
ORTOA: A Family of One Round Trip Protocols For
Operation-Type Obliviousness

Sujaya Maiyya

University of Waterloo

Yuval Steinhart

UC Santa Barbara

Adrian Davila

University of Waterloo

Jason Du

University of Waterloo

Divyakant Agrawal

UC Santa Barbara

Prabhanjan Ananth

UC Santa Barbara

Amr El Abbadi

UC Santa Barbara

ABSTRACT

Many applications relying on cloud storage services typically

encrypt their data to ensure data privacy. However, reading or

writing the encrypted data to serve client requests reveals the

type of client operation to a potentially untrusted cloud. An

adversary can exploit this information leak to compromise a

user’s privacy by tracking read/write access patterns. Existing

approaches such as Oblivious RAM (ORAM) schemes hide the

type of client access by always reading and then writing the data

sequentially for both reads and writes, rendering one of these

rounds redundant with respect to a client request. Tomitigate this

redundancy, we propose ORTOA- a family of protocols enabling

single-round data access on remote storage without revealing
the operation type. Specifically, we propose three protocols, two
using existing cryptographic primitives of fully homomorphic

encryption and trusted execution environments (TEEs), and a

new primitive inspired by garbled circuits. Each of these protocols

has different trust assumptions, allowing an application to choose

the option best suited for its needs. To our knowledge, ORTOA

is the first to propose generalized protocols to obfuscate the

type of access in a single round, reducing the communication

overhead in half. The proposed techniques can pave the way for

novel ORAM schemes that hide both the type of access and the

access pattern in a single round. Our experimental results show

ORTOA achieving throughput gains of 1.7x-3.2x compared to

a baseline requiring two rounds for access type concealment,

with the baseline incurring latency 1.5-1.9x that of ORTOA for

160B-sized objects.

1 INTRODUCTION

Due to the high cost of owning and maintaining an on-premise

storage fleet, many modern applications outsource their data

storage to third party cloud providers such as Amazon AWS or

Microsoft Azure. However, outsourcing an application’s data in

plaintext can reveal sensitive information to a potentially non-

trustworthy cloud provider. Many applications protect their data

with the standard technique of data encryption.

Encrypted databases (e.g., CryptDB [46] or Arx [45]) typically

consist of a trusted front-end that stores the encryption key and

routes all client requests to the untrusted storage. A simple en-

crypted key-value store design (supporting single object GET/PUT
requests) serves client requests as follows: for read requests the

front-end reads the appropriate encrypted value from the stor-

age, decrypts it, and responds to the client. Whereas for write

requests, the front-end encrypts the value updated by the client

and writes the encrypted value to the storage.

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the

27th International Conference on Extending Database Technology (EDBT), 25th

March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

This common approach of reading and writing encrypted data

allows an adversary controlling the cloud to distinguish between

read and write requests since only write requests update the

database. Revealing the type of access – read vs. write – can

violate an end user’s or an application’s privacy, as explained

next.

At an individual user’s level, consider a banking application

example where a user either views their balance or updates it

upon a purchase. Even with the balance information encrypted,

an adversary learns when a user updates their balance. This

information combined with location data, which many mobile

applications track implicitly, can reveal with a high probability

when (and where) a user transacted for goods or services, violat-

ing the user’s privacy. In fact, a recent attack by John et. al. [35]

utilized observing only write accesses to perform a privacy attack.

The core idea of such attacks is to have multiple snapshots of

memory (or a database) to observe all entries that are modified

in between snapshots and uncover sensitive data. Hiding reads

and writes by modifying data even for reads can help mitigate

or at least weaken the accuracy of such attacks. Hiding reads

and writes can also add potential protection against multiple

snapshot adversaries (e.g., [14]).

At an application level, an application is incentivized to hide

the type of service it provides because side channel attacks such

as [34] exploit these meta-data to reveal sensitive information.

However, an application cannotmaintain anonymity of its service

even while encrypting its data because the read vs. write pattern

of an application often reveals the type of service it provides.

For example, social network applications tend to be extremely

read-heavy [9], whereas IoT applications lean write-heavy [12].

Essentially, revealing the type of access on encrypted data

poses privacy challenges both at an individual and an applica-

tion level. A straightforward approach to address this privacy

challenge is to hide the type of operation by always reading an

object followed by writing it, irrespective of the type of client

request. Oblivious datastores that use either Oblivious RAM [28]

or other techniques [32, 40] utilize two rounds to hide the type

of operation.

This sequential two round solution doubles the end-to-end

latency for each user access compared to plaintext datastores.

The trusted front-end, from here on referred to as proxy, often
communicates with the untrusted storage server over WAN, ag-

gravating the latency problem. For companies such as Amazon

and Google, end-to-end latency directly impacts revenue: Ama-

zon loses 1% revenue (worth $3.8 billion!) for every 100𝑚𝑠 lag

in loading its pages [2]; Google’s traffic drops by 20% if search

results take an additional 500𝑚𝑠 to load [31].

Furthermore, with increasing privacy laws such as GDPR [24]

that prohibit data movement across continents, requiring two

rounds of cross-continent communication for each request be-

comes too expensive. With restricted data movement and due to

the high penalty of increased end-to-end latency, we believe that

new protocols should trade-off sending larger amounts of data

for reduced number of communication rounds.

Rooted in this motto, this work proposes ORTOA, a family

of one round trip data access protocols that hide the type of

client access to efficiently address the privacy challenges caused

by revealing the type of access. Specifically, we propose three

different single-round access type hiding protocols, two using

existing cryptographic primitives of fully homomorphic encryp-

tion (FHE) [25] (§3) and trusted execution environments (TEEs)

such as Intel SGX [33] or ARM TrustZone [4] (§4), and a new

primitive inspired by garbled circuits [37, 63] (§5). Each of these

protocols has different trust assumptions, allowing an application

to choose an option best suited for its needs. These protocols

hide the type of individual client access as well as the read/write

distribution of an application. Note that the ORTOA protocols

only hide the type of client access and not the object accessed by

clients. These protocols are designed to be a stepping stone for

building novel ORAM and other oblivious schemes.

1.1 Challenges with designing a one round

access-type hiding protocol

To highlight the challenges of designing a one-round protocol to

hide the type of access, we first present two naive solutions. To

hide the type of client operation from an adversary, it is necessary

for both read and write requests to be indistinguishable. Hence,

both operations need to read and write a given physical location.

More specifically, a read request should write back the same

value it read, while a write request should write the new value,

potentially distinct from the value it read. The two round protocol

executes this as follows: (i) fetch the requested data object by

performing a read, (ii) decrypt the value, (iii) either encrypt the

new value for writes or re-encrypt the fetched value for reads,

and (iv) write the freshly encrypted value back to the server. Note

that standard non-deterministic encryption schemes such as AES

produce different ciphertexts even if the same value is encrypted

multiple times; hence, an adversary cannot distinguish between

new value encryptions or same value re-encryptions.

Reducing the two rounds of this protocol to a single round is

straightforward for write requests: for each write request, the

client encrypts the new value and propagates the encrypted value

to the server without fetching the object’s value first (steps i and

ii). But this technique does not work for read requests: the client

cannot re-encrypt an object’s value (which is stored only at the

server) without fetching the value first. Hence, the client needs to

perform a read before writing the re-encrypted value, rendering

the one round approach moot.

Another naive solution to perform read-followed-by-write in

a single round trip is to treat all client requests as read-modify-

write transactions. Typically, for read-modify-write transactions,

a client interactively reads an object (after acquiring a write-lock),

modifies the read value, and writes back the updated value. This

can be converted to a non-interactive approach by modifying

the storage server to support this type of operation without

communicating with the client. In this naive solution, the client

sends an encrypted new value for writes or an encrypted dummy

value for reads and the server performs read-modify-write by (i)

executing a read, (ii) writing the (encrypted) value sent by the

client, and (iii) responding to the client with the read value. But

the challenge here is that any subsequent reads after the first

read operation will fetch a dummy value, permanently losing an

application’s data! Making the server’s logic more sophisticated

such that the read-modify-write operation should re-write the

existing value for read requests or update the value for write

requests, reveals the type of client query to the server. Hence, a

single round solution such as this cannot be used without losing

data or compromising privacy.

1.2 Intuitions for ORTOA

We observe that the above discussed challenges exist primarily

because of the server’s inability to trivially perform any checks

or computations in a secure manner. A few cryptographic primi-

tives such as fully homomorphic encryption (FHE), trusted en-

claves (TEEs), or secure multi-party computation (MPC) allow

computing on encrypted data. MPC schemes either require mul-

tiple rounds of communications to securely execute a computa-

tion [37, 63] or need multiple non-colluding servers [53], making

them incompatible with the goals of ORTOA. Meanwhile, both

FHE and TEEs can be leveraged to design a one round access-

type hiding protocol, as we show in §3 and §4. The core idea is

to formulate a mathematical equation whose execution either

retains the old value for reads (albeit with re-encrypted cipher-

text) or updates the value for writes. However, FHE allows only

for a small number of ciphertext computations when the com-

putation involves multiplication, whereas TEEs require access

to specialized hardware, which can potentially leak side-channel

information compromising privacy. We discuss these proposed

solutions and their limitations, after providing a background, in

the respective sections §3 and §4.

To overcome the limitations of the FHE-based and TEE-based

protocols, termed FHE-ORTOA and TEE-ORTOA respectively,

we present a novel label-based solution. Both FHE and TEE-based

ORTOA encrypt and store data values using homomorphic en-

cryption and symmetric encryption respectively, whereas the

label-version, which we term LBL-ORTOA, explores alternate ap-

proaches to represent and store data values. In particular, inspired

by garbled circuit constructions [37, 63], LBL-ORTOA represents

plaintext values in a binary format and encodes each bit with a

secret label generated using pseudo-random functions (PRFs); the

server only stores these encoded labels. PRFs are deterministic en-

coding functions that produce the same output when invoked any

number of times with the same input list. If a plaintext value for

an object with key k is 01, then the server stores labels < 𝑙0, 𝑙1 >,

which are the outputs of < 𝑃𝑅𝐹 (𝑘, 0), 𝑃𝑅𝐹 (𝑘, 1) >. Intuitively,
LBL-ORTOA updates the labels after each access – read or write

– to an object because updating the labels only for write requests

will reveal the type of operation. The core idea of LBL-ORTOA

lies in how the clients communicate with the server (via a proxy)

to update the labels for both read and write requests in a single
round (§5).

1.3 Discussion on related work

To the best of our knowledge, ORTOA is the only solution that

tackles the problem of hiding the type of operation in a gen-

eralized manner. Oblivious RAM (or ORAM) schemes provide

stronger privacy than ORTOA by not only hiding the type of op-

eration but also obfuscating the exact object accessed by clients.

While most ORAM schemes (or other oblivious mechanisms [32,

40]) require two rounds to access, the literature consists of a

few specialized ORAM solutions that achieve single round online
communication complexity [16, 22, 23, 26, 27, 38, 62]. Many of

these solutions are based on Garbled-RAM or Garbled-circuits,

which require the server to store and evaluate a garbled program

per request [23, 26, 27, 38]. Garbled-RAMs do not take fixed length

2

inputs and their execution time varies based on the input size as

well as the data size. Specifically, evaluating garbled programs in-

cur𝑂 (𝑝𝑜𝑙𝑦𝑙𝑜𝑔𝑁) or𝑂 (𝑁 𝑒) complexity (where 𝑁 is the data size

and 𝑒 is a constant > 0) [23, 26, 38]. Importantly, these schemes

cannot handle adaptively chosen queries, i.e., all client queries

must be known a priori, and also require an offline pre-processing

step to construct and outsource the garbled program. All these

properties primarily differ from ORTOA, which has a simplistic

server model, fixed length inputs, constant execution time, and

requires no offline steps. On the other hand, a few ORAM based

datastores that do not use Garbled-RAM such as [16, 22, 62] also

have single online rounds. However, they need offline rounds per
request to evict, i.e., write the data back, deeming them a multi-

round solution. Note that although offline eviction can reduce

the latency in the critical, ‘online’ step of serving a request, this

limits concurrency by allowing either only a read or a write to

occur, to avoid corrupting the data or returning inconsistent re-

sults. Additionally, these solutions primarily focus on hiding the

data access patterns, with mechanisms to hide the type of access

tightly coupled with hiding access pattern. ORTOA on the other

hand focuses on hiding the type of access in a more generalized
way that can be adapted to construct novel ORAM schemes or

integrate with oblivious schemes such as [32, 40]. To show the

possibility of designing such schemes, we briefly outline a sketch

of a novel PathORAM [58]-like tree-based ORAM scheme that

executes operations in one round using ORTOA in §8.

Contributions and roadmap:
This work proposes ORTOA, a family of one round trip access

type hiding protocols. Particularly, we make the following con-

tributions:

1. A homomorphic encryption based protocol, FHE-ORTOA (§3).

2. A trusted hardware based protocol, TEE-ORTOA (§4).

3. A novel technique of label based protocol, LBL-ORTOA (§5).

4. An extensive evaluation of the proposed protocols and a com-

parison with the two round trip baseline protocol §6.

5. A security analysis of the proposed protocols §7.

2 SYSTEM AND SECURITY MODEL

2.1 System Model

ORTOA protocols are designed for key-value stores where a

unique key identifies a given data object, and the datastore sup-

ports single key GET and PUT operations. The data is stored on an

external server(s) managed by a third party, analogous to renting

storage servers from third party cloud providers.

We assume the external server that stores the data to be un-

trusted. Furthermore, the system uses a proxy model commonly

deployed in many privacy preserving data systems [13, 32, 39, 46,

50, 57]. The proxy is assumed to be trusted and the clients interact

with the external server by routing requests through the proxy.

Alternately, the system can also be viewed as a single trusted

client interacting with the externally stored data on behalf of

users from within the trusted domain. The proxy is a stateful

entity and remains highly available; ensuring high availability of

the proxy is orthogonal to the protocol presented here. Although

stateful, the state stored at the proxy is an order of magnitude

smaller (i.e., megabytes) than the state at the external server (i.e.,

gigabytes). Note that for the FHE-ORTOA and TEE-ORTOA ver-

sions, the only reason the system assumes a proxy is to store

the secret key necessary to encrypt the queries and decrypt the

results. If we assume the secret key is shared with all clients,

these two versions do not require a proxy.

All communication channels – clients to proxy, proxy to server

– are asynchronous, unreliable, and insecure. The adversary can

view (encrypted) messages, delay message deliveries, or reorder

messages. All communication channels use encryption mecha-

nisms such as transport layer security [59] to mitigate message

tampering.

2.2 Data and Storage Model

Each object consists of a unique key and a value, where all values

are of equal length – an assumption necessary to avoid any leaks

based on the length of the values (equal length can be achieved

by padding). Neither an object’s key nor its value is stored in

the clear at the server. For a given key-value object < 𝑘, 𝑣 >,

the keys are always encoded using pseudorandom functions

(PRFs). A PRF’s determinism permits a proxy to encode a given

key multiple times while resulting in the same encoding; this

encoding can then be used to access the value of a given key

from the server. We use a procedure 𝐸𝑛𝑐 to encode the values

(this procedure differs across the three versions of ORTOA). For a

key k and its corresponding value 𝑣 , the server essentially stores

< 𝑃𝑅𝐹 (𝑘), 𝐸𝑛𝑐 (𝑣) >.

2.3 Threat Model

As mentioned earlier, this work focuses on hiding the type of

access generated by clients. We assume an honest-but-curious

adversary that wants to learn the type of client accesses without

deviating from executing the designated protocol correctly. The

adversary can control the external server as well as all the commu-

nication channels – proxy to external server and clients to proxy.

We further assume the adversary can access (encrypted) queries

to and from a sender and can inject queries (say by compromising

clients), a commonly used adversarial model [15, 42, 50, 57].

Non-goals: ORTOA does not hide the actual physical locations

accessed by client requests and hence is vulnerable to attacks

based on access patterns, similar to encrypted databases such as

CryptDB [46] or Arx [45] (however, ORTOA protects encrypted

databases from attacks based on exposing the type of operation).

ORTOA does not aim to protect an application from timing based

side channel attacks or implementation based backdoor attacks.

3 FHE BASED SOLUTION: FHE-ORTOA

After discussing a few non-private or incorrect one round naive

solutions in §1, this section presents FHE-ORTOA, a one round

mechanism to hide the type of accesses using an existing crypto-

graphic primitive, Fully Homomorphic Encryption (FHE) [7, 21,

25]. Homomorphic encryption is a form of encryption scheme

that allows computing on encrypted data without having to de-

crypt the data, such that the result of the computation remains

encrypted. Homomorphic encryption schemes add a small ran-

dom term, called noise, during the encryption process to guar-

antee security. A homomorphic encryption functionHE takes

a secret-key 𝑠𝑘 , a message𝑚, and a noise value 𝑛 as input and

produces the ciphertext, 𝑐𝑡 , as output as shown in Equation 1.

The corresponding homomorphic decryption functionHD takes

the secret-key and the ciphertext as input to produce message𝑚:

𝑐𝑡 = HE(𝑠𝑘,𝑚, 𝑛); 𝑚 = HD(𝑠𝑘, 𝑐𝑡) (1)

An important property of a homomorphic encryption scheme

is that the noise must be small; in fact, the decryption function

3

fails if the noise becomes greater than a threshold value, a value

that depends on a given FHE scheme.

Homomorphic encryption schemes allow computing over en-

crypted data. Some homomorphic encryption schemes support

addition [6, 44] and some other schemes support multiplication

[20]. A fully homomorphic encryption (FHE) scheme supports

both addition and multiplication on encrypted data [7, 21, 25].

An FHE scheme, FHE, applied on two messages 𝑚1 and 𝑚2

(and two noise values 𝑛1 and 𝑛2) can perform the following two

operations (explained at a conceptual high level):

FHE(𝑚1;𝑛1) + FHE(𝑚2;𝑛2) = FHE(𝑚1 +𝑚2;𝑛1 + 𝑛2)

FHE(𝑚1;𝑛1) ∗ FHE(𝑚2;𝑛2) = FHE(𝑚1 ∗𝑚2;𝑛1 ∗ 𝑛2)
For small noise values 𝑛1 and 𝑛2, decrypting FHE(𝑚1+𝑚2;𝑛1+
𝑛2) results in the plaintext addition of𝑚1 +𝑚2, and similarly

decrypting FHE(𝑚1 ∗𝑚2;𝑛1 ∗ 𝑛2) results in the plaintext mul-

tiplication of𝑚1 ∗𝑚2. As illustrated above, each homomorphic

operation increases the amount of noise included in the encrypted

value.

3.1 One-round oblivious read-write using FHE

We propose FHE-ORTOA, a mechanism that uses FHE to execute

read and write operations in a single round of communication to

the external key-value store. Specifically, this section uses an FHE

scheme as the encoding procedure 𝐸𝑛𝑐 specified in Section 2.2 to

encrypt the values of the key-value store. For a given key-value

pair, the server stores < 𝑃𝑅𝐹 (𝑘), FHE(𝑣) >. Note that if all

clients do not share the secret-key used for data encryption, an

application will need a light-weight ‘gateway’ proxy to encrypt

and decrypt data or queries on behalf of clients. However, for

practical purposes, we consider this version of ORTOA to be

proxy-less.

Let 𝑣𝑜𝑙𝑑 be the current value of a given data object, which is

stored only at the server (after encrypting FHE(𝑣𝑜𝑙𝑑)), and let

𝑣𝑛𝑒𝑤 be the updated value of the object, for a write operation

(and an ‘empty’ value for a read). The challenge is to develop

an FHE procedure ProcessClientRequest, or Pcr for short, with

parameters FHE(𝑣𝑜𝑙𝑑) and FHE(𝑣𝑛𝑒𝑤) such that:

𝐹𝑜𝑟 𝑟𝑒𝑎𝑑𝑠 : Pcr(FHE(𝑣𝑜𝑙𝑑) , FHE(𝑣𝑛𝑒𝑤)) = FHE(𝒗𝒐𝒍𝒅)
𝐹𝑜𝑟 𝑤𝑟𝑖𝑡𝑒𝑠 : Pcr(FHE(𝑣𝑜𝑙𝑑) , FHE(𝑣𝑛𝑒𝑤)) = FHE(𝒗𝒏𝒆𝒘)
The external server can execute the same procedure Pcr for both

read and write requests but the result of Pcr would vary depend-

ing on the type of access. If we can design such a procedure, since

the server already stores FHE(𝑣𝑜𝑙𝑑), a client only needs to send
FHE(𝑣𝑛𝑒𝑤) in a single round and expect the correct result for

either type of operations.

To develop such a procedure, the client creates a two-dimensional

binary vector C = [𝑐𝑟 , 𝑐𝑤] where 𝑐𝑟 is 1 for read operations (oth-

erwise 0) and 𝑐𝑤 is a 1 for write operations (otherwise 0). To

see how the vector can be helpful, briefly disregard any data

encryption and consider the data in the plain. We construct a

procedure Pcr
′
:

Procedure Pcr
′ (𝑣𝑜𝑙𝑑 , 𝑣𝑛𝑒𝑤 , [𝑐𝑟 , 𝑐𝑤]):

return (𝑣𝑜𝑙𝑑 ∗ 𝑐𝑟) + (𝑣𝑛𝑒𝑤 ∗ 𝑐𝑤)

For reads, when 𝑐𝑟 = 1 and 𝑐𝑤 = 0, the result of Pcr
′
is 𝑣𝑜𝑙𝑑 ;

otherwise, for writes when 𝑐𝑟 = 0 and 𝑐𝑤 = 1, the result of Pcr
′

is 𝑣𝑛𝑒𝑤 . The above procedure gives us the desired functionality,

albeit with no encryption. Given that FHE encrypted values can

be added and multiplied, Pcr
′
can be transformed to procedure

Pcr to include FHE encrypted inputs:

Procedure

Pcr(FHE(𝑣𝑜𝑙𝑑), FHE(𝑣𝑛𝑒𝑤), [FHE(𝑐𝑟), FHE(𝑐𝑤)]):
return FHE(𝑣𝑜𝑙𝑑) ∗ FHE(𝑐𝑟) + FHE(𝑣𝑛𝑒𝑤) ∗ FHE(𝑐𝑤)
With Procedure Pcr that results in the desired outcomes, the

next steps elaborate on the specific operations of a client and the

server:

(1) Upon deciding to perform either a Read(𝑘) or a Write(𝑘, 𝑣𝑛𝑒𝑤)
request, a client creates vector C such that for reads, C = [1, 0]
and for writes, C = [0, 1].

(2) The client then sendsFHE(C), i.e. [FHE(𝑐𝑟),FHE(𝑐𝑤)],
along with FHE(𝑣𝑛𝑒𝑤), where 𝑣𝑛𝑒𝑤 = ⊥ for reads. It also sends

𝑃𝑅𝐹 (𝑘) so that the server can identify the location to access.

(3) While at rest, we assume the PRF-encoded keys and en-

crypted values are stored in any standard key-value store such as

Redis [48] or Apache Cassandra [3] within the server. The server,

upon receiving the encoded key along with the 3 encrypted en-

tities, reads the value currently stored at key 𝑃𝑅𝐹 (𝑘) from the

key-value store. It then executes Procedure Pcr by using the

stored value FHE(𝑣𝑜𝑙𝑑) and the 3 entities sent by the client.

The server then updates its stored value to the output of the

computation and sends the output back to the client.

(4) Given that either 𝑐𝑟 or 𝑐𝑤 is 0, Procedure Pcr’s output

will either be FHE(𝑣𝑜𝑙𝑑) for reads or FHE(𝑣𝑛𝑒𝑤) for writes.
Since FHE schemes produce different ciphertexts even if the

same value is encrypted multiple times, an adversary cannot

distinguish between updated value encryptions or same value

re-encryptions. For reads, the client decrypts FHE(𝑣𝑜𝑙𝑑) using
FHE’s secret-key to retrieve the data object’s value. For writes,

the client ignores the returned value.

Thus, by leveraging the properties of FHEs that allow comput-

ing on encrypted data, specifically executing Procedure Process-
ClientRequest, or Pcr for short, we theoretically showed how

to read or write data in one round without revealing the type of

access.

3.2 Complexity Analysis

3.2.1 Space Analysis. In FHE-ORTOA, the server stores all

keys encoded using a PRF and all values encrypted using FHE. If

𝑟 is the output size (in bits) of the PRF that generates encoded

key, 𝐹𝐻𝐸𝑙𝑒𝑛 is the length of the FHE encrypted ciphertexts, and

𝑁 the database size, then the server’s storage space in bits can

be calculated as:

𝑟 · 𝑁︸︷︷︸
𝑆𝑝𝑎𝑐𝑒 𝑓 𝑜𝑟 𝑘𝑒𝑦𝑠

+ 𝐹𝐻𝐸𝑙𝑒𝑛 · 𝑁︸ ︷︷ ︸
𝑆𝑝𝑎𝑐𝑒 𝑓 𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠

3.2.2 Communication Analysis.
To access an object, each client sends three FHE encrypted ci-

phertexts, one each of 𝑐𝑟 and 𝑐𝑤 , and one for 𝑣𝑛𝑒𝑤 , rendering the

bits of data communicated from a client to the server as:

3 · 𝐹𝐻𝐸𝑙𝑒𝑛
Note that the plaintext to ciphertext length expansion factor for

most FHE schemes is quite large (∼225x for the library we used,

as will be explained in the next section).

3.3 Challenges with FHE based solution

Although FHE allows hiding the type of access in one round, this

approach is not practically feasible, mainly due to the noise 𝑛 of

FHE. As noted above, the noise increases with each homomor-

phic computation, with the increase being especially drastic for

multiplications, which the Procedure Pcr requires for both read

and write accesses.

4

To gauge the practicality of the above described FHE based

solution, we developed and evaluated a prototype of the solu-

tion. The prototype used Microsoft SEAL [41] FHE library with

BFV [21] scheme. The evaluation used BFV coefficients set to

the following: degree=32768, default coefficient modulus, and

default plain modulus with 20 bits. With these setting, we could

encrypt a plaintext value of up to 32768 bytes into a ciphertext of

size 7404922 bytes (7.4 MB), which has a ∼225x length expansion

factor.

Our experiments revealed that within about 10 accesses to a

specific object, the noise value grew too large for the FHE decryp-

tion to succeed, essentially rendering this solution impractical

for any use in real deployments. The inevitable multiplication in

Procedure Pcr for both reads and writes is the root cause of this

infeasibility. Due to this limitation, we do not perform any more

experimental analysis or evaluations of this approach. However,

we believe that our proposed FHE solution can be used in the

future when better performing FHE schemes are invented that

control the amount of noise amplification.

4 TEE BASED SOLUTION: TEE-ORTOA

This section proposes an alternate one round trip solution to

hide the type of access using trusted execution environments

(TEEs) such as Intel SGX [33] and ARM TrustZone [4]. TEEs

are secure areas within a main processor that protect the code

and data loaded inside it by ensuring data confidentiality and

integrity. TEEs provide isolation for code and data from the op-

erating system using CPU hardware-level isolation and memory

encryption. Many existing data systems utilize TEEs to provide

data confidentiality guarantees [47, 56, 64]. If a cloud vendor can

provide hardware enclaves (i.e., TEEs), an application can deploy

its entire system on the cloud, which enables the data and the

trusted component to reside together, significantly reducing the

communication latency compared to a trusted proxy-based sys-

tem. Note that, similar to FHE-ORTOA, we consider this version

of ORTOA to be proxy-less by assuming that clients share the

encryption-key.

4.1 One-round oblivious read-write using

TEEs

The core idea of TEE-ORTOA is to execute the ProcessClien-
tRequest function described in Procedure Pcr

′
of §3 within a

trusted enclave rather than using FHE. However, utilizing TEEs

require careful partitioning of a program into trusted and un-

trusted components. Any sensitive portion of a program should

belong to the trusted component to be executed within the en-

clave, whereas non-sensitive code can be executed outside the

enclave.

Similar to §3, a client that wants to read or write an object

constructs a two-dimensional binary vector C = [𝑐𝑟 , 𝑐𝑤] where
𝑐𝑟 is 1 for read operations (otherwise 0) and 𝑐𝑤 is a 1 for write

operations (otherwise 0). For reads, the client sets 𝑣𝑛𝑒𝑤 = ⊥;
and otherwise, to an updated value. However, instead of encrypt-

ing the vector and 𝑣𝑛𝑒𝑤 using homomorphic encryption, the

client encrypts them using a standard symmetric key encryption

scheme such as AES. It then sends the encrypted vector and 𝑣𝑛𝑒𝑤 ,

along with the PRF-encoded key, to the server.

The server’s task upon receiving a client request is to first

fetch 𝑣𝑜𝑙𝑑 from the underlying key-value store (e.g., Redis [48])

and then execute the computation in Procedure Pcr
′
. Since

retrieving encrypted values from the underlying data store is non-

sensitive, TEE-ORTOA executes this portion of the code outside

the enclave. It then sends all 3 encrypted entities,𝐶, 𝑣𝑜𝑙𝑑 , and 𝑣𝑛𝑒𝑤
to the enclave, which decrypts them all, executes Procedure Pcr

′

within the enclave, and finally encrypts the result using standard

encryption scheme. The result is sent outside the enclave and

the server then updates the value of the PRF-encoded key to this

result, as well as forwards it to the client. In fact, we simplify this

protocol further wherein the client only sends a one-dimensional

vector, 𝑐𝑟 , which is set to 1 for reads and 0 for writes. The enclave

code decrypts 𝑐𝑟 and depending on its value, re-encrypts either

𝑣𝑜𝑙𝑑 or 𝑣𝑛𝑒𝑤 . Since the server cannot distinguish if the output of

the enclave code has re-encrypted the old value or has updated

the value, this solution hides the type of client request using

TEEs in a single round of client-server communication.

4.2 Complexity Analysis

4.2.1 Space Analysis. The space and communication com-

plexity analysis of TEE-ORTOA are similar to that of FHE-ORTOA.

However, since the data values are encrypted using standard li-

braries such as AES, this version does not suffer from as high a

length-expansion-factor from plaintext to ciphertext as in FHE.

If 𝑟 is the output size (in bits) of the PRF that generates encoded

keys, 𝐸𝑙𝑒𝑛 is the length of the encrypted ciphertext, and 𝑁 the

database size, then the server’s storage space in bits can be cal-

culated as:

𝑟 · 𝑁︸︷︷︸
𝑆𝑝𝑎𝑐𝑒 𝑓 𝑜𝑟 𝑘𝑒𝑦𝑠

+ 𝐸𝑙𝑒𝑛 · 𝑁︸ ︷︷ ︸
𝑆𝑝𝑎𝑐𝑒 𝑓 𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠

4.2.2 Communication Analysis.
To access an object, each client sends two encrypted ciphertexts,

one for 𝑐𝑟 and one for 𝑣𝑛𝑒𝑤 , rendering the bits of data communi-

cated from a client to the server as:

2 · 𝐸𝑙𝑒𝑛

4.3 Challenges with TEE based solution

While TEE-ORTOA does not suffer from severe performance limi-

tations as in FHE-ORTOA, it has two main challenges. The first is

the necessity of requiring specialized hardware support from the

cloud providers. While many popular cloud vendors currently

provide some form of TEE support, they lack uniformity, which

makes it challenging for applications to migrate their system

from one cloud vendor to another. The second, and more press-

ing of the challenges, is the vulnerability exposed by side-channel

leakages in TEEs [8, 43, 52, 61]. These attacks at a high level track

behaviours such as memory access patterns, page faults, or cache

accesses to successfully reconstruct encryption keys, severely

limiting the guarantees of TEEs. Solutions that protect against

these side-channel attacks incur significant performance over-

heads and often require complex program redesigning [51, 54, 55].

Despite these challenges, TEE-backed deployments are quite pop-

ular today. We implement TEE-ORTOA without these expensive

protection mechanisms and evaluate its performance in §6; we

leave as future work, developing a TEE-based one round protocol

that protects against side-channel attacks.

5 LABEL BASED SOLUTION: LBL-ORTOA

Having shown that using existing cryptographic primitives, FHE,

as-is is impractical to provide the desired one round trip oblivious

access approach, while the TEE-based solution requires unique

hardware and may suffer from side-channel attacks, we propose a

5

novel technique that uses encoded labels to build ORTOA, called

LBL-ORTOA.

In designing this version of ORTOA, we take a step further and

define a rather unique way of encoding the data values stored

at the external server. We first consider the plaintext value in

its binary format. For each binary bit of the plaintext, the server

stores a secret label generated by the proxy using pseudorandom

functions. This idea of encoding bits using secret labels is inspired

by garbled circuit constructions [37, 63]. More precisely, if 𝑘 is

a data object’s key and 𝑣 its plaintext value in binary, then the

server stores:

< 𝑃𝑅𝐹 (𝑘), (𝑠𝑙 (1)
𝑏1
, . . . , 𝑠𝑙

(𝑗)
𝑏 𝑗
, . . . , 𝑠𝑙

(ℓ)
𝑏ℓ
) >

where ℓ = |𝑣 |, 𝑠𝑙 (𝑗)
𝑏 𝑗

is a secret label corresponding to the 𝑗𝑡ℎ

index of 𝑣 from the left (indicated as the superscript) where 𝑗

goes from 1 to ℓ , and ∀𝑗 , 𝑏 𝑗 ∈ {0, 1} represents bit value 0 or 1
(indicated as the subscript). For example if ℓ = 3 and 𝑣 = 101 (in

binary notation) , then the server stores (𝑠𝑙 (1)
1
, 𝑠𝑙
(2)
0
, 𝑠𝑙
(3)
1
). The

proxy generates secret labels using a pseudorandom function of

the form 𝑃𝑅𝐹 (𝑘, 𝑗, 𝑏, 𝑐𝑡) that takes as input the key 𝑘 , position
index 𝑗 from left, the corresponding bit value 𝑏, and an access

counter 𝑐𝑡 . Because PRFs are deterministic functions, invoking

the chosen PRF with the same inputs any number of times will

result in the same output label.

Since the goal of ORTOA of hiding reads from writes can only

be achieved if every access to an object writes the data, LBL-

ORTOA updates the secret labels of an object whenever a client

accesses the object – be it for a read or a write. We use notation

𝑜𝑙 to represent the old secret label currently stored at the server

and 𝑛𝑙 to represent the new label that would replace the old la-

bel. To be able to regenerate the last array of secret labels for

a given object, the system needs to maintain an access counter

per object indicating the total access count of an object. For this

solution to be proxy-less, this counter should be maintained by

all clients. But ensuring that after a client updates a counter, it

propagates the update to all other clients requires some notion of

consensus across clients, complicating the system design. Hence,

LBL-ORTOA relies on a trusted proxy to maintain such state-

ful information and all clients route their requests through the

proxy. We note that although maintaining access counters for

all objects is 𝑂 (𝑁), where 𝑁 is the database size, this requires

a small amount of memory (8MB for 1M objects) compared to

storing the plaintext values at the proxy (in GBs). Many oblivious

schemes [13, 32, 39, 50, 57, 58] that handle concurrent requests
also maintain such 𝑂 (𝑁) datastructures (e.g., position maps) at

the proxy in exchange for higher performance.

5.1 An Illustrative Example

For ease of exposition, we first explain how LBL-ORTOA executes

reads and writes using a simple example and formally present

the protocol in the next section.

Recall that all data values are of the same length, ℓ bits, indexed

1 to ℓ . In this example, let ℓ = 1, and let 𝑘 be the specific key

accessed by a client where the corresponding plaintext key-value

tuple is< 𝑘, 0 >, i.e., the value associatedwith𝑘 is 0. The server in-

turn stores the corresponding encoded tuple < 𝑃𝑅𝐹 (𝑘) , 𝑜𝑙 (1)
0

>

where 𝑜𝑙
(1)
0

is a secret label for bit value 0 (indicated as the

subscript) at index 1 (indicated as the superscript).

1. Client:The client either sends a Req(Read, 𝑘) or a Req(Write,
𝑘, 𝑣 ′) request to the proxy, where 𝑣 ′ is an updated value for 𝑘 .

In this example, we assume 𝑣 ′ is 1.
2. Proxy: The proxy, in response, executes the following steps:

2.1 The proxy generates two old secret labels < 𝑜𝑙
(1)
0
, 𝑜𝑙
(1)
1

>

(where 𝑜𝑙 indicates old label) both for index 1 by call-

ing 𝑃𝑅𝐹 (𝑘, 1, 𝑏, 𝑐𝑡) where 𝑏 ∈ {0, 1} and 𝑐𝑡 is 𝑘’s access
counter. For each index, the proxy needs to generate labels

for both bit values 0 and 1 since it does not know the actual
value, which is stored only at the server.

2.2 The proxy next generates two new labels < 𝑛𝑙
(1)
0
, 𝑛𝑙
(1)
1

>

(where 𝑛𝑙 indicates new label) both for index 1 by calling

𝑃𝑅𝐹 (𝑘, 1, 𝑏, 𝑐𝑡 + 1) where 𝑏 ∈ {0, 1} and it updates 𝑘’s

access count to 𝑐𝑡 + 1.
2.3 The details of this step depend on the type of access: for

reads, the proxy encrypts each new secret label using

the corresponding old secret label, thus generating two

encryptions for index 1:

𝐸 = [< 𝐸𝑛𝑐
𝑜𝑙
(1)
0

(𝑛𝑙 (1)
0
), 𝐸𝑛𝑐

𝑜𝑙
(1)
1

(𝑛𝑙 (1)
1
) >]

Whereas for writes, assuming the updated value 𝑣 ′ = 1,

the proxy encrypts only the new label corresponding to

the updated value 𝑣 ′ = 1 using the old labels, i.e.:

𝐸 = [< 𝐸𝑛𝑐
𝑜𝑙
(1)
0

(𝒏𝒍 (1)1), 𝐸𝑛𝑐𝑜𝑙 (1)
1

(𝒏𝒍 (1)1) >]
2.4 The proxy next shuffles 𝐸 pairwise, i.e, randomly reorders

the two encryptions, to ensure that the first encryption

does not always refer to bit 0 and the second to bit 1, and

sends 𝐸 to the external server.

3. Server: The external server, upon receiving 𝐸 does the follow-

ing:

3.1 For the pair of encryptions received, the server tries to

decrypt both encryptions using its locally stored label. But

since it stores only one old label at index 1, it succeeds

in decrypting only one of the two encryptions. In this

example, the server decrypts 𝐸𝑛𝑐
𝑜𝑙
(1)
0

(𝑛𝑙 (1)
0
) for reads or

𝐸𝑛𝑐
𝑜𝑙
(1)
0

(𝑛𝑙 (1)
1
) for writes using the stored 𝑜𝑙 (1)

0
.

3.2 The server then updates index 1’s secret label to the newly

decrypted value, in this case, 𝑛𝑙
(1)
0

for reads or 𝑛𝑙
(1)
1

for

writes. For writes, since both encryptions for an index

encrypt only one new label 𝑛𝑙
(1)
1

, either decryptions will

result in the desired, updated label that reflects the new

value of < 𝑘, 1 >. Whereas for reads, the server ends up

with 𝑛𝑙
(1)
0

, reflecting the existing value of < 𝑘, 0 >. The

server sends the output of the decryption to the proxy

and since the proxy knows the mapping of secret labels

to plaintext bit values, the proxy learns the value of 𝑘 to

be 0 for reads and ignores the output for writes.

5.2 LBL-ORTOA Protocol

This section formally presents the protocol, described in the two

functions depicted in Figure 1. Table 1 defines the variables used

in the protocol.

The Init(kv) procedure describes the data initialization process

in LBL-ORTOA. Upon receiving the plaintext key-value pairs

as input, for each pair (line 3), the procedure generates PRF la-

bels at each of the ℓ indexes corresponding to bit 𝑏 of the value

(represented in binary form) (line 7). All the labels appended

together represent the value (line 11) and the procedure returns

the encoded keys and labels to be stored at the external server.

6

Procedure Init(𝑘𝑣):

1 𝑘𝑣 ′ ← ∅
2 𝑐𝑡 ← 1 // indicates an access count of 1

3 for (𝑘, 𝑣) ∈ 𝑘𝑣 do
4 𝑙𝑎𝑏𝑒𝑙𝑠 ← ∅
5 𝑖 ← 1 // starting index

// 𝑣 is in binary representation

6 for each bit 𝑏 ∈ 𝑣 starting from left most position do

7 𝑙 ← 𝑃𝑅𝐹 (𝑘, 𝑖, 𝑏, 𝑐𝑡)
8 𝑙𝑎𝑏𝑒𝑙𝑠

∪←− 𝑙
9 𝑖 ← 𝑖 + 1

10 end

11 𝑘𝑣 ′
∪←− {𝑃𝑅𝐹 (𝑘), 𝑙𝑎𝑏𝑒𝑙𝑠}

12 end

13 Return 𝑘𝑣 ′

Procedure Pcr(𝑜𝑝, 𝑘, 𝑣𝑎𝑙)

1 Retrieve key 𝑘’s 𝑐𝑡 // 𝑘’s latest access count

2 𝐸 ← ∅
3 𝑖 ← 1 // starting index

// 𝑣𝑎𝑙 is in binary representation

4 for each bit 𝑏 ∈ 𝑣𝑎𝑙 starting from left most position do

5 𝑜𝑙
(𝑖)
0
← 𝑃𝑅𝐹 (𝑘, 𝑖, 0, 𝑐𝑡), 𝑜𝑙 (𝑖)

1
← 𝑃𝑅𝐹 (𝑘, 𝑖, 1, 𝑐𝑡)

6 𝑛𝑙
(𝑖)
0
← 𝑃𝑅𝐹 (𝑘, 𝑖, 0, 𝑐𝑡 + 1), 𝑛𝑙 (𝑖)

1
← 𝑃𝑅𝐹 (𝑘, 𝑖, 1, 𝑐𝑡 + 1)

7 if 𝑜𝑝 = 𝑟𝑒𝑎𝑑 then

8 𝐸
∪←− {𝐸𝑛𝑐

𝑜𝑙
(𝑖)
0

(𝑛𝑙 (𝑖)
0
), 𝐸𝑛𝑐

𝑜𝑙
(𝑖)
1

(𝑛𝑙 (𝑖)
1
)}

9 else

10 𝐸
∪←− {𝐸𝑛𝑐

𝑜𝑙
(𝑖)
0

(𝑛𝑙 (𝑖)
𝑏𝑖
), 𝐸𝑛𝑐

𝑜𝑙
(𝑖)
1

(𝑛𝑙 (𝑖)
𝑏𝑖
)}

11 end

12 𝑖 ← 𝑖 + 1
13 end

14 𝑐𝑡 ← 𝑐𝑡 + 1
15 Pairwise shuffle 𝐸

16 Return 𝐸

Figure 1: LBL-ORTOA’s algorithms to initialize a set plaintext

key value pairs 𝑘𝑣 and process an individual client request for

operation type 𝑜𝑝, key 𝑘 , and updated value 𝑣𝑎𝑙 .

When a client sends Req(Read,𝑘) or a Req(Write,𝑘,𝑣 ′) to
the proxy, the proxy and the server execute the following steps.

1. Proxy:The proxy, upon receiving a Req(Read, 𝑘) or a Req(Write,
𝑘, 𝑣 ′) request from a client, where 𝑣 ′ is an updated value for 𝑘 ,

invokes the ProcessClientRequest procedure, or Procedure Pcr
for short, as defined in Figure 1, which internally executes the

following steps:

1.1 The proxy retrieves key 𝑘’s access counter 𝑐𝑡 (line 1).

1.2 For each of the ℓ indexes of the value, the proxy generates

the two old labels corresponding to both bit-values 0 and

1 by passing the current access counter 𝑐𝑡 to the PRF (line

5):

{𝑜𝑙 (1)
0
← 𝑃𝑅𝐹 (𝑘, 1, 0, 𝑐𝑡), 𝑜𝑙 (1)

1
← 𝑃𝑅𝐹 (𝑘, 1, 1, 𝑐𝑡),

. . . ,

𝑜𝑙
(ℓ)
0
← 𝑃𝑅𝐹 (𝑘, ℓ, 0, 𝑐𝑡), 𝑜𝑙 (ℓ)

1
← 𝑃𝑅𝐹 (𝑘, ℓ, 1, 𝑐𝑡)}

Symbol Meaning

𝑜𝑙
(𝑗)
𝑏 𝑗

Secret label of a single bit of plaintext value

𝑗 Index from 1 to ℓ starting from the left of plaintext value

𝑏 𝑗 Bit value (0 or 1) at index 𝑗 of plaintext value

𝑐𝑡 Access counter

𝑛𝑙
(𝑗)
𝑏 𝑗

New secret label of a single bit of plaintext value

Table 1: Variables used in LBL-ORTOA.

1.3 For each of the ℓ indexes of the value, the proxy next

generates two new secret labels corresponding to both

bit-values 0 and 1 by passing the updated access counter

𝑐𝑡 + 1 (accounting for the ongoing access) to the PRF (line

6):

{𝑛𝑙 (1)
0
← 𝑃𝑅𝐹 (𝑘, 1, 0, 𝑐𝑡 + 1), 𝑛𝑙 (1)

1
← 𝑃𝑅𝐹 (𝑘, 1, 1, 𝑐𝑡 + 1),

. . . ,

𝑛𝑙
(ℓ)
0
← 𝑃𝑅𝐹 (𝑘, ℓ, 0, 𝑐𝑡 + 1), 𝑛𝑙 (ℓ)

1
← 𝑃𝑅𝐹 (𝑘, ℓ, 1, 𝑐𝑡 + 1)}

1.4 The details of this step depend on the type of access: for

reads, the proxy encrypts each new secret label using the

corresponding old secret label and generates two encryp-

tions for each of the ℓ indexes (line 8):

𝐸 = [< 𝐸𝑛𝑐
𝑜𝑙
(1)
0

(𝑛𝑙 (1)
0
), 𝐸𝑛𝑐

𝑜𝑙
(1)
1

(𝑛𝑙 (1)
1
) >, . . . ,

< 𝐸𝑛𝑐
𝑜𝑙
(ℓ)
0

(𝑛𝑙 (ℓ)
0
), 𝐸𝑛𝑐

𝑜𝑙
(ℓ)
1

(𝑛𝑙 (ℓ)
1
) >]

For writes, assuming 𝑏𝑖 is the updated bit value at index 𝑖 ,

the proxy encrypts only the new labels corresponding to

the updated value 𝑣 ′ using the old labels (line 10):

𝐸 = [< 𝐸𝑛𝑐
𝑜𝑙
(1)
0

(𝒏𝒍 (1)
𝒃1
), 𝐸𝑛𝑐

𝑜𝑙
(1)
1

(𝒏𝒍 (1)
𝒃1
) >, . . . ,

< 𝐸𝑛𝑐
𝑜𝑙
(ℓ)
0

(𝒏𝒍 (ℓ)
𝒃ℓ
), 𝐸𝑛𝑐

𝑜𝑙
(ℓ)
1

(𝒏𝒍 (ℓ)
𝒃ℓ
) >]

Note that for writes, at each index 𝑖 , both the old labels

encrypt only one new label 𝑛𝑙
(𝑖)
𝑏𝑖

corresponding to 𝑣 ′.
1.5 The proxy increments 𝑘’s access counter (line 14) and

pairwise shuffles each of the ℓ pairs of encryptions and

sends this encryption to the external server.

2. Server: The server upon receiving the encryption 𝐸 from the

proxy performs the following steps:

2.1 For each of the ℓ pairwise encryptions, the server tries to

decrypt both encryptions using the locally stored label.

However, since it stores only one old label per index, it

succeeds in decrypting only one of the two encryptions per

index. Note that LBL-ORTOA uses authenticated encryption
to ensure the server identifies successful decryptions.
At index 𝑗 , the server either stores𝑜𝑙

(𝑗)
0

or𝑜𝑙
(𝑗)
1

, and hence,

it can successfully decrypt only one of < 𝐸𝑛𝑐
𝑜𝑙
(𝑗)
0

(𝑛𝑙 (𝑗)
0
),

𝐸𝑛𝑐
𝑜𝑙
(𝑗)
1

(𝑛𝑙 (𝑗)
1
) > obtaining 𝑛𝑙

(𝑗)
0

or 𝑛𝑙
(𝑗)
1

for reads. For

writes, since both encryptions encrypt 𝑛𝑙
(𝑗)
𝑏 𝑗

, either de-

cryptions will result in the new label corresponding to the

updated bit 𝑏 𝑗 at index 𝑗 .

2.2 The server then updates each index’s secret label to the

newly decrypted value and sends the output to the proxy.

Since the proxy knows the mapping of secret labels to

plaintext bit values at each index, the proxy learns the

value of 𝑘 for reads and it ignores the output for writes.

7

The server always updates its stored secret labels after executing

LBL-ORTOA to access an object. For reads, the updated labels re-

flect the existing value of the object; for writes, the updated labels
reflect the updated value of the object. Thus by choosing a unique
data representation model and taking advantage of that model,

LBL-ORTOA hide the type of operation in one round without

restricting the number of accesses, unlike the FHE approach, or

requiring specialized hardware.

5.3 Complexity Analysis

5.3.1 Space Analysis.
Proxy: The only information the proxy needs to maintain to

support LBL-ORTOA is the access counter for each key in the

database. While the complexity of storing access counters for all

the keys is O(N), where 𝑁 is the database size, the actual space it

consumes is quite low. For example if a single counter requires 8

bytes, for a database of size 1 million objects, the proxy requires

about 8mB space to store the counters. Note that this space size

is much lower compared to storing plaintext objects at the proxy.

Server: While the storage cost at the proxy is insignificant to

support LBL-ORTOA, the same is not true for the server. The

exact space analysis at the server is as follows: if ℓ represents the

length of a plaintext value (and all values have same length), 𝑟

the output size (in bits) of the PRFs that generate secret labels

and encoded keys, and 𝑁 the database size, then server’s storage

space in bits can be calculated as:

(𝑟 · 𝑁)︸ ︷︷ ︸
𝑆𝑝𝑎𝑐𝑒 𝑓 𝑜𝑟 𝑘𝑒𝑦𝑠

+ (𝑟 · ℓ · 𝑁)︸ ︷︷ ︸
𝑆𝑝𝑎𝑐𝑒 𝑓 𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠

5.3.2 Communication and Computation Analysis.
Every bit of plaintext can have 2 possible values – either a 0 or

a 1. Since the data values, or rather the data value encodings,

are stored only at the server, the proxy generates both possible

secret label encodings, and the corresponding 2 encryptions, for

each bit of the plaintext. The proxy then sends 2 encryptions per

bit to the server. If ℓ be the length of data values and 𝐸𝑙𝑒𝑛 the

length of encrypted ciphertexts, for every object accessed by a

client, LBL-ORTOA incurs the communication cost of:

2 · 𝐸𝑙𝑒𝑛︸ ︷︷ ︸
𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑏𝑖𝑡

· ℓ︸︷︷︸
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑏𝑖𝑡𝑠

In terms of computation, the proxy and the server perform

2 ∗ ℓ encryptions and decryptions, respectively.

5.4 Tolerating malicious adversaries

Although we primarily consider protection against honest-

but-curious adversaries, LBL-ORTOA can be extended to protect

against data tampering by malicious adversaries. We briefly out-

line the mechanism here. Since the proxy in LBL-ORTOA has the

mapping of a plaintext bit-value to its corresponding label value,

when it reads an object, it can easily detect any data tampering

by checking whether each read label of a value matches with the

labels for either 0 or 1. Note that the adversary can only corrupt

the data; it can never correctly change the label corresponding to

say bit 0 to bit 1 since the PRF key necessary to correctly generate

labels is stored only at the proxy.

5.5 Challenges with label based solution

The main challenge with LBL-ORTOA is that its storage and

communication complexities grow with the size of the data val-

ues, as is evident from §5.3. We experimentally measure the

performance cost (measured in throughput and latency) of LBL-

ORTOA as the value size grows in §6.3. With regard to computa-

tion, the server needs to (attempt to) decrypt all encryptions per

bit of plaintext despite being able to successfully decrypt only

one of them, incurring wasteful computations. We address some

of these challenges with optimizations summarized in the next

section. Another challenge with this version is the necessity of

a stateful trusted proxy. This proxy does not pose a scalability
bottleneck: LBL-ORTOA can easily scale by adding additional

proxies without compromising correctness or security. However,

the proxy poses a fault tolerance challenge since it stores infor-

mation necessary to execute the protocol. We leave the task of

exploring efficient techniques to ensure proxy fault tolerance to

future work.

5.6 Optimizations

We perform two major optimizations to LBL-ORTOA: one to

reduce the storage size by half without increasing the communi-

cation or computation complexity, and one to enable the server

to decrypt only one encryption per plaintext bit to avoid wasteful

computations. Due to space constraints, the Appendix provides

complete details of the optimization techniques. At a high level,

for storage size reduction, recall that for every bit of plaintext

data, the server stores a secret label of 𝑟 bits; in other words, 𝑟 bits

are used to represent a single bit of plaintext data. The optimiza-

tion morphs this such that 𝑟 bits represent two bits of plaintext
rather than one, cutting down the storage cost by half. To reduce

the number of decryptions, we utilize the point-and-permute [5]

optimization of garbled circuits. This technique involves strate-

gically permuting the possible encryptions per bit of plaintext

and generating two additional bits of information (i.e., 𝑟+2 bits)

indicating the exact encryption to decrypt upon the next access.

This reduces the server’s computation cost in half since the server

only decrypts one of the two encryptions sent per bit of plaintext.

6 EXPERIMENTAL EVALUATION

In this section, we discuss the merits and limitations of various

versions of ORTOA by conducting experimental evaluations. In

particular, we only experimentally measure the performance of

TEE-ORTOA and LBL-ORTOA since FHE-ORTOA using existing

FHE implementations show impractical results (§3). If future effi-

cient FHE implementations are developed, the practical viability

of FHE-ORTOA can be reevaluated.

Baseline: In evaluating ORTOA, we consider a two-round-trip

(2RTT) protocol as the baseline wherein each request by a client –

read or write – translates into a read request followed by a write

request, ensuring read-write indistinguishability. This technique

is on par with how most existing obliviousness solutions hide

the type of operation [13, 32, 39, 50, 57, 58].

Goals: We aim to answer four questions through evaluations:

(1) How does the TEE and label version of ORTOA compare

with the 2RTT baseline when the client-to-server distance

varies? (§6.1)

(2) How does ORTOA’s performance change with changing

configurations such as concurrency or read-write ratio?

(§6.2)

8

(3) When and how should an application choose between

ORTOA and the 2RTT baseline? (§6.3)

(4) How does the two protocols compare for a range of real-

world applications? (§6.4)

Experimental Setup: We evaluated LBL-ORTOA and the

baseline on AWS, whereas TEE-ORTOA on Azure due to the

availability of Intel SGX machines. For simplicity, even TEE-

ORTOA and the baseline utilize a proxy to store the encryption

key and all (concurrent) client requests are routed through the

proxy. On AWS, the clients, proxy, and server were deployed

on r5.xlarge instances each with 8GiB of memory and 4 cores

@ 3.1GHz. The client and proxy were located in the US-West1

(California) datacenter and in most of our experiments, the server

was hosted in the US-West2 (Oregon) datacenter. On Azure, we

deployed Intel SGX supported machines of spec Standard DC48s

v3, 48 vcpus and 384 GiB memory. We note that Azure sup-

ports SGX enabled machines in a limited number of datacen-

ters, including in the Virginia datacenter, where we placed the

server. To have identical communication latencies as in LBL-

ORTOA, the TEE version placed the client in the Virginia data-

center as well and simulated the proxy-to-server latency using

the Linux tc command. ORTOA’s implementation can be found

at https://github.com/dsg-uwaterloo/ORTOA.

Unless stated otherwise, in each experiment a multi-threaded

client (with a default of 32 threads) sends requests concurrently

to the proxy, while each thread sends requests sequentially, i.e., it

waits until its current request is answered before sending the next

one. Each data point plotted in all the experiments is an average of

3 runs to account for performance variability caused by AWS and

Azure. In our experiments, the servers for both ORTOA protocols

and the baseline store ∼ 2
20

(1M) data objects and unless stated

otherwise, all experiments use synthetic data for evaluations.

Each client thread picks an object to access uniformly at random,

and unless stated otherwise, it decides to read or write the data

also uniformly at random. Most of the experiments choose a

160B value size, ℓ = 1280 bits (this size is in line with other

oblivious data systems [15, 42] as well as with a range of real-

world applications §6.4). Each experiment measures latency, the
time interval between when a client sends a request to when it

receives the corresponding response; and throughput, the number

of operations executed per second.

Real world datasets: In addition to detailed experiments on

synthetic data, we measure ORTOA’s performances on three real

world datasets: (i) An Electronic Health Record (EHR) data con-

sisting of patients’ heart disease records [19], (ii) SmallBank [1]

data focusing on single object read/write requests rather than

transactional workloads, and (iii) e-Commerce dataset [60] from

UCI’s machine learning repository consisting of records on cus-

tomers’ online retail purchases. §6.4 discusses more details on

the datasets and the performance of the two versions.

6.1 ORTOA vs. two round trip baseline

In the first set of experiments, our goal is to measure the effect

of proxy-to-server distance on throughput and latency. We com-

pare the two ORTOA protocols with the 2RTT baseline where

the proxy and clients are located in the US-West1 (California)

datacenter and the server is placed at increasingly farther data-

centers of US-West2 (Oregon), US-East1 (N. Virginia), EU-West2

(London), and AP-South1 (Mumbai). Table 2 notes the round-trip

time (RTT) latencies from California to the other datacenters.

Since the TEE approach has a major limitation wherein only a

limited datacenters support SGX enabled machines, TEE-ORTOA

Oregon N. Virginia London Mumbai

California 21.84 62.06 147.73 230.3

Table 2: RTT latencies across different datacenters in ms.

emulated this setup using the tc command to simulate similar

cross datacenter latencies as in Table 2. Note that we do not

place the server in the same datacenter as the proxy and the

clients so as to mimic realistic behavior where between 79%-95%

of cloud users face more than 10 ms latency when accessing a

cloud server [11]. Further, this experiment runs 32 concurrent

client requests and Figure 2a plots the average latency per client

request (i.e., the effect of proxy-to-server distance on individual

client requests), along with the system’s throughput.

As seen in Figure 2a, as the physical distance between the

proxy and the server increases, latency increases and throughput

decreases for both the ORTOA protocols and the 2RTT baseline.

Comparing the two versions of ORTOA, the TEE version con-

sistently outperforms the label version with TEE’s throughput

values between 0.9-1.2x higher than LBL’s and its latency is

about 20% lower than the LBL version. The reason for this per-

formance difference primarily stems from the increased amount

of computation required both at the proxy and the server side for

LBL-ORTOA compared to the simplistic computation that occurs

in TEE-ORTOA. This indicates that if and when trusted enclaves

are available at a cloud vendor, utilizing it helps improve OR-

TOA’s performance. However, as noted in the experimental setup

section, Azure supports SGX machines in limited datacenters.

Hence, the TEE-ORTOA version may lose its performance bene-

fits when the SGX enabled servers reside far from majority of the

clients. For example, say if Virginia is the only datacenter with

TEE enabled machines but an application has all of its clients in

Asia, then based on Figure 2a, the LBL version is a better choice

than TEE-ORTOA.

Comparing the two versions of ORTOA with the two round

trip baseline, the experiment indicates that across all server loca-

tions, the two versions of ORTOA outperform the 2RTT baseline.

In particular, the latency of the 2RTT baseline is 1.5x to 1.9x

that of the two versions of ORTOA. Inversely, LBL-ORTOA’s

throughput is about 1.7x and TEE-ORTOA’s is about 3.2x that of

the baseline. The primary reason for the baseline’s lower perfor-

mance stems from incurring higher communication latency since

its computation latency is negligible compared to ORTOA. This

experiment highlights the benefits of constructing a single round

access type oblivious protocol, as compared to the state-of-the-art

two-round approach.

6.2 Micro Benchmarking

This set of experiments evaluate the behavior of ORTOA pro-

tocols across different configurations, starting with increasing

concurrent client requests. These experiments place the server

in US-West2 (Oregon) and the proxy and the clients in US-West1

(California) datacenters (the TEE version emulates this setup).

6.2.1 Increasing Concurrency. To understand how the OR-

TOA protocols behave when clients’ request load increases, this

experiment measures their throughput and latency while the

number of concurrent clients (implemented via threads) increases

starting from 1, and the results are depicted in Figure 2b. As seen

in the figure, LBL-ORTOA’s performance strikes a neat balance

at 32 clients with an average latency of ∼30 ms and a throughput

9

https://github.com/dsg-uwaterloo/ORTOA

(a) ORTOA vs Baseline (b) Varying concurrency (c) Varying % of write requests. (d) Varying the database size.

Figure 2: (a) Throughput and latency for TEE- and LBL-ORTOA and the 2RTT baseline, where the proxy lies in the California datacenter

and the server is placed at increasingly farther datacenters. (b) Performance measured with increasing the number of concurrent clients

for TEE- and LBL-ORTOA. Both versions perform optimally at 32 clients. (c) Throughput and latency measured for both versions of

ORTOA while increasing the percent of PUTs highlights their effectiveness in hiding the read/write ratios of an application. (d) TEE- and

LBL-ORTOA’s throughput and latency measured while increasing the database size, i.e., number of objects, from 2
10

to 2
22

(∼4.2M). The

performance degrading of LBL-ORTOA is mostly due to a single server performing large computations while storing increasing amounts

of data in memory.

of ∼1000 ops/s. This throughput is about 24x of the throughput at
1 client. Although the throughput at 64 clients is 26% higher than

at 32 clients, the latency is 54% higher at 64 clients, making 32

a better choice. Similarly, for TEE-ORTOA, the obvious optimal

concurrency is 32; the performance plateaus after that whereas

the latency starts spiking after 32 clients. The reason for the stark

increase in latency is that the server machines had 48 cores; so

as the client concurrency approached and went beyond 48, the

latency spiked. Additionally, the increased context switching (i.e.,

paging in and out) between the trusted enclave and untrusted

host processing also increases the latency, which is a common

behavior observed in TEEs. Note that both versions exhibit an

increase in throughput compared to a client concurrency of 1

because when a single client injects requests, the system remains

under-utilized and the client is the primary bottleneck. Since a

concurrency of 32 clients has optimal throughput and latency

for both versions of ORTOA, the following (and the previous)

experiments choose the concurrency of 32 clients, all sending

requests in parallel.

6.2.2 Varying the percent of writes. This experiment mea-

sures throughput and latency of the two versionswhile increasing

the percent of PUT (or write) operations from 0 to 100%, as shown

in Figure 2c. In this experiment, the server resides in Oregon and

32 concurrent clients read or write the data. As seen in the figure,

the throughput and the latency values of LBL-ORTOA remain

more or less constant at ∼920 ops/s and 33 ms latency (a maxi-

mum difference of 40 ops/s for throughput and 2 ms for latency).

Similarly, the TEE version has a consistent throughput of ∼2320
ops/s incurring an average latency of ∼23ms. This experimen-

tally demonstrates the access-oblivious guarantee of ORTOA in

that the performance remains the same regardless of the per-

centage of read or write operations in the client workload for

both versions. This highlights that ORTOA protects applications

from vulnerabilities exploited by observing the overall read/write

ratios of an application.

6.2.3 Varying N: the database size. This experiment eval-

uates ORTOA’s performance when the overall database size, i.e.,

the number of objects stored, increases from 2
10

to 2
22

(∼4.2 mil-

lion objects) and the results are depicted in Figure 2d. As shown

in the figure, for TEE-ORTOA, the throughput and latency re-

main mostly constant as the database size increases. Whereas, for

LBL-ORTOA, throughput and latency change minimally up until

2
20

(∼1M objects) and the performance gracefully degrades by

11% at 2
22

objects. The primary reason for this degradation is due

to a single server storing increasingly larger number of objects

in memory, which reduces the resources available to execute

the computation (i.e., one decryption for each bit of the value)

necessary to serve each request, impeding performance. The TEE

version does not suffer from this degradation due to the limited

amount of computation it requires in serving each client request.

A standard approach to overcome the performance degradation

in database systems is to scale the storage, which is what we do

in the next experiment.

6.2.4 Scaling ORTOA. In this set of experiments, we ad-

dress the observed performance reduction due to increasing data-

base size by sharding the data across multiple servers and proxies,

i.e., by scaling both storage and compute. This experiment in-

creases the number of storage servers and proxies from 1 to 5,

by pairing each storage server with a proxy and scaling them

pairwise. Since ORTOA aims to hide the type of access performed

by a client (and not the overall access pattern), the system can

scale the number of proxies without compromising security. For

each scaling factor 𝑠 , the client concurrency is also increased by

the scaling factor, i.e., by 32 ∗ 𝑠 . This experiment places all the

proxies and clients in California and the servers in Oregon (TEE-

ORTOA emulates this setup) and each server stores 1M objects.

The resulting throughput and latency are shown in Figure 3a.

Both versions of ORTOA scale near-linearly with the increas-

ing number of servers and proxies: their peak throughput at a

scale factor of 5 is about 5x the throughput at a scale factor of

1. The latency remains constant across different scale factors for

both versions. This experiment emphasizes the linear scaling of

ORTOA– a highly desired property of data management systems.

6.3 ORTOA vs the 2RTT baseline: Varying ℓ –

the length of values

Since the storage, communication, and computation complex-

ity of LBL-ORTOA are directly proportional to ℓ (see §5.3), in

this experiment, we measure throughput and latency of both

versions while increasing the size of the values (where all val-

ues have equal length) from 10B to 600B with 32 concurrent

clients sending requests and compare the performance with the

2RTT baseline; the results are depicted in Figure 3b. Note that

this experiment places the server in Oregon and the proxy and

clients in California. Interestingly, this experiment reveals the

turning point at which the baseline outperforms LBL-ORTOA.

10

(a) Increasing the scale factor (b) Varying value size ℓ – in bytes (c) Varying value size ℓ – in bytes (d) Servers in Oregon and EU

Figure 3: (a) TEE- and LBL-ORTOA’s throughput and latency measured when the number of servers and proxies in the system are scaled

up to a factor of 5. Throughput scales near-linearly with the scale factor, highlighting the scalability of ORTOA. (b) Throughput and latency

measured for TEE- and LBL-ORTOA, and the baseline while increasing the size of data values from 10B to 600B. Due to the large-message

communication overhead of LBL-ORTOA, the baseline outperforms LBL-ORTOA starting at 300B, whereas TEE-ORTOA’s performance

remains unchanged. (c) Latency breakdown of LBL-ORTOA: computing time spent generating labels and encryptions, communication

latency between the proxy (US-Ca) and server (US-Or), and additional communication overhead due to exchanging larger messages for

higher value sizes. (d) Throughput (in log scale) and latency comparison between LBL-ORTOA and the baseline when the server is placed

in Oregon vs. EU.

As expected, LBL-ORTOA’s throughput decreases and latency

increases as the value size grows. At 300B both the baseline

and LBL-ORTOA have comparable performance and the baseline

starts outperforming LBL-ORTOA after that. Whereas, compar-

ing the baseline with TEE-ORTOA, both protocols exhibit no

performance fluctuations as the value sizes increase. Although

the TEE version has this significant advantage compared to the

LBL version, not all applications can benefit from and choose the

TEE version due to the as yet limited support of trusted enclaves

from all cloud vendors. Moreover, the side-channel leakages in

TEEs [8, 43, 52, 61] may also limit the adoption of TEE-ORTOA.

Given that the LBL version has no such limitations, the next sec-

tion delves deeper to understand why its performance degrades

as the value sizes increase and studies when is the 2RTT baseline

better than LBL-ORTOA.

6.3.1 Latency breakdown of LBL-ORTOA. We speculated

the primary reason for LBL-ORTOA’s performance degradation

to be the increased computation at the proxy as it has to gener-

ate many more labels, and then encrypt, and decrypt the labels.

To validate this hypothesis, we measured latency breakdowns

while increasing the value sizes; this breakdown in shown in Fig-

ure 3c. Surprisingly, while the computation time does increase for

larger values (by 1ms), the primary bottleneck is actually the ad-

ditional communication time required to transfer larger amounts

of data (see the communication overhead analysis in §5.3.2). Fig-

ure 3c plots the overall latency of the baseline to contrast with

LBL-ORTOA’s latency, which consists of computation time, the

constant communication latency of 21.8ms, and the additional

communication overhead time. We see after 300B LBL-ORTOA’s

overall latency becomes greater than the baseline’s latency. How-

ever, we cannot blindly claim that for objects greater than 300B,

the 2RTT baseline is always a better choice because where the

server is located with regard to the proxy also plays a vital role

in this.

6.3.2 How to choose betweenLBL-ORTOAand the 2RTT
baseline? To help an application choose between LBL-ORTOA

and the baseline (assuming that TEEs are not a viable option),

we provide the following equation: Let 𝑐 be the cross-datacenter

communication time between the server and the proxy, let 𝑝

be LBL-ORTOA’s processing or computation time, and let 𝑜 be

LBL-ORTOA’s communication overhead time due to exchanging

large messages. LBL-ORTOA is a better choice for an application

if:

𝑐 > 𝑝 + 𝑜
If communicating with the server one extra round is worse

than the combined processing time and additional large-message

overhead delays, then LBL-ORTOA will yield better performance

than the 2RTT baseline; and vice versa. To highlight this point,

we conduct an experiment with objects of 300B by placing the

server in EU, as an example to show the impact on latency and

performance when an application complies with laws such as

GDPR, which may disallow moving data outside of EU. The re-

sults are shown in Figure 3d.

As seen in the figure, when the server is placed in Europe,

𝑐 = 147.7𝑚𝑠 and for LBL-ORTOA, 𝑝 + 𝑜 = 21.7𝑚𝑠 , LBL-ORTOA’s

throughput is 1.7x that of the baseline. This underscores our hy-

pothesis that having fewer rounds of communication at the cost of

increased message sizes is worthwhile when the communication

latency between the proxy and server is large compared to the

processing and communication overhead of LBL-ORTOA. Even

with low proxy-to-server communication latency, LBL-ORTOA

can be a better choice for performance than the 2RTT baseline for

small object sizes, as discussed in 6.1. Whereas with low proxy-

to-server communication latency but large value sizes (such as

images or videos), the 2RTT solution performs better than LBL-

ORTOA.

6.3.3 Dollar cost analysis of LBL-ORTOA. Since LBL-

ORTOA incurs high storage and communication overheads, in

this section, we discuss the estimated dollar cost of deploying

LBL-ORTOA. To calculate the estimates, we consider the storage,

communication, and compute costs of Google Cloud [29, 30],

whose costs are comparable to other cloud providers. Google

Cloud charges $0.02 per GB of storage per month, $0.12 per GB

of network usage, and $0.4 per million function invocations with

a 1.4 GHz CPU costing $0.00000165 per 100ms (ORTOA needs 2

ms to encrypt/decrypt labels). In estimating the dollar cost, we

consider the optimized protocol and PRFs that produce 128-bit

labels, i.e., 𝑟 = 128, with data values of size 160B, i.e., ℓ = 1280,

and with encryption schemes that produce 128-bit ciphertexts,

i.e., 𝐸𝑙𝑒𝑛 = 128. Please refer to §5.3 to recall the storage, com-

munication, and compute complexity of LBL-ORTOA. With the

above configuration, consider running LBL-ORTOA with a large

dataset consisting of 1 million data objects. This costs an ap-

plication $1.52 in storage per month, and executing 1 million

11

accesses will cost $18.3 in terms of bandwidth and $3.7 in terms

of compute (function calls). Taking into account the cost of a

single access, LBL-ORTOA incurs a cost of $0.000023 per request

– a reasonable price considering the advantage over the 2RTT

baseline (which incurs up to 1.9x higher latency overhead and

serves up to 1.7x less requests compared to LBL-ORTOA) when

trusted enclaves are not a viable option.

6.4 Real world datasets

Figure 4: Throughput and latency comparison between the OR-

TOA protocols and the baseline for three practical applications

based on real world datasets - Electronic Health Records (EHR),

SmallBank data, and e-commerce data.

To assess ORTOA’s behavior for real world applications, this

experiment measures and compares the performance of its two

versions with the baseline for three practical applications with

strict privacy needs: health care, banking, and e-commerce. For

each application, we initialize the databasewith real world datasets:

(i) An Electronic Health Record (EHR) dataset consisting of heart

disease information [19] with 14 attributes. For this dataset, we

chose two attributes: a UUID to identify unique patients and their

resting blood pressure data. The size of resting blood pressure

attribute is 10B (80 bits). Because the original dataset consists of

only 1024 (2
10
) entries, we repeat this dataset to create a data-

base of size 2
20

(1M) objects. (ii) A SmallBank[1]-like dataset

for banking applications where, although SmallBank [1] sup-

ports transactional queries, this experiment focuses on single

object read/write requests from clients, which aligns with the

type of requests supported by ORTOA. This dataset also consists

of 1M entries with a UUID attribute to identify bank customers

and a 50B (400 bits) combined balance attributes consisting of

checking balance, savings balance, and account numbers. (iii) An

e-commerce dataset [60] from UCI’s machine learning reposi-

tory with 8 attributes. For the experiment we pick 3 attributes,

invoiceId as object keys and concatenated customerId (with 5

character limit) and productDescription (with 35 character limit)

attributes as values. Hence, in total, the plaintext values for this

dataset amounts to 40B (320 bits). While the original dataset con-

sists of 541,909 entries, we re-use the dataset to build a database

with 1M entries.

This experiment measures the latency and throughput of the

two versions of ORTOA on real world datasets and contrasts

the performance with the 2RTT baseline with 32 concurrent

client threads generating the read/write workload. As depicted

in Figure 4, TEE-ORTOA’s throughput is roughly 3.2x that of the

2RTT baseline for all three applications. Whereas, LBL-ORTOA’s

throughput is 1.9x of the baseline for EHR, 1.7x for SmallBank,

and 1.8x for e-commerce (varying value sizes, i.e., 10B, 50B, and

40B respectively, causes this difference in performance). Con-

versely, the baseline’s latency is 1.7-1.9x that of the two versions

of ORTOA. These performance differences are consistent with

the performance differential between ORTOA and the baseline

on synthetic datasets. This experiment indicates that for a variety

of popular applications that have strong privacy requirements,

ORTOA outperforms the 2RTT baseline.

7 SECURITY OF ORTOA

This section defines the security guarantees of ORTOA and pro-

vides intuitions of the proof; the Appendix presents the formal

security proof. ORTOA aims to hide the type of client access

– read or write – from an adversary that controls the external

database server. The security definition closest to capturing this

indistinguishability lies in ORAM [27]; however ORAM’s security

definition focuses primarily on access pattern indistinguishabil-

ity and hence cannot to employed to capture the desired goals

of ORTOA. Therefore, we introduce a new security definition

to express the desired read or write obliviousness called real-

vs-random read-write indistinguishability or ROR-RW indistin-

guishability. We note that the new definition is the best possible

definition for settings that hide the type of access without hiding

the location of the accessed object.

Real(𝐴)

1 𝑜𝑢𝑡𝑝𝑢𝑡 ← ∅
2 for 𝑎𝑖 ∈ 𝐴 do

3 𝑜𝑢𝑡𝑝𝑢𝑡
∪←−

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 −
𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 (𝑎𝑖)

4 end

5 Return 𝑜𝑢𝑡𝑝𝑢𝑡

Ideal(𝐾)

1 𝑜𝑢𝑡𝑝𝑢𝑡 ← ∅
2 for 𝑘𝑖 ∈ 𝐾 do

3 𝑜𝑢𝑡𝑝𝑢𝑡
∪←−

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 (𝑘𝑖)
4 end

5 Return 𝑜𝑢𝑡𝑝𝑢𝑡

Figure 5: Security game where given a sequence of client gen-

erated accesses 𝐴, the Real world takes 𝐴 as input and the Ideal

world takes the sequence of keys accessed in 𝐴 as input and both

produce as output a sequence of encryptions that are sent to the

external server.

Security definition: Consider a sequence of𝑚 client accesses

𝐴 = {(𝑜𝑝1, 𝑘1, 𝑣𝑎𝑙1), · · · , (𝑜𝑝𝑖 , 𝑘𝑖 , 𝑣𝑎𝑙𝑖), · · · , (𝑜𝑝𝑚, 𝑘𝑚, 𝑣𝑎𝑙𝑚)}

where for 𝑖𝑡ℎ request, 𝑜𝑝𝑖 indicates the type of operation (read or

write), 𝑘𝑖 denotes the key, and 𝑣𝑎𝑙𝑖 is either an updated value for

writes or ⊥ for reads. We use a security game-based definition

that provides the sequence of accesses 𝐴 as input to both the real

system and an ideal system (simulator based), where both are

stateful entities, and both produce outputs 𝑂𝑢𝑡𝑅𝑒𝑎𝑙 and 𝑂𝑢𝑡𝑆𝑖𝑚
respectively consisting of a sequence of accesses to the external

server. Note that 𝐴 can be adaptively generated; ORTOA does

not require𝐴 to be known a-priori. A system is said to be ROR-RW
secure if, given the two outputs, an adversary can distinguish

between the two with negligible probability, i.e.,

For all probabilistic polynomial adversaries A,

| 𝑃𝑟 [𝐴(𝑂𝑢𝑡𝑅𝑒𝑎𝑙) → 1] − 𝑃𝑟 [𝐴(𝑂𝑢𝑡𝑆𝑖𝑚) → 1] |≤ 𝑛𝑒𝑔𝑙
To argue for correctness of ORTOA protocols, we consider a

game G, as shown in Figure 5. The game either executes Real

or Ideal algorithm with uniformly random probability and pro-

vides the output to an adversary. Protocols of ORTOA are ROR-RW

12

secure if the adversary, based on the received output, can iden-

tify the algorithm selected by the security game with negligible

probability. Note that the signature for Procedure ProcessClien-
tRequest (or Pcr) differs syntactically but not semantically for

the FHE and TEE versions and for the label version. For the se-

curity analysis, we simply assume that a client transforms an

access in 𝐴 to the necessary format (by encrypting the values

either using FHE or standard encryption for the FHE and TEE

versions respectively).

The Real algorithm invokes ORTOA’s respective ProcessClien-
tRequest procedure version for each of the𝑚 accesses in 𝐴 and

appends the output of each access to produce 𝑂𝑢𝑡𝑅𝑒𝑎𝑙 . The Ideal

algorithm, on the other hand, invokes a simulated function, Sim-
ulator. Each version utilizes its own simulator so as to match the

output of the respective real ORTOA protocol. The Ideal algo-

rithm (and its Simulator) has no access to the type of requests 𝑜𝑝𝑖
or the data values in A; it generates outputs that depend only

on dummy values. The collation of these dummy encryptions

forms 𝑂𝑢𝑡𝑆𝑖𝑚 . If we can prove that the output generated by the

Real algorithm appears indistinguishable to 𝑂𝑢𝑡𝑆𝑖𝑚 , it proves

that ORTOA is ROR-RW secure.

Theorem 1: A sequences of accesses A generated by the proto-

cols of ORTOA is ROR-RW secure.

Proof : The formal proof can found in Appendix.

8 FUTUREWORK

1. Designing novel ORAM schemes: Apart from mitigating at-

tacks that exploit the type of access on encrypted datastores,

the ORTOA protocols proposed in this work can pioneer new

oblivious schemes that hide both the access type and the accessed

object in a single round. To show the possibility of designing such

schemes, we briefly outline a sketch of a novel PathORAM [58]-

like tree-based ORAM scheme that executes operations in one

round. As the name suggests, tree-based ORAM schemes such as

[39, 49, 50, 58] structure the outsourced data as a tree and store

each outsourced object in a randomly chosen path. Specifically,

in RingORAM [49], each node in the tree stores a fixed (max-

imum) number of real objects and dummy objects. To serve a

client request, RingORAM reads the entire path on which the

object resides, fetching all but one dummy objects at each level

of the path. It temporarily stores the read object in a cache-like

datastructure called stash, and finally shuffles the stash objects

to store them in the path that was read, and writes the path

back in an eviction step. This incurs two rounds of communica-

tion: once to read a path and once to evict it, i.e., write it back

after shuffling. Although RingORAM and many other schemes

[10, 39, 50] optimize by evicting the path as an offline process,

they still require another round of communication. We can de-

sign a novel RingORAM-like scheme where reading and evicting

a path can occur in a single round as follows: given that when a

client requests an object, the adversary observes a random path,

𝑝 , being accessed, the new scheme can identify at each level of 𝑝

whether an object from this level is being read or being written.

Reads would correspond to fetching the client requested object

and writes are for evicting the objects in the stash. This negates

the necessity of an offline eviction process. Similar to existing

schemes, the read object would reside in the stash and be evicted

upon subsequent accesses to the server. Even if the stash is empty,

the scheme should access one object per level to avoid any in-

formation leakage. Such a scheme not only reduces the rounds

of communication but also improve the concurrency since paths

are accessed only once per request.

2. Supporting complex operations: Another direction we can

expand ORTOA is by supporting more complex operations such

as range queries, joins, and aggregates. We believe that reading

and writing data objects form the core operations of any data-

base system. Although ORTOA is proposed for a key-value store

that supports read and write operations, the protocols as-is can

support reading and writing on relational data based on primary

keys (PKs). Support for queries such as point queries on non-PK

attributes or range queries or joins can be achieved with addi-

tional data structures such as private indexing [18, 36], similar

to SEAL [17], which builds a complex relational data system on

top of a simple get-put supporting ORAM scheme.

9 CONCLUSION

Encrypted databases leak information on when a client performs

a read vs. a write operation to an adversary; by observing indi-

vidual read/write accesses, the adversary can learn the overall

read/write workload of an application. An adversary can exploit

this information leak to violate privacy at an individual user level

or at an application level. Existing solutions to hide the type

of operation (deployed in ORAM or frequency smoothing tech-

niques) consist of always reading an object followed by writing

it, irrespective of the client request. This incurs one round of

redundant communication per request and doubles the end-to-

end latency compared to plaintext datastores. In this work, we

propose ORTOA, a family of one round data access protocols that

hide the type of access. Leveraging cryptographic primitives like

fully homomorphic encryption, trusted execution environments

(TEEs), and a novel garbled circuits-inspired primitive, ORTOA

offers flexibility in opting for suitable trust assumptions for appli-

cations. This is the first proposal to focus on hiding access type

on encrypted databases. Experimentally evaluating ORTOA and

comparing it with a baseline that requires two rounds to hide

the type of access confirms the benefits of designing a single

round solution: the baseline incurred 1.5-1.9x higher latency and

serves 1.7-3.2x less requests per second than ORTOA for objects

of size 160B.

REFERENCES

[1] Alomari, M., Cahill, M., Fekete, A., and Rohm, U. The cost of serializability

on platforms that use snapshot isolation. In 2008 IEEE 24th International
Conference on Data Engineering (2008), IEEE, pp. 576–585.

[2] Amazon loses 1% revenue for every 100ms page load delay.

https://www.contentkingapp.com/academy/page-speed-resources/faq/

amazon-page-speed-study/. Accessed May 9, 2022.

[3] Apache Cassandra. https://cassandra.apache.org/_/index.html. Accessed

December 14, 2023.

[4] ARM TrustZone. https://www.arm.com/technologies/

trustzone-for-cortex-m. Accessed October 1, 2023.

[5] Beaver, D., Micali, S., and Rogaway, P. The round complexity of secure

protocols. In Proceedings of the twenty-second annual ACM symposium on
Theory of computing (1990), pp. 503–513.

[6] Benaloh, J. Dense probabilistic encryption. In Proceedings of the workshop on
selected areas of cryptography (1994), pp. 120–128.

[7] Brakerski, Z. Fully homomorphic encryption without modulus switching

from classical gapsvp. In Annual Cryptology Conference (2012), Springer,

pp. 868–886.

[8] Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., and

Sadeghi, A.-R. Software grand exposure:{SGX} cache attacks are practical.
In 11th USENIX Workshop on Offensive Technologies (WOOT 17) (2017).

[9] Bronson, N., Amsden, Z., Cabrera, G., Chakka, P., Dimov, P., Ding, H., Fer-

ris, J., Giardullo, A., Kulkarni, S., Li, H., et al. Tao:facebook’s distributed

data store for the social graph. In 2013 USENIX Annual Technical Conference
(USENIX ATC 13) (2013), pp. 49–60.

[10] Chakraborti, A., and Sion, R. Concuroram: High-throughput stateless

parallel multi-client oram. arXiv preprint arXiv:1811.04366 (2018).

13

https://www.contentkingapp.com/academy/page-speed-resources/faq/amazon-page-speed-study/
https://www.contentkingapp.com/academy/page-speed-resources/faq/amazon-page-speed-study/
https://cassandra.apache.org/_/index.html
https://www.arm.com/technologies/trustzone-for-cortex-m
https://www.arm.com/technologies/trustzone-for-cortex-m

[11] Charyyev, B., Arslan, E., and Gunes, M. H. Latency comparison of cloud

datacenters and edge servers. In GLOBECOM 2020-2020 IEEE Global Commu-
nications Conference (2020), IEEE, pp. 1–6.

[12] Copie, A., Fortiş, T.-F., and Munteanu, V. I. Benchmarking cloud databases

for the requirements of the internet of things. In Proceedings of the ITI 2013
35th International Conference on Information Technology Interfaces (2013), IEEE,
pp. 77–82.

[13] Crooks, N., Burke, M., Cecchetti, E., Harel, S., Agarwal, R., and Alvisi,

L. Obladi: Oblivious serializable transactions in the cloud. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18) (2018),
pp. 727–743.

[14] Czeskis, A., Hilaire, D. J. S., Koscher, K., Gribble, S. D., Kohno, T., and

Schneier, B. Defeating encrypted and deniable file systems: Truecrypt v5. 1a

and the case of the tattling os and applications. In HotSec (2008).
[15] Dauterman, E., Fang, V., Demertzis, I., Crooks, N., and Popa, R. A. Snoopy:

Surpassing the scalability bottleneck of oblivious storage. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles (2021),
pp. 655–671.

[16] Dautrich, J., Stefanov, E., and Shi, E. Burst {ORAM}: Minimizing {ORAM}
response times for bursty access patterns. In 23rd USENIX Security Symposium
(USENIX Security 14) (2014), pp. 749–764.

[17] Demertzis, I., Papadopoulos, D., Papamanthou, C., and Shintre, S. {SEAL}:
Attack mitigation for encrypted databases via adjustable leakage. In 29th
USENIX Security Symposium (USENIX Security 20) (2020), pp. 2433–2450.

[18] Demertzis, I., Papadopoulos, S., Papapetrou, O., Deligiannakis, A., and

Garofalakis, M. Practical private range search revisited. In Proceedings of
the 2016 International Conference on Management of Data (2016), pp. 185–198.

[19] EHR Dataset of Heart Diseases. https://www.kaggle.com/datasets/

johnsmith88/heart-disease-dataset. Accessed October 14, 2022.

[20] ElGamal, T. A public key cryptosystem and a signature scheme based on

discrete logarithms. IEEE transactions on information theory 31, 4 (1985),

469–472.

[21] Fan, J., and Vercauteren, F. Somewhat practical fully homomorphic encryp-

tion. IACR Cryptol. ePrint Arch. 2012 (2012), 144.
[22] Fletcher, C., Naveed, M., Ren, L., Shi, E., and Stefanov, E. Bucket oram:

single online roundtrip, constant bandwidth oblivious ram. Cryptology ePrint
Archive (2015).

[23] Garg, S., Lu, S., Ostrovsky, R., and Scafuro, A. Garbled ram from one-way

functions. In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing (2015), pp. 449–458.

[24] GDPR. https://gdpr-info.eu/. Accessed May 9, 2022.

[25] Gentry, C., et al. A fully homomorphic encryption scheme, vol. 20. Stanford
university Stanford, 2009.

[26] Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., and Wichs, D.

Garbled ram revisited. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques (2014), Springer, pp. 405–422.

[27] Goldreich, O. Towards a theory of software protection and simulation by

oblivious rams. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing (1987), pp. 182–194.

[28] Goldreich, O., and Ostrovsky, R. Software protection and simulation on

oblivious rams. Journal of the ACM (JACM) 43, 3 (1996), 431–473.
[29] Google Cloud Pricing. https://cloud.google.com/storage/pricing. Accessed

August 15, 2021.

[30] Google Function Pricing. https://cloud.google.com/functions/pricing. Ac-

cessed August 15, 2021.

[31] Google loses 20% traffic for 0.5s page

load delay. https://medium.com/@vikigreen/

impact-of-slow-page-load-time-on-website-performance-40d5c9ce568a.

Accessed May 9, 2022.

[32] Grubbs, P., Khandelwal, A., Lacharité, M.-S., Brown, L., Li, L., Agarwal,

R., and Ristenpart, T. Pancake: Frequency smoothing for encrypted data

stores. In 29th USENIX Security Symposium (USENIX Security 20) (2020),
pp. 2451–2468.

[33] Intel SGX. https://www.intel.com/content/www/us/en/developer/tools/

software-guard-extensions/overview.html. Accessed October 1, 2023.

[34] Islam, M. S., Kuzu, M., and Kantarcioglu, M. Access pattern disclosure on

searchable encryption: ramification, attack and mitigation. In Ndss (2012),
vol. 20, p. 12.

[35] John, T. M., Haider, S. K., Omar, H., and Van Dijk, M. Connecting the

dots: Privacy leakage via write-access patterns to the main memory. IEEE
Transactions on Dependable and Secure Computing 17, 2 (2017), 436–442.

[36] Kamara, S., and Moataz, T. Sql on structurally-encrypted databases. In

Advances in Cryptology–ASIACRYPT 2018: 24th International Conference on
the Theory and Application of Cryptology and Information Security, Brisbane,
QLD, Australia, December 2–6, 2018, Proceedings, Part I 24 (2018), Springer,

pp. 149–180.

[37] Lindell, Y., and Pinkas, B. A proof of security of yao’s protocol for two-party

computation. Journal of cryptology 22, 2 (2009), 161–188.
[38] Lu, S., and Ostrovsky, R. How to garble ram programs? In Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques
(2013), Springer, pp. 719–734.

[39] Maiyya, S., Ibrahim, S., Scarberry, C., Agrawal, D., El Abbadi, A., Lin, H.,

Tessaro, S., and Zakhary, V. Quoram: A quorum-replicated fault tolerant

oram datastore. In 31st USENIX Security Symposium (USENIX Security 22)

(2022), pp. 3665–3682.

[40] Maiyya, S., Vemula, S., Agrawal, D., El Abbadi, A., and Kerschbaum, F.

Waffle: An online oblivious datastore for protecting data access patterns.

Cryptology ePrint Archive (2023).
[41] Microsoft SEAL. https://docs.microsoft.com/en-us/azure/architecture/

solution-ideas/articles/homomorphic-encryption-seal. Accessed June 15,

2021.

[42] Mishra, P., Poddar, R., Chen, J., Chiesa, A., and Popa, R. A. Oblix: An

efficient oblivious search index. In 2018 IEEE Symposium on Security and
Privacy (SP) (2018), IEEE, pp. 279–296.

[43] Moghimi, A., Irazoqi, G., and Eisenbarth, T. Cachezoom: How sgx am-

plifies the power of cache attacks. In Cryptographic Hardware and Embedded
Systems–CHES 2017: 19th International Conference, Taipei, Taiwan, September
25-28, 2017, Proceedings (2017), Springer, pp. 69–90.

[44] Paillier, P. Public-key cryptosystems based on composite degree residu-

osity classes. In International conference on the theory and applications of
cryptographic techniques (1999), Springer, pp. 223–238.

[45] Poddar, R., Boelter, T., and Popa, R. A. Arx: A strongly encrypted database

system. IACR Cryptol. ePrint Arch. 2016 (2016), 591.
[46] Popa, R. A., Redfield, C. M., Zeldovich, N., and Balakrishnan, H. Cryptdb:

Protecting confidentiality with encrypted query processing. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles (2011),
pp. 85–100.

[47] Priebe, C., Vaswani, K., and Costa, M. Enclavedb: A secure database using

sgx. In 2018 IEEE Symposium on Security and Privacy (SP) (2018), IEEE, pp. 264–
278.

[48] Redis. https://redis.io/. Accessed March 14, 2022.

[49] Ren, L., Fletcher, C. W., Kwon, A., Stefanov, E., Shi, E., van Dijk, M., and

Devadas, S. Ring oram: Closing the gap between small and large client storage

oblivious ram. IACR Cryptol. ePrint Arch. 2014 (2014), 997.
[50] Sahin, C., Zakhary, V., El Abbadi, A., Lin, H., and Tessaro, S. Taostore:

Overcoming asynchronicity in oblivious data storage. In 2016 IEEE Symposium
on Security and Privacy (SP) (2016), IEEE, pp. 198–217.

[51] Sasy, S., Gorbunov, S., and Fletcher, C. W. Zerotrace: Oblivious memory

primitives from intel sgx. Cryptology ePrint Archive (2017).
[52] Schwarz, M., Weiser, S., Gruss, D., Maurice, C., and Mangard, S. Malware

guard extension: Using sgx to conceal cache attacks. In Detection of Intrusions
and Malware, and Vulnerability Assessment: 14th International Conference,
DIMVA 2017, Bonn, Germany, July 6-7, 2017, Proceedings 14 (2017), Springer,
pp. 3–24.

[53] Shamir, A. How to share a secret. Communications of the ACM 22, 11 (1979),
612–613.

[54] Shih, M.-W., Lee, S., Kim, T., and Peinado, M. T-sgx: Eradicating controlled-

channel attacks against enclave programs. In NDSS (2017).
[55] Shinde, S., Chua, Z. L., Narayanan, V., and Saxena, P. Preventing page faults

from telling your secrets. In Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security (2016), pp. 317–328.

[56] Sinha, R., and Christodorescu, M. Veritasdb: High throughput key-value

store with integrity. Cryptology ePrint Archive (2018).
[57] Stefanov, E., and Shi, E. Oblivistore: High performance oblivious cloud

storage. In 2013 IEEE Symposium on Security and Privacy (2013), IEEE, pp. 253–

267.

[58] Stefanov, E., VanDijk,M., Shi, E., Fletcher, C., Ren, L., Yu, X., andDevadas,

S. Path oram: an extremely simple oblivious ram protocol. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security
(2013), pp. 299–310.

[59] TLS. https://datatracker.ietf.org/doc/html/rfc5246. Accessed April 14, 2022.

[60] UCI Online Retail Data Set. https://archive.ics.uci.edu/ml/datasets/online+

retail. Accessed May 9, 2022.

[61] Van Bulck, J., Weichbrodt, N., Kapitza, R., Piessens, F., and Strackx, R.

Telling your secrets without page faults: Stealthy page {Table-Based} attacks
on enclaved execution. In 26th USENIX Security Symposium (USENIX Security
17) (2017), pp. 1041–1056.

[62] Williams, P., and Sion, R. Single round access privacy on outsourced storage.

In Proceedings of the 2012 ACM conference on Computer and communications
security (2012), pp. 293–304.

[63] Yao, A. C.-C.How to generate and exchange secrets. In 27th Annual Symposium
on Foundations of Computer Science (1986), IEEE, pp. 162–167.

[64] Zheng, W., Dave, A., Beekman, J. G., Popa, R. A., Gonzalez, J. E., and Stoica,

I. Opaque: An oblivious and encrypted distributed analytics platform. In 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
17) (2017), pp. 283–298.

APPENDIX

10 OPTIMIZATIONS OF LBL-ORTOA

As seen in §5.3, LBL-ORTOA incurs high storage and computation

costs. This section provides two optimization techniques, one

to reduce the storage cost in half and the other to reduce the

computation of LBL-ORTOA.

14

https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset
https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset
https://gdpr-info.eu/
 https://cloud.google.com/storage/pricing
https://cloud.google.com/functions/pricing
https://medium.com/@vikigreen/impact-of-slow-page-load-time-on-website-performance-40d5c9ce568a
https://medium.com/@vikigreen/impact-of-slow-page-load-time-on-website-performance-40d5c9ce568a
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
 https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/homomorphic-encryption-seal
 https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/homomorphic-encryption-seal
https://redis.io/
https://datatracker.ietf.org/doc/html/rfc5246
https://archive.ics.uci.edu/ml/datasets/online+retail
https://archive.ics.uci.edu/ml/datasets/online+retail

10.1 Space optimized solution

In this section, we discuss a technique to optimize storage space

by trading off communication cost. Recall that for every bit of

plaintext data, the server stores a secret label of 𝑟 bits; in other

words, 𝑟 bits are used to represent a single bit of plaintext data.

To optimize space, the next logical question we ask is: can we

use 𝑟 bits to represent multiple bits of plaintext data?

A few plaintext

bit combinations

1-label-per-bit representation

0000 𝑠𝑙
(1)
0
, 𝑠𝑙
(2)
0
, 𝑠𝑙
(3)
0
, 𝑠𝑙
(4)
0

0001 𝑠𝑙
(1)
0
, 𝑠𝑙
(2)
0
, 𝑠𝑙
(3)
0
, 𝑠𝑙
(4)
1

0010 𝑠𝑙
(1)
0
, 𝑠𝑙
(2)
0
, 𝑠𝑙
(3)
1
, 𝑠𝑙
(4)
0

0011 𝑠𝑙
(1)
0
, 𝑠𝑙
(2)
0
, 𝑠𝑙
(3)
1
, 𝑠𝑙
(4)
1

Table 3: When ℓ = 4 and each secret label represents one bit of

plaintext data, i.e, 𝑦 = 1.

One label represents two bits of plaintext: We start with

a simple case where a single label represents two bits of plain-

text data (Table 4), instead of one (Table 3). In this case, the

server stores ℓ/2 labels for every data item (instead of ℓ), reduc-

ing the storage space by half. For example, if the plaintext value

is 0010, then the server stores [𝑠𝑙 (1,2)
00

, 𝑠𝑙
(3,4)
10
] where, say label

𝑠𝑙
(3,4)
10

corresponds to plaintext values 1 and 0 at indexes 3 and 4

respectively.

There are 2
2 = 4 unique bit combinations for every 2 indexes

of the plaintext – 00, 01, 10, and 11. Since the proxy does not

know the value, it generates 4 secret labels for every 2-bits, i.e.,

labels for all possible unique bit combinations, and creates 4

corresponding encryptions for every two bits of plaintext data.

The proxy then sends these 4 encryptions per 2-bits to the server,

which then tries to decrypt all 4 encryptions. Since the server

stores only one label per 2-bits, it succeeds in decrypting only

one of the 4 encryptions per 2-bits, which becomes the new label

for those 2-bits.

One label represents𝑦 bits of plaintext: The above approach
can be further generalized where a single label represents 𝑦 bits

of plaintext. For example a label 𝑠𝑙
(1,...,𝑦)
𝑏1 ...𝑏𝑦

corresponds to bits

𝑏1 . . . 𝑏𝑦 from indexes 1 to 𝑦. This approach reduces the storage

space by a factor of 𝑦, i.e., ℓ/𝑦. Note that if the length of values,

ℓ , is not divisible by 𝑦, we can pad the plaintext with a specific

character to indicate the bit value at that index is invalid.

Communication and computation complexity increase:

While the space optimized solution reduces the storage space at

the server by a factor of 𝑦, it incurs increased communication

A few plaintext

bit combinations

1-label-per-2-bits representation

0000 𝑠𝑙
(1,2)
00

, 𝑠𝑙
(3,4)
00

0001 𝑠𝑙
(1,2)
00

, 𝑠𝑙
(3,4)
01

0010 𝑠𝑙
(1,2)
00

, 𝑠𝑙
(3,4)
10

0011 𝑠𝑙
(1,2)
00

, 𝑠𝑙
(3,4)
11

Table 4: When ℓ = 4 and each secret label represents two bits of

plaintext data, i.e, 𝑦 = 2.

Figure 6: Storage vs. communication overhead factor analysis to

find optimal y value - the value that indicates howmany plaintext

bits are represented by a single label.

and computation overhead as more labels need to be commu-

nicated from the proxy to the server, as analysed next. Recall

the communication complexity of the non-space-optimized solu-

tion is (2 · 𝐸𝑙𝑒𝑛 · ℓ). Generalising this to when one secret label

represents 𝑦 bits, there are 2
𝑦
possible unique combinations for

every 𝑦 bits of plaintext and the server stores ℓ/𝑦 labels. So the

communication complexity becomes (2𝑦 · 𝐸𝑙𝑒𝑛 · ℓ/𝑦) bits and
the computation complexity increases to 2

𝑦 ∗ ℓ/𝑦, i.e, a factor of
2
𝑦/𝑦 increase compared to the non-space-optimized solution.

Calculating optimal 𝑦 value: The above discussion implies

that there exists a trade-off between the storage space and the

amount of communication (and computation) with the increase

in 𝑦. When 𝑦 increases, the storage space reduces by a factor

𝑓𝑠 = 1/𝑦 and the communication expense increases by a factor

𝑓𝑐 = 2
𝑦/𝑦, i.e., while the storage space decreases non-linearly,

the amount of communication (and computation) increases ex-

ponentially.

To calculate the optimal value of 𝑦, we compare the overhead

factors 𝑓𝑠 , 𝑓𝑐 , and the total combined overhead of the system, 𝑓𝑠 +
𝑓𝑐 , as depicted in Figure 6. As expected and as seen in the figure,

the storage factor reduces with increasing 𝑦, and communication

factor increases with 𝑦. The total overhead plot is interesting: the

overall overhead decreases for 𝑦 = 2 and starts increasing from

𝑦 = 3. This is because when 𝑦 = 2, the storage space reduces by

half, meanwhile the communication factor remains the same for

𝑦 = 1 and 𝑦 = 2, i.e., 𝑓𝑐 = 2. For any 𝑦 > 2, the communication

factor increases more rapidly than the storage factor reduction,

causing the total overhead factor to increase with 𝑦. Since the

total overhead is the least at 𝑦 = 2, that becomes the optimal 𝑦

for LBL-ORTOA.

10.2 Reducing the number of decryptions

Given that ORTOA has the least overhead for 𝑦 = 2, i,e, a sin-

gle label representing 2-bits of plaintext, this implies that the

proxy sends 2
𝑦 = 2

2 = 4 encryptions for every 2-bits of plaintext.

Since the server stores a single label for every 2-bits of plaintext

(Table 4), the server can successfully decrypt only one of the 4

encryptions. In the protocol presented in §5, the four encryp-

tions per 2-bits are randomly shuffled by the proxy, and hence,

the server attempts to decrypt all encryptions until it succeeds

(authenticated encryption schemes used in LBL-ORTOA allows

identifying successful decryptions). Essentially, the server wastes

computation trying to identify the right encryption. To mitigate

this inefficiency and reduce the number of potential decryptions

on the server from 4 to 1 for every 2-bits of plaintext, LBL-ORTOA

adapts the point-and-permute [5] optimization.

15

To reduce the number of decryptions, instead of sending the 4

encryptions per 2-bits in a randomly shuffled manner, the proxy

generates the four entries in a deterministic way. For ease of

exposition, let us assume that the 4 encryptions are sent as a table

where each of the four entries are indexed in binary notation:

00,01,10, and 11 indicating the 1
𝑠𝑡
, 2

𝑛𝑑
, 3

𝑟𝑑
, and 4

𝑡ℎ
entry of

the table.

Intuitively, the proxy generates two additional bits of informa-

tion per label indicating which of the four entries to decrypt upon
the next access; we term them decryption bits 𝑑1𝑑2. The server
stores bits 𝑑1𝑑2 along with its corresponding secret label. For

example, if the server stores a label (𝑠𝑙
(1,2)
00

, 10) for the plaintext

indexes (1,2) of an object, the decryption bits 10 indicate that the

server should decrypt only the 10𝑡ℎ entry, i.e., the third entry,

in the encryption table sent by the proxy for plaintext indexes

(1,2). We discuss how the proxy generates the two decryption

bits, 𝑑1𝑑2, next.

To simplify the explanation of the optimization, let us consider

ℓ = 2. The server stores a single label, 𝑜𝑙𝑏1𝑏2 , corresponding

to two bits of plaintext of an object, and the decryption bits

𝑑1𝑑2. The main constraint that the proxy needs to guarantee

while generating the encryption table when a client accesses

the object next is: the encryption entry at index 𝑑1𝑑2 should use

the label 𝑜𝑙𝑏1𝑏2 , i.e., 𝑑1𝑑
𝑡ℎ
2

entry in the table is 𝐸𝑛𝑐𝑜𝑙𝑏
1
𝑏
2

(𝑛𝑙𝑏′
1
𝑏′
2

)
where 𝑏′

1
𝑏′
2
is 𝑏1𝑏2 for reads or the updated bits for writes. This

constraint is necessary because with this optimization, we are

stating that the server decrypts only 𝑑1𝑑
𝑡ℎ
2

entry in the table but

the server can only decrypt an encryption that used 𝑜𝑙𝑏1𝑏2 (since

that is the only label it stores). Essentially, the proxy needs to

deterministically ‘link’ 𝑑1𝑑2 with 𝑏1𝑏2 but also randomize this

link for every access. The proxy achieves this by leveraging two

random bits, 𝑟1𝑟2, which act as one-time padding bits to link

encryption table indexes with labels. Note that the proxy does

not store these two bits 𝑟1𝑟2 explicitly; they can be derived with

any PRF (e.g., a PRF P that takes the access counter 𝑐𝑡 and key 𝑘

as input to generate the two bits).

First, let us consider a simplified case where LBL-ORTOA

supports accessing a data object only once, and hence decryption

bits 𝑑1𝑑2 need not be updated. To access a given object, the proxy

generates the four encryption entries for the 2-bits of plaintext

by first generating the old and new labels as described in Steps

1.2 and 1.3 of §5.2. Next the proxy creates 𝑑1𝑑
𝑡ℎ
2

entry and links

it to the labels by xor-ing with bits 𝑟1𝑟2: For reads

𝑑1𝑑
𝑡ℎ
2
𝑒𝑛𝑡𝑟𝑦 : 𝐸𝑛𝑐𝑜𝑙𝑑

1
𝑑
2
⊕𝑟

1
𝑟
2

(𝑛𝑙𝑑1𝑑2⊕𝑟1𝑟2)

For writes where 𝑛𝑙𝑏′
1
𝑏′
2

represents the label for updated value

(essentially all entries encrypt the same new label, refer §5.2)):

𝑑1𝑑
𝑡ℎ
2
𝑒𝑛𝑡𝑟𝑦 : 𝐸𝑛𝑐𝑜𝑙𝑑

1
𝑑
2
⊕𝑟

1
𝑟
2

(𝑛𝑙𝑏′
1
𝑏′
2

)

Generalizing this to where LBL-ORTOA supports any number

of accesses to an object, the two decryption bits need to be up-

dated after each access. Essentially, at each access, we update the

decryption bits to 𝑑′
1
𝑑′
2
indicating which entry to decrypt upon

the next access. The proxy achieves this by generating two new

bits 𝑟 ′
1
and 𝑟 ′

2
using the same PRF that generated 𝑟1 and 𝑟2 (e.g.,

invoke PRF P with updated access counter 𝑐𝑡 + 1 and 𝑘). The

proxy generates the encryption table with four entries as follows:

For reads:

𝑑1𝑑
𝑡ℎ
2
𝑒𝑛𝑡𝑟𝑦 : 𝐸𝑛𝑐𝑜𝑙𝑑

1
𝑑
2
⊕𝑟

1
𝑟
2

(𝑛𝑙𝑑1𝑑2⊕𝑟1𝑟2︸ ︷︷ ︸
𝑁𝑒𝑤 𝑙𝑎𝑏𝑒𝑙

, 𝑑1𝑑2 ⊕ 𝑟1𝑟2 ⊕ 𝑟 ′1𝑟
′
2︸ ︷︷ ︸

𝐵𝑖𝑡𝑠 𝑑 ′
1
𝑑 ′
2

)

For writes where 𝑛𝑙𝑏′
1
𝑏′
2

represents the new label :

𝑑1𝑑
𝑡ℎ
2
𝑒𝑛𝑡𝑟𝑦 : 𝐸𝑛𝑐𝑜𝑙𝑑

1
𝑑
2
⊕𝑟

1
𝑟
2

(𝑛𝑙𝑏′
1
𝑏′
2︸︷︷︸

𝑁𝑒𝑤 𝑙𝑎𝑏𝑒𝑙

, 𝑑1𝑑2 ⊕ 𝑟1𝑟2 ⊕ 𝑟 ′1𝑟
′
2︸ ︷︷ ︸

𝐵𝑖𝑡𝑠 𝑑 ′
1
𝑑 ′
2

)

The server upon receiving the encryption table decrypts one

entry based on the decryption bits 𝑑1𝑑2. A decryption yields

both the new label as well as the updated bits 𝑑′
1
𝑑′
2
, which deter-

mines what entry to decrypt for the next access. This approach

can be generalized to values of any arbitrary length ℓ . Thus by

constructing an optimization similar to point-and-permute tech-

nique, LBL-ORTOA reduces the potential number of decryptions

performed by the server from 4 to 1. This reduces the server’s

computation complexity to ℓ/2, i.e., one decryption per 2-bits of

plaintext.

11 SECURITY ANALYSIS

Because no existing security definitions capture ORTOA’s goal of

hiding the type of access (without focusing on hiding the location

of accessed location), we propose a new security definition called

real-vs-random read-write indistinguishability or ROR-RW to cap-

ture the goal of this work of hiding the type of access performed

by a client.

Security definition: Consider a sequence of𝑚 client accesses

𝐴 = {(𝑜𝑝1, 𝑘1, 𝑣𝑎𝑙1), · · · , (𝑜𝑝𝑖 , 𝑘𝑖 , 𝑣𝑎𝑙𝑖), · · · , (𝑜𝑝𝑚, 𝑘𝑚, 𝑣𝑎𝑙𝑚)}

where for 𝑖𝑡ℎ request, 𝑜𝑝𝑖 indicates the type of operation (read or

write), 𝑘𝑖 denotes the key, and 𝑣𝑎𝑙𝑖 is either an updated value for

writes or⊥ for reads. This is a security definition based on a game

G defined in Figure 5. The game takes the sequence of accesses

𝐴 and provides it as input to both the real system and an ideal

system (simulator based), where both are stateful entities, and

both produce outputs𝑂𝑢𝑡𝑅𝑒𝑎𝑙 and𝑂𝑢𝑡𝑆𝑖𝑚 respectively consisting

of a sequence of accesses to the external server. A system is said

to be ROR-RW secure if, given the two outputs, an adversary can

distinguish between the two with negligible probability, i.e.,

For all probabilistic polynomial adversaries A,

| 𝑃𝑟 [𝐴(𝑂𝑢𝑡𝑅𝑒𝑎𝑙) → 1] − 𝑃𝑟 [𝐴(𝑂𝑢𝑡𝑆𝑖𝑚) → 1] |≤ 𝑛𝑒𝑔𝑙

As noted in §7, this is an indistinguishability based definition

that utilizes the real-vs-ideal security game defined in Figure 5.

For Real algorithm in Figure 5, the game sends a sequence of

𝑚 accesses, potentially adaptively generated, in 𝐴 produced by

clients where the game in-turn calls ORTOA’s respective Process-
ClientRequest procedure version for each access in 𝐴. Although

the signature for Procedure ProcessClientRequest (or Pcr) differs
syntactically but not semantically for the FHE and TEE versions

and for the label version, for the security analysis, we simply

assume that a client transforms an access in 𝐴 to the necessary

format (with either FHE or standard encryption for the FHE and

TEE versions respectively). The Ideal algorithm, on the other

hand, invokes a simulated function, Simulator. Each version uti-

lizes its own simulator so as to match the output of the respective

real ORTOA protocol. The Ideal algorithm (and its Simulator)

has no access to the type of requests 𝑜𝑝𝑖 or the data values in

A; it generates outputs that depend only on dummy values. The

collation of these dummy encryptions forms 𝑂𝑢𝑡𝑆𝑖𝑚 . If we can

prove that the output generated by the Real algorithm appears

indistinguishable to 𝑂𝑢𝑡𝑆𝑖𝑚 , it proves that ORTOA is ROR-RW
secure.

16

In arguing for the security of different versions of ORTOA,

we first briefly discuss the security of FHE-ORTOA and TEE-

ORTOA, since these versions use existing cryptographic primi-

tives, whereas we provide an elaborate proof for the LBL-ORTOA

version as it introduces a new cryptographic technique.

11.1 Security of FHE-ORTOA and

TEE-ORTOA versions

In proving Theorem 1, we split it into two parts, one for the

FHE-ORTOA and TEE-ORTOA versions, and one for the LBL-

ORTOA version. Since much of the proof in this subsection relies

on the security of the underlying cryptographic primitives, the

discussion is a brief proof sketch.

Theorem 1.1: A sequences of accesses A generated by FHE-

ORTOA and TEE-ORTOA is ROR-RW secure.

Proof sketch: For the FHE-ORTOA version, the real algorithm

encrypts the three entities 𝑐𝑟 , 𝑐𝑤 , 𝑣𝑜𝑙𝑑 , and 𝑣𝑛𝑒𝑤 using a fully

homomorphic encryption scheme. The output of the real algo-

rithm for each of the𝑚 accesses is the output of the Procedure
ProcessClientRequest, or Pcr, defined in §3.1 that either retains

the old value for reads or updates the value for writes, while the

output of the procedure is always an FHE produced ciphertext.

Whereas, the simulator generates a dummy value and encrypts it

using the same FHE scheme as the real algorithm, and produces

that as the output for each of the𝑚 accesses. FHE schemes are

proven to be secure such that an adversary cannot distinguish

if an FHE encrypted ciphertext corresponds to the values mean-

ingful to the protocol or to some dummy value [25]. Hence, for

this version, due to the security guarantees of FHE, an adversary

cannot distinguish between the outputs produced by a simulator

from the one produced by the real algorithm, proving the security

of FHE-ORTOA.

For the TEE-ORTOA version, assuming that the protocol is

executed within a trusted hardware enclave, the security proof

boils down to the security of the encryption mechanism used

to encrypt 𝑐𝑟 , 𝑣𝑜𝑙𝑑 , and 𝑣𝑛𝑒𝑤 . The output of the real algorithm

here produces one encrypted output (corresponding either to

𝑣𝑜𝑙𝑑 or 𝑣𝑛𝑒𝑤 depending on the type of access) for each of the

𝑚 accesses. Whereas, the simulator generates a dummy value

and encrypts it using the same encryption mechanism as the

real algorithm for each of the 𝑚 accesses. Assuming that the

encryption scheme is IND-CPA, the adversary cannot distinguish

if a ciphertext corresponds to meaningful plaintext values or to

dummy values chosen by the simulator. Since the 𝑐𝑟 , 𝑣𝑜𝑙𝑑 , and

𝑣𝑛𝑒𝑤 values are only decrypted within the enclave, by relying

on the confidentiality guarantees of the enclave and that of the

underlying encryption scheme, this version also ensures that the

output sequence of the real algorithm is indistinguishable from

that of the simulator.

11.2 Security of LBL-ORTOA version

This section provides an elaborate discussion on the security

of LBL-ORTOA, unlike the ones for the other two version, since

this is a new cryptographic technique proposed in the paper. In

this version, the real algorithm calls the ProcessClientRequest, or
Pcr, defined in Figure 1. Note that this procedure is a stateful

algorithm. Let 𝜆 be the length of old and new labels generated

by a PRF and let 𝐸𝑛𝑐 be the IND-CPA secure encryption scheme

deployed in the ProcessClientRequest procedure to encrypt new

labels of length 𝜆 using old labels of length 𝜆. Without loss of

Procedure Simulator(𝑘)

1 𝐸 ← ∅
// Iterate over each of the ℓ indexes

2 for (𝑖 = 0; 𝑖 < ℓ ; 𝑖 + +) do
3 Retrieve the old label 𝑜𝑙 (𝑖) for 𝑘

4 𝑛𝑙 (𝑖)
$←− {0, 1}𝜆

5 𝑜𝑙 ′(𝑖)
$←− {0, 1}𝜆

6 𝐸
∪←− {𝐸𝑛𝑐𝑜𝑙 (𝑖) (𝑛𝑙 (𝑖)), 𝐸𝑛𝑐𝑜𝑙 ′(𝑖) (0)}

7 𝑜𝑙 (𝑖) ← 𝑛𝑙 (𝑖)

8 end

9 Return 𝐸

Figure 7: Simulator pseudocode accessed in the Ideal algorithm.

generality, for this proof, we assume the length ℓ of data values

to be 1. Further, our proof considers the non-optimized protocol

as presented in §5.2 but the proof easily extends to the optimized

versions as well. Since we assume ℓ = 1, ProcessClientRequest
produces two encryptions for each access to send to the server.

The Real algorithm collates the output of ProcessClientRequest
method, consisting of a pair of encryptions for each of the 𝑚

accesses; this collation of encryptions is the Real algorithm’s

output, represented as:

𝑂𝑢𝑡𝑅𝑒𝑎𝑙 ← {𝐸𝑛𝑐𝑜𝑙𝑏 (𝑛𝑙𝑏′), 𝐸𝑛𝑐𝑜𝑙1−𝑏 (𝑛𝑙𝑏′′)}
𝑚

where for each read access (𝑏′ = 𝑏) and (𝑏′′ = 1 − 𝑏), and for

write accesses (𝑏′ = 𝑏′′ = ˆ𝑏), the updated bit.

For the Ideal algorithm in Figure 5, the game provides the

sequence of keys accessed in 𝐴 as input where the algorithm

in-turn calls a Simulator defined in Figure 7. The Simulator’s

goal is to produce encryptions similar to the ProcessClientRequest
procedure but with arbitrary values; one can notice the analogies

between the two procedures. To achieve this, we assume the

Simulator to be stateful and it stores one old label 𝑜𝑙 per index

𝑖 of a key 𝑘’s value – these are the labels stored at the external

server. The procedure takes key 𝑘 as input and iterates over each

of the ℓ indexes (where ℓ is the value’s plaintext length). At each

index, the Simulator retrieves the corresponding old label; it then

generates two randomly sampled labels 𝑛𝑙 (𝑖) and 𝑜𝑙 ′(𝑖) of length
𝜆 (same as the PRF used in ProcessClientRequest). It uses 𝑜𝑙 (𝑖) to
encrypt 𝑛𝑙 (𝑖) and 𝑜𝑙 ′(𝑖) to encrypt an invalid value, 0. This does

not reveal any information to the adversary that controls the

external server because the server only stores label 𝑜𝑙 (𝑖) and can

decrypt only one of the two encryptions sent by the Simulator.

The Simulator shuffles the two encryptions at each index and

appends it a list 𝐸 to send to the server. It also updates the old

labels 𝑜𝑙 (𝑖) with the newly and randomly generated label 𝑛𝑙 (𝑖) .
Because the Simulator encrypts random values of length 𝜆, the

Ideal algorithm’s output is, assuming ℓ = 1:

𝑂𝑢𝑡𝑆𝑖𝑚 ← {𝐸𝑛𝑐 {0,1}𝜆 {0, 1}
𝜆, 𝐸𝑛𝑐 {0,1}𝜆 {0, 1}

𝜆}𝑚

Theorem 1.2: A sequences of accesses A generated by LBL-

ORTOA is ROR-RW secure.
Proof intuition: Intuitively, we first show that a read and

a write access to 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 procedure are indistin-

guishable, and then show that 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ’s output is

indistinguishable from that of the Simulator. Figure 8 captures

17

Read: (𝑟𝑒𝑎𝑑, 𝑘,⊥)
1 {𝐸𝑛𝑐𝑜𝑙𝑏 (𝑛𝑙𝑏′), 𝐸𝑛𝑐𝑜𝑙1−𝑏 (𝑛𝑙1−𝑏′)} ←

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 (𝑟𝑒𝑎𝑑, 𝑘,⊥)
// Because the server has only 𝑜𝑙𝑏, it cannot decrypt

𝐸𝑛𝑐𝑜𝑙
1−𝑏 (𝑛𝑙1−𝑏′). So it can be replaced with a

random string.

2 ≡ {𝐸𝑛𝑐𝑜𝑙𝑏 (𝑛𝑙𝑏′), 𝐸𝑛𝑐𝑜𝑙1−𝑏 ({0, 1}
𝜆)}

// From 𝑃𝑅𝐹’s security, the new label can be

replaced with a random string of length 𝜆.

3 ≡ {𝐸𝑛𝑐𝑜𝑙𝑏 ({0, 1}
𝜆), 𝐸𝑛𝑐𝑜𝑙1−𝑏 ({0, 1}

𝜆)} // From 𝑃𝑅𝐹’s

security, the old labels can be replaced with

random strings of length 𝜆.

4 ≡ {𝐸𝑛𝑐 {0,1}𝜆 ({0, 1}𝜆), 𝐸𝑛𝑐 {0,1}𝜆 ({0, 1}𝜆)}

Write: (𝑤𝑟𝑖𝑡𝑒, 𝑘, 𝑏′)

1 {𝐸𝑛𝑐𝑜𝑙𝑏 (𝑛𝑙𝑏′), 𝐸𝑛𝑐𝑜𝑙1−𝑏 (𝑛𝑙𝑏′)} ←
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 (𝑤𝑟𝑖𝑡𝑒, 𝑘, 𝑏′)

// Because the server has only 𝑜𝑙𝑏, it cannot decrypt

𝐸𝑛𝑐𝑜𝑙
1−𝑏 (𝑛𝑙𝑏′). So it can be replaced with a random

string.

2 ≡ {𝐸𝑛𝑐𝑜𝑙𝑏 (𝑛𝑙𝑏′), 𝐸𝑛𝑐𝑜𝑙1−𝑏 ({0, 1}
𝜆)}

// From 𝑃𝑅𝐹’s security, the label can be replaced

with a random string of length 𝜆.

3 ≡ {𝐸𝑛𝑐𝑜𝑙𝑏 ({0, 1}
𝜆), 𝐸𝑛𝑐𝑜𝑙1−𝑏 ({0, 1}

𝜆)}
// From 𝑃𝑅𝐹’s security, the old labels can be

replaced with random strings of length 𝜆.

4 ≡ {𝐸𝑛𝑐 {0,1}𝜆 ({0, 1}𝜆), 𝐸𝑛𝑐 {0,1}𝜆 ({0, 1}𝜆)}

Figure 8: Intuition for read-write indistinguishability when a key

𝑘 is accessed where the server stores label 𝑜𝑙𝑏 corresponding to

𝑘 ’s plaintext value 𝑏 ∈ {1, 0}. The write request updates 𝑘 ’s value

to bit 𝑏′. The PRF deployed in LBL-ORTOA generates labels of

length 𝜆.

the argument for this indistinguishability. The basis of our argu-

ment lies in the PRF deployed in LBL-ORTOA: the PRF function,

𝑃𝑅𝐹 , produces labels that are indistinguishable from a uniformly

sampled random variable 𝑟
$←− {0, 1}𝜆 . The argument in Figure 8

invokes 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 procedure once to read an object

𝑘 and once to update 𝑘 with bit value 𝑏′. As shown in the fig-

ure, given that the server stores only one old label, say 𝑜𝑙𝑏 , and

given 𝑃𝑅𝐹 ’s security, the output produced by both invocations

of 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 are identical.

When the Real algorithm invokes 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 𝑚

times (for𝑚 accesses in𝐴), the output of the Real algorithm based

on the argument shown in Figure 8 becomes indistinguishable

from that of 𝑂𝑢𝑡𝑆𝑖𝑚 , which is essentially𝑚 pairs of encryptions

of 𝜆 length random values. We utilize this intuition in developing

the formal security proof using hybrids.

Formal proof: We now formally prove that the real and the

ideal worlds are computationally indistinguishable using a stan-

dard hybrid argument.

Hybrid
1
: This corresponds to the real experiment and the output

of this hybrid is 𝑂𝑢𝑡𝑅𝑒𝑎𝑙 .

Hybrid
2
: We modify the real experiment where the labels gen-

erated using PRF in the ProcessClientRequest procedure are now
sampled from the uniform distribution.

The computational indistinguishability ofHybrid
1
andHybrid

2

follows from the security of PRF.

Hybrid
3.𝑖 for 𝑖 ∈ [𝑚]: In the sequence of𝑚 accesses in 𝐴, con-

sider the 𝑖𝑡ℎ access, in which the ProcessClientRequest procedure
generates 2 ∗ ℓ = 2 ∗ 1 = 2 encryptions (ℓ = 1). Since the server
stores only one label per index and can only decrypt one of the

two encryptions, the other encryption sent has no significance:

let the two ciphertexts be 𝐶𝑇0 and 𝐶𝑇1 where both the cipher-

texts are encrypted with respect to two different old labels 𝑜𝑙0
and 𝑜𝑙1. Note that the server has exactly one label 𝑜𝑙𝑏 for some

bit 𝑏. Replace the message in 𝐶𝑇
1−𝑏 with 0s - this encryption

becomes insignificant since the server cannot decrypt it. This
hybrid replaces encryptions of all such insignificant entries with

the encryptions of an invalid value, say 0.

The computational indistinguishability ofHybrid
3.𝑖 andHybrid3.𝑖−1

follows from the security of encryption.

Hybrid
4
: This corresponds to the ideal experiment, i.e., 𝑂𝑢𝑡𝑅𝑒𝑎𝑙

is equivalent to 𝑂𝑢𝑡𝑆𝑖𝑚 .

The hybridsHybrid
4
andHybrid

3.𝑚 are identically distributed.

The transition fromHybrid
3.𝑚 toHybrid

4
is as follows: inHybrid

3.𝑚 ,

the labels are still associated with bits and only one of the two

encryptions per index generated using the labels is valid. This im-

plies that only one label per index has significance. But note that

in Hybrid
3.𝑚 , the labels are independent of the bits associated

with them (due to Hybrid
2
). This essentially leads to the conclu-

sion that irrespective of the type of operation, only one of the

two encryption is valid and the valid encryption encrypts a label

generated uniformly at random (new label) using another label

generated uniformly at random (old label). This is equivalent to

the encryptions generated by the Simulator in the ideal world.

Hence, the output of this hybrid corresponds to the output of the

simulator, 𝑂𝑢𝑡𝑆𝑖𝑚 .

18

	Abstract
	1 Introduction
	1.1 Challenges with designing a one round access-type hiding protocol
	1.2 Intuitions for ORTOA
	1.3 Discussion on related work

	2 System and Security Model
	2.1 System Model
	2.2 Data and Storage Model
	2.3 Threat Model

	3 FHE based solution: FHE-ORTOA
	3.1 One-round oblivious read-write using FHE
	3.2 Complexity Analysis
	3.3 Challenges with FHE based solution

	4 TEE based solution: TEE-ORTOA
	4.1 One-round oblivious read-write using TEEs
	4.2 Complexity Analysis
	4.3 Challenges with TEE based solution

	5 Label based solution: LBL-ORTOA
	5.1 An Illustrative Example
	5.2 LBL-ORTOA Protocol
	5.3 Complexity Analysis
	5.4 Tolerating malicious adversaries
	5.5 Challenges with label based solution
	5.6 Optimizations

	6 Experimental evaluation
	6.1 ORTOA vs. two round trip baseline
	6.2 Micro Benchmarking
	6.3 ORTOA vs the 2RTT baseline: Varying – the length of values
	6.4 Real world datasets

	7 Security of ORTOA
	8 Future Work
	9 Conclusion
	References
	10 Optimizations of LBL-ORTOA
	10.1 Space optimized solution
	10.2 Reducing the number of decryptions

	11 Security analysis
	11.1 Security of FHE-ORTOA and TEE-ORTOA versions
	11.2 Security of LBL-ORTOA version

