Paper 2021/472
CryptoGram: Fast Private Calculations of Histograms over Multiple Users’ Inputs
Ryan Karl, Jonathan Takeshita, Alamin Mohammed, Aaron Striegel, and Taeho Jung
Abstract
Histograms have a large variety of useful applications in data analysis, e.g., tracking the spread of diseases and analyzing public health issues. However, most data analysis techniques used in practice operate over plaintext data, putting the privacy of users’ data at risk. We consider the problem of allowing an untrusted aggregator to privately compute a histogram over multiple users’ private inputs (e.g., number of contacts at a place) without learning anything other than the final histogram. This is a challenging problem to solve when the aggregators and the users may be malicious and collude with each other to infer others’ private inputs, as existing black box techniques incur high communication and computational overhead that limit scalability. We address these concerns by building a novel, efficient, and scalable protocol that intelligently combines a Trusted Execution Environment (TEE) and the Durstenfeld-Knuth uniformly random shuffling algorithm to update a mapping between buckets and keys by using a deterministic cryptographically secure pseudorandom number generator. In addition to being provably secure, experimental evaluations of our technique indicate that it generally outperforms existing work by several orders of magnitude, and can achieve performance that is within one order of magnitude of protocols operating over plaintexts that do not offer any security.
Metadata
- Available format(s)
- Category
- Cryptographic protocols
- Publication info
- Published elsewhere. Minor revision. DCOSS 2021 INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SENSOR SYSTEMS
- Keywords
- HistogramTrusted HardwareCryptography
- Contact author(s)
- tjung @ nd edu
- History
- 2021-05-29: last of 2 revisions
- 2021-04-15: received
- See all versions
- Short URL
- https://ia.cr/2021/472
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2021/472, author = {Ryan Karl and Jonathan Takeshita and Alamin Mohammed and Aaron Striegel and Taeho Jung}, title = {{CryptoGram}: Fast Private Calculations of Histograms over Multiple Users’ Inputs}, howpublished = {Cryptology {ePrint} Archive, Paper 2021/472}, year = {2021}, url = {https://eprint.iacr.org/2021/472} }