
Fbitrand. In case of Fmult, we have ∆𝑥 = ∆𝑦 = 0 since Sim did abort at the end of Πcheck-cons which
in turn implies z = x · y + 𝜹𝑧 . Since 𝜹𝑧 is sent by A, z computed by Sim is identically distributed
to the underlying secrets for the product sharing in Hyb4 if the underlying secrets, x and y, for the
input sharings to Fmult are identically distributed. In case of Πtrans in Hyb4, the transformed secret
corresponds to 𝑓 (x + r) − 𝑓 (r) = 𝑓 (x + r) + 𝜹𝑓 (𝑥+𝑟) − 𝑓 (r) − 𝜹𝑓 (𝑟) = 𝑓 (x) + 𝜹𝑓 (𝑥+𝑟) − 𝜹𝑓 (𝑟) where
𝜹𝑓 (𝑥+𝑟) is the error introduced by P1 on 𝑓 (x+ r) which it reconstructs in Πtrans, and 𝜹𝑓 (𝑟) is the errorA
introduces in Frand-sharing. Since 𝜹𝑓 (𝑥+𝑟) and 𝜹𝑓 (𝑟) are sent by A, the transformed secret is identically
distributed in Hyb4 and Hyb5 if the input secret is identically distributed in both hybrids, since Sim
computes the transformed secret similar to that in Hyb4. Thus, Sim maintains the invariant that the
secret x in ⟨x⟩ are identically distributed to those in Hyb4 if the inputs to corresponding functionalities
and protocols are identically distributed. However, the sharings input to any functionality or protocol
in the pre-processing and garbling phase are either shares output by Frand, Fmac-keygen, and Fbitrand in
which case we have shown them to be identically distributed in both hybrids or are themselves the
output of Fmult, Πtrans and local computation. It follows that check𝑖 is identically distributed in both
hybrids which in turn implies that the shares of honest parties in [check𝑖] are identically distributed in
both hybrids.

We now proceed to show that the probability that 𝜹𝑥 ≠ 0 for some JxK ∈ Smac but check𝑖 = 0 for each
𝑖 ∈ [1, 𝐿mac] is negligible. This in turn implies that the probability Sim aborts in Hyb5 is negligible.
Towards proving this, we first show that if 𝜹𝑥 ≠ 0 for some JxK ∈ Smac then check𝑖 = 0 in Hyb4 with
probability at most 2

|F | for each 𝑖 ∈ [1, 𝐿mac]. Consider an arbitrary 𝑖 ∈ [1, 𝐿mac]. In Πcheck-mac, we have
[y𝑖] =

∑𝑚
𝑗=1 𝛼

𝑖
𝑗 [x𝑗] and [kmac𝑖 · y𝑖] =

∑𝑚
𝑗=1 𝛼

𝑖
𝑗 [kmac𝑖 · x𝑗]. We use X𝑖

𝑘
to denote the underlying secret

for the sharing [kmaci · xk]. Let Jx1K, . . . , Jx𝑚K be the order in which the shares were added into Smac

and let 𝑘 be the smallest index such that either 𝜹𝑥𝑘 ≠ 0 or 𝜹𝑋 𝑖
𝑘
≠ 0. We have the following cases based

on how Jx𝑘K was computed.

– We first consider the case when Jx𝑘K is the output of running Πauth on [x] and Kmac. From the
definition of Fmult and the fact that ∆𝑥𝑘 = ∆kmac𝑖 = 0, we have X𝑖

𝑘
= kmac𝑖 · x𝑘 + 𝜹𝑋 𝑖

𝑘
. Thus,

kmac𝑖 · x𝑘 − X𝑖
𝑘
= 𝜹𝑋 𝑖

𝑘
. This implies that if check𝑖 = 0, we have

𝛼𝑘𝑗 · 𝜹𝑋 𝑖
𝑘
= kmac𝑖 ·

©«
𝑚∑︁

𝑗=1, 𝑗≠𝑘
𝛼𝑖𝑗x𝑗

ª®¬ − ©«
𝑚∑︁

𝑗=1, 𝑗≠𝑘
𝛼𝑖𝑗X

𝑖
𝑘

ª®¬ .
Since 𝜹𝑋 𝑖

𝑘
≠ 0 by definition of 𝑘 , the above equality holds with probability at most 1

|F | since 𝛼𝑘𝑗 is
uniformly random in F.

– Consider the case when Jx𝑘K is the output of Πauth-mult when run with inputs JuK and JvK. From
the definition of Fmult and the fact that ∆𝑢 = ∆𝑣 = 0, we have x𝑘 = u · v + 𝜹𝑥𝑘 . Similarly, we have
X𝑖
𝑘
= (kmac𝑖 ·u+𝜹 ′) ·v+𝜹𝑋 𝑖

𝑘
where we use 𝜹 ′ to denote the accumulated additive error on [kmac𝑖 ·u𝑘]

from prior computation. However, since 𝑘 is the smallest index such that either 𝜹𝑥𝑘 ≠ 0 or 𝜹𝑋 𝑖
𝑘
≠ 0,

we have 𝜹 ′ = 0. Thus,
X𝑖
𝑘
− kmac𝑖 · x𝑘 = kmac𝑖 · u · v + kmac𝑖 · 𝜹𝑥𝑘 − (kmac𝑖 · u) · v − 𝜹𝑋 𝑖

𝑘

= kmac𝑖 · 𝜹𝑥𝑘 − 𝜹𝑋 𝑖
𝑘
.

54

This implies that if check𝑖 = 0, we have

𝛼𝑘𝑗 (kmac𝑖 · 𝜹𝑥𝑘 − 𝜹𝑋 𝑖
𝑘
) = kmac𝑖 ·

©«
𝑚∑︁

𝑗=1, 𝑗≠𝑘
𝛼𝑖𝑗x𝑗

ª®¬ − ©«
𝑚∑︁

𝑗=1, 𝑗≠𝑘
𝛼𝑖𝑗X

𝑖
𝑘

ª®¬ .
If (kmac𝑖 · 𝜹𝑥𝑘 − 𝜹𝑋 𝑖

𝑘
) ≠ 0 then the above equality holds with probability at most |F|−1 since 𝛼𝑘𝑗 is

uniformly random over F. On the other hand, if (kmac𝑖 · 𝜹𝑥𝑘 − 𝜹𝑋 𝑖
𝑘
) = 0 the equality always holds.

However, the probability of that happening is at most |F|−1 since kmac𝑖 is unknown to A when
Πauth-mult is run. Thus, the probability that check𝑖 = 0 despite 𝜹𝑥 ≠ 0 is at most 1

|F | + (1−
1
|F |)

1
|F | ≤

2
|F | .

– If Jx𝑘K is the output of Πerror, then it follows from a similar argument as above that check𝑖 = 0 with
probability at most 1

|F | .

– Finally, we consider the case when Jx𝑘K is the output of one or more instances of Πauth-trans. Note that
in our protocol, we start with a sharing JuK over the default positions posdef and run Πauth-trans one
or more times in succession (with only local computation in between successive runs) to obtain Jx𝑘K.
In every run of Πauth-trans, A can introduce an additive error which accumulates across consecutive
runs. Specifically, we have x𝑘 = 𝑓 (u′ + 𝜹𝑢′) + 𝜹𝑓 (𝑢′) = 𝑓 (u′) + 𝑓 (𝜹𝑢′) + 𝜹𝑓 (𝑢′) where u′ is the secret
corresponding to the output of a previous transform, 𝜹𝑢′ is the existing additive error on u′, and
𝜹𝑓 (𝑢′) is the additive error introduced in transformation of u′ to x𝑘 . Thus, 𝜹𝑥𝑘 = 𝑓 (𝜹𝑢′) + 𝜹𝑓 (𝑢′) . Sim
computes 𝜹𝑥𝑘 in a similar manner in this hybrid and aborts if 𝜹𝑥𝑘 ≠ 0.

Thus, we have x𝑘 = 𝑓 (u) + 𝜹𝑥𝑘 and X𝑖
𝑘
= kmac𝑖 · 𝑓 (u) + 𝜹𝑋 𝑖

𝑘
where 𝑓 (·) is the composition of the

individual linear functions applied in consecutive runs ofΠauth-trans. This implies that X𝑖
𝑘
−kmac𝑖 ·x𝑘 =

𝜹𝑋 𝑖
𝑘
− kmac𝑖 · 𝜹𝑥𝑘 . This implies that

𝛼𝑘𝑗 (𝜹𝑋 𝑖
𝑘
− kmac𝑖 · 𝜹𝑥𝑘) = kmac𝑖 ·

©«
𝑚∑︁

𝑗=1, 𝑗≠𝑘
𝛼𝑖𝑗x𝑗

ª®¬ − ©«
𝑚∑︁

𝑗=1, 𝑗≠𝑘
𝛼𝑖𝑗X

𝑖
𝑘

ª®¬ .
If 𝜹𝑋 𝑖

𝑘
− kmac𝑖 · 𝜹𝑥𝑘 ≠ 0 the above equation holds with probability at most 1

|F | since 𝛼𝑘𝑗 is uniformly
random over F. On the other hand, if 𝜹𝑋 𝑖

𝑘
− kmac𝑖 · 𝜹𝑥𝑘 = 0 then the above equation always holds

true. However, the probability that 𝜹𝑋 𝑖
𝑘
−kmac𝑖 ·𝜹𝑥𝑘 = 0 is 1

|F | since kmac𝑖 is uniformly random over
F and is unknown to A when Πauth-trans is run. Thus, the probability that check𝑖 = 0 despite 𝜹𝑥 ≠ 0
is at most 1

|F | + (1 −
1
|F |)

1
|F | ≤

2
|F | .

Thus, if 𝜹𝑥 ≠ 0 for some JxK ∈ Smac then check𝑖 = 0 in Hyb4 with probability at most 2
|F | for each

𝑖 ∈ [1, 𝐿mac]. This implies that the probability that check𝑖 = 0 for every 𝑖 ∈ [1, 𝐿mac] is at most |F|−𝐿mac .
Thus, the probability that Sim aborts when 𝜹𝑥 ≠ 0 for any JxK ∈ Smac but check𝑖 = 0 for every

𝑖 ∈ [1, 𝐿mac] is at most
(

2
|F |

)−𝐿mac
which is negligible when 𝐿mac ≥ 𝜅𝑠

log |F |−1 . Hence, Sim aborts with
negligible probability in Hyb5.

Finally, note that in Hyb5, check𝑖 is computed using the secrets sampled by Sim while the remainder
of A’s view as well as the output of honest parties are not computed using these secrets. On the other
hand, check𝑖 and the remainder of A’s view is computed using the same underlying secret in Hyb4.
This does not render the hybrids distinguishable because when check𝑖 ≠ 0 for some 𝑖 ∈ [1, 𝐿mac], the
view ofA terminates at this point in both hybrids since in Hyb4, honest parties abort during Πcheck-mac

while Sim stops the simulation in Hyb5. Moreover, check𝑖 is identically distributed in Hyb4 and Hyb5
in this case, as shown previously. Similarly, the output of honest parties is abort in Hyb4 as well as

55

Hyb5 in this case since check𝑖 ≠ 0. On the other hand, when check𝑖 = 0 for each 𝑖 ∈ [1, 𝐿mac], it is
independent of the secrets. Thus, Hyb4 and Hyb5 are statistically indistinguishable.

— Hyb6: In this hybrid, Sim simulates the check for shares in Szero as described above.

Hyb5
s≈ Hyb6: Compared to Hyb5, Sim now computes check𝑖 using the secrets it sampled for each

𝑖 ∈ [1, 𝐿check]. Moreover, Sim aborts if A sent 𝜹𝑏 ∉ {0, 1}ℓ in any of the emulations of Fbitrand.

We first show that the shares of honest parties in [check𝑖] sent by Sim are identically distributed in
Hyb5 and Hyb6. Note that this step in the protocol is executed if Sim did not abort at the end of
Πcheck-mac, in which case,A received the shares of honest parties in a degree-d zero sharing inΠcheck-mac.
Thus, A’s view up to this point is independent of the underlying secrets b for the sharing output by
Fbitrand. Note that Sim samples b uniformly at random and receives the additive errors to the secrets
𝜹𝑏 from A and computes b = b + 𝜹𝑏 as the secret in ⟨b⟩. Thus, the underlying secrets for Fbitrand are
identically distributed in Hyb5 and Hyb6. All sharings in Szero are computed in instances of Πcheck-bit

and correspond to a sharing of the secret o = b
2 − b where there is no error in the computation of

b
2

because Sim did not abort in Πcheck-mac. Since 𝛼𝑖𝑗 are uniformly random in both hybrids for each
𝑗 ∈ [1,𝑚] and 𝑖 ∈ [1, 𝐿check], it follows that check𝑖 is identically distributed in both hybrids. Moreover,
the shares of corrupt parties are identically distributed in both hybrids since parties compute their
shares in [check𝑖] using local computation. It thus follows that the shares of honest parties in [check𝑖]
are identically distributed in Hyb5 and Hyb6 since they are completely determined by the secret and
the shares of corrupt parties.

Sim aborts in Hyb6 if flag = 1 and check𝑖 = 0 for all 𝑖 ∈ [1, 𝐿check]. Consider an arbitrary 𝑖 ∈ [1, 𝐿check].
We argue that the probability flag = 1 and check𝑖 = 0 is at most |F|−1 in Hyb5. This is because, for every
[o] ∈ Szero, o = b

2−b = 0 if b ∈ {0, 1}ℓ which in turn implies that b+𝜹𝑏 ∈ {0, 1}ℓ . Since b is a uniformly
random boolean vector by definition, we have o = 0 if 𝜹𝑏 ∈ {0, 1}ℓ . Thus, using a similar approach to
the proof of Lemma 8, we can show that the probability that there exists 𝜹𝑏 ∉ {0, 1}ℓ but check𝑖 = 0
is at most |F|−1. Thus, the probability that check𝑖 = 0 for every 𝑖 ∈ [1, 𝐿check] despite 𝜹𝑏 ∉ {0, 1}ℓ is
|F|−𝐿check which is negligible when 𝐿check ≥ 𝜅𝑠/log2 |F|. Thus, Sim aborts with negligible probability in
Hyb6.

Finally, note that in Hyb6, check𝑖 is computed using the secrets sampled by Sim while the remainder of
A’s view as well as the output of honest parties are not computed using these secrets. On the other hand,
check𝑖 and the remainder ofA’s view is computed using the same underlying secret in Hyb5. However,
this does not render the hybrids distinguishable because when check𝑖 = 0 for each 𝑖 ∈ [1, 𝐿check], they
are independent of the underlying secrets b for the sharing output by Fbitrand. On the other hand, when
check𝑖 ≠ 0 for some 𝑖 ∈ [1, 𝐿check], we have already shown that check𝑖 is identically distributed in Hyb5
and Hyb6. Moreover, the view of A terminates at this point in Hyb5 since honest parties abort while
Sim stops the simulation in Hyb6. Similarly, the output of honest parties is abort in Hyb5 as well as
Hyb6 since there is some 𝑖 ∈ [1, 𝐿check] such that check𝑖 ≠ 0. Thus, Hyb6 is statistically close to Hyb5.

— Hyb7: In this hybrid, Sim simulates the reconstruction of 𝜆inp𝑤 and the subsequent broadcast of 𝜌𝑤 for
every 𝑤 ∈ [1,𝑊inp] as above.

Hyb6
c≈ Hyb7: In Hyb6, 𝜆inp𝑤 reconstructed towards corrupt clients corresponded to uniformly random

bits and 𝜌𝑤 broadcast by honest parties was equal to the masked values of their inputs. In Hyb7, Sim
runs Simgc when reconstructing the secrets for 𝜆inp𝑤 for every 𝑤 ∈ W inp

C and 𝜌𝑤 for every 𝑤 ∈ W inp
H .

Note that the view of A up to this point is independent of the secrets 𝜆
inp
𝑤 for each 𝑤 ∈ [1,𝑊inp].

56

Moreover, 𝜆inp𝑤 is uniformly random in {0, 1}ℓ since Sim did not abort during verification. Specifically,
the underlying secret b + 𝜹𝑏 for the sharing output by Fbitrand is a uniformly random bit vector when
b is uniformly random and b, 𝜹𝑏 ∈ {0, 1}ℓ . Thus, 𝜆inp𝑤 in Hyb6 are distributed identical to the output of
GC.MaskGen for each 𝑤 ∈ W inp

C . Moreover, 𝜌𝑤 for each 𝑤 ∈ W inp
H correspond to the actual masked

value of honest parties in Hyb6. In Hyb7, 𝜆inp𝑤 for each𝑤 ∈ W inp
C and 𝜌𝑤 for each𝑤 ∈ W inp

H correspond
to the output of Simgc. Since the shares of corrupt parties held by Sim are identically distributed to those
in Hyb6 and the shares of honest parties are completely determined by the secrets and the shares of
corrupt parties, it follows that Hyb7 is computationally indistinguishable from Hyb6 from the security
of the garbling scheme. Specifically, the output of Simgc is computationally indistinguishable from
{𝜆𝑤}𝑤∈Winp

C
and {𝜌𝑤}𝑤∈Winp

H
computed using the output of GC.MaskGen.

— Hyb8: In this hybrid, Sim simulates the rest of the evaluation phase as above.

Hyb7
c≈ Hyb8: In comparison to Hyb7, Sim now runs Simgc to compute the secrets that are then recon-

structed. However, from Lemma 9 G, X and auxdec in Hyb7 (step 13 of Πmpc) are distributed such that
(G, auxenc, auxdec) ← GC.Garble(C, {𝜆𝑤}𝑊𝑤=1, 1𝜅𝑐) and X← GC.Encode(x, auxenc). The security of the
garbling scheme then implies that Hyb7 and Hyb8 are computationally indistinguishable.

— Hyb9: In this hybrid, the output of honest parties is from Fmpc.

Hyb8
p
= Hyb9: Compared to Hyb8, where the output of honest parties was from Πmpc, the output in

this hybrid is from Fmpc. Whenever Sim detects an abort in Hyb8, it stops the simulation for A and
sends abort to Fmpc which then outputs abort to honest parties. It thus follows that the output of
honest parties is identically distributed in Hyb9 and Hyb8 when there is an abort. We next show that
when there is no abort, the output of honest parties is identically distributed in both hybrids. In both
hybrids, A broadcasts {𝜌𝑤}𝑤∈Winp

C
on behalf of the corrupt clients. It then follows from Lemma 9

and the correctness of the garbling scheme that the output of honest parties is C(x) where x is the
combined input of corrupt and honest clients. On the other hand, in Hyb9, Sim computes the input
of corrupt clients using {𝜌𝑤}𝑤∈Winp

C
broadcast by A. It follows by the definition of GC.Encode that

Sim computes the same inputs for corrupt clients as used by honest parties for computing the output
in Hyb8. Since Sim sends continue to Fmpc in this case, it follows that the output of honest parties is
C(x) from the definition of the functionality. Thus, Hyb9 and Hyb8 are identically distributed.

Hyb9 corresponds to the distribution of the view ofA and output of honest parties in the ideal world.
Thus, it follows that the joint view consisting of the view ofA and the output of honest parties in the real
world is computationally indistinguishable from that in the ideal world. □

From Lemma 10, it follows that Πmpc securely realizes Fmpc. □

7 Protocol Evaluation And Analysis

In this section, we attempt to get a better picture of the concrete performance of our protocol by analyz-
ing its communication and computation costs. We first discuss some modifications to the protocol that
improve its performance in practice followed by a discussion on the choice of optimal parameters for LPN
and the binary super-invertible matrix. We then discuss the performance of our semi-honest and mali-
ciously secure protocols and compare it to those of prior works. Our analysis will be centered around
the performance of the pre-processing and garbling phases which constitute the communication intensive
parts of our protocol.

57

7.1 Practical Protocol Optimizations

There are many simple optimizations or changes that can be made to reduce the constants that are involved
in the communication complexity of the overall protocol. The following are some simple optimizations to
reduce the concrete costs of the protocol.

1. Pack Circuit Input Wires Separately. Instead of packing keys and masks for blocks of all wires in
the circuit together, separately pack the keys and masks for circuit input wires and the remaining wires
(which correspond to output wires of individual gates) in the circuit. Then, 𝝀out

𝑔 and outk𝑏𝑔,𝑖 need not be
computed in steps 6(c) and 6(d) as they are equal to the values sampled in the pre-processing phase.

2. Pack XOR and AND Gates Separately. Instead of packing the ciphertexts in the garbled tables for
gates of different types together, pack the ciphertexts for garbled tables of the same gate type together.
While this does lead to slightly inefficient packing, it allows us to skip 7(c) and 7(d) entirely and only
requires one of 7(a) or 7(b) to be computed for each packed sharing of the plaintext.

3. Reduce Cost for ComputingMask Bits. For AND gates, we only need one multiplication to compute
[s-and𝛼,𝛽g] across all 𝛼, 𝛽 ∈ {0, 1}. This reduces the cost of garbling an AND gate by 3 multiplications.
See [WRK17a] for more details.

4. Reduce Cost for Selecting Plaintexts. We can avoid computing the plaintext for each row of the
garbled table in step 7, by expressing the plaintext in some rows as a linear function of the plaintexts
computed for other rows in the garbled table. Specifically, for an AND gate we observe that outk1,1

𝑔,𝑖
=

outk0,0
𝑔,𝑖
+ outk0,1

𝑔,𝑖
+ outk1,0

𝑔,𝑖
over fields of characteristic 2. Similarly, for an XOR gate we observe that

outk0,1
𝑔,𝑖

= outk0,0
𝑔,𝑖
+outk0

𝑔,𝑖 +outk1
𝑔,𝑖 over fields of characteristic 2 and moreover, we always have outk0,0

𝑔,𝑖
=

outk1,1
𝑔,𝑖

and outk0,1
𝑔,𝑖

= outk1,0
𝑔,𝑖

. This observation, along with the previously discussed optimizations
reduces the cost of garbling an AND gate and an XOR gate to requiring 3𝐿lpn+4 and 𝐿lpn+1 authenticated
multiplications respectively.

5. Reduce Number of LPN Matrices. As shown by Ben-Efraim et al., instead of using a unique LPN
matrix for each gate, it suffices to ensure that no two gates with the same input wire are garbled using
the same LPN matrix [BLO17, Theorem 4]. Thus, in the context of our protocol, it suffices to ensure that
the underlying LPN matrix encoded as a packed sharing (cf. multiplicative friendliness in Section 3.2)
satisfies the above property.

6. Replace Πauth-trans with Degree Reduction Wherever Possible. Sometimes in the protocol, e.g.
in 5(b), Πauth-trans is called not to change the positions of the secrets but solely to perform a degree
reduction. In these cases Πauth-trans is overly expensive. We instead replace Πauth-trans with a call to
Πrand and Πzero to perform a leader based degree reduction as in Πmult.

7.2 LPN Parameters

Our analysis of the security of LPN over larger fields follows that of Liu et al. [LWYY22]. The LPN parame-
ters provide a trade-off between the security provided by the garbled circuit as well as the correctness error
when evaluating the garbled circuit. Specifically, to correctly decrypt the ciphertext during evaluation, the
weight of the noise vector e, which follows the binomial distribution, should be lesser than half the distance
of the error correcting code. Namely, Pre [weight(e) ≤ ⌊(𝑑 − 1)/2⌋] = Pr[Binom(𝑄, 𝜏) ≤ ⌊(𝑑 − 1)/2⌋]. On
the other hand, a noise vector with very small weight would lower security.

For our protocols, we set the noise rate 𝜏 of our LPN-based encryption to be a constant, and require
only a polynomial number of samples (see Section 3.4). We choose the parameters of a Reed-Solomon code

58

to correct constant fraction of errors. To find the best parameters, we fix the noise rate 𝜏lpn and use binary
search to find 𝑄 and 𝑉 such that the distance 𝑑 = 𝑄 −𝑉 + 1 of the Reed-Solomon code satisfies

Pr[Binom(𝑄, 𝜏) ≤ ⌊(𝑑 − 1)/2⌋] ≤ 2−40,

while ensuring that the LPN parameters (𝑄,𝑉 , 𝜏) provide 80-bits of security, as determined using the
Python script provided by Liu et al. [LWYY22].

We find that for a correctness error of 2−40, 𝑄 = 555,𝑉 = 127, 𝜏 = 2−2 are the optimal parameters for
achieving 80-bit security and 𝑄 = 785,𝑉 = 214, 𝜏 = 2−2 are the optimal parameters for achieving 128-bit
security. For the Reed-Solomon code we choose [555, 128, 428]𝑞 and [785, 215, 571]𝑞 respectively for 80-bit
and 128-bit security.

7.3 Parameters for Binary Super-Invertible Matrices

We use a concatenation of an outer Reed Solomon code and an inner binary error-correcting code to obtain
the binary super-invertible matrix.

In more detail, let the Reed Solomon code parameters be [𝑄𝑟 , 𝐿𝑟 , 𝑑𝑟]𝑞 , where 𝑑𝑟 = 𝑄𝑟 − 𝐿𝑟 + 1 and
𝑞 ≥ 𝑄𝑟 is a power of 2. Let the inner code parameters be [𝑄𝑖 , 𝐿𝑖 , 𝑑𝑖]2 with 𝑞 = 2𝐿𝑖 . Then by Theorem 2,
the concatenated code has parameters [𝑄𝑟𝑄𝑖 , 𝐿𝑟𝐿𝑖 , 𝑑𝑟𝑑𝑖]2. Hence, we need 𝑄𝑟𝑄𝑖 ≥ 𝑄 . However, when
𝑄𝑟𝑄𝑖 > 𝑄 , then we need to truncate (𝑄𝑟𝑄𝑖 − 𝑄)-rows of the generating matrix. This causes a loss of
(𝑄𝑟𝑄𝑖 −𝑄) in the distance, and we thus obtain a [𝑄, 𝐿𝑟𝐿𝑖 , 𝑑𝑟𝑑𝑖 − (𝑄𝑟𝑄𝑖 −𝑄)]2-code. By Theorem 1, if we
have ⌊𝑄/3⌋ malicious parties, then we need 𝑑𝑟𝑑𝑖 − (𝑄𝑟𝑄𝑖 −𝑄) +1 ≥ ⌊𝑄/3⌋. In summary, we need to choose
the parameters which maximize message length 𝐿𝑟𝐿𝑖 with the following constraints.

𝑄𝑟 ·𝑄𝑖 ≥ 𝑄

𝑞 = 2𝐿𝑖 ≥ 𝑄𝑟

𝑄𝑟 ·𝑄𝑖 − 𝑑𝑟 · 𝑑𝑖 ≤ 𝑄 − ⌊𝑄/3⌋ .

In our setting, we assume 𝑄 = 𝑛, i.e., the number of parties. If we use Reed Solomon Codes and the
inner code with constant rate, then the resulting concetenation code will also have constant rate. In this
case, it is easy to see that 𝐿𝑟𝐿𝑖 ∈ O(𝑛). We can now use the generator matrix of [𝑄, 𝐿𝑟𝐿𝑖 , 𝑑𝑟𝑑𝑖−(𝑄𝑟𝑄𝑖−𝑄)]2-
code as our binary super-invertible matrix. The dimension of this matrix will be 𝑄 × 𝐿𝑟𝐿𝑖 , i.e., 𝑛 × O(𝑛),
which is what we want.

For concrete parameters, we take the BCH codes [BRC60] as the inner codes, and use a Python script
to enumerate all combinations of the Reed Solomon codes and the BCH codes to find the largest possible
𝐿𝑟 . Our script also enumerates random linear codes achieving Gilbert–Varshamov bound as the inner code.
Here we list some concrete parameters. For 𝑛 = 256 and 𝑡 = 63, we choose [16, 6, 11]27-Reed Solomon code
concatenated with [16, 7, 6]2-BCH code. For 𝑛 = 512 and 𝑡 = 127, we choose [32, 11, 22]27-Reed Solomon
code concatenated with [16, 7, 6]2-BCH code.

7.4 Evaluation of our Semi-Honest Secure Protocol

To evaluate the concrete performance of our protocol, we implement the semi-honest variant in Rust 11

and benchmark its performance in realistic deployment scenarios, executing common circuits with hun-
dreds of parties located in different regions of the US. To do this we make use of publicly available cloud
services provided by AWS. Our network set-up consists of a number of c4.large instances spread across the
following AWS regions: us-east-1, us-east-2, and us-west-2. A c4.large is equipped with Intel(R) Xeon(R)

11github.com/adishegde/scalable garbling

59

https://github.com/adishegde/scalable_garbling

Circuit 𝑛 𝑡 ℓ
Pre-Processing Pre-Processing Size Garbling

Runtime (s) Comm. (MB) (MB) Runtime (s) Comm. (MB)

AES-128
128 31 33 128.413 253.200 40.950 13.411 26.587
256 63 65 95.933 107.270 21.212 10.262 13.749
512 127 129 110.776 58.742 12.543 15.527 8.094

SHA-256
128 31 33 - - 152.536 46.167 99.028
256 63 65 453.787 402.479 79.155 39.271 51.294
512 127 129 441.084 213.369 41.888 40.797 27.074

Table 1: Runtime and per party communication cost of our implementation of the semi-honest variant
of our protocol when each party is run with 2 threads. 𝑛 is the number of parties, 𝑡 = ⌊(𝑛 − 1)/4⌋ is
the corruption threshold, and ℓ is the packing parameter. The security parameters are set to 𝜅𝑠 = 40 and
𝜅𝑐 = 80. AES-128 has 36663 gates and SHA-256 has 114107 gates.

E5-2666 processor and consists of 2 vCPUs and 3.75 GB of RAM. We used the MATRIX library [BHKL18] to
orchestrate experiments over AWS. Our implementation is multi-threaded and makes use of asynchronous
I/O to run protocols concurrently. We use the Fast Galois Field Arithmetic Library [Pla07] for finite field
arithmetic in our implementation and use the circuit descriptions available at [AAL+] for our experiments.
We run each experiment 5 times and report the average.

Table 1 summarizes the runtime and communication cost of the pre-processing and garbling phases
as well as the size of the pre-processing material output by each party at the end of the pre-processing
phase when garbling the AES-128 and SHA-256 circuits with 128, 256, and 512 parties whilst tolerating
𝑡 = ⌊(𝑛 − 1)/4⌋ corruptions. Our benchmarks indicate that our protocol is practical and can scale to
a large number of parties since the runtime does not vary significantly with the number of parties and
depends mainly on the size of the circuit being evaluated. The pre-processing phase for AES-128 takes a
maximum of 128.4s and for SHA-256 takes a maximum of 453.8s. The garbling phase takes at most 15.5s
for AES-128 and at most 46.1s for SHA-256. As expected, the per-party communication cost as well as
the size of the pre-processing material decreases as the number of parties increases, owing to the 𝑂 (|𝐶 |)
communication complexity. Our implementation’s memory consumption exceeded the c4.large instance’s
3.75 GB limit when running the pre-processing phase for SHA-256 with 128 parties. We note that such
overheads in memory can be avoided by generating the pre-processing material in smaller batches instead
of computing it all at once in the minimum number of rounds.

Table 2 compares the performance of the protocol with different corruption thresholds, when garbling

𝑡 ℓ
Pre-Processing Pre-Processing Size Garbling

Runtime (s) Comm. (MB) (MB) Runtime (s) Comm. (MB)

85 = ⌊(𝑛 − 1)/3⌋ 43 200.904 326.251 45.568 17.777 28.530
63 = ⌊(𝑛 − 1)/4⌋ 65 95.933 107.270 21.212 10.262 13.749
51 = ⌊(𝑛 − 1)/5⌋ 77 75.935 77.011 16.486 8.964 10.841
42 = ⌊(𝑛 − 1)/6⌋ 86 72.441 62.195 13.456 9.696 8.955

Table 2: Comparison of the runtime and per party communication of the semi-honest variant of our pro-
tocol with different corruption thresholds when garbling the AES-128 circuit with 𝑛 = 256 parites where
each party is run with 2 threads. 𝑡 is the corruption threshold, and ℓ is the packing parameter. The security
parameters are set to 𝜅𝑠 = 40 and 𝜅𝑐 = 80.

60

AES-128 with 256 parties. We observe that both the runtime and communication costs decrease with
the corruption threshold. Specifically, when tolerating 1

6 -th corruption instead of 1
3 -rd corruption, we

notice a 2.7× improvement in the runtime for pre-processing and a 1.8× improvement in the runtime
for the garbling phase. A minor irregularity is observed in the runtime of the garbling phase where it
increases by 0.73s when tolerating 1

6 -th corruption compared to when tolerating 1
5 -th corruption. Note

that a smaller corruption threshold 𝑡 implies a larger packing parameter ℓ which in turn implies computing
over fewer secret shares to garble the same circuit. However, a larger packing parameter also requires
sharing secrets over a larger degree polynomial and increases the computation required per share. While
the net effect implies constant computation complexity, the observed irregularity might be an artifact of
the implementation due to the discussed effects of a larger packing parameter.

Comparison to Prior Work. Ben-Efraim and Omri [BO19] present efficient multiparty garbling pro-
tocols in the honest majority setting. We restrict our discussion to their semi-honest secure protocols
since they do not instantiate the pre-processing phase for their maliciously secure protocols and provide
benchmarks only for the former. They present two semi-honest protocols: BGW3opt that can tolerate up
to 𝑡 < 𝑛

2 corruptions and the more efficient BGW2opt protocol that is secure up to 𝑡 < 𝑛
3 corruptions,

both of which have quadratic computation and communication complexity in the number of parties 𝑛.
We compare the performance of our semi-honest protocol when run with 𝑡 =

(𝑛−1)
3 to the performance

of BGW2opt. BGW2opt has a total runtime of 0.109s when garbling AES-128 with 13 parties over LAN.
Scaling the runtime, given the protocol’s quadratic growth in computation and communication costs with
the number of parties, suggests that the protocol would take at least 42.27s to garble AES-128 with 256
parties over LAN. In comparison, from Table 2, our protocol takes a total of 218.67s to garble AES-128
with 256 parties. Thus, our semi-honest protocol has comparable performance despite being run over a
network with lower bandwidth and higher latency. Moreover, BGW2opt takes 34.17s to garble SHA-256
with 31 parties over LAN which would imply a runtime of at least 2330.38s when garbling SHA-256 with
256 parties over LAN. On the other hand, scaling the runtime of our protocol from Table 2, we expect our
protocol to take 680.61s when garbling SHA-256 with 256 parties whilst tolerating 1

3 -rd corruption. This
indicates that for larger circuits, our protocol outperforms BGW2opt despite being run over a slower net-
work while for smaller circuits we expect our protocol to have similar or better runtimes when run over
identical network conditions.

7.5 Evaluation of Maliciously Secure Protocol

While we do not implement our maliciously secure protocol, we evaluate its performance by estimating
its communication and computation costs. To estimate communication costs, we wrote a python script
that outputs the communication required for each phase of the protocol by computing the number of
bits communicated by all parties in every sub-protocol. To estimate the concrete computation costs of
our protocol, we first benchmarked the time required for individual field operations (addition and multi-
plication) followed by programmatically estimating the total number of field operations carried out in a
protocol execution using a python script. As in our implementation of the semi-honest protocol, we used
the Fast Galois Field Arithmetic Library [Pla07] for field arithmetic. We found that on a c4.large instance
(cf. Section 7.4), a field multiplication takes an average time of 5.6319e-10s and a field multiplication takes
on average 1.0079e-8s. For the sake reproducibility, the scripts used for estimating the communication
and computation costs as well as benchmarking the time for field operations have been included in the
associated github repository12.

Table 3 summarizes the estimated computation and communication costs for garbling AES-128 and
SHA-256 with 128, 256, and 512 parties whilst tolerating 𝑡 = ⌊(𝑛 − 1)/4⌋ corruptions. As expected, the

12github.com/adishegde/scalable garbling

61

https://github.com/adishegde/scalable_garbling

Circuit 𝑛 𝑡 ℓ
Pre-Processing Garbling

Comp. Time (s) Comm. (MB) Comp. Time (s) Comm. (MB)

AES-128
128 31 33 ≈ 200 ≈ 1168 ≈ 21 ≈ 163
256 63 65 ≈ 199 ≈ 573 ≈ 19 ≈ 83
512 127 129 ≈ 202 ≈ 292 ≈ 18 ≈ 42

SHA-256
128 31 33 ≈ 737 ≈ 4301 ≈ 79 ≈ 602
256 63 65 ≈ 735 ≈ 2111 ≈ 71 ≈ 308
512 127 129 ≈ 744 ≈ 1075 ≈ 67 ≈ 155

Table 3: Estimated computation time and per party communication cost of the maliciously secure protocol
when each party is run with 2 threads. 𝑛 is the number of parties, 𝑡 = ⌊(𝑛 − 1)/4⌋ is the corruption
threshold, and ℓ is the packing parameter. The security parameters are set to 𝜅𝑠 = 40 and 𝜅𝑐 = 80. AES-128
has 36663 gates and SHA-256 has 114107 gates.

per party communication cost decreases significantly with an increase in the number of parties. The com-
munication required for the maliciously secure pre-processing and garbling phases is around 5.05x and
5.89x the communication required for the semi-honest secure pre-processing and garbling phases respec-
tively. To better understand how the computational overhead affects the total runtime, we estimated the
computation time for the semi-honest protocol too and found that the runtime of our implementation (cf.
Section 7.4) was on average 3.14x the estimated computation time for the pre-processing phase and 2.54x
the estimated computation time for the garbling phase. It is reasonable to expect that the relationship
between the estimated computation time and total runtime would be similar for the malicious protocol.
Thus, the maliciously secure protocol is expected to have reasonable runtime in practice, and as in the case
of the semi-honest protocol the runtime is not expected to vary significantly with the number of parties
but depend mainly on the size of the circuit being evaluated.

250 300 350 400 450 500 550 600 650
Number of parties

0

2

4

6

8

10

12

14

16

E
st

im
at

ed
 c

om
m

un
ic

at
io

n
co

st
 (G

B
)

WRK17b
BCOOSS21
This Work

(a) Pre-processing phase

250 300 350 400 450 500 550 600 650
Number of parties

50

100

150

200

250

E
st

im
at

ed
 c

om
m

un
ic

at
io

n
co

st
 (M

B
)

WRK17b
BCOOSS21
This Work

(b) Garbling phase

Figure 2: Comparison of estimated per party communication cost when garbling AES-128 with different
multiparty garbling protocols, where each protocol is run with the same number of parties. We set the
corruption threshold to 𝑡 = ⌊ (𝑛−1)

4 ⌋ for our protocol. The security parameters are set to 𝜅𝑠 = 40 and
𝜅𝑐 = 128 for all protocols.

62

200 225 250 275 300 325 350 375 400
Number of corruptions

0

2

4

6

8

10

12

E
st

im
at

ed
 c

om
m

un
ic

at
io

n
co

st
 (G

B
)

WRK17b
BCOOSS21
This Work

(a) Pre-processing phase

250 300 350 400 450 500 550 600 650
Number of corruptions

20

40

60

80

100

120

140

160

180

E
st

im
at

ed
 c

om
m

un
ic

at
io

n
co

st
 (M

B
)

WRK17b
BCOOSS21
This Work

(b) Garbling phase

Figure 3: Comparison of estimated per party communication cost when garbling AES-128 with different
multiparty garbling protocols, where each protocol is run to tolerate the same number of corruptions. We
set the number of parties to be 𝑛 = 4𝑡 + 1 for our protocol. The security parameters are set to 𝜅𝑠 = 40 and
𝜅𝑐 = 128 for all protocols.

7.5.1 Comparison to Prior Works

Ben-Efraim et al. [BCO+21] construct a BMR-style protocol in the dishonest majority setting which only
requires 𝑂 (𝑛) communication per party in the garbling phase and makes use of a somewhat similar LPN-
based encryption scheme. We also compare our protocol against the authenticated garbling protocol of
Wang et al. [WRK17b] which we denote by WRK17b. While WRK17b and the protocol of [BCO+21] can
tolerate at most 𝑡 = 𝑛 − 1 corruptions when run with 𝑛 parties, Ben-Efraim et al. [BCO+21] propose an
efficient variant when tolerating a sub-optimal corruption threshold. Specifically, assuming the presence
of𝑛/𝑐 honest parties, where 1 < 𝑐 < 𝑛, allows for a more communication efficient protocol especially when
𝑛/𝑐 > 𝜅𝑠 . As done in the performance evaluation of [BCO+21], we set 𝑐 = 5 for the purpose of our analysis
and refer to this protocol as BCOOSS21. Since the protocols we compare tolerate a different corruption
threshold, we consider the case when all protocols are run with the same number of parties as well as when
each protocol is run with a different number of parties but tolerates the same number of corruptions. We set
the corruption threshold to 𝑡 = ⌊(𝑛−1)/4⌋ for our protocol in all cases. Wherever required, we extrapolate
the benchmarks reported in [WRK17b] and [BCO+21] to estimate the communication cost of the protocols
when run with a larger number of parties. We use linear interpolation for this extrapolation since the per
party communication cost of WRK17b in the pre-processing and garbling phases and BCOOSS21 in the
pre-processing phase, grows linearly with the total number of parties.

Figure 2 summarizes the per party communication cost of the protocols when each protocol is run
with the same number of parties to garble AES-128. In the pre-processing phase, the communication cost
of WRK17b and BCOOSS21 is around 0.61x and 6.19x the communication cost of our protocol respectively
when 𝑛 = 250 and increases to around 4.04x and 42.39x the communication cost of our protocol when
𝑛 = 650. In the garbling phase, the communication cost of WRK17b and BCOOSS21 is around 0.80x and
0.73x the communication cost of our protocol when 𝑛 = 250 and increases to around 5.37x and 1.86x the
communication cost of our protocol when 𝑛 = 650. Thus, the overall communication costs of our protocol,
across both phases, is lower than that of WRK17b starting at around 350 parties while it is lower than that
of BCOOSS21 even with 250 parties.

63

Figure 3 summarizes the per party communication cost of the protocols when each protocol tolerates
the same number of corruptions when garbling AES-128. In this case, our protocol is run with approxi-
mately 4x the number of parties as in WRK17b and 3.2x the number of parties as in BCOOSS21 to ensure
that all protocols tolerate the same number of corruptions. The presence of a large number of parties,
leads to significantly lower communication overhead for our protocols compared to that of WRK17b and
BCOOSS21. In the pre-processing phase, the per party communication cost of our protocol is 1.53x and
19.44x lower than that of WRK17b and BCOOSS21 respectively when 𝑡 = 200 and up to 5.84x and 76.02x
lower when 𝑡 = 400. In the garbling phase, the per party communication cost of WRK17b and BCOOSS21
is around 2.05x and 2.3x the per party communication cost of our protocol respectively when 𝑡 = 200, and
up to 8.08x and 4.55x the per party communication cost of our protocol when 𝑡 = 400. Moreover, as dis-
cussed previously, we do not expect the runtime of our protocols to change significantly with the number
of parties and so we expect our protocol to outperform WRK17b and BCOOSS21 in these settings.

Acknowledgements

Gabriel Kaptchuk is supported by the National Science Foundation under Grant #2030859 to the Com-
puting Research Association for the CIFellows Project and is supported by DARPA under Agreement
No. HR00112020021. Gabrielle Beck and Aditya Hegde were supported by DARPA under Contract No.
HR001120C0084. Aarushi Goel, Aditya Hegde, Abhishek Jain and Zhengzhong Jin were supported in part
by NSF CNS-1814919, NSF CAREER 1942789 and Johns Hopkins University Catalyst award. Abhishek Jain
was additionally supported in part by AFOSR Award FA9550-19-1-0200, Office of Naval Research Grant
N00014-19-1-2294 and research gifts from Ethereum, Stellar and Cisco. Zhengzhong Jin was additionally
supported in part by DARPA under Agreement No. HR00112020023 and by an NSF grant CNS-2154149.
This work was done in part when Aarushi Goel and Zhengzhong Jin were students at Johns Hopkins Uni-
versity. Any opinions, findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the United States Government or DARPA.

References

[AAB15] Benny Applebaum, Jonathan Avron, and Christina Brzuska. Arithmetic cryptography: Ex-
tended abstract. In Tim Roughgarden, editor, ITCS 2015, pages 143–151. ACM, January 2015.

[AAL+] David Archer, Victor Arribas Abril, Steve Lu, Pieter Maene, Nele Mertens, Danilo Sijacic, and
Nigel Smart. ’bristol fashion’ mpc circuits.

[ADI+17] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron. Secure
arithmetic computation with constant computational overhead. In Jonathan Katz and Ho-
vav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 223–254. Springer,
Heidelberg, August 2017.

[AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits. In
Rafail Ostrovsky, editor, 52nd FOCS, pages 120–129. IEEE Computer Society Press, October
2011.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and
Daniel Wichs. Multiparty computation with low communication, computation and interaction
via threshold FHE. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 483–501. Springer, Heidelberg, April 2012.

64

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In 44th FOCS,
pages 298–307. IEEE Computer Society Press, October 2003.

[AOIS21] David Archer, Amy O’Hara, Rawane Issa, and Stephanie Straus. Sharing sensitive department
of education data across organizational boundaries using secure multiparty computation, May
2021.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE. In
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018,
pages 896–912. ACM Press, October 2018.

[BCO+21] Aner Ben-Efraim, Kelong Cong, Eran Omri, Emmanuela Orsini, Nigel P. Smart, and Eduardo
Soria-Vazquez. Large scale, actively secure computation from LPN and free-XOR garbled cir-
cuits. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part III,
volume 12698 of LNCS, pages 33–63. Springer, Heidelberg, October 2021.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic en-
cryption and multiparty computation. In Kenneth G. Paterson, editor, EUROCRYPT 2011, vol-
ume 6632 of LNCS, pages 169–188. Springer, Heidelberg, May 2011.

[Ben18] Aner Ben-Efraim. On multiparty garbling of arithmetic circuits. In Thomas Peyrin and Steven
Galbraith, editors, ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages 3–33. Springer,
Heidelberg, December 2018.

[BGG19] Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol for construct-
ing the public parameters of the pinocchio zk-SNARK. In Aviv Zohar, Ittay Eyal, Vanessa
Teague, Jeremy Clark, Andrea Bracciali, Federico Pintore, and Massimiliano Sala, editors, FC
2018 Workshops, volume 10958 of LNCS, pages 64–77. Springer, Heidelberg, March 2019.

[BGJK21] Gabrielle Beck, Aarushi Goel, Abhishek Jain, and Gabriel Kaptchuk. Order-C secure mul-
tiparty computation for highly repetitive circuits. In Anne Canteaut and François-Xavier
Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages 663–693. Springer,
Heidelberg, October 2021.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM STOC,
pages 1–10. ACM Press, May 1988.

[BHKL18] Assi Barak, Martin Hirt, Lior Koskas, and Yehuda Lindell. An end-to-end system for large
scale P2P MPC-as-a-service and low-bandwidth MPC for weak participants. In David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages
695–712. ACM Press, October 2018.

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure computation
without setup. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of
LNCS, pages 645–677. Springer, Heidelberg, November 2017.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting
Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 2012, pages 784–796. ACM Press,
October 2012.

65

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key homo-
morphic PRFs and their applications. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 410–428. Springer, Heidelberg, August 2013.

[BLO16] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest secure multiparty
computation for the internet. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 578–590. ACM Press, Octo-
ber 2016.

[BLO17] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Efficient scalable constant-round MPC via
garbled circuits. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part II,
volume 10625 of LNCS, pages 471–498. Springer, Heidelberg, December 2017.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols
(extended abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

[BMR16] Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for Boolean and arithmetic
circuits. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, ACM CCS 2016, pages 565–577. ACM Press, October 2016.

[BNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for secure multi-
party computation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008,
pages 257–266. ACM Press, October 2008.

[BO19] Aner Ben-Efraim and Eran Omri. Concrete efficiency improvements for multiparty garbling
with an honest majority. In Tanja Lange and Orr Dunkelman, editors, LATINCRYPT 2017,
volume 11368 of LNCS, pages 289–308. Springer, Heidelberg, September 2019.

[BOSS20] Carsten Baum, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. Efficient
constant-round MPC with identifiable abort and public verifiability. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 562–592.
Springer, Heidelberg, August 2020.

[BRC60] R.C. Bose and D.K. Ray-Chaudhuri. On a class of error correcting binary group codes. Infor-
mation and Control, 3(1):68–79, 1960.

[BTH08] Zuzana Beerliová-Trubı́niová and Martin Hirt. Perfectly-secure MPC with linear communi-
cation complexity. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 213–230.
Springer, Heidelberg, March 2008.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure proto-
cols (abstract) (informal contribution). In Carl Pomerance, editor, CRYPTO’87, volume 293 of
LNCS, page 462. Springer, Heidelberg, August 1988.

[CCD+20] Megan Chen, Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa Lee, Schuyler Rosefield, and
abhi shelat. Multiparty generation of an RSA modulus. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 64–93. Springer, Hei-
delberg, August 2020.

[CCXY18] Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. Amortized complexity of
information-theoretically secure MPC revisited. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 395–426. Springer, Heidelberg,
August 2018.

66

[CGH+18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, and Ariel
Nof. Fast large-scale honest-majority MPC for malicious adversaries. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 34–64.
Springer, Heidelberg, August 2018.

[CHI+20] Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio, Tarik Riviere,
abhi shelat, Muthu Venkitasubramaniam, and Ruihan Wang. Diogenes: Lightweight scal-
able RSA modulus generation with a dishonest majority. Cryptology ePrint Archive, Report
2020/374, 2020. https://eprint.iacr.org/2020/374.

[DGN+17] Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and Roberto Trifiletti. Tiny-
OLE: Efficient actively secure two-party computation from oblivious linear function evalua-
tion. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 2017, pages 2263–2276. ACM Press, October / November 2017.

[DI05] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a black-box
pseudorandom generator. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages
378–394. Springer, Heidelberg, August 2005.

[DIK+08] Ivan Damgård, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and Adam Smith. Scalable
multiparty computation with nearly optimal work and resilience. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 241–261. Springer, Heidelberg, August 2008.

[DIK10] Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty computation
and the computational overhead of cryptography. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 445–465. Springer, Heidelberg, May / June 2010.

[DKL+13] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart.
Practical covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In Jason
Crampton, Sushil Jajodia, and Keith Mayes, editors, ESORICS 2013, volume 8134 of LNCS, pages
1–18. Springer, Heidelberg, September 2013.

[DN07] Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty com-
putation. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 572–590.
Springer, Heidelberg, August 2007.

[DOS18] Ivan Damgård, Claudio Orlandi, and Mark Simkin. Yet another compiler for active security
or: Efficient MPC over arbitrary rings. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 799–829. Springer, Heidelberg, August
2018.

[Döt15] Nico Döttling. Low noise LPN: KDM secure public key encryption and sample amplification.
In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 604–626. Springer, Heidelberg,
March / April 2015.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer, Heidelberg, August 2012.

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework for efficient
mixed-protocol secure two-party computation. In NDSS 2015. The Internet Society, February
2015.

67

https://eprint.iacr.org/2020/374

[EGPS22] Daniel Escudero, Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. TurboPack: Hon-
est majority MPC with constant online communication. In Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 951–964. ACM Press, November 2022.

[EKM17] Andre Esser, Robert Kübler, and Alexander May. LPN decoded. In Jonathan Katz and Ho-
vav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 486–514. Springer,
Heidelberg, August 2017.

[FL19] Jun Furukawa and Yehuda Lindell. Two-thirds honest-majority MPC for malicious adversaries
at almost the cost of semi-honest. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, ACM CCS 2019, pages 1557–1571. ACM Press, November 2019.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure computation (ex-
tended abstract). In 24th ACM STOC, pages 699–710. ACM Press, May 1992.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

[GGJS12] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Concurrently secure computation
in constant rounds. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 99–116. Springer, Heidelberg, April 2012.

[GIP+14] Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer. Circuits re-
silient to additive attacks with applications to secure computation. In David B. Shmoys, editor,
46th ACM STOC, pages 495–504. ACM Press, May / June 2014.

[GIP15] Daniel Genkin, Yuval Ishai, and Antigoni Polychroniadou. Efficient multi-party computation:
From passive to active security via secure SIMD circuits. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 721–741. Springer,
Heidelberg, August 2015.

[GLS15] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness and guaran-
tee of output delivery. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part II, volume 9216 of LNCS, pages 63–82. Springer, Heidelberg, August 2015.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC,
pages 218–229. ACM Press, May 1987.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge Uni-
versity Press, Cambridge, UK, 2004.

[GPS21] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Unconditional communication-
efficient MPC via hall’s marriage theorem. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part II, volume 12826 of LNCS, pages 275–304, Virtual Event, August 2021.
Springer, Heidelberg.

[GPS22] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Sharing transformation and dishonest
majority MPC with packed secret sharing. Cryptology ePrint Archive, Report 2022/831, 2022.
https://eprint.iacr.org/2022/831.

[GS20] Vipul Goyal and Yifan Song. Malicious security comes free in honest-majority MPC. Cryp-
tology ePrint Archive, Report 2020/134, 2020. https://eprint.iacr.org/2020/134.

68

https://eprint.iacr.org/2022/831
https://eprint.iacr.org/2020/134

[GSY21] S. Dov Gordon, Daniel Starin, and Arkady Yerukhimovich. The more the merrier: Reducing
the cost of large scale MPC. In Anne Canteaut and François-Xavier Standaert, editors, EU-
ROCRYPT 2021, Part II, volume 12697 of LNCS, pages 694–723. Springer, Heidelberg, October
2021.

[GSZ20] Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery comes free in honest
majority MPC. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II,
volume 12171 of LNCS, pages 618–646. Springer, Heidelberg, August 2020.

[HHNZ19] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic. SoK: General pur-
pose compilers for secure multi-party computation. In 2019 IEEE Symposium on Security and
Privacy, pages 1220–1237. IEEE Computer Society Press, May 2019.

[HOSS18a] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. Concretely ef-
ficient large-scale MPC with active security (or, TinyKeys for TinyOT). In Thomas Peyrin
and Steven Galbraith, editors, ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages 86–117.
Springer, Heidelberg, December 2018.

[HOSS18b] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. TinyKeys: A new
approach to efficient multi-party computation. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 3–33. Springer, Heidelberg, August
2018.

[HSS17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC com-
bining BMR and oblivious transfer. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part I, volume 10624 of LNCS, pages 598–628. Springer, Heidelberg, December
2017.

[HSS20] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC com-
bining BMR and oblivious transfer. Journal of Cryptology, 33(4):1732–1786, October 2020.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with no
honest majority. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 294–314.
Springer, Heidelberg, March 2009.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. In Samir Khuller and Virginia Vassilevska Williams, editors, 53rd ACM STOC,
pages 60–73. ACM Press, June 2021.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arithmetic se-
cure computation with oblivious transfer. In Edgar R. Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACMCCS 2016, pages 830–842. ACM
Press, October 2016.

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ great again. In
Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of
LNCS, pages 158–189. Springer, Heidelberg, April / May 2018.

[LJA+18] Andrei Lapets, Frederick Jansen, Kinan Dak Albab, Rawane Issa, Lucy Qin, Mayank Varia,
and Azer Bestavros. Accessible privacy-preserving web-based data analysis for assessing and
addressing economic inequalities. In Proceedings of the 1st ACM SIGCAS Conference on Com-
puting and Sustainable Societies, COMPASS ’18, New York, NY, USA, 2018. Association for
Computing Machinery.

69

[LN17] Yehuda Lindell and Ariel Nof. A framework for constructing fast MPC over arithmetic circuits
with malicious adversaries and an honest-majority. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 259–276. ACM Press,
October / November 2017.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round
multi-party computation combining BMR and SPDZ. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 319–338. Springer, Hei-
delberg, August 2015.

[LSS16] Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. More efficient constant-round
multi-party computation from BMR and SHE. In Martin Hirt and Adam D. Smith, edi-
tors, TCC 2016-B, Part I, volume 9985 of LNCS, pages 554–581. Springer, Heidelberg, Octo-
ber / November 2016.

[LWYY22] Hanlin Liu, Xiao Wang, Kang Yang, and Yu Yu. The hardness of LPN over any integer ring
and field for PCG applications. Cryptology ePrint Archive, Report 2022/712, 2022. https:

//eprint.iacr.org/2022/712.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - secure two-party com-
putation system. In Matt Blaze, editor, USENIX Security 2004, pages 287–302. USENIX Associ-
ation, August 2004.

[MR18] Payman Mohassel and Peter Rindal. ABY3: A mixed protocol framework for machine learning.
Cryptology ePrint Archive, Report 2018/403, 2018. https://eprint.iacr.org/2018/403.

[MSs11] Steven Myers, Mona Sergi, and abhi shelat. Threshold fully homomorphic encryption and
secure computation. Cryptology ePrint Archive, Report 2011/454, 2011. https://eprint.

iacr.org/2011/454.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key FHE.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of
LNCS, pages 735–763. Springer, Heidelberg, May 2016.

[MW19] Eleftheria Makri and Tim Wood. Full-threshold actively-secure multiparty arithmetic circuit
garbling. Cryptology ePrint Archive, Report 2019/1098, 2019. https://eprint.iacr.org/
2019/1098.

[NST17] Jesper Buus Nielsen, Thomas Schneider, and Roberto Trifiletti. Constant round maliciously
secure 2PC with function-independent preprocessing using LEGO. In NDSS 2017. The Internet
Society, February / March 2017.

[NV18] Peter Sebastian Nordholt and Meilof Veeningen. Minimising communication in honest-
majority MPC by batchwise multiplication verification. In Bart Preneel and Frederik Ver-
cauteren, editors, ACNS 18, volume 10892 of LNCS, pages 321–339. Springer, Heidelberg, July
2018.

[OSV20] Emmanuela Orsini, Nigel P. Smart, and Frederik Vercauteren. Overdrive2k: Efficient secure
MPC over Z2𝑘 from somewhat homomorphic encryption. In Stanislaw Jarecki, editor, CT-
RSA 2020, volume 12006 of LNCS, pages 254–283. Springer, Heidelberg, February 2020.

[Pla07] James S. Plank. Fast Galois Field Arithmetic Library in C/C++, 2007.

70

https://eprint.iacr.org/2022/712
https://eprint.iacr.org/2022/712
https://eprint.iacr.org/2018/403
https://eprint.iacr.org/2011/454
https://eprint.iacr.org/2011/454
https://eprint.iacr.org/2019/1098
https://eprint.iacr.org/2019/1098

[QLJ+19] Lucy Qin, Andrei Lapets, Frederick Jansen, Peter Flockhart, Kinan Dak Albab, Ira Globus-
Harris, Shannon Roberts, and Mayank Varia. From usability to secure computing and back
again. Cryptology ePrint Archive, Report 2019/734, 2019. https://eprint.iacr.org/2019/
734.

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for Computing Machin-
ery, 22(11):612–613, November 1979.

[TTS+23] Erik Taubeneck, Martin Thomson, Ben Savage, Benjamin Case, Daniel Masny, Richa Jain, Taiki
Yamaguchi, Alex Koshelev, Thurston Sandbery, Victor Miller, and Shubho Sengupta. Interop-
erable private attribution (ipa), 2023.

[WJS+19] Ryan Wails, Aaron Johnson, Daniel Starin, Arkady Yerukhimovich, and S. Dov Gordon.
Stormy: Statistics in tor by measuring securely. In Lorenzo Cavallaro, Johannes Kinder, Xi-
aoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 615–632. ACM Press, Novem-
ber 2019.

[WRK17a] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and efficient ma-
liciously secure two-party computation. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 21–37. ACM Press, October / Novem-
ber 2017.

[WRK17b] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty computa-
tion. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 2017, pages 39–56. ACM Press, October / November 2017.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

71

https://eprint.iacr.org/2019/734
https://eprint.iacr.org/2019/734

	Introduction
	Our Contributions
	Related Work
	Future Directions

	Technical Overview
	Background and Barriers to Scalable Multiparty Garbling
	An Honest Majority Template for Scalable Multiparty Garbling
	Secret Sharing Bits/Masks
	Choice of Encryption Scheme
	Sub-Protocol for Generating Errors
	Integrating with Goyal et al.'s Share Transformation Protocol Eprint:GoyPolSon22
	Malicious Security
	Protocol Summary

	Preliminaries
	Security Model
	Secret Sharing
	Error Correcting Codes
	LPN Assumption and LPN Based Encryption

	LPN Based Garbling Scheme
	Standard Sub-protocols
	Sharing Random Vectors
	Common Coin
	Sharing Zero Vectors
	Sharing Random Bit Vectors
	Multiplication
	Share Transformation
	Sharing MAC Keys
	Authenticate Sharing
	Verify Bit Vector Sharings
	Verify Consistency of Sharing
	Verify Correctness of Secrets

	Main Protocols
	Sharing Biased Random Vectors
	Our Constant Round MPC Protocol

	Protocol Evaluation And Analysis
	Practical Protocol Optimizations
	LPN Parameters
	Parameters for Binary Super-Invertible Matrices
	Evaluation of our Semi-Honest Secure Protocol
	Evaluation of Maliciously Secure Protocol

