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Abstract

We consider the theoretically-sound selection of cryptographic parameters, such as the size of
algebraic groups or RSA keys, for TLS 1.3 in practice. While prior works gave security proofs for
TLS 1.3, their security loss is quadratic in the total number of sessions across all users, which due
to the pervasive use of TLS is huge. Therefore, in order to deploy TLS 1.3 in a theoretically-sound
way, it would be necessary to compensate this loss with unreasonably large parameters that would be
infeasible for practical use at large scale. Hence, while these previous works show that in principle
the design of TLS 1.3 is secure in an asymptotic sense, they do not yet provide any useful concrete
security guarantees for real-world parameters used in practice.

In this work, we provide a new security proof for the cryptographic core of TLS 1.3 in the random
oracle model, which reduces the security of TLS 1.3 tightly (that is, with constant security loss) to the
(multi-user) security of its building blocks. For some building blocks, such as the symmetric record
layer encryption scheme, we can then rely on prior work to establish tight security. For others, such as
the RSA-PSS digital signature scheme currently used in TLS 1.3, we obtain at least a linear loss in
the number of users, independent of the number of sessions, which is much easier to compensate
with reasonable parameters. Our work also shows that by replacing the RSA-PSS scheme with a
tightly-secure scheme (e. g., in a future TLS version), one can obtain the first fully tightly-secure TLS
protocol.

Our results enable a theoretically-sound selection of parameters for TLS 1.3, even in large-scale
settings with many users and sessions per user.
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1 Introduction

Provable security and tightness. In modern cryptography, a formal security proof is often considered
a minimal requirement for newly proposed cryptographic constructions. This holds in particular for rather
complex primitives, such as authenticated key exchange protocols like TLS. The most recent version of
this protocol, TLS 1.3, is the first to be developed according to this approach.

A security proof for a cryptographic protocol usually shows that an adversary A on the protocol can
be efficiently converted into an adversary B solving some conjectured-to-be-hard computational problem.
More precisely, the proof would show that any adversary A running in time tA and having advantage εA
in breaking the protocol implies an adversary B with running time tB and advantage εB in breaking the
considered computational problem, such that

εA
tA
≤ ` ·

εB
tB

(1)

where ` is bounded1. Following the approach of Bellare and Ristenpart [9, 10] to measure concrete
security, the terms εA/tA and εB/tB are called the “work factors”2 of adversaries A and B, respectively,
and the factor ` is called the “security loss” of the reduction. We say that a security proof is “tight”, if `
is small (e. g., constant).

Concrete security. In classical complexity-theoretic cryptography it is considered sufficient if ` is
asymptotically bounded by a polynomial in the security parameter. However, the concrete security
guarantees that we obtain from the proof depend on the concrete loss ` of the reduction and (conjectured)
concrete bounds on εB/tB . Thus, in order to obtain meaningful results for the concrete security of
cryptosystems, we need to be more precise and make these quantities explicit.

If for a given protocol we have an concrete upper bound εA/tA on the work factor of any adversary
A, then we can say that the protocol provides “security equivalent to − log2(εA/tA) bits”. However,
note that these security guarantees depend on the loss ` of the reduction and a bound on εB/tB . More
concretely, suppose that we aim for a security level of, say, “128-bit security”. That is, we want to achieve
− log2(εA/tA) ≥ 128. A security proof providing (1) with some concrete security loss ` would allow us
to achieve this via

− log2(εA/tA) ≥ − log2(` · εB/tB) ≥ 128

To this end, we have to make sure that it is reasonable to assume that εB/tB is small enough, such that
− log2(` · εB/tB) ≥ 128. Indeed, we can achieve this by choosing cryptographic parameters (such as
Diffie-Hellman groups or RSA keys) such that indeed it is reasonable to assume that εB/tB is sufficiently
small. Hence, by making the quantities ` and εB/tB explicit, the concrete security approach enables us to
choose cryptographic parameters in a theoretically-sound way, such that εB/tB is sufficiently small and
thus we provably achieve our desired security level.

However, note that if the security loss ` is “large”, then we need to compensate this with a “smaller”
εB/tB . Of course we can easily achieve this by simply choosing the cryptographic parameters large
enough, but this might significantly impact the computational efficiency of the protocol. In contrast, if the
security proof is “tight”, then ` is “small” and we can accordingly use smaller parameters, while still
being able to instantiate and deploy our protocol in a theoretically-sound way.

Since our focus is on the proof technique for TLS 1.3, we chose to consider this simple view on bit
security. Alternatively, Micciancio and Walter [58] recently proposed a formal notion for bit security.

1The exact bound on ` depends on the setting. For instance, in the asymptotic setting, as described below, ` is bounded by a
polynomial.

2Opposed to Bellare and Ristenpart, we consider the inverse of their work factor just to avoid dividing by 0 in the somewhat
artifical case in which ε = 0. We may assume that t > 0 as the adversary at least needs to read its input. This does not change
anything other than we need to consider the negative logarithm for the bit security level.
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They try to overcome paradoxical situations occurring with a simple notion of bit security as discussed
above. The paradox there is that sometimes the best possible advantage is actually higher than the
advantage against an idealized primitive, which is usually considered for bit security. As an example
they mention pseudorandom generators (PRG) for which it was shown that the best possible attack in
distinguishing the PRG from random using an n-bit seed value has advantage 2−n/2 [30] (i. e., n/2 bits
of security), even though the best seed recovery attack (with advantage 2−n) does not contradict n-bit
security. However, these paradoxical situations mostly occur in the non-uniform setting, in which the
adversary receives additional information and thus allows the adversary to gain higher advantages. As the
discussion above should serve only for motivation and we do not consider non-uniform adversaries, we
believe that the simple, intuitive view on bit security we chose here is sufficient.

Theoretically-sound deployment of TLS. Due to the lack of tight security proofs for TLS 1.3, we
are currently not able to deploy TLS 1.3 in a theoretically-sound way with reasonable cryptographic
parameters. All current security proofs for different draft versions of TLS 1.3 [31, 32, 33, 37, 40] have a
loss ` ≥ n2

s which is at least quadratic in the total number ns of sessions.
Let us illustrate the practical impact of this security loss. Suppose we want to choose parameters in a

theoretically sound way, based on a security proof with this quadratic loss in the total number of sessions.
Given that TLS will potentially be used by billions of systems, each running thousands of TLS sessions
over time, it seems reasonable to assume at least 230 users and 215 sessions per user. In this case, we
would have ns ≥ 245 sessions over the life time of TLS 1.3. This yields a security loss of ` ≥ n2

s = 290,
i. e., we lose “90 bits of security”.

Choosing practical parameters. If we now instantiate TLS with parameters that provide “128-bit
security” (more precisely, such that it is reasonable to assume that − log2(εB/tB) = 128 for the best
possible adversary B on the underlying computational problem), then the existing security proofs
guarantee only 128 − 90 = 38 “bits of security” for TLS 1.3, which is very significantly below the
desired 128 bits.
Hence, from a concrete security perspective, the current proofs are not very meaningful for typical
cryptographic parameters used in practice today.

Choosing theoretically-sound parameters. If we want to provably achieve “128-bit security” for TLS
1.3, we would need to deploy the protocol with cryptographic parameters that compensate the 90-bit
security loss. Concretely, this would mean that an Elliptic Curve Diffie-Hellman group of order
≈2256 must be replaced with a group of order at least ≈2436. The impact on RSA keys, as commonly
used for digital signatures in TLS 1.3, is even more significant. While a modulus size of 3072 bits is
today considered sufficient to provide “128-bit security”, a modulus size of more than 10,000 bits
would be necessary to compensate the 90-bit security loss.3
For illustration, consider ECDSA instantiated with NIST P-256 and instantiated with NIST P-384
(resp. NIST P-521), which are the closest standard curves to the calculated group order 2436 to
compensate 90-bit security loss. The openssl speed benchmark shows that this would result in
significantly decreasing the number of both signature computations and signature verifications per
second. Concretely, for NIST P-256 we obtain ≈39,407 signature computations per second and
≈14,249 signature verfications per seconds. Whereas replacing NIST P-256 by the next larger
NIST P-384 (resp. NIST P-521) we only obtain ≈1,102 (resp. ≈3,437) signature computations per
second and ≈1,479 (resp. ≈1,715) signature verfications per seconds. For RSA, we measured
for a modulus size of 3,072 bits, ≈419 signature computations per second and ≈20,074 signature

3Cf. https://www.keylength.com/ and the various documents by different standardization bodies referenced there.
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verfications per seconds, and for a modulus size of 15,360 bits, ≈4 signature computations per
second and 880 signature verfications per second.4
Due to the significant performance penalty of these increased parameters, it seems impractical for
most applications to choose parameters in a theoretically-sound way. This includes both “large-scale”
TLS deployments, e. g., at content distribution providers or major Web sites, for which this would
incur significant additional costs, as well as “small-scale” deployments, e. g., in Internet-of-Things
applications with resource-constrained devices.

In practice, usually the first approach is followed, due to the inefficiency of the theoretically-sound approach.
However, we believe it is a very desirable goal to make it possible to follow the theoretically-sound
approach in practice, by giving improved, tighter security proofs. This is the main motivation behind the
present paper.

Our contributions and approach. We give the first tight security proof for TLS 1.3, and thereby the
first tight security proof for a real-world authenticated key exchange protocol used in practice. The
proof covers both mutual and server-only authentication. The former setting is commonly considered in
cryptographic research, but the latter is much more frequently used in practice.

Our proof reduces the security of TLS to appropriate multi-user security definitions for the underlying
building blocks of TLS 1.3, such as the digital signature scheme, the HMAC and HKDF functions, and the
symmetric encryption scheme of the record layer. Further, the proof is under the strong Diffie-Hellman
(SDH) [1] assumption in the random oracle model. In contrast, standard-model proofs often require a
PRF-ODH-like assumption [43]. However, these assumptions are closely related. Namely, as shown
by Brendel et al. [21], PRF-ODH is implied by SDH in the random oracle model (see also [21] for an
analysis of various variants of the PRF-ODH assumption). One technical contribution of our work is
the observation that using the same two assumptions explicitly in the security proof in combination with
modeling the key derivation of TLS 1.3 as multiple random oracles [11], we obtain leverage for a tight
security proof. For details on how we use this see below.

Another technical contribution of our work is to identify and define reasonable multi-user definitions
for these building blocks, and to show that these are sufficient to yield a tight security proof. These new
definitions make it possible to independently analyze the multi-user security of the building blocks of
TLS 1.3.

These building blocks can be instantiated as follows.
Symmetric encryption. Regarding the symmetric encryption scheme used in TLS 1.3, we can rely on

previous work by Bellare and Tackmann [13] and Hoang et al. [41], who gave tight security proofs
for the AES-GCM scheme and also considered the nonce-randomization mechanism adopted in
TLS 1.3.

HMAC and HKDF. For the HMAC and HKDF functions, which are used in TLS 1.3 to perform message
authentication and key derivation, we give new proofs of tight multi-user security in the random
oracle model.

Signature schemes. TLS 1.3 specifies four signature schemes, RSA-PSS [26, 59], RSA-PKCS #1
v1.5 [48, 59], ECDSA [45], and EdDSA [14, 46]. Due to the fact that RSA-based public keys are
most common in practice, the RSA-based schemes currently have the greatest practical relevance in
the context of TLS 1.3.
Like previous works on tightly-secure authenticated key exchange [4, 38], we require existential
unforgeability in the multi-user setting with adaptive corruptions. Here two dimensions are relevant
for tightness, (i) the number of signatures issued per user, and (ii) the number of users.

4Generated on a Apple MacBook Pro (13-inch, 2019, Four Thunderbolt 3 ports) running macOS 10.15.3 and OpenSSL 1.1.1d
(10 Sep 2019) on a 2,4 GHz Quad-Core Intel Core i5 (Coffee Lake, 8279U) CPU with 16 GB (2133 MHz LPDDR3) RAM.
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• RSA-PSS is the recommended signature scheme in TLS 1.3. It has a tight security proof in
the number of signatures per user [26, 47], but not in the number of users.

• RSA-PKCS #1 v1.5 also has a tight security proof [42] in the number of signatures per user,
but not in the number of users. However, we note that this proof requires to double the size of
the modulus, and also that it requires a hash function with “long” output (about half of the
size of the modulus), and therefore does not immediately apply to TLS 1.3.

• For ECDSA there exists a security proof [35] that considers a weaker “one-signature-per-
message” security experiment. While this would be sufficient for our result (because the
signatures are computed over random nonces which most likely are unique), their security
proof is not tight.

We discuss the issue of non-tightness in the number of users below.

In contrast to previously published security proofs, which considered preliminary drafts of TLS 1.3,
we consider the final version of TLS 1.3, as specified in RFC 8446. However, the differences are minor,
and we believe that the published proofs for TLS 1.3 drafts also apply to the final version without any
significant changes. We first focus on giving a tight security proof for the TLS 1.3 handshake. Then,
following Günther [40] we show how to generically compose the handshake with a symmetric encryption
scheme to obtain security of the full protocol. Since we focus on efficiency of practical deployments, our
security proof of TLS 1.3 is in the random oracle model [11].

Features of TLS omitted in the security analysis. As common in previous cryptographic security
analyses of the TLS protocol [31, 33, 40, 43, 55], we consider the “cryptographic core” of TLS 1.3. That
is, our analysis only focuses on the TLS 1.3 Full 1-RTT (EC)DHE Handshake and its composition with an
arbitrary symmetric key protocol. The full TLS 1.3 standard allows the negotiation of different ciphersuites
(i. e., AEAD algorithm and hash algorithm), DH groups, and signature algorithms, but this negotiation is
out of scope of our work and we focus on a fixed selection of algorithms. Similarly, we do not consider
version negotiation and backward compatability as, e. g., considered in [17, 34]. Instead, we only focus on
clients and servers that negotiate TLS 1.3. We also do not consider advanced, optional protocol features,
such as abbreviated session resumption based on pre-shared keys (PSK) (with optional (EC)DHE key
exchange and 0-RTT, as in e. g., [31, 33]). That is, we consider neither PSKs established using TLS
nor PSKs established using some out-of-band mechanism. Further, we ignore the TLS 1.3 record layer
protocol, which performs transmission of cryptographic messages (handshake messages and encrypted
data) on top of the TCP protocol and below the cryptographic protocols used in TLS. Additionally, we
omit the alert protocol [65, Sect. 6] and the considerations of extensions, such as post-handshake client
authentication [54]. Furthermore, we do not consider ciphersuite downgrade or protocol version rollback
attacks as discussed in [44, 57, 69]. Hence, we abstract the cryptographic core of TLS in essentially the
same way as in [31, 33, 40, 43, 55]. See for instance [19, 28] for a different approach, which analyses a
concrete reference implementation of TLS (miTLS) with automated verification tools.

However, as mentioned earlier, we discuss the composition of the TLS 1.3 Full (EC)DHE Handshake
with the nonce randomization mechanism of AES-GCM, which could be proven to be tightly secure by
Hoang et al. [41] and is a first step towards a tight composition with the actual record protocol.

Achieving tightness using the random oracle model. Conceptually, we adopt a technique of Cohn-
Gordon et al. [25] to TLS 1.3. The basic idea of the approach is that the random oracle and random
self-reducibility of SDH allows us to embed a single SDH challenge into every protocol session
simultaneously. The DDH oracle provided by the SDH experiment allows us to guarantee that we are able
to recognize a random oracle query that corresponds to a solution of the given SDH instance without
tightness loss. A remarkable difference to [25] is that they achieve only a linear tightness loss in the
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number of users, and show to be optimal for the class of high-efficiency protocols considered there.
Previous proofs for different TLS versions suffered from the general difficulty of proving tight security of
AKE protocols, such as the “commitment problem” described in [38]. We show that the design of TLS 1.3
allows a tightly-secure proof with constant security loss.

Relation to previous non-tight security proofs in the standard model. We stress that our result is not
a strict improvement over previous security proofs for TLS 1.3 [31, 33, 40, 43, 55], in particular not to
standard model proofs without random oracles. Rather, our objective is to understand under which exact
assumptions a tight security proof, and thus a theoretically-sound instantiation with optimal parameters
such as group sizes is possible. We show that the random oracle model allows this. Hence, if one is
willing to accept the random oracle model as a reasonable heuristic, then one can use optimal parameters.
Otherwise, either no theoretically sound deployment is (currently) possible, or larger parameters must be
used to overcome the loss.

Tight security of signature schemes in the number of users. All signature schemes in TLS have in
common that they currently do not have a tight security proof in the number of users. Since all these
schemes have unique secret keys in the sense of [5], Bader et al. even showed that they cannot have a tight
security proof, at least not with respect to what they called a “simple” reduction.

There are several ways around this issue:

1. We can compensate the loss by choosing larger RSA keys. Note that the security loss is only linear
in the number of users. For instance, considering 230 users as above, we would lose only “30 bits of
security”. This might be compensated already with a 4096-bit RSA key, which is already quite
common today.
Most importantly, due to our modular security proof, this security loss impacts only the signature
keys. In contrast, for previous security proofs one would have to increase all cryptographic
parameters accordingly (or require a new proof).

2. Alternatively, since the RSA moduli in the public keys of RSA-based signature schemes are
independently generated, they do not share any common parameters, such as a common algebraic
group as for many tightly-secure Diffie-Hellman-based schemes. On the one hand, this makes
a tight security proof very difficult, because there is no common algebraic structure that would
allow for, e. g., random self-reducibility. The latter is often used to prove tight security for
Diffie-Hellman-based schemes.
On the other hand, one can also view this as a security advantage. The same reason that makes it
difficult for us to give a tight security proof in the number of users, namely that there is no common
algebraic structure, seems also to make it difficult for an adversary to leverage the availability of
more users to perform a more efficient attack than on a single user. Hence, it seems reasonable to
assume that tightness in the number of users is not particularly relevant for RSA-based schemes,
and therefore we do not have to compensate any security loss.
This is an additional assumption, but it would even make it possible to choose optimal parameters,
independent of the number of users.

3. Finally, in future revisions of TLS one could include another signature scheme which is tightly-
secure in both dimensions, such as the efficient scheme recently constructed by Gjøsteen and Jager
[38].
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Further related work. The design of TLS 1.3 is based on the OPTLS protocol by Krawczyk and Wee
[56], which, however, does not have a tight security proof.

Constructing tightly-secure authenticated key exchange protocols has turned out to be a difficult task.
The first tightly-secure AKE protocols were proposed by Bader et al. [4]. Their constructions do not
have practical efficiency and are therefore rather theoretical. Notably, they achieve proofs in the standard
model, that is, without random oracles or similar idealizations.

Recently, Gjøsteen and Jager [38] published the first practical and tightly-secure AKE protocol. Their
protocol is a three-round variant of the signed Diffie-Hellman protocol, where the additional message is
necessary to avoid what is called the “commitment problem” in [38]. Our result also shows implicitly that
TLS is “out-of-the-box” able to avoid the commitment problem, without requiring an additional message.
Furthermore, Gjøsteen and Jager [38] describe an efficient digital signature scheme with tight security in
the multi-user setting with adaptive corruptions. As already mentioned above, this scheme could also be
used in TLS 1.3 in order to achieve a fully-tight construction.

Cohn-Gordon et al. [25] constructed extremely efficient AKE protocols, but with security loss that is
linear in the number of users. They also showed that this linear loss is unavoidable for many types of
protocols.

Formal security proofs for (slightly modified variants of) prior TLS versions were given, e. g., in
[15, 16, 19, 22, 43, 55, 60].

Concurrent and independent work. In concurrent and independent work, Davis and Günther [27]
studied the tight security of the SIGMA protocol [51] and the main TLS 1.3 handshake protocol. Similar
to our proof (see Theorem 6) they reduce the security of the TLS 1.3 handshake in the random oracle
to the hardness of strong DH assumption (SDH), the collision resistance of the hash function, and the
multi-user security of the signature scheme and the PRFs. However, we would like to point out that there
are some notable differences between their work and ours:

• We use the multi-stage key exchange model from [36], which allows us to show security for all
intermediate, internal keys and further secrets derived during the handshake. They use a code-based
authenticated key exchange model, which considers mutual authentication and the negotiation of a
single key, namely the final session key that is used in the TLS 1.3 record layer.

• Our work makes slightly more extensive use of the random oracle model. Concretely, both
security proofs need to deal with the fact that the TLS 1.3 key derivation does not bind the DH
key to the context used to derive a key in a single function. We resolve this by modeling several
functions as random oracles, while Davis and Günther [27] model the functions HKDF.Extract
and HKDF.Expand of the HKDF directly as random oracles and are able to circumvent the above
problem by using efficient book-keeping in the proof.

• Since the multi-stage key exchange model [36] provides a tightly-secure composition theorem,
we were able to make a first step towards a tight security proof for the composition of the TLS
handshake with the TLS record layer by leveraging known security proofs for AES-GCM by Bellare
and Tackmann [13] and Hoang et al. [41].

• Davis and Günther [27] focused only on the tight security of the handshake protocol of TLS 1.3,
but provide an extensive evaluation of the concrete security implications of their bounds when
instiated with various amounts of resources. Furthermore, they even give a bound for the strong
DH assumption in the generic group model (GGM) and were able to show that SDH is as hard as
the discrete logarithm problem in the GGM.

Hence, neither of these two independent works covers the other, both papers make complementary
contributions towards understanding the theoretically-sound deployment of TLS in practice.
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Future work and open problems. A notable innovative feature of TLS 1.3 is its 0-RTT mode for
low-latency key exchange, which we do not consider in this work. We believe it is an interesting open
question to analyze whether tight security can also achieved for the 0-RTT mode. Probably along with
full forward security, as considered in [2].

Furthermore, we consider TLS 1.3 “in isolation”, that is, independent of other protocol versions that
may be provided by a server in parallel in order to maximize compatibility. It is known that this might
yields cross-protocol attacks, such as those described in [3, 18, 44, 57]. It would be interesting to see
whether (tight) security can also be proven in a model that considers such backwards compatibility issues
as, e. g., in [17, 34], and which exact impact on tightness this would have, if any. A major challenge in this
context is to tame the complexity of the security model and the security proof.

2 Preliminaries

In this section, we introduce notation used in this paper and recall definitions of fundamental building
blocks as well as their corresponding security models.

2.1 Notation

We denote the empty string, i. e., the string of length 0, by ε. For strings a and b, we denote the
concatenation of these strings by a ‖ b. For an integer n ∈ N, we denote the set of integers ranging
from 1 to n by [n] B {1, . . . ,n}. For a set X = {x1, x2, . . . }, we use (vi)i∈X as a shorthand for the
tuple (vx1, vx2, . . . ). We denote the operation of assigning a value y to a variable x by x B y. If S is a
finite set, we denote by x

$
← S the operation of sampling a value uniformly at random from set S and

assigning it to variable x. If A is an algorithm, we write x B A(y1, y2, . . . ), in case A is deterministic,
to denote that A on inputs y1, y2, . . . outputs x. In case A is probabilistic, we overload notation and
write x

$
← A(y1, y2, . . . ) to denote that random variable x takes on the value of algorithm A ran on

inputs y1, y2, . . . with fresh random coins. Sometimes we also denote this random variable simply by
A(y1, y2, . . . ).

2.2 Advantage Definitions vs. Security Definitions

Due to the real-world focus of this paper, we follow the human-ignorance approach proposed by Rogaway
[66, 67] for our security definitions and statements. As a consequence, we drop security parameters in
all of our syntactical definitions. This way we reflect the algorithms as they are used in practice more
appropriately. The human-ignorance approach also allows us, e. g., to consider a fixed group opposed to
the widely used approach of employing a group generator in the asymptotic security setting. We believe
that doing so brings us closer to the actual real-world deployment of the schemes. In terms of wording,
we can never refer to any scheme as being “secure” in a formal context. Formally, we only talk about
advantages and success probabilities of adversaries.

2.3 Diffie-Hellman Assumptions

We start with the definitions of the standard Diffie-Hellman (DH) assumptions [20, 29].

Definition 1 (Computational Diffie-Hellman Assumption). Let G be a cyclic group of prime order q
and let g be a generator of G. We denote the advantage of an adversary A against the computational
Diffie-Hellman (CDH) assumption by

AdvCDH
G, g (A) B Pr[a, b $

← Zq : A(ga,gb) = gab].
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Definition 2 (Decisional Diffie-HellmanAssumption). LetG be a cyclic group of prime order q and let g be
a generator ofG. We denote the advantage of an adversaryA against the decisional Diffie-Hellman (DDH)
assumption by

AdvDDH
G, g (A) B |Pr[a, b $

← Zq : A(ga,gb,gab) = 1] − Pr[a, b, c $
← Zq : A(ga,gb,gc) = 1]|.

Following Abdalla et al. [1], we also consider the strong Diffie-Hellman (SDH) assumption. The SDH
problem is essentially the CDH problem except that the adversary has additionally access to a DDH oracle.
The DDH oracle outputs 1 on input (ga,gb,gc) if and only if c = ab mod q. However, we restrict the
DDH oracle in the SDH experiment by fixing the first component. Without this restriction, we would
consider the gap Diffie-Hellman [63] problem.

Definition 3 (Strong Diffie-Hellman Assumption). Let G be a cyclic group of prime order q and let
g be a generator of G. Further, let DDH(·, ·, ·) denote the oracle that on input ga,gb,gc ∈ G outputs
1 if c = ab mod q and 0 otherwise. We denote the advantage of an adversary A against the strong
Diffie-Hellman (SDH) assumption by

AdvSDH
G, g (A) B Pr[a, b $

← Zq : ADDH(ga , ·, ·)(ga,gb) = gab].

2.4 Pseudorandom Functions

Informally, a pseudorandom function (PRF) is a keyed function that is indistinguishable from a truly
random function. The standard definition only covers the case of a single key (resp. a single user). Bellare
et al. introduced the related notion of multi-oracle families [8], which essentially formalizes multi-user
security of a PRF. In contrast to the standard definition, the challenger now implements N oracles instead
of a single one. The adversary may ask queries of the form (i, x), which translates to a request of an
image of x under the i-th oracle. Hence, the adversary essentially plays N “standard PRF experiments” in
parallel, except that the oracles all answer either uniformly at random or with the actual PRF.

Definition 4 (MU-PRF-Security). Let PRF be an algorithm implementing a deterministic, keyed function
PRF : KPRF × D → R with finite key space KPRF, (possibly infinite) domain D and finite range R.
Consider the following security experiment ExpMU-PRF

PRF,N (A) played between a challenger and an adversary
A:

1. The challenger chooses a bit b
$
← {0,1}, and for every i ∈ [N] a key ki

$
← KPRF and a function

fi
$
← { f | f : D → R} uniformly and independently at random. Further, it prepares a function Ob

such that for i ∈ [n]

Ob(i, ·) B

{
PRF(ki, ·) , if b = 0
fi(·) , otherwise

.

2. The adversary may issue queries (i, x) ∈ [N] × D to the challenger adaptively, and the challenger
replies with Ob(i, x).

3. Finally, the adversary outputs a bit b′ ∈ {0,1}. The experiment outputs 1 if b = b′ and 0 otherwise.

We define the advantage of an adversary A against the multi-user pseudorandomness (MU-PRF) of PRF
for N users to be

AdvMU-PRF
PRF,N (A) B

����Pr[ExpMU-PRF
PRF,N (A) = 1] −

1
2

���� .
where ExpMU-PRF

PRF,N (A) is defined above.
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2.5 Collision-Resistant Hash Functions

A (keyless) hash function H is a deterministic algorithm implementing a function H : D → R such that
usually |D| is large (possibly infinite) and |R | is small (finite). Recall the standard notion of collision
resistance of a hash function.

Definition 5 (Collision Resistance). Let H be a keyless hash function. We denote the advantage of an
adversary A against the collision resistance of H by

AdvColl-Res
H (A) B Pr

[
(m1,m2)

$
← A : m1 , m2 ∧ H(m1) = H(m2)

]
.

2.6 Digital Signature Schemes

We recall the standard definition of a digital signature scheme by Goldwasser et al. [39].

Definition 6 (Digital Signature Scheme). A digital signature scheme for message space M is a triple of
algorithms SIG = (SIG.Gen,SIG.Sign,SIG.Vrfy) such that

1. SIG.Gen is the randomized key generation algorithm generating a public (verification) key pk and a
secret (signing) key sk and takes no input.

2. SIG.Sign(sk,m) is the randomized signing algorithm outputting a signature σ on input message
m ∈ M and signing key sk.

3. SIG.Vrfy(pk,m, σ) is the deterministic verification algorithm outputting either 0 or 1.

Correctness. We say that a digital signature scheme SIG is correct if for any m ∈ M , and for any (pk, sk)
that can be output by SIG.Gen, it holds

SIG.Vrfy (pk,m,SIG.Sign(sk,m)) = 1.

2.6.1 Existential Unforgeability of Signatures

The standard notion of security for digital signature schemes is called existential unforgeability under an
adaptive chosen-message attack (EUF-CMA). We recall the standard definition [39] next.

Definition 7 (EUF-CMA-Security). Let SIG be a digital signature scheme (Definition 6). Consider the
following experiment ExpEUF-CMA

SIG (A) played between a challenger and an adversary A:

1. The challenger generates a key pair (pk, sk) $
← SIG.Gen, initializes the set of chosen-message

queries QSign B ∅, and hands pk to A as input.

2. The adversary may issue signature queries for messages m ∈ M to the challenger adaptively. The
challenger replies to each query m with a signature σ $

← SIG.Sign(sk,m). Each chosen-message
query m is added to the set of chosen-message queries QSign.

3. Finally, the adversary outputs a forgery attempt (m∗, σ∗). The challenger checks whether
SIG.Vrfy(pk,m∗, σ∗) = 1 and m∗ < QSign. If both conditions hold, the experiment outputs 1
and 0 otherwise.

We denote the advantage of an adversary A in breaking the existential unforgeability under an adaptive
chosen-message attack (EUF-CMA) for SIG by

AdvEUF-CMA
SIG (A) B Pr

[
ExpEUF-CMA

SIG (A) = 1
]

where ExpEUF-CMA
SIG (A) is defined as before.
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2.6.2 Existential Unforgeability of Signatures in a Multi-User Setting

In a “real-world” scenario, the adversary is more likely faced a different challenge than described in
Definition 7. Namely, a real-world adversary presumably plays against multiple users at the same time
and might even be able to get the secret keys of a subset of these users. In this setting, its challenge is to
forge a signature for any of the users that it has no control of (to exclude trivial attacks). To capture this
intuition we additionally consider the multi-user EUF-CMA notion with adaptive corruptions as proposed
by Bader et al. [4].

To that end, the single-user notion given in Definition 7 can naturally be upgraded to a multi-user
notion with adaptive corruptions as follows.

Definition 8 (MU-EUF-CMAcorr-Security). Let N ∈ N. LetSIG be a digital signature scheme (Definition 6).
Consider the following experiment ExpMU-EUF-CMAcorr

SIG, N (A) played between a challenger and an adversary
A:

1. The challenger generates a key pair (pki, ski)
$
← SIG.Gen for each user i ∈ [N], initializes the set

of corrupted users Qcorr B ∅, and N sets of chosen-message queries Q1, . . . ,QN B ∅ issued by the
adversary. Subsequently, it hands (pki)i∈[N ] to A as input.

2. The adversary may issue signature queries (i,m) ∈ [N] × M to the challenger adaptively. The
challenger replies to each query with a signature σ $

← SIG.Sign(ski,m) and adds (m, σ) to Qi.
Moreover, the adversary may issue corrupt queries i ∈ [N] adaptively. The challenger adds i to
Qcorr and replies ski to the adversary. We call each user i ∈ Qcorr corrupted.

3. Finally, the adversary outputs a tuple (i∗,m∗, σ∗). The challenger checks whether SIG.Vrfy(pki∗,m∗,
σ∗) = 1, i∗ < Qcorr and (m∗, ·) < Qi∗ . If all of these conditions hold, the experiment outputs 1 and 0
otherwise.

We denote the advantage of an adversaryA in breaking the multi-user existential unforgeability under an
adaptive chosen-message attack with adaptive corruptions (MU-EUF-CMAcorr) for SIG by

AdvMU-EUF-CMAcorr

SIG, N (A) B Pr
[
ExpMU-EUF-CMAcorr

SIG, N (A) = 1
]

where ExpMU-EUF-CMAcorr

SIG, N (A) is as defined before.

Remark 1. This notion can also be weakened by excluding adaptive corruptions. The resulting experiment
is analogous except that queries to the corruption oracle are forbidden. The corresponding notions are
denoted by MU-EUF-CMA instead of MU-EUF-CMAcorr.

2.7 HMAC

A prominent deterministic example of a message authentication code (MAC) is HMAC [7, 49]. The
construction is based on a cryptographic hash function (Section 2.5). As we will model HMAC in the
remainder mainly as a PRF (e. g., Section 5), we do not formally introduce MACs.

Construction. Let H be a cryptographic hash function with output length µ and let be κ be the key-length.

• MAC.Gen: Choose k
$
← {0,1}κ and return k.

• MAC.Tag(k,m): Return t B H ((k ⊕ opad) ‖ H((k ⊕ ipad) ‖ m)).

• MAC.Vrfy(k,m, t): Return 1 iff. t = MAC.Tag(k,m).
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where opad and ipad are according to RFC 2104 [49] the bytes 0x5c and 0x36 repeated B-times,
respectively, where B is the block size (in bytes) of the underlying hash function. k is padded with 0’s to
match the block size B. If k should be larger, then it is hashed down to less and then padded to the right
length as before.

2.8 HKDF Scheme

The core of the TLS 1.3 key derivation [65, Sect. 7.1] is the key derivation function (KDF) HKDF proposed
by Krawczyk [52, 53] and standardized in RFC 5869 [50]. It follows the extract-and-expand [53] paradigm
and is based on HMAC (Section 2.7). The algorithm consists of two subroutines HKDF.Extract and
HKDF.Expand. The function HKDF.Extract is a randomness extractor [61, 62] that on input a (non-secret
and possibly fixed) extractor salt xts and a (not necessarily uniformly distributed) source key material skm
outputs a pseudorandom key prk. The function HKDF.Expand is a variable output length PRF that on
input prk, (potentially empty) context information ctx and length parameter L outputs a pseudorandom
key km of length L.

Construction. Intuitively, HKDF derives a pseudorandom key (i. e., indistinguishable from a uniformly
sampled key) from some source key material and then stretches this pseudorandom key to the desired
length. Formally, we have the following construction.

1. prk B HKDF.Extract(xts, skm) = HMAC(xts, skm)

2. km = K(1) ‖ · · · ‖ K(ω) B HKDF.Expand(prk,ctx, L), where ω B dL/µe, µ is the output length of
the underlying hash function used in HMAC and K(i) is inductively defined by

• K(1) B HMAC(prk,ctx ‖ 0), and
• K(i + 1) B HMAC(prk,K(i) ‖ ctx ‖ i) for 1 ≤ i < ω.

K(ω) is simply truncated to the first (L mod µ) bits to fit the length of L.

We overload notation to denote by HKDF.Expand(prk,ctx) the function described above for a fixed length
parameter L that is clear from the context.

The function HKDF then is just a shorthand for the execution of HKDF.Extract and HKDF.Expand in
sequence. That is, on input (xts, skm,ctx, L) it computes prk B HKDF.Extract(xts, skm) and outputs km
with km B HKDF.Expand(prk,ctx, L).

3 Multi-Stage Key Exchange

In this section, we recall the security model of multi-stage key exchange (MSKE) protocols. The model
was introduced by Fischlin and Günther [36] and extended in subsequent work [31, 33, 37, 40]. In this
paper, we adapt the version presented in [40] almost verbatim apart from the changes discussed in the
paragraph below.

Following Günther [40], we describe theMSKEmodel by specifying protocol-specific (Section 3.1) and
session-specific (Section 3.2) properties of MSKE protocols as well as the adversary model (Section 3.3).
However, before we start giving the actual model, let us discuss the choice in favor of this model followed
by our adaptations to the model.
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On the choice of MSKE. The most commonly used game-based model for authenticated key exchange
goes back to Bellare and Rogaway (BR) [12]. In the context of TLS, it has served as the foundation
for the Authenticated and Confidential Channel Establishment (ACCE) model introduced by Jager et
al. [43] used for the analyses of TLS 1.2 [43, 55], and also the MSKE model initially introduced for
analysing QUIC [36] and later adapted for analyses for TLS 1.3 [31, 33, 37]. The ACCE model was tailored
specifically for the application to TLS 1.2 as it does not allow for a modular analysis due to interleaving
of the handshake protocol and record layer. This is because of the established record layer key being
already used in the handshake protocol. In TLS 1.3, this was solved by using a dedicated handshake traffic
key for the encryption of handshake messages (see Figure 1) and thus a monolithic model as ACCE is
no longer necessary. However, this change introduces another issue. Namely, we now have not only a
single key that the communicating parties agree on after the execution of the AKE protocol, but multiple
keys being used outside or inside of the protocol. Protocols structured like this motivated Fischlin and
Günther (FG) to upgrade the BR model to the MSKE model. Besides the MSKE model, Chen et al. [24]
recently proposed a similar ACCE-style model taking into account multiple stages.

We prefer the FG model for an analysis of TLS 1.3 as it is the state-of-the-art security model for TLS
1.3 that is well studied and is already widely used. Most importantly, the model played a major role in
the analysis of the Handshake candidates in the standardization process of TLS 1.3. Therefore, using the
model in this paper provides the best comparability to previous results on the TLS 1.3 Handshake Protocol.
Furthermore, it allows for a modular analysis, i. e., considering the security of the Handshake Protocol
and Record Layer in separation. Fischlin and Günther also provide a composition theorem for MSKE
protocols (see Section 7) allowing for a more general combination with other protocols compared to an
ACCE-style model, which only captures secure combination with a encryption protocol.

Indeed, this theorem is very powerful as it allows to argue secure composition with various symmetric
key protocol instances. For instance, in the case of the TLS 1.3 Full Handshake the parties exchange an
application traffic key to be used in the TLS 1.3 Record Layer, a resumption master secret to be used for
deriving a pre-shared key for later session resumption and an exporter master secret to be used as generic
keying material exporters [64]. Therefore, the composition theorem allows us to guarantee secure use of
all of these keys in their respective symmetric protocols (provided the protocols are secure on their own
with respect to some well-defined security notion). In particular, this means that we even have security for
a cascading execution of a TLS 1.3 Full Handshake followed by abbreviated PSK Handshakes. For details
on the protocol and the composition theorem, see Sections 4 and 7, respectively.

Changes to the model compared to Günther [40]. We only consider the public-key variant of this
model, i. e., we exclude pre-shared keys entirely in our model. Since this paper considers TLS 1.3,
which does not use semi-static keys in its final version, we also remove these from the original model
for simplicity. Further, in the full (EC)DHE TLS 1.3 handshake (Section 4) considered in this paper,
every stage is non-replayable. To that end, we remove the property REPLAY from the protocol-specific
properties defined in Section 3.1. Moreover, TLS 1.3 provides key independence. Therefore, we also
remove key-dependent security from the model. Finally, we fix the key distribution D to be the uniform
distribution on {0,1}ν for some key length ν ∈ N.

3.1 Protocol-Specific Properties

The protocol-specific properties of a MSKE protocol are described by a vector (M,AUTH,USE) described
next. In this section, we consider the properties of the model in general and discuss their concrete
instantiation for TLS 1.3 in Section 4.3.

• M ∈ N is the number of stages the protocol is divided in. This also defines the number of keys
derived during the protocol run.
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• AUTH ⊆ {unauth,unilateral,mutual}M is the set of supported authentication types of the MSKE
protocol. An element auth ∈ AUTH describes the mode of authentication for each stage of the key
exchange protocol. A stage (resp. the key derived in that stage) is unauthenticated if it provides
no authentication of either communication partner, unilaterally authenticated if it only requires
authentication by the responder (server), andmutually authenticated if both communication partners
are authenticated during the stage.

• USE ∈ {internal,external}M is the vector describing how derived keys are used in the protocol such
that an element USEi indicates how the key derived in stage i is used. An internal key is used
within the key exchange protocol and might also be used outside of it. In contrast, an external key
must not be used within the protocol, which makes them amenable to the usage in a protocol used in
combination with the key exchange protocol (e. g., symmetric key encryption; see also Section 7).

3.2 Session-Specific Properties

We consider a set of usersU representing the participants in the system and each user is identified by
some U ∈ U. Each user maintains a number of (local) sessions of the protocol, which are identified (in
the model) by a unique label lbl ∈ U ×U × N, where lbl = (U,V, k) indicates the k-th session of user U
(session owner) with intended communication partner V . Each user U ∈ U has a long-term key pair
(pkU, skU ), where pkU is certified.

Also, we maintain a state for each session. Each state is an entry of the session list SList and contains
the following information:

• lbl ∈ U ×U × N is the unique session label, which is only used for administrative reasons in the
model.

• id ∈ U is the identity of the session owner.

• pid ∈ (U ∪ {∗}) is the identity of the intended communication partner, where the value pid = ∗
(wildcard) stands for “unknown identity” and can be set to an identity once during the protocol.

• role ∈ {initiator, responder} is the session owner’s role in this session.

• auth ∈ AUTH is the intended authentication type for the stages, which is an element of the
protocol-specific supported authentication types AUTH.

• stexec ∈ (RUN ∪ ACC ∪ REJ) is the state of execution, where

RUN B {runningi : i ∈ N0 } , ACC B {acceptedi : i ∈ N0 } ,

and REJ B {rejectedi : i ∈ N0 } .

With the aid of this variable, the experiment keeps track whether a session can be tested. Namely, a
session can only be tested when it just accepted a key and has not used it in the following stage (see
Section 3.3, Test). Therefore, we set it to one of the following three states: It is set to acceptedi as
soon as a session accepts the i-th key (i. e., it can be tested), to rejectedi after rejecting the i-th key5,
and to runningi when a session continues after accepting key i. The default value is running0.

• stage ∈ {0} ∪ [M] is the current stage. The default value is 0, and incremented to i whenever stexec
is set to acceptedi (resp. rejectedi).

• sid ∈ ({0,1}∗ ∪ {⊥})M is the list of session identifiers. An element sidi represents the session
identifier in stage i. The default value is ⊥ and it is set once upon acceptance in stage i.

5Assumption: The protocol execution halts whenever a stage rejects a key.
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• cid ∈ ({0,1}∗ ∪ {⊥})M is the list of contributive identifiers. An element cidi represents the
contributive identifier in stage i. The default value is ⊥ and it may be set multiple times until
acceptance in stage i.

• key ∈ ({0,1}∗ ∪ {⊥})M is the list of established keys. An element keyi represents the established
key in stage i. The default value is ⊥ and it is set once upon acceptance in stage i.

• stkey ∈ {fresh, revealed}M is state of the established keys. An element stkey,i indicates whether the
session key of stage i has been revealed to the adversary. The default value is fresh.

• tested ∈ {true, false}M is the indicator for tested keys. An element testedi indicates whether keyi
was already tested by the adversary. The default value is false.

Shorthands. We use shorthands, like lbl.sid, to denote, e. g., the list of session identifiers sid of the
entry of SList, which is uniquely defined by label lbl. Further, we write lbl ∈ SList if there is a (unique)
tuple (lbl, . . . ) ∈ SList.

Partnering. Following Günther [40], we say that two distinct sessions lbl and lbl′ are partnered if both
sessions hold the same session identifier, i. e., lbl.sid = lbl′.sid , ⊥. For correctness, we require that two
sessions having a non-tampered joint execution are partnered upon acceptance. This means, we consider a
MSKE protocol to be correct if, in the absence of an adversary (resp. an adversary that faithfully forwards
every message), two sessions running a protocol instance hold the same session identifiers, i. e., they are
partnered, upon acceptance.

3.3 Adversary Model

We consider an adversaryA that has control over the whole communication network. In particular, that is
able to intercept, inject, and drop messages sent between sessions. To model these functionalities we
allow the adversary (as in [40]) to interact with the protocol via the following oracles:

• NewSession(U,V, role,auth): Create a new session with a unique new label lbl for session owner
id = U with role role, intended partner pid = V (might be V = ∗ for “partner unknown”), preferring
authentication type auth ∈ AUTH. Add (lbl,U,V, role,auth) (remaining state information set to
default values) to SList and return lbl.

• Send(lbl,m): Send message m to the session with label lbl. If lbl < SList, return ⊥. Otherwise, run
the protocol on behalf of lbl.id on message m, and return both the response and the updated state of
execution lbl.stexec. If lbl.role = initiator and m = >, where > denotes the special initiation symbol,
the protocol initiated and lbl outputs the first message in response.
Whenever the state of execution changes to acceptedi for some stage i in response to a Send-
query, the protocol execution is immediately suspended. This enables the adversary to test the
computed key of that stage before it is used in the computation of the response. Using the special
Send(lbl,continue)-query the adversary can resume a suspended session.
If in response to such a query the state of execution changes to lbl.stexec = acceptedi for some stage i
and there is an entry for a partnered session lbl′ ∈ SList with lbl′ , lbl such that lbl′.stkey,i = revealed,
then we set lbl.stkey,i B revealed as well.6
If in response to such a query the state of execution changes to lbl.stexec = acceptedi for some stage
i and there is an entry for a partnered session lbl′ ∈ SList with lbl′ , lbl such that lbl′.testedi = true,
then set lbl.testedi B true and only if USEi = internal, lbl.keyi B lbl′.keyi.

6The original model [40] would also handle key dependent security at this point.
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If in response to such a query the state of execution changes to lbl.stexec = acceptedi for some
stage i and lbl.pid , ∗ is corrupted (see Corrupt) by the adversary when lbl accepts, then set
lbl.stkey,i B revealed.

• Reveal(lbl, i): Reveal the contents of lbl.keyi , i. e., the session key established by session lbl in stage
i, to the adversary.
If lbl < SList or lbl.stage < i, then return ⊥. Otherwise, set lbl.stkey,i B revealed and return the
content of lbl.keyi to the adversary.
If there is a partnered session lbl′ ∈ SList with lbl′ , lbl and lbl′.stage ≥ i, then set lbl′.stkey,i B

revealed. Thus, all stage-i session keys of all partnered sessions (if established) are considered to
be revealed, too.

• Corrupt(U): Return the long-term secret key skU to the adversary. This implies that no further
queries are allowed to sessions owned by U after this query. We say that U is corrupted.
For stage- j forward secrecy, we set stkey,i B revealed for each session lbl with lbl.id = U or
lbl.pid = U and for all i < j or i > lbl.stage. Intuitively, after corruption of user U, we cannot
be sure anymore that keys of any stage before stage j as well as keys established in future stages
have not been disclosed to the adversary. Therefore, these are considered revealed and we cannot
guarantee security for these anymore.

• Test(lbl, i): Test the session key of stage i of the session with label lbl. This oracle is used in the
security experiment ExpMSKE

KE (A) given in Definition 10 below and uses a uniformly random test bit
bTest as state fixed in the beginning of the experiment definition of ExpMSKE

KE (A).
In case lbl < SList or lbl.stexec , acceptedi or lbl.testedi = true, return ⊥. To make sure that keyi
has not been used until this query occurs, we set lost B true if there is a partnered session lbl′ of lbl
in SList such that lbl′.stexec , acceptedi . This also implies that a key can only be tested once (after
reaching an accepting state and before resumption of the execution).
We shall only allow the adversary to test a responder session in absence of mutual authentication if
this session has an honest (i. e., controlled by the experiment) contributive partner. Otherwise, we
would allow the adversary to trivially win the test challenge. Formally, if lbl.authi = unauth, or
lbl.authi = unilateral and lbl.role = responder, but there is no session lbl′ ∈ SList with lbl′ , lbl and
lbl.cid = lbl′.cid, then set lost B true.
If the adversary made a valid Test-query, set lbl.testedi B true. In case bTest = 0, sample a
key K

$
← {0,1}ν uniformly at random from the session key distribution.7 In case bTest = 1, set

K B lbl.keyi to be the real session key. If the tested key is an internal key, i. e., USEi = internal,
set lbl.keyi B K . This means, if the adversary gets a random key in response, we substitute the
established key by this random key for consistency within the protocol.
Finally, we need to handle partnered session. If there is a partnered session lbl′ in SList such
that lbl.stexec = lbl′.stexec = acceptedi, i. e., which also just accepted the i-th key, we also set
lbl′.testedi B true. We also need to update the state of lbl′ in case the established key in stage
i is internal. Formally, if USEi = internal then set lbl′.keyi B lbl.keyi. Therefore, we ensured
consistent behavior in the further execution of the protocol.
Return K to the adversary.

7Note that we replaced the session key distributionD used in [37, 40] by the uniform distribution on {0,1}ν , where ν denotes
the key length.
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3.4 Security Definition

The security definition of multi-stage key exchange as proposed in [37, 40] is twofold. On the one hand,
we consider an experiment for session matching already used by Brzuska et al. [23]. In essence, this
captures that the specified session identifiers (sid in the model) match in partnered sessions. This is
necessary to ensure soundness of the protocol. On the other hand, we consider an experiment to capture
classical key indistinguishability transferred into the multi-stage setting. This includes the goals of key
independence, stage- j forward secrecy and different modes of authentication.

3.4.1 Session Matching

The notion of Match-security according to Günther [40] captures the following properties:

1. Same session identifier for some stage =⇒ Same key at that stage.

2. Same session identifier for some stage =⇒ Agreement on that stage’s authentication level.

3. Same session identifier for some stage =⇒ Same contributive identifier at that stage.

4. Sessions are partnered with the indented (authenticated) participant.

5. Session identifiers do not match across different stages.

6. At most two session have the same session identifier at any (non-replayable) stage.

Definition 9 (Match-Security). Let KE be a multi-stage key exchange protocol with properties (M,AUTH,
USE) and let A be an adversary interacting with KE via the oracles defined in Section 3.3. Consider the
following experiment ExpMatch

KE (A):

1. The challenger generates a long term key pair (pkU, skU ) for each user U ∈ U and hands the public
keys (pkU )U∈U to the adversary.

2. The adversary may issue queries to the oracles NewSession, Send, Reveal, Corrupt and Test as
defined in Section 3.3.

3. Finally, the adversary halts with no output.

4. The experiment outputs 1 if and only if at least one of the following conditions holds:

(a) Partnered sessions have different session keys in some stage: There are two sessions lbl , lbl′

such that for some i ∈ [M] it holds lbl.sidi = lbl′.sidi , ⊥, lbl.stexec , rejectedi and
lbl′.stexec , rejectedi but lbl.keyi , lbl′.keyi.

(b) Partnered sessions have different authentication types in some stage: There are two sessions
lbl , lbl′ such that for some i ∈ [M] it holds lbl.sidi = lbl′.sidi , ⊥, but lbl.authi , lbl′.authi.

(c) Partnered sessions have different or unset contributive identifiers in some stage: There
are two sessions lbl , lbl′ such that for some i ∈ [M] it holds lbl.sidi = lbl′.sidi , ⊥, but
lbl.cidi , lbl′.cidi or lbl.cidi = lbl′.cidi = ⊥.

(d) Partnered sessions have a different intended authenticated partner: There are two sessions
lbl , lbl′ such that for some i ∈ [M] it holds lbl.sidi = lbl′.sidi , ⊥, lbl.authi = lbl′.authi ∈
{unilateral,mutual}, lbl.role = initiator, lbl′.role = responder, but lbl.pid , lbl′.id or in case
lbl.authi = mutual, lbl.id , lbl′.pid.

(e) Different stages have the same session identifier: There are two sessions lbl, lbl′ such that for
some i, j ∈ [M] with i , j it holds lbl.sidi = lbl′.sidj , ⊥.
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(f) More than two sessions have the same session identifier in a stage: There are three pairwise
distinct sessions lbl, lbl′, lbl′′ such that for some i ∈ [M] it holds lbl.sidi = lbl′.sidi = lbl′′.sidi ,
⊥.

We denote the advantage of adversary A in breaking the Match-security of KE by

AdvMatch
KE (A) B Pr[ExpMatch

KE (A) = 1]

where ExpMatch
KE (A) denotes the experiment described above.

3.4.2 Multi-Stage Key Secrecy

Now, to capture the actual key secrecy, we describe the multi-stage key exchange security experiment.
Again, this is adapted from Günther [40].

Definition 10 (MSKE-Security). Let KE be a multi-stage key exchange protocol with key length ν and
properties (M,AUTH,USE) and let A be an adversary interacting with KE via the oracles defined in
Section 3.3. Consider the following experiment ExpMSKE

KE (A):

1. The challenger generates a long term key pair for each user U ∈ U and hands the generated public
keys to the adversary. Further, it samples a test bit bTest

$
← {0,1} uniformly at random and sets

lost B false.

2. The adversary may issue queries to the oracles NewSession, Send, Reveal, Corrupt and Test as
defined in Section 3.3. Note that these queries may set the lost flag.

3. Finally, the adversary halts and outputs a bit b ∈ {0,1}.

4. Before checking the winning condition, the experiment checks whether there exist two (not
necessarily distinct) labels lbl, lbl′ and some stage i ∈ [M] such that lbl.sidi = lbl′.sidi, lbl.stkey,i =

revealed and lbl′.testedi = true. If this is the case, the experiment sets lost B true. This condition
ensures that the adversary cannot win the experiment trivially.

5. The experiment outputs 1 if and only if b = bTest and lost = false. In this case, we say that the
adversary A wins the Test-challenge.

We denote the advantage of adversary A in breaking the MSKE-security of KE by

AdvMSKE
KE (A) B

����Pr[ExpMSKE
KE (A) = 1] −

1
2

����
where ExpMSKE

KE (A) denotes the experiment described above.

Remark 2. Note that thewinning condition is independent of the required security goals. Key independence,
stage- j forward secrecy and authentication properties are defined by the oracles described in Section 3.3.

4 TLS 1.3 Full (EC)DHE Handshake

In this section, we describe the cryptographic core of the final version of TLS 1.3 standardized as RFC
8446 [65]. In our view, we do not consider any negotiation of cryptographic parameters. Instead, we
consider the cipher suite (AEAD and hash algorithm), the DH group and the signature scheme to be fixed
once and for all. In the following, we denote the AEAD scheme by AEAD, the hash algorithm by H, the
DH group by G and the signature scheme by SIG. The output length of the hash function H is denoted by
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µ ∈ N and the prime order of the group G by p. The functions HKDF.Extract and HKDF.Expand used in
the TLS 1.3 handshake are as defined in Section 2.8.8 Further, we do not consider the session resumption
or 0-RTT modes of TLS 1.3.

4.1 Protocol Description

The full TLS 1.3 (EC)DHE Handshake Protocol is depicted in Figure 1. In the following, we describe the
messages exchanged during the handshake in detail. We use the terminology used in the specification RFC
8446 [65]. For further detail we also refer to this specification. Subsequently, we discuss our abstraction
of the TLS 1.3 key schedule.

ClientHello (CH): The ClientHello message is the first message of the TLS 1.3 Handshake and is used
by a client to initiate the protocol with a server. The message itself consists of five fields. For
our analysis the only important one is random, which is the random nonce chosen by the client,
consisting of a 32-byte value rC . The remaining values are mostly for backwards compatibility,
which is irrelevant for our analysis as we only consider the negotiation of TLS 1.3. There also is a
value for the supported ciphersuites of the client, which we omit since we consider the ciphersuite
to be fixed once and for all.
There are various extensions added to this message. For our view only the key_share extension is
important. We denote this as a separate message called ClientKeyShare described next.

ClientKeyShare (CKS): The key_share extension of the ClientHello message consists of the public
DHE value X chosen by the client. It is defined as X B gx , where x

$
← Zp is the client’s private

DHE exponent and g the generator of the considered group G. It only contains a single key share as
we only consider a single group, which is fixed once and for all before the execution of the protocol.

ServerHello (SH): In response to the ClientHello the server sends the ServerHello. This message is
structured similarly to the ClientHello message. Again, in our view only the random field is of
importance. Here, we denote the 32-byte random value chosen by the server by rS .
Similar to the ClientHello message there are various extensions added to this message. We
only consider the key_share extension, which we denote as a separate message ServerKeyShare
described next.

ServerKeyShare (SKS) This message consists of the server’s public DHE value Y chosen by the server. It
is defined as Y B gy , where y $

← Zp is the server’s private DHE exponent and g the generator of G.

After this message is computed the server is ready to compute the handshake traffic key htk. To that end,
the server first computes the exchanged DHE key Z B Xy , where X is the client’s public DHE value sent
in the ClientKeyShare message. Using Z and the handshake messages computed and received so far,
i. e., CH, CKS, SH, SKS, it computes the handshake secret hs, the client handshake traffic secret htsC and the
server handshake traffic secret htsS . In our abstraction this is done by evaluating the function F1 defined
in Figure 2, where hs is only computed internally. Formally,

htsC ‖ htsS B F1(Z,CH ‖ CKS ‖ SH ‖ SKS).

Based on the handshake traffic secrets htsC and htkS the server derives the handshake traffic key

htk B KDF(htsC ‖ htsS, ε).

8The context information ctx, i. e., the second parameter of HKDF.Expand is also represented differently in the specification.
It just adds constant overhead to the labels which does not harm security and including them would make our view even more
complicated. For details, we refer the reader to the TLS 1.3 specification [65].
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Client (pkC, skC) Server (pkS, skS)

rC
$
← {0,1}λ

x
$
← Zp , X B gx

ClientHello: rC
+ ClientKeyShare: X

rS
$
← {0,1}λ

y
$
← Zp , Y B gy

ServerHello: rS
+ ServerKeyShare: Y

Z B Y x Z B Xy

htsC ‖ htsS B F1(Z,CH ‖ CKS ‖ SH ‖ SKS)
htk B KDF(htsC ‖ htsS, ε)

htkC ‖ htkS B htk
End of Stage 1

{EncryptedExtensions}
{CertificateRequest∗ }

{ServerCertificate∗ }: S,pkS
H1 B H(CH ‖ · · · ‖ SCRT∗)

σS
$
← SIG.Sign(skS, `SCV ‖ H1)

{ServerCertificateVerify∗ }: σS
fkS B HKDF.Expand(htsS, `5, µ)
fkC B HKDF.Expand(htsC, `5, µ)
H2 B H(CH ‖ · · · ‖ SCRT∗ ‖ SCV∗)

finS B HMAC(fkS,H2)
{ServerFinished}: finS

Abort if SIG.Vrfy(pkS,H1, σS) , 1 or finS , HMAC(fkS,H2)
{ClientCertificate∗ }: C,pkC

H3 B H(CH ‖ · · · ‖ SCV∗ ‖ CCRT∗)
σC

$
← SIG.Sign(skC, `CCV ‖ H3)

{ClientCertificateVerify∗ }: σC
H4 B H(CH ‖ · · · ‖ SCV∗ ‖ CCRT∗ ‖ CCV∗)

finC B HMAC(fkC,H4)
{ClientFinished}: finC

Abort if SIG.Vrfy(pkC,H3, σC) , 1 or finC , HMAC(fkC,H4)
atsC ‖ atsS B F2(Z,CH ‖ · · · ‖ SF)

atk B KDF(atsC ‖ atsS, ε)
atkC ‖ atkS B atk

End of Stage 2
ems B F3(Z,CH ‖ · · · ‖ SF)

End of Stage 3
rms B F4(Z,CH ‖ · · · ‖ CF)

End of Stage 4

Figure 1: TLS 1.3 full (EC)DHE handshake. Every TLS handshake message is denoted as “MSG : C”,
where C denotes the message’s content. Similarly, an extension is denoted by “+ MSG : C”. Further,
we denote by “{MSG} : C” messages containing C and being AEAD-encrypted under the handshake
traffic key htk. A message “MSG∗” is an optional, resp. context-dependent message. Centered compu-
tations are executed by both client and server with their respective messages received, and possibly at
different points in time. The functions KDF, F1, . . . , F4 are defined in Figures 2 and 3, and `SCV =
"TLS 1.3, server CertificateVerify" and `CCV = "TLS 1.3, client CertificateVerify".
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F1(Z, transcript)

1 : hs B HKDF.Extract(salths, Z)

2 : htsC B HKDF.Expand(hs, `1 ‖ H(transcript), µ)
3 : htsS B HKDF.Expand(hs, `2 ‖ H(transcript), µ)
4 : return htsC ‖ htsS

F2(Z, transcript)

1 : hs B HKDF.Extract(salths, Z)

2 : saltms B HKDF.Expand(hs, `0, µ)
3 : ms B HKDF.Extract(saltms,0)
4 : atsC B HKDF.Expand(ms, `6 ‖ H(transcript), µ)
5 : atsS B HKDF.Expand(ms, `7 ‖ H(transcript), µ)
6 : return atsC ‖ atsS

F3(Z, transcript)

1 : hs B HKDF.Extract(salths, Z)

2 : saltms B HKDF.Expand(hs, `0, µ)
3 : ms B HKDF.Extract(saltms,0)
4 : ems B HKDF.Expand(ms, `8 ‖ H(transcript), µ)
5 : return ems

F4(Z, transcript)

1 : hs B HKDF.Extract(salths, Z)

2 : saltms B HKDF.Expand(hs, `0, µ)
3 : ms B HKDF.Extract(saltms,0)
4 : rms B HKDF.Expand(ms, `9 ‖ H(transcript), µ)
5 : return rms

Figure 2: Definition of the functions F1, F2, F3 and F4 used in Figure 1, where `0 B "derived" ‖
H(ε), salths B HKDF.Expand(es, `0, µ) with es B HKDF.Extract(0,0), `1 B "c hs traffic", `2 B
"s hs traffic", `6 B "c ap traffic", `7 B "s ap traffic", `8 B "exp master", and `9 B

"res master".

The definition of KDF is given in Figure 3. In essence, it summarizes the traffic key derivation in the way
that encryption key and initialization vector (IV) are now abstracted into a single key and also combines
the derivation for both parties into a single function call. The function KDF is not described in the

KDF(s1 ‖ s2,m)

1 : k1 B HKDF.Expand(s1, `3 ‖ m, l)

2 : iv1 := HKDF.Expand(s1, `4 ‖ m, d)

3 : k2 B HKDF.Expand(s2, `3 ‖ m, l)

4 : iv2 := HKDF.Expand(s2, `4 ‖ m, d)

5 : return (iv1, k1) ‖ (iv2, k2)

Figure 3: Definition of the function KDF used in Figure 1. Let s1, s2 ∈ {0,1}µ, where µ is the output
length of the hash function used as a subroutine of HKDF.Expand, let m ∈ {0,1}∗ and let l, d ∈ N with l
being the encryption key length and d being the IV length of AEAD, respectively. Further, let `3 B "key"
and let `4 B "iv".

specification [65]. We introduce this function to tame the complexity of our security proof.9 We discuss
the security of KDF in Section 5.3.

Upon receiving (SH, SKS), the client performs the same computations to derive htk except that it
computes the DHE key as Z B Y x .

All following messages sent from now on are encrypted under the handshake traffic key htk using
AEAD. For the direction ‘server → client’, we use the server handshake traffic key htkS and for the
opposite direction, we use the client handshake traffic key htkC .

EncryptedExtensions (EE): This message contains all extensions that are not required to determine the

9Using this function we can reduce the number of games introduced in the security proofs. For details, see Section 6.

21



cryptographic parameters. In previous versions, these extensions were sent in the plain. In TLS 1.3,
these extensions are encrypted under the server handshake traffic key htkS .

CertificateRequest (CR): The CertificateRequestmessage is a context-dependent message that may
be sent by the server. The server sends this message when it desires client authentication via a
certificate.

ServerCertificate (SCRT): This context dependent message consists of the actual certificate of the
server used for authentication against the client. Since we do not consider any PKI, we view this
message as some certificate10 that contains some server identity S and a public key pkS appropriate
for the signature scheme.

ServerCertificateVerify (SCV): To provide a “proof” that the server sending the ServerCertificate
message really is in possession of the private key skS corresponding to the announced public key
pkS , it sends a signature σS

$
← SIG.Sign(skS, `SCV ‖ H1) over the hash H1 of the messages sent and

received so far, i. e.,

H1 = H(CH ‖ CKS ‖ SH ‖ SKS ‖ EE ‖ CR∗ ‖ SCRT∗).

This message is only sent when the ServerCertificate message was sent. Recall that every
message marked with ∗ is an optional or context-dependent message.

ServerFinished (SF): This message contains the HMAC (Section 2.7) value over a hash of all handshake
messages computed and received by the server. To that end, the server derives the server finished
key fkS from htsS as fkS B HKDF.Expand(htsS, `5, µ), where `5 B "finished" and µ ∈ N denotes
the output length of the used hash function H. Then, it computes the MAC

finS B HMAC(fkS,H2)

with H2 = H(CH ‖ CKS ‖ SH ‖ SKS ‖ EE ‖ CR∗ ‖ SCRT∗ ‖ SCV∗).

Upon receiving (and after decryption) of (EE,CR∗,SCRT∗,SCV∗), the client first checks whether the
signature and MAC contained in the ServerCertificateVerifymessage and ServerFinishedmessage,
respectively, are valid. To that end, it retrieves the server’s public key from the ServerCertificate
message (if present), derives the server finished key based on htsS , and recomputes the hashes H1 and H2
with the messages it has computed and received. The client aborts the protocol if either of the message
are not sound. Provided the client does not abort, it prepares the following messages.

ClientCertificate (CCRT): This message is context-dependent and is only sent by the client in response
to a CertificateRequest message, i. e., if the server demands client authentication. The message
is structured analogously to the ServerCertificatemessage except that it contains a client identity
C and an appropriate public key pkC .

ClientCertificateVerify (CCV): This message also is context-dependent and only sent in conjunction
with the ClientCertificate message. Similar to message ServerCertificateVerify, this
message contains a signature σC

$
← SIG.Sign(skC, `CCV ‖ H3) over the hash H3 of all messages

computed and received by the client so far, i. e.,

H3 = H(CH ‖ CKS ‖ SH ‖ SKS ‖ EE ‖ CR∗ ‖ SCRT∗ ‖ SCV∗ ‖ CCRT∗).

10The certificate might be self-signed.
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ClientFinished (CF): The last handshake message is the finished message of the client. As for
the ServerFinished message this message contains a MAC over every message computed
and received so far by the client. The client derives the client finished key fkC from htsC as
fkC B HKDF.Expand(htsC, `5, µ) and then, computes

finC B HMAC(fkC,H4)

with H4 = H(CH ‖ CKS ‖ SH ‖ SKS ‖ EE ‖ CR∗ ‖ SCRT∗ ‖ SCV∗ ‖ CCRT∗ ‖ CCV∗).

Upon receiving (and after decryption) of (CCRT∗,CCV∗,CF), the server first checks whether the signature and
MAC contained in the ClientCertificateVerify message and ClientFinished message, respectively,
are valid. To that end, it retrieves the client’s public key from the ClientCertificate message (if
present), derives the client finished key based on htsC , and recomputes the hashes H3 and H4 with the
messages it received. If one of the checks fails, the server aborts. Otherwise, client and server are ready
to derive the application traffic key atk, which is used in the TLS Record Protocol.

They first derive the master secret ms from the handshake secret hs derived earlier. Based on ms
and the handshake transcript up to the ServerFinished message, client and server derive the client
application traffic secret atsC and server application traffic secret atsS , respectively. In our abstraction,
atsC and atsS are computed by evaluating the function F2 defined in Figure 2, i. e.,

atsC ‖ atsS B F2(Z,CH ‖ · · · ‖ SF)

where ms again is computed internally. Using atsC and atsS , they finally can derive the application traffic
key

atk B KDF(atsC ‖ atsS, ε),

where KDF (Figure 3) is the same function used in the derivation of htk.
After having derived atk, they derive the exporter master secret ems from the master secret derived

earlier and the handshake transcript up to the ServerFinished message. In our abstraction, they evaluate
the function F3 defined in Figure 2, i. e.,

ems B F3(Z,CH ‖ · · · ‖ SF).

Finally, they derive resumption master secret rms from the master secret derived earlier and the
handshake transcript up to the ClientFinished message. In our abstraction, they evaluate the function
F4 defined in Figure 2, i. e.,

rms B F4(Z,CH ‖ · · · ‖ CF).

4.2 On our Abstraction of the TLS 1.3 Key Schedule

In our presentation of the TLS 1.3 Handshake Protocol, we decompose the TLS 1.3 Key Schedule [65,
Sect. 7.1] into independent key derivation steps. The main reason for this abstraction is a technical
detail of the proof presented in Section 6, but also the nature of the MSKE security model requires a key
derivation in stages to enable testing the stage keys before possible internal usage of them. Therefore,
we introduce a dedicated function for every stage key derivation. These functions are F1, F2, F3 and F4
defined in Figure 2. Considering the definition of these functions, they seem quite redundant as values,
like the handshake secret hs, are computed multiple times. We stress that this is only conceptual and
does not change the implementation of the original TLS 1.3 Handshake Protocol. When running the
protocol, these values of course can be cached and reused in following computations. We need this
modularized key derivation as we will model each of these derivation steps as a random oracle in our
proof. For completeness, we give the TLS 1.3 Key Schedule as it is defined in the standard in Figure 4.
Our decomposition essentially consists of viewing the derivations of htsC/htsS , atsC/atsS , ems and rms
as separate functions based on the DHE key Z and the transcript.
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0 Extr

0

es Expnd[µ]

`0

salths Extr

Z

hs

Expnd[µ] `1/`2 ‖ Hhts

htsC/htsS

KDF ε

htk

Expnd[µ] `5

fkC/fkS

Expnd[µ] `0

saltms

Extr 0

ms

Expnd[µ] `9 ‖ Hrms

rms

Expnd[µ] `8 ‖ Hems

ems

Expnd[µ] `6/`7 ‖ Hats

atsC/atsS

KDF ε

atk

Building Blocks

skm Extr

xts

= HKDF.Extract(xts, skm) prk Expnd[L]

ctx

= HKDF.Expand(prk,ctx, L)

s1/s2 KDF

ε

= KDF(s1 ‖ s2, ε)

Figure 4: TLS 1.3 Key Schedule. The labels `i are defined in Section 4.1. The hash values are defined as
Hhts = H(CH ‖ · · · ‖ SKS), Hats = Hems = H(CH ‖ · · · ‖ SF), and Hrms = H(CH ‖ · · · ‖ CF). In this picture, we
use the notation v1/v2 to denote alternative usage of v1 and v2 in analogous computations.
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4.3 TLS 1.3 Handshake Protocol as a Multi-Stage Key Exchange Protocol

In this section, we model the TLS 1.3 Handshake as presented before as a multi-stage key exchange
protocol. In particular, this means to define the protocol-specific properties as given in Section 3.1 and to
describe how, e. g., session and contributive identifiers, are defined. We follow Günther [40] and adapt it
to the current version of TLS 1.3 given in [65].

Protocol-Specific Properties. The TLS 1.3 Handshake has the following protocol-specific properties
(M,AUTH,USE):

1. M = 4: In the full TLS 1.3 Handshake there are four keys derived, which are the handshake traffic
key htk in stage 1, the application traffic key atk in stage 2, the resumption master secret rms in
stage 3, and the exporter master secret ems in stage 4.

2. AUTH = {(unauth,auth′,auth′,auth′ ) : auth′ ∈ {unauth,unilateral,mutual} }: The handshake traffic
key derived in stage 1 is always unauthenticated. The keys derived in stages 2–4 can all either be
unauthenticated, server-only, or mutually authenticated. Note that our result given in Theorem 6
covers all of these authentication types.

3. USE = (internal,external,external,external): The handshake traffic key is used internally during the
handshake, whereas all the other keys derived are only used outside the full handshake.

We define the session identifiers for each stage (analogously to [40]) as follows:

• sid1 = (CH,CKS,SH,SKS)

• sid2 = (CH,CKS,SH,SKS,EE,CR
∗,SCRT∗,SCV∗,CCRT∗,CCV∗ )

• sid3 = (sid2,“RMS”)

• sid4 = (sid3,“EMS”)

Note that each message marked with ∗ is context dependent and might not be present, e. g., depending on
the used authentication types.

Further, we set cid1 B (CH,CKS) after the client sends (resp. the server receives) these messages. After
the server sent its ServerHellomessage (resp. the client receives it), we extend cid1 B (CH,CKS,SH,SKS) =

sid1. The contributive identifiers for stage 2–4 are set by each party after sending its respective finished
message to cidi B sid1.

4.3.1 Match-Security of TLS 1.3 Handshake

The proof of Match-security of the TLS 1.3 Handshake Protocol as described above basically follows
along the lines of the proof given by Günther [40, Thm. 6.1] for TLS 1.3 draft-10. We restate the proof
and adapt it to the final version of TLS 1.3 Handshake.

Theorem 1. Let λ ∈ N. Let A be an adversary against the Match-security of the TLS 1.3 Handshake
protocol as described in Section 4. Then, we have

AdvMatch
TLS1.3(A) ≤

n2
s

p · 2λ

where ns is the maximum number of sessions, p is the order of G used in the handshake and λ = 256 is
the bit-length of the nonces.
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Intuitively, this bound is the probability that there are two sessions that choose the same nonce and the
same key share.

Proof. In order to prove this statement, we need to show each of the properties stated in Definition 9.

1. Same session identifier for some stage =⇒ same key at that stage: For stage 1, we have that
the session identifier sid1 uniquely defines the ephemeral DH key Z , as it contains the public DH
values contained in CKS and SKS, respectively. Further, Z and all messages contained in sid1, i. e.,
(CH,CKS,SH,SKS), uniquely define the values hs, htsC and htsS . The values htsC and htsS , in turn,
uniquely define the stage-1 key htk. For the remaining stage, first note that sid2 completely contains
sid1. As sid2 is completely contained in sid3 and sid4, sid1 is also contained in sid3 and sid4. The
key derivation in stages 2–4 (i. e., the derivation of atk, ems and rms) solely depends on ms and the
messages contained in sid2. As sid2 contains sid1, the parties compute the same hs, htsC and htsS
(see above). The handshake secret hs uniquely defines the value ms. Then, htsC and htsS define the
server’s and client’s finished keys. Using these keys and the messages contained in sid2 the (valid)
messages SF and CF (depending on SF) are uniquely defined. Finally, taking all this together the
computations of atk, ems and rms are uniquely defined by sid2.

2. Same session identifier for some stage =⇒ agreement on that stage’s authentication level: The
first stage is always authenticated. Therefore, authi = unauth for all sessions. For stages 2–4,
recall that sid2 is contained completely in sid3 and sid4. Moreover, recall that sid2 contains each
handshake message exchanged apart from the finished messages, which are defined by the messages
contained in sid2. Therefore, sid2 reflects the used authentication types by the presence of the
context-dependent messages. That is, if sid2 = (CH,CKS,SH,SKS,EE) then auth2 = unauth. If
in addition the message SCRT∗,SCV∗ are present in sid2, we have auth2 = unilateral. While we
have auth2 = mutual if the messages CR∗,SCRT∗,SCV∗,CCRT∗,CCV∗ are in addition present. Finally,
observe that auth2 = auth3 = auth4 holds for every session.

3. Same session identifier for some stage =⇒ same contributive identifier at that stage: This is given
by definition of the contributive identifier. First, note that sid1 is contained in the session identifier
of every stage. The contributive identifier, for each stage, is set to sid1 once it is set and never
changed.

4. Sessions are partnered with the indented (authenticated) participant: This can only be achieved in
unilaterally or mutually authenticated stages. This means, this can only be given for stages 2–4. The
sessions will obtain the partner identity in a certificate message. That is, in case of unilateral and
mutual authentication the client will get the server’s identity in the SCRT message. While the server
will get the client’s identity in the CCRT message in case of mutual authentication. Certificates
always belong to a party that are considered honest and honest parties never send certificates that
belong to another identity. As sid2 (contained in sid3 and sid4) contains both certificate message (if
present), agreement on sid2 implies partner agreement as well.

5. Session identifiers do not match across different stages: This holds trivially. sid2 contains strictly
less values than sid1 and both sid3 and sid4 contain a dedicated unique label.

6. At most two session have the same session identifier at any stage: We analyze the probability that
there are three sessions sharing the same identifier. To that end, assume there is a client (initiator)
session and a server (responder) session holding the same session identifier for each stage. Due to
the certificates included, there only can exist a session of either the client’s or the server’s party.
Note that the sid1 is contained in every other stages’ session identifier and sid1 defines the other
messages contained in the other identifiers (apart from the unique labels and the certificates). The
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third session therefore needs to sample the same group element and the same nonce as one of the
other two sessions. The probability that this happens is bounded from above by

n2
s

p · 2λ

which is the probability that both group element and nonces collide for any two sessions out of ns,
where ns is the maximum number of sessions.

5 Tight Security of TLS 1.3 PRFs

In this section, we consider the tight security of the PRFs used in TLS 1.3.

5.1 Tight Security of HMAC

Bellare [6] has shown that the HMAC function (i. e., MAC.Tag as presented in Section 2.7) is a PRF
as long as the used function H is a (dual) PRF. In this paper, we show that HMAC is tightly MU-PRF-
secure (Definition 4) in the random oracle model.

Theorem 2. Let κ, µ ∈ N and let H be modeled as a random oracle with output length µ. Further, let A
be an adversary against the MU-PRF-security with N users of HMAC. Then,

AdvMU-PRF
HMAC,N (A) ≤

N2

2κ
+

q2
H

2µ
+

2N
2κ

where κ is the key length of the HMAC function and qH is the number of queries issued to the random
oracle H.

For simplicity, we prove this statement under the assumption that κ ≤ 8B, where B is the byte-length
of opad and ipad, respectively. In the context of TLS 1.3, this assumption is reasonable as all ciphersuites
either use SHA-256 or SHA-384 ([65, Appx. B4]) as their hash algorithm, where SHA-256 has a block
length of B = 64 bytes and SHA-384 a block length of B = 128 bytes. In TLS 1.3 (Section 4), we have
κ = µ for every direct application of HMAC, i. e., including when ran as a subroutine of HKDF.Extract
or HKDF.Expand. That is, for SHA-256 and SHA-384 we always have µ = 256 and µ = 384 bits,
respectively.

However, the proof can simply be extended by the case κ > B by adding another step.

Proof. We prove this statement in a sequence of games [68]. Let breakδ denote the event thatA wins in
Game δ, i. e., Game δ outputs 1, and let Advδ B Pr[breakδ] − 1/2.

Game 0. The initial game is the multi-user PRF experiment ExpMU-PRF
HMAC,N (A) given in Definition 4 and

thus
Pr[break0] = Pr[ExpMU-PRF

HMAC,N (A) = 1] =
1
2
+ Adv0.
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Game 1. In this game, we make sure that every user has a distinct key. To that end, we add an abort rule
and raise the event abortkey if there are keys ki, k j such that ki = k j for users i, j ∈ [N] with i , j. Game 0
and Game 1 are identical until the event abortkey occurs. Thus, we have by the Difference Lemma ([68,
Lem. 1]) that

Adv0 ≤ Adv1 + Pr[abortkey].

It remains to analyze Pr[abortkey]. The event abortkey is raised if there is a collision among N uniform and
independent samples from the set {0,1}κ . An upper bound for this probability is given by the birthday
bound, which supplies

Pr[abortkey] ≤
N2

|{0,1}κ |
=

N2

2κ
.

Hence, Adv0 ≤ Adv1 + N2/2κ .
Note that if the game is not aborted due to this rule, we have that the strings ki ⊕ ipad and ki ⊕ opad

are distinct for every i ∈ [N]. Thus, in case the challenge bit is b = 0, i. e., the oracle is the real PRF, there
are no two queries (i, x) and ( j, x) with i , j to oracle Ob such that the challenger uses the same prefix
ki ⊕ opad = k j ⊕ opad in the computation of the respective oracle responses

H((ki ⊕ opad) ‖ H((ki ⊕ ipad) ‖ x)) and H((k j ⊕ opad) ‖ H((k j ⊕ ipad) ‖ x)).

The same applies to the prefix of the internal random oracle call.

Game 2. This game is identical to Game 1, except that we add another abort rule. If during the execution
of the security experiment the random oracle is ever queried with h , h′ such that H(h) = H(h′), we raise
the event abortcoll. Since Game 1 and Game 2 are identical until abortcoll occurs, we have

Adv1 ≤ Adv2 + Pr[abortcoll].

Due to the birthday bound, the probability that a collision in the random oracle occurs is upper bounded
by q2

H · 2
−µ, where qH is the number of queries to the random oracle and µ is the output length of the

random oracle. Therefore,

Adv1 ≤ Adv2 +
q2

H
2µ
.

This modification ensures that, in case b = 0, there are no two queries (i, x) and (i, x ′) with x , x ′ to
oracle Ob such that the responses are computed using

H((ki ⊕ opad) ‖ H((ki ⊕ ipad) ‖ x)) and H((ki ⊕ opad) ‖ H((ki ⊕ ipad) ‖ x ′))

and it holds H((ki ⊕ ipad) ‖ x) = H((ki ⊕ ipad) ‖ x ′), i. e., the inner evaluation of the random oracle collide.
Otherwise, the responses would also collide as the random oracle needs to ensure consistency.

Game 3. This game is identical to Game 2, except that we add another abort rule. Namely, we want
to ensure that the adversary for any i ∈ [N] never queries the random oracle for the string pre ‖ y such
that pre = ki ⊕ opad or pre = ki ⊕ ipad, and y ∈ {0,1}∗. To that end, we raise the event abortguess if the
adversary makes such a query. Since Game 2 and Game 3 are identical until abortguess occurs, we have

Adv2 ≤ Adv3 + Pr[abortguess].

To analyze abortguess, let abortguess;i be the same event as abortguess except that we only consider user i.
Then, we have that Pr[abortguess] =

∑
i∈[N ] Pr[abortguess;i]. It holds

Pr[abortguess;i] = Pr[pre = ki ⊕ opad ∨ pre = ki ⊕ ipad]
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= Pr[ki = pre ⊕ opad ∨ ki = pre ⊕ ipad]

= 2 · Pr[ki = pre ⊕ opad] =
2
2κ
.

Hence,
Adv2 ≤ Adv3 +

2N
2κ

.

The main consequence of this modification is that the adversary is not able to query the random oracle
with a bit string that at some point may be queried by the challenger in case b = 0 to compute a response
to any query Ob(i, x) as otherwise the game would be aborted. However, Games 2 and 3 also remove the
side channel of the adversary to successfully guess a key for some user i ∈ [N] and compare the outputs
of the random oracle and the oracle Ob to win the game.

If Game 3 is not aborted due to abortguess, we claim that Adv3 = 0. To show this, we argue that
the answer of the oracle Ob adversary A is provided with in ExpMU-PRF

HMAC,N (A) is distributed uniformly at
random on {0,1}µ independent of the challenge bit b. To that end, it suffices to argue that this holds in
case b = 0. In case b = 1, this is true by definition.

Games 1, 2 and 3 make sure that every computation of the oracle O0 is done by a fresh random oracle
query, i. e., the query was neither issued by the adversary nor by the challenger at any point in time before
this query. Consequently, every response of O0 is a bit string sampled uniformly and independently at
random for any query (i, x). Hence, the answer of the oracle is a uniform and independent bit string in case
b = 0 and b = 1, respectively. Formally, the advantage of the adversary in breaking the MU-PRF-security
of HMAC is 0 in this setting.

5.2 Tight Security of HKDF

By definition of HKDF.Extract (Section 2.8), we get the following result.

Theorem 3. Let HMAC and HKDF.Extract be the functions as defined in Sections 2.7 and 2.8, respectively.
Further, let A be an adversary against the MU-PRF-security with N users of HKDF.Extract. Then,

AdvMU-PRF
HKDF.Extract,N (A) = AdvMU-PRF

HMAC,N (A).

Theorem 3 follows from the definition of HKDF.Extract. For HKDF.Expand, we get a similar result.

Theorem 4. Let HMAC and HKDF.Expand (with fixed output length L) be the functions as defined in
Sections 2.7 and 2.8, respectively. Further, let A be an adversary against the MU-PRF-security with N
users of HKDF.Expand running in time at most t. Then, we can construct an adversary B running in time
at most t ′ ≈ t such that

AdvMU-PRF
HKDF.Expand,N (A) ≤ AdvMU-PRF

HMAC,N (B).

Sketch. The proof of Theorem 4 is straightforward. The adversary B can perfectly simulate the
experiment ExpMU-PRF

HKDF.Expand,N (A) by computing every query issued byA using its oracle. For every query
of A, it computes the HKDF.Expand function except that it used its oracle instead of the HMAC function.
To that end, for every query of A, B needs to make dL/µe queries to its oracle. In case B is provided
with the real HMAC function, it is easy to see that it perfectly simulates HKDF.Expand. Otherwise, if it is
provided with a random function, each of the query answers is distributed uniformly and independently at
random. Therefore, the stringA is provided with in response to a query is also a uniformly random string.
Hence, if A wins its experiment, B also wins.
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Summary. Taking these results together with Theorem 2, we get that both HKDF.Extract and
HKDF.Extract are tightly MU-PRF-secure (Definition 4) in the random oracle model.

Corollary 1. Let HKDF.Extract (with fixed output length L) be the function as defined in Section 2.8 and
let H (i. e., the internal hash function) be modeled as a random oracle with output length µ. Then, for any
adversary A

AdvMU-PRF
HKDF.Extract,N (A) ≤

N2

2κ
+

q2
H

2µ
+

2N
2κ

where κ is the key length of the HKDF.Extract function and qH is the number of queries issued to the
random oracle H.

Corollary 2. Let HKDF.Expand (with fixed output length L) be the function as defined in Section 2.8 and
let H (i. e., the internal hash function) be modeled as a random oracle with output length µ. Then, for any
adversary A

AdvMU-PRF
HKDF.Expand,N (A) ≤

N2

2κ
+

q2
H

2µ
+

2N
2κ

where κ is the key length of the HKDF.Expand function and qH is the number of queries issued to the
random oracle H.

5.3 Security of KDF

In Section 4, we introduced the function KDF (Figure 3), which combines several computation steps of the
TLS 1.3 Handshake Protocol into a single function call. It remains to argue about its security guarantees.
KDF uses HKDF.Expand (Section 2.8) as a subroutine. In the following, we give a bound for KDF in
Theorem 5.

Theorem 5. Let HKDF.Expand be as defined in Section 2.8 and KDF be as defined in Figure 3. Then,
for any adversary A against the MU-PRF-security of KDF running in time at most t, we can construct
adversaries B1, B2, B3 and B4 all running in time at most t ′ ≈ t such that

AdvMU-PRF
KDF,N (A) ≤ AdvMU-PRF

HKDF.Expand,N (B1) + AdvMU-PRF
HKDF.Expand,N (B2)

+ AdvMU-PRF
HKDF.Expand,N (B3) + AdvMU-PRF

HKDF.Expand,N (B4)

where B1 and B3 play against HKDF.Expand for fixed output length l, and B2 and B4 play against
HKDF.Expand for fixed output length d.

This can be seen by a straightforward sequence of four games.
The main insight of this statement is that the bound is tight. Taking this together with the result of

Corollary 2, we get that KDF is tightly-secure if the underlying hash function of HKDF.Expand is modeled
as the random oracle.

Corollary 3. Let KDF be as defined in Figure 3 and let H (i. e., the internal hash function used in
HKDF.Expand (Section 2.8)) be modeled as a random oracle with output length µ. Then, for any
adversary A

AdvMU-PRF
KDF,N (A) ≤ 4 ·

(
N2

2κ
+

q2
H

2µ
+

2N
2κ

)
=

4 · (N2 + q2
H + 2N)

2µ

where κ = µ is the key length of the HKDF.Expand function used internally and qH is the number of
queries issued to the random oracle H.

Remark 3. Note that the result on HKDF.Expand is independent of its outputs length. Also, although we
use different output length HKDF.Expand instantiations in KDF, they still can share the same random
oracle. This is due to the reason that the output length is determined by the number of rounds.
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6 Tight MSKE-Security of the Full TLS 1.3 Handshake

Theorem 6. Let λ, µ ∈ N, let G be a cyclic group of prime order p and g be a generator of prime order q
subgroup ofG, letSIG be a digital signature scheme (Def. 6), and letH : {0,1}∗ → {0,1}µ be a keyless hash
function (Sect. 2.5). Moreover, let KDF : {0,1}2µ × {0,1}∗ → {0,1}ν, let F1,F2 : G × {0,1}∗ → {0,1}2µ
and let F3,F4 : G × {0,1}∗ → {0,1}µ be the functions defined in Figures 2 and 3. We model F1, F2, F3
and F4 as random oracles.

Further, letA be an adversary against the MSKE-security (with key independence and stage-1 forward
secrecy) of the TLS 1.3 handshake protocol as described in Section 4 running in time at most t ′. Then, we
can construct adversaries B2,B3,B5, . . . ,B10 all running in time at most t such that t ≈ t ′ and

AdvMSKE
TLS1.3(A) ≤ AdvColl-Res

H (B2) + AdvMU-EUF-CMAcorr

SIG, |U | (B3) + AdvSDH
G, g (B5)

+ AdvMU-PRF
KDF,ns (B6) + AdvSDH

G, g (B7) + AdvMU-PRF
KDF,ns (B8)

+ AdvSDH
G, g (B9) + AdvSDH

G, g (B10) +
n2
s

2λ
.

where ns is the maximum number of sessions involved in TLS 1.3, λ = 256 is the nonce length defined in
RFC 8446 [65] and ν = 2l + 2d11, where l is the key length of the used AEAD scheme and d its IV length.

Before we give the proof of Theorem 6, we want to plug in all results given in Section 5. In
particular, we model the hash function H in addition as a random oracle and then we apply the results of
Corollary 3 to Theorem 6. Also, we use that for a random oracle H the collision probability is given by
AdvColl-Res

H (B) ≤ q2
H/2

µ for any adversary B, qH being the number of queries issued to the random oracle,
and µ being its output length.

Corollary 4. Let H be modeled as a random oracle with output length µ. Apart from that let all other
quantities be defined as in Theorem 6. Then,

AdvMSKE
TLS1.3(A) ≤ AdvMU-EUF-CMAcorr

SIG, |U | (B3) + AdvSDH
G, g (B5) + AdvSDH

G, g (B7)

+ AdvSDH
G, g (B9) + AdvSDH

G, g (B10) +
8n2

s + 9q2
H + 16ns

2µ
+

n2
s

2256 .

where qH is the number of queries to the random oracle H.

Proof. Let breakδ be the event that the adversary A wins the Test-challenge in Game δ. Further, we
write Advδ B Pr[breakδ] − 1

2 .

Game 0. The initial game of the sequence is exactly the MSKE security experiment as given in
Definition 10, i. e.,

Pr[break0] =
1
2
+ AdvMSKE

TLS1.3(A) =
1
2
+ Adv0.

Game 1. In this game, we want to make sure that there are no two honest sessions that sample the same
nonce rC , resp. rS , in their *Hello message. Therefore, we raise the event abortnnc if session lbl samples
nonce r that was sampled by a session lbl′ , lbl before.

The probability that such a collision among (at most) ns independent samples from a set of size 2λ
occurs, is given by the birthday bound:

Pr[abortnnc] ≤ n2
s/2λ.

11These quantities dependent on the selected ciphersuite. For details, see [65, Appx. B4].
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Therefore,
Pr[break0] ≤ Pr[break1] + n2

s/2λ ⇐⇒ Adv0 ≤ Adv1 + n2
s/2λ

where ns is the maximum number of sessions involved in the protocol.

Game 2. In this game, we abort if there are two honest sessions that compute the same hash for different
inputs in any evaluation of the hash function. We denote the corresponding event by aborthash. Observe
that if the challenger aborts the game due to this reason, we have found a hash collision in the hash
function H. In order to bound Pr[aborthash], we therefore construct an adversary B2 against the collision
resistance (Definition 5) of H.

Construction of collision-finder B2. The reduction B2 simulates Game 1 for A. If the challenger
would raise the event aborthash, B2 has found a collision and outputs the two (distinct) inputs to the hash
function that resulted in the same hash as a collision.

Therefore, B2 wins if aborthash is raised in Game 2, i. e., Pr[aborthash] ≤ AdvColl-Res
H (B2). Thus,

Adv1 ≤ Adv2 + AdvColl-Res
H (B2).

Game 3. In this game, we make sure that the adversary can only test sessions that have an honest
(contributive) partner in the first stage, i. e., they agree on cid1. To achieve this, we add another abort
rule to the experiment. We raise the event abortSIG if the adversary tests a session that receives a
signature valid under the public key pkU of some party U ∈ U within a ServerCertificateVerify
or ClientCertificateVerify message such that there is no honest and uncorrupted party that issued
this signature. Here, we assume that the tested session in particular expects a signature, i. e., peer
authentication is intended.

Let us analyze Pr[abortSIG] first and then discuss the implications of this crucial step in detail
afterwards. Observe that if the challenger of the experiment aborts the game due to this rule, we found a
forgery for the underlying signature scheme SIG. To that end, we can bound Pr[abortSIG] by constructing
an adversary B3 against the MU-EUF-CMAcorr-security of SIG for |U| users, whereU is the set of users,
running A as a subroutine.

Construction of forger B3. According to ExpMU-EUF-CMAcorr

SIG, |U | (B3) (Definition 8), adversary B3 receives
|U| public keys (pkU )U∈U 12 as input. Further, it has access to a signing oracle, access to a corruption
oracle and outputs a forgery (U,m∗, σ). The forger B3 now simulates Game 3 forA except that it uses the
public keys received by its challenger and the signing oracle to compute signatures of the respective user
sessions. To be precise, a signature for userU is computed by issuing a signature query (U, ·) to the signing
oracle. Whenever, the adversary queries Corrupt(U), B3 relays the corruption query to its corruption
oracle and sends the answer to the adversary. Now, if the challenger in Game 3 would raise the event
abortSIG, the forger has found a forgery. Namely, let m∗ = `SCV ‖ H1 (resp. m∗ = `CCV ‖ H3) (see Section 4),
let σ be the signature involved in the event abortSIG, which was received in the ServerCertificateVerify
(resp. ClientCertificateVerify) message and let U be the party such that σ is valid under pkU for
message m∗, but no honest session output σ. The forger outputs (U,m∗, σ).

First, observe that B3 can use its oracles to perfectly simulate Game 3 for A. Further, note that
abortSIG only includes uncorrupted parties, which implies that U was never corrupted by both A and B3.
Given this, B3 wins ExpMU-EUF-CMAcorr

SIG, |U | (B3) if abortSIG occurs. Formally,

Pr[abortSIG] ≤ AdvMU-EUF-CMAcorr

SIG, |U | (B3).

12For convenience, assume that the public keys are indexed by the user identifier.
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This gives us
Adv2 ≤ Adv3 + AdvMU-EUF-CMAcorr

SIG, |U | (B3).

Next, we discuss the implications of this step. Suppose there is a tested session lbl that has no
contributive first-stage partner, i. e., there is no lbl′ , lbl such that lbl.cid1 = lbl′.cid1. Due to the definition
of the identifiers, we have that cid1 is contained in sid1 and thus lbl also has no session partner lbl′ such that
lbl.sid1 = lbl′.sid1. This in turn implies that lbl cannot have an honest (contributive) partner in any stage
since sid1 = cid2 = cid3 = cid4 as described in Section 4.3. Recall that the model requires that keys can only
be tested in unauthenticated stages if the tested session has a contributive partner (see Section 3.3, Test).
Therefore, an adversary can only test a session in the absence of a contributive first-stage partner in stages
2–4 (stage 1 is always unauthenticated). Additionally, the adversary can only win in case of a client being
tested if the key is responder-authenticated (i. e., lbl.authi ∈ {unilateral,mutual}) and in case of a server the
key is initiator-authenticated. Thismeanswhenever the adversarywants to test a sessionwithout a first-stage
partner the messages ServerCertificateVerify or ClientCertificateVerify are sent. Recall that the
expected signature is computed over H1 = H(CH,CKS,SH,SKS,EE,CR∗,SCRT) for ServerCertificateVerify
resp. H3 = H(CH,CKS,SH,SKS,EE,CR∗,SCRT,SF,CCRT) for ClientCertificateVerify. In particular, both
contain sid1 = CH,CKS,SH,SKS of the tested session lbl. However, as already mentioned above if the
tested session has no contributive first-stage partner, it also has no session partner. Therefore, no honest
session will seek to compute the expected signature. The only way to be able to test a session without a
contributive partner therefore is to forge a signature. Due to the modifications of Game 2, we also made
sure that the adversary cannot use collisions in the hash function. Observe that if a session accepts a
*CertificateVerfify message it agrees on sid1, and therefore cid1, with the issuer of the respective
signature. Hence, if the game does not abort due to the rule introduced in Game 3, the adversary is no
longer able to issue a test query for a session that has no honest first-stage partner.

Game 4. In the previous game, we ensured that the adversary is only able to test a session when it has an
honest (contributive) first-stage partner session added via a NewSession-query. This in particular implies
that the adversary in this game is potentially allowed to issue Test-queries in each stage. In the following
games, we make sure that from the view of the adversary the derived keys in each stage are uniformly
distributed bit strings for every session. This game prepares these steps.

Intuitively, we embed randomizations of a DH tuple in the client and server sessions. In order to do
that, we change the behavior of the challenger as follows: In the beginning of game the challenger chooses
a, b

$
← Zp and computes the tuple (A,B,C) B (ga,gb,gab). Additionally, we change the implementation

of the clients and servers.

• Implementation of client sessions. Consider an arbitrary client session identified by lbl in SList.
The challenger proceeds exactly as in Game 3 until the session chooses its key share. Instead of
choosing a fresh exponent x as described in Section 4, it chooses a value τlbl

$
← Zp uniformly at

random and outputs X B A · gτlbl = ga+τlbl as its key share in the ClientKeyShare message. Then,
it proceeds as in Game 3 until it receives ServerHello and ServerKeyShare, and thus is able to
compute the DHE key. If the value Y = gb+τlbl′ received in ServerKeyShare was output by any
honest server lbl′ ∈ SList, we look up the used randomness τlbl′ and compute the DHE key as

Z B C · Aτlbl′ · Bτlbl · gτlbl ·τlbl′ .

Note that after a server session, which received lbl’s ClientKeyShare, has sent (SH, SKS) it might
not necessarily be received by lbl as it was sent. This is due to the fact that the signature is only
sent after the first stage. Therefore, if lbl receives a SKS message that was not output by any honest
server session, we do not know the corresponding value τlbl′ used in Y . Here, we cannot apply the
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above formula and use that we know the exponent a instead. In this case, we compute

Z B Y a+τlbl .

The rest is exactly as in Game 3.

• Implementation of server sessions. Consider an arbitrary server session identified by lbl′ in SList.
The challenger proceeds exactly as in Game 3 until the session chooses its key share. If lbl′ receives
(CH,CKS) output by an corrupted client lbl, then it continues proceeding as in Game 3. In particular,
it chooses a fresh exponent y for its key share Y . However, if lbl is not corrupted, it chooses a
value τlbl′

$
← Zp uniformly at random and outputs Y B B · gτlbl′ = gb+τlbl′ . If the value X = ga+τlbl

received in CKS was output by any client lbl, we look up the used randomness τlbl and compute the
DHE key as

Z B C · Aτlbl′ · Bτlbl · gτlbl ·τlbl′ .

The rest is exactly as in Game 3.

Although, we changed the way the sessions choose their key share values, we do not change their
distribution. The key shares X , resp. Y , for all sessions still are distributed uniformly and independently
at random in G. Further, observe that the computation of Z yields valid DHE key based on the DH values
sent by the respective parties. Thus, we have

Adv3 = Adv4.

Game 5. Using the preparations done in Game 4, we now argue that the adversary cannot learn anything
about the values htsC and htsS unless it is able to break a variant of the CDH problem. To that end, we
abort the game whenever the adversary queries the random oracle F1 for (Z,CH ‖ CKS ‖ SH ‖ SKS), where
(CH,CKS) and (SH,SKS) were output by honest sessions, respectively, and Z = gxy such that CKS contains
gx and SKS contains gy . We denote the corresponding event by aborthts. Observe that the challenger
can efficiently check whether Z = gxy because it knows the exponents x and y for every honest session.
Note that if the challenger aborts the game due to this rule, the adversary was able to compute Z by
only observing ClientKeyShare and ServerKeyShare. Thus, we can use A to break a computational
DH problem. To be precise, we break the SDH problem in this case. This is due to the reason that the
reduction needs the DDH oracle provided in SDH experiment given in Definition 3 to recognize a valid
solution Z .

Construction of a SDH-adversary B5. The reduction B5 receives as input group elements (A,B) =
(ga,gb) ∈ G2 and outputs a group element C ∈ G. Moreover, it has access to a DDH oracle DDH(A, ·, ·).
B5 simulates Game 4 for adversary A, but instead of choosing fresh exponents in the beginning of the
experiment, it uses (A,B) received as input. Further, the reduction does not know the exponents a and b.
Therefore, it cannot compute Z for any session as described in Game 4. In these cases, we use that Z is
input to the random oracle and the random oracle is under the control of the reduction. Whenever an
honest session lbl would evaluate the random oracle F1 to compute

htsC ‖ htsS B F1(Z,CH ‖ CKS ‖ SH ‖ SKS),

B5 replaces Z by a place holder ?lbl, chooses a fresh image v $
← {0,1}2µ and programs

(?lbl,CH ‖ CKS ‖ SH ‖ SKS) 7→ v
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into the random oracle F1. If lbl has a contributively partnered session lbl′, we need to make sure that lbl′

uses the same value v for its computations to ensure consistency.
Using the value htsC ‖ htsS = v, B5 can proceed with the computations without knowing a or b at

all. Then, if the adversary queries the random oracle F1 for (Z,CH ‖ CKS ‖ SH ‖ SKS), where (CH,CKS) was
output by some honest client session lbl and (SH,SKS) was output by some honest server session lbl′, B5
needs to check whether the adversary was able to break CDH, or whether it only made a random query.
Therefore, it first needs to de-randomize Z . To that end, it looks up the randomnesses used by session
lbl output (CH,CKS) and session lbl′ output (SH,SKS), respectively. Note that due to the modifications of
Game 1 these sessions are unique. We denote the respective randomnesses by τlbl and τlbl′, and compute

Z ′ B Z · (Aτlbl′ · Bτlbl · gτlbl ·τlbl′ )
−1 .

Then, if DDH(B, Z ′) = 1 it outputs Z ′ and halts. Otherwise, it continues to simulate the game for A.
If the challenger aborts the game due to aborthts, B5 would win with certainty. Thus, we have

Adv4 ≤ Adv5 + Pr[aborthts] ≤ Adv5 + AdvSDH
G, g (B5).

This modification has an important implication. When the challenger never aborts due to aborthts,
we get that the adversary never gets hold of htsC ‖ htsS computed by any honest sessions not under its
control. In particular, this means that from the view of the adversary htsC ‖ htsS is a uniformly and
independently (from the rest of the transcript) distributed bit string. Clearly, this also means that htsC
and htsS considered individually are distributed uniformly and independently (also from each other!) at
random.

The main technical step of our proof is the usage of function F1. Using function F1, we achieve that
the DHE key Z and the messages ClientHello and ServerHello are bound together in a single function
call (similar to the key derivation in TLS 1.2). If this would not be the case the reduction in this step
would need to iterate over every pair of random values (τlbl, τlbl′), compute the value Z ′ for each of these
pairs and check the DDH oracle for validity. This is rather inefficient (i. e., losing tightness) and is solved
by the function F1 in combination with Game 1 in an elegant way. Furthermore, we need F1 to be a
programmable random oracle to solve the “commitment problem” discussed by Gjøsteen and Jager [38]
to achieve tightness. The programming of the random oracle in combination with the SDH assumption is
an alternative solution to the widely used PRF-ODH assumption used in TLS proofs.

Game 6. Observe that due to Game 3, the adversary is only able to issue Test-queries to sessions that
have a first stage partner. In particular, this first stage partner is unique due to the modification given in
Game 1. Since client and server sessions agree on cid1 and thus on sid1 = (CH,CKS,SH,SKS), where CH
and SH are unique among the sessions, we also have a unique matching. In this game, we replace htk
by a uniformly random value h̃tk $

← {0,1}ν in all sessions that have a contributive first stage partner,
i. e., in every session that can possibly be tested by the adversary. Note that this is already determined
when the sessions compute htk. Clearly, we need to use the same value h̃tk in the contributively partnered
session. This modification should be unrecognizable unless the adversary is able to distinguish KDF from
a truly random function. We analyze the difference in A’s advantage introduced by this modification
by constructing a reduction against the multi-user pseudorandomness (Definition 4) of KDF for ns users,
where ns is the maximum number of sessions.

Construction of a MU-PRF-distinguisher B6. The reduction B6 has access to an oracle Ob(·, ·) and
outputs a bit b′ ∈ {0,1}. For convenience, we assume that the users in experiment ExpMU-PRF

KDF,ns (B6) are
identified by the same value as the unique session labels used in the MSKE experiment ExpMSKE

KE (A). B6
simulates Game 5 forA. Whenever the challenger in Game 5 would compute htk, B6 first checks whether
the session at hand, say lbl, has a contributive partner and if this is the case, it uses its oracle Ob(lbl, ε) to
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compute htk. Then, it sets htk to the same value for the partnered session. For the non-partnered session
as well as the rest of the simulation it proceeds exactly as in Game 5. Finally, if B6 outputs whatever A
outputs.

If Ob is the KDF, then B6 perfectly simulates Game 5. Otherwise, if Ob is a truly random function it
perfectly simulates Game 6. Thus,

Adv5 ≤ Adv6 + AdvMU-PRF
KDF,ns (B6).

Now we have that the handshake traffic key htk, i. e., htkC and htkS , used to encrypt the handshake
messages is distributed uniformly and independently at random in all sessions that can be tested. Hence,
the probability to guess the challenge bit correctly after any Test(lbl,1)-query is 1/2. This is because the
adversary is given a truly random key, independent of the test bit.

Game 7. Similar to Game 5, we next argue that the adversary does not learn anything about the the values
atsC and atsS unless it is able to break the SDH problem. We add a similar abort rule as before and abort
the game whenever the adversary queries the random oracle F2 for (Z,CH ‖ CKS ‖ SH ‖ SKS ‖ · · · ‖ SF), where
(CH,CKS) and (SH,SKS) were output by honest sessions, respectively, and Z = gxy such that CKS contains
gx and SKS contains gy . We denote the corresponding event by abortats. To analyze the probability of
abortats, we construct an adversary B7 against the SDH assumption. The construction of B7 follows along
the lines of B5 except that we replace the considered random oracle by F2 and the considered random
oracle query by (Z,CH ‖ CKS ‖ SH ‖ SKS ‖ · · · ‖ SF).

Following the same argumentation as in Game 5, we get

Adv6 ≤ Adv7 + Pr[abortats] ≤ Adv7 + AdvSDH
G, g (B7).

Game 8. In this game, we replace atk by a uniformly random value ãtk $
← {0,1}ν in all sessions that

have a contributive first stage partner, i. e., in every session that possibly can be tested by the adversary.
Note that this is already determined when the sessions compute atk. Clearly, we need to use the same
value ãtk in the contributively partnered session. This step is analogous to Game 6, and thus supplies

Adv7 ≤ Adv8 + AdvMU-PRF
KDF,ns (B8).

Game 9. In this game, we argue that the adversary does not learn anything about the stage-3 key ems.
To that end, we employ the same argumentation already given in Games 5 and 7 that this is the case
unless the adversary is not able to break the SDH assumption. Formally, we abort the game whenever
the adversary queries the random oracle F3 for (Z,CH ‖ CKS ‖ SH ‖ SKS ‖ · · · ‖ SF), where (CH,CKS) and
(SH,SKS) were output by honest sessions, respectively, and Z = gxy such that CKS contains gx and SKS
contains gy . We denote the corresponding event by abortems. To analyze the probability of abortems, we
construct an adversary B9 against the SDH assumption. The construction of B9 follows along the lines of
B5 except that we replace the considered random oracle by F3 and the considered random oracle query by
(Z,CH ‖ CKS ‖ SH ‖ SKS ‖ · · · ‖ SF).

Following the same argumentation as in Games 5 and 7, we get

Adv8 ≤ Adv9 + Pr[abortems] ≤ Adv9 + AdvSDH
G, g (B9).
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Game 10. In this game, we argue that the adversary does not learn anything about the stage-4 key rms.
To that end, we employ the same argumentation already given in Games 5, 7 and 9 that this is the case
unless the adversary is not able to break the SDH assumption. Formally, we abort the game whenever
the adversary queries the random oracle F4 for (Z,CH ‖ CKS ‖ SH ‖ SKS ‖ · · · ‖ CF), where (CH,CKS) and
(SH,SKS) were output by honest sessions, respectively, and Z = gxy such that CKS contains gx and SKS
contains gy . We denote the corresponding event by abortrms. To analyze the probability of abortrms, we
construct an adversary B10 against the SDH assumption. The construction of B10 follows along the lines
of B5 except that we replace the considered random oracle by F4 and the considered random oracle query
by (Z,CH ‖ CKS ‖ SH ‖ SKS ‖ · · · ‖ CF).

Following the same argumentation as in Games 5, 7 and 9, we get

Adv9 ≤ Adv10 + Pr[abortrms] ≤ Adv10 + AdvSDH
G, g (B10).

Closing remarks. Finally, we have the case that in Game 10 the keys of either stage, i. e., htk, atk, ems
and rms, are from the view of the adversary uniformly and independently distributed bit strings. This
implies that for each Test-query, the distribution of the received key is independent of the test bit bTest.
Therefore, the probability that the adversary guesses the test bit correctly is 1/2. Hence, the advantage in
guessing the test bit correctly in Game 10 is

Adv10 = 0.

Overall, we get

AdvMSKE
TLS1.3(A) ≤ AdvColl-Res

H (B2) + AdvMU-EUF-CMAcorr

SIG, |U | (B3) + AdvSDH
G, g (B5)

+ AdvMU-PRF
KDF,ns (B6) + AdvSDH

G, g (B7) + AdvMU-PRF
KDF,ns (B8)

+ AdvSDH
G, g (B9) + AdvSDH

G, g (B10) +
n2
s

2λ
.

7 Tight Compositional Security of MSKE Protocols

In this section, we revisit the latest version of the composition theorem of MSKE-protocols stated by
Günther [40, Thm. 4.4]. The original theorem suffers from a linear loss in the number of sessions involved
in the protocol. However, Günther already conjectures that the hybrid argument inducing the linear loss
in the proof of the composition theorem might be removed by making use of the multiple Test-queries
allowed in MSKE model (Section 3). Currently, each hybrid step only uses a single Test-query in the
reduction to the MSKE-security (see [40, Lem. 4.5]). Using as many Test-queries in the reduction to the
MSKE experiment as number of sessions removes the necessity of a hybrid argument.

In the following, we recall necessary preliminaries from [40], state the improved (in terms of tightness)
composition theorem, prove it and finally discuss the implications on TLS 1.3.

7.1 Compositional Security of MSKE Protocols

In general, key exchange protocols are only reasonable when used in combination with another protocol
using the derived keys. However, it is not trivially clear that the composition of a key exchange protocol
with a “partner protocol” still remains secure. To tame complexity of the security analysis it is always
desirable to be as modular as possible. Therefore, the appealing option is to prove the two protocols
secure on there own and apply some generic composition theorem to show that the composition remains
secure. In case of the standard Bellare-Rogaway key exchange model [12], Brzuska et al. [23] were able
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to show that a protocol that is secure in the Bellare-Rogaway model can be securely composed with an
arbitrary symmetric key protocol.

Fischlin and Günther [36] transferred this result into the multi-stage setting, which also evolved
over time with the MSKE model (Section 3), see [31, 33, 37, 40]. We refer to the most recent version
presented in [40]. The result states that an MSKE-secure protocol providing key-independence, stage- j
forward secrecy and multi-stage session matching (see below), can be securely composed with an arbitrary
symmetric key-protocol at a forward-secure, external and non-replayable stage.

7.1.1 Composed Security Experiment

Next, we describe the composed experiment. Let ExpMSKE
KE be the MSKE security experiment involving

protocol KE and let ExpGOAL
Π

be some security experiment for an arbitrary symmetric key protocol Π. As
Günther [40], we fix some stage i and consider only the keys of this stage to be used in Π.

We denote the composition of KE and Π, where only the stage-i keys are used in Π, by KEi;Π.
The composed security experiment is denoted by ExpMSKE;GOAL

KEi ;Π and is defined as follows for some
adversary A: In essence, adversary A is challenged in the composed game to win the sub-experiment
ExpGOAL

Π
(A) with the modification of keys being not chosen by the challenger but originate from KE. To

that end, we start by simulating ExpMSKE
KE (A). We introduce a special key registration query in ExpGOAL

Π

to allow using keys originating from KE. This query is only executed by the composed game. Upon
acceptance of a session key keyi in stage i of some session of KE such that the key was derived by
either an authenticated session or a contributively partnered session, we register keyi as a new key in
the sub-experiment ExpGOAL

Π
(A) allowing the adversary to issue queries as defined in ExpGOAL

Π
involving

this (and possibly previous registered) key(s). To be precise, we only register accepted keys keyi of a
session lbl such that either lbl has an authenticated communication partner, i. e., lbl.authi = mutual or
lbl.authi = unilateral and lbl.role = initiator, or has an honest contributive partner, i. e., there is a session
lbl′ in KE with lbl.cidi = lbl′.cidi . This is important to make sure that adversary has no information about
the registered keys. Otherwise, we cannot guarantee security in ExpGOAL

Π
(A). The composed game can

be viewed as a concurrent execution of ExpMSKE
KE (A) and ExpGOAL

Π
(A) by some challenger. The adversary

is allowed to issue queries of both experiment, which the challenger essentially just relays to the suitable
sub-experiment. In case of queries, we need to make the following restrictions: First, as mentioned above,
the key registration query for ExpGOAL

Π
can only be asked by the composed experiment challenger. Also,

this query is only allowed to be executed when a key is accepted in stage i. Second, Reveal-queries of
ExpMSKE

KE are not allowed for stage i keys. This is due to the reason that the corruption of stage i keys might
only be captured by ExpGOAL

Π
. Third, the Test-query makes no sense in the composed experiment as we

aim for the security goals of Π in the composed experiment. Finally, adversary A wins the composed
experiment, if it is able to win the sub-experiment ExpGOAL

Π
(A) with access to the oracles discussed above.

7.1.2 Multi-Stage Session Matching

We recall the definition of a multi-stage session matching algorithm stated by [40].

Definition 11. Let A be any adversary interacting in the experiment ExpMSKE
KE (A). We say an algorithm

M is a multi-stage session matching algorithm if the following holds. On input a stage i, the public
information of the experiment, an ordered list of all queries made by A and responses from ExpMSKE

KE (A)

at any point of the experiment execution, as well as a list of all stage- j keys with j < i for all session
accepted at this point, algorithmM outputs two lists of pairs of all session in stage i. Here, the first list
contains exactly those pairs of sessions that are partnered (i. e., they share the same session identifier sidi).
The second list contains exactly those pairs of sessions that are contributively partnered (i. e., they share
the same contributive identifier cidi).

We say KE allows for multi-stage session matching, if such an algorithmM exists for KE.
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Note that the session matching algorithms can be run at any point of the execution of the key exchange
protocol.

7.2 Improved Multi-Stage Compositional Security

Next, we restate the composition theorem of Günther [40] with improved tightness. Compared to [40],
we reduced the factor of the MSKE advantage to 1. This was already conjectured in [40].

Theorem 7. Let KE be a MSKE-secure (Definition 10) key exchange protocol with properties (M,AUTH,
USE) and key length ν providing key independence and stage- j forward secrecy and that allows for
multi-stage session matching (Definition 11). Let Π be a symmetric-key protocol that is secure in the sense
of some security experiment ExpGOAL

Π
and keys are chosen uniformly at random from {0,1}ν. Further,

let i ∈ M with i ≥ j be a stage of KE such that USEi = external. Then, for any adversary A running in
ExpMSKE;GOAL

KEi ;Π (A), we can construct adversaries B1,B2,B3 such that

AdvMSKE;GOAL
KEi ;Π (A) ≤ AdvMatch

KE (B1) + AdvMSKE
KE (B2) + AdvGOAL

Π (B3).

The proof of Theorem 7 basically follows along the lines of [40, Thm. 4.4].

Proof. The proof follows a sequence of games [68]. Let Advδ denote the advantage of the adversary A
in game δ.

Game 0. The first game equals the composed security experiment ExpMSKE;GOAL
KEi ;Π (A), i. e.,

Adv0 = AdvMSKE;GOAL
KEi ;Π (A).

Game 1. Next, we modify Game 0 such that it always outputs the same key keyi for two partnered
session in stage i. To that end, we raise the event abortMatch in case two partnered session do not agree on
the same key. Therefore,

Adv0 ≤ Adv1 + Pr[abortMatch].

To analyze Pr[abortMatch], we construct an adversary B1 against the Match-security of KE running A as a
subroutine.

Construction of adversary B1. The adversary B1 simply relays every query made by A in the sub-
experiment ExpMSKE

KE (A) to its challenger and sends the responses back toA. The second sub-experiment
ExpGOAL

Π
can simulate B by itself. By doing this, B1 provides a perfect simulation of the composed

security experiment for A. Thus, if B1 is run with an adversary A that triggers the event abortMatch it
will always succeed in breaking the Match-security of KE, i. e.,

Pr[abortMatch] ≤ AdvMatch
KE (B1).

Game 2. In this game, we make the crucial step of this proof. This is also the step that differs from the
analysis of Günther [40]. We change the way how the keys registered in the sub-experiment ExpGOAL

Π
are

chosen. That is, whenever a session accepts in stage i such that the accepted key would be registered
in the sub-experiment (i. e., either peer-authentication or an honestly partnered session, for details see
above), we do not register the real key keyi but register a freshly chosen key key′i

$
← {0,1}ν.

We claim that based on adversary A, we can construct an B2 such that

|Adv1 − Adv2 | ≤ AdvMSKE
KE (B2).

Note that Adv1 and Adv2 depend on A.
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Construction of B2. The adversary B2 simulates the composed security experiment ExpMSKE;GOAL
KEi ;Π (A)

for A. To that end, it relays all queries of A issued to the MSKE sub-experiment directly to its MSKE-
experiment, with a few exceptions described below. In case of the the symmetric-key sub-experiment, B2
is able to simulate it on its own. Important to note it that it needs to use the stage-i keys established during
the key exchange. To describe the simulation of the oracles in detail, we use the following two maps:

1. SDATA : LABELS→ {initiator, responder}×{unauth,mutual,unilateral}×({0,1}ν)i−1, which stores
the role, the authentication type used in stage i and all sessions keys for stages j < i of each session
involved in KE, and

2. SKEY : LABELS → {0,1}ν, which stores the stage-i key that is registered in the symmetric key
protocol.

For the oracles, we have the following:

• NewSession, Reveal and Corrupt queries are simply forwarded to ExpMSKE
KE (B2) and responses

directly forwarded to A. In addition, B2 adds after every NewSession-query an entry to SDATA
containing the issued label, the respective role and the respective authentication type for stage i.
Let us argue why it is valid to just forward Reveal and Corrupt to the experiment B2 is running
in. In case of Reveal, note that we assume key independence for KE. This means that any query
Reveal(·, i′) with i′ , i (Reveal(·, i) is forbidden in the composed experiment) does not effect the
security of a stage-i key (since they are independent). In case of Corrupt, the stage- j ( j ≤ i) forward
secrecy assumed for KE make sure that stage i keys are untouched by Corrupt queries.13

• Send-queries are also forwarded to the experiment ExpMSKE
KE (B2) and answered relayed back to A.

However, B2 is doing the following. If some session lbl changes in ExpMSKE
KE (B2) to an accepting

state for some stage j < i in response to a Send-query, adversary B2 issues a Reveal(lbl, j)-query
and stores the key key j it gets in response in the map SDATA. Due to the fact that KE is key
independent by assumption, such a Reveal query does not affect any stage-i key. We need to get
these keys to run the multi-stage session matching algorithm in next step.
When any session lbl changes into an accepting state in stage i, B2 runs the multi-stage session
matching algorithm (Definition 11) for KE on input all queries and respective responses A issued to
the sub-experiment ExpMSKE

KE (A) of the composed experiment as well as all established stage- j keys
for j < i stored in SDATA. The algorithm outputs all sessions that are partnered and also those that
are contributively partnered in stage i.
If some session lbl is partnered with some other session lbl′ such that SKEY(lbl′) is set, B2 sets
SKEY(lbl) accordingly and provides A with an identifier for SKEY(lbl) of lbl in the sub-experiment
ExpGOAL

Π
(A) to enable queries on the key. Due to Game 1, we have already ensured that these keys

are always identical.
If this is not the case, B2 needs to check whether the key of lbl is supposed to be registered in
the sub-experiment ExpGOAL

Π
(A). Therefore, it checks whether lbl either lbl has an authenticated

communication partner, i. e., lbl.authi = mutual or lbl.authi = unilateral and lbl.role = initiator
(obtained using SDATA), or has an honest contributive partner, i. e., there is a session lbl′ in KE with
lbl.cidi = lbl′.cidi. In case this is true, B2 queries Test(lbl, i), stores the resulting key in SKEY(lbl)
and registers SKEY(lbl) for lbl in the sub-experiment ExpGOAL

Π
(A). The adversary is given an

identifier for SKEY(lbl) to query issues on that key.

13Note that compared to [40], we do not mention the non-replayability of stage i at this point. This is due to the reason that we
do not have RevealSemiStaticKey-queries in our model. However, non-replayability is important for a two-party symmetric key
protocol to ensure that a key is shared only between two parties.
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It remains to argue that B2 wins the experiment ExpMSKE
KE (B2) if A wins the composed experiment

ExpMSKE;GOAL
KEi ;Π (A). To that end, we argue that 1) B2 never triggers the lost-flag to be set and 2) B2 provides

a perfect simulation for A.
First, checking for a partnered session that might already have a set value for SKEY, ensures that B2

only tests the session of two partnered sessions that accepts the key first (see Section 3.3, Test). Moreover,
it never both tests and reveals a key (see Definition 10, 4.). This is due to the reason that B2 only tests
stage i keys, never reveals stage i keys and the adversary is not allowed to query the Test-oracle as well
as Reveal(·, i)-queries at all. Finally, as we only register keys of sessions use authentication or have a
contributive partner, we also never test a session with unauthenticated or dishonest contributive partner
(see Section 3.3, Test). Hence, B2 never triggers the lost-flag to be set.

Second, we argue that B2 provides a perfect simulation for A. Note that stage i of KE is external,
i. e., all keys established are external keys, if the Test-query returns a random key (i. e., bTest = 0) then it
does replace the actual key established in the protocol, which does not corrupt a perfect simulation. First
of all, B2 outputs 1 if A terminates and wins the composed security experiment ExpMSKE;GOAL

KEi ;Π (A). If
A looses, it outputs 0. Hence, B2 perfectly simulates in case bTest = 0, Game 2 and in case bTest = 1,
perfectly Game 1. Therefore, we have that B2 always wins if A wins and

|Adv1 − Adv2 | ≤ AdvMSKE
KE (B2).

Final Step. Finally, we informally claim that based on an adversary A winning in Game 2, we can
construct an adversary B3 that wins the game ExpGOAL

Π
(B3) against Π. More formally, we show that given

A running in Game 2, we can construct an adversary B3 running in ExpGOAL
Π
(B3) such that

Adv2 ≤ AdvGOAL
Π (B3).

Construction of B3. The adversary B3 simulates Game 2 for A. Here, it simulates the key exchange
sub-experiment completely on its own while forwarding any query issued to symmetric key sub-experiment
to its experiment ExpGOAL

Π
(B3). Due to the reason that stage-i keys are external, they are independent of

the actual protocol, i. e., B3 can provide a perfect simulation on its own, since the keys are not effecting
the protocol. However, we need to be careful when registering the keys in the experiment ExpGOAL

Π
(B3).

Therefore, we distinguish two cases when a session accepts a key in response to a Send-query:

1. If the session accepting the key is partnered, B3 needs to make sure that the same key is registered
for the partnered session in ExpGOAL

Π
(B3) and therefore returns the respective identifier of that key

to the adversary. This is important to enable the adversary to issue queries in the symmetric key
experiment.

2. Otherwise, B3 asks its experiment ExpGOAL
Π
(B3) for a fresh key, which it then registers this fresh

key in the composed experiment for the according session.

Due to Game 2 all keys are distributed uniformly at random (independent from each other). This is the
same way the keys are chosen in ExpGOAL

Π
(B3). In addition, ensuring consistency between partnered

sessions provides us that B3 perfectly simulates Game 2 for A. When A stops, B3 simply outputs
whatever A outputs. Recall that A in the composed security experiment essentially is challenged to to
win the experiment ExpGOAL

Π
(A) with keys originating from the key exchange protocol. Therefore, B3

will provide a correctly formed output. Hence, we obtain the following relation as claimed before:

Adv2 ≤ AdvGOAL
Π (B3).

Taking all steps together, we get the statement claimed in Theorem 7.
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7.3 Tight Compositional Security of TLS 1.3

The results on Match-security (Theorem 1) and on MSKE-security (Theorem 6) show that the tight security
of TLS 1.3 is in principle achievable given the TLS 1.3 Record Protocol provides tight security as well.
Bellare and Tackmann [13] and Hoang et al. [41] investigated the multi-user security of AES-GCM as
used in TLS 1.3. In particular, Hoang et al. were able to give a tight bound for the nonce-randomization
mechanism ([41, Thm. 4.2]) that is adopted in TLS 1.3 ([65, Sect. 5.3]).

7.3.1 Using the Bound of Hoang et al. for the TLS 1.3 Record Protocol

To formally apply the result of [41] in Theorem 7, we need to introduce a trivial intermediate step. TLS 1.3
as defined in Section 4 derives every traffic (i. e., handshake and application traffic key) as a pair of client
and server key. To reflect this in the symmetric key protocol, we define an intermediate experiment that
takes a key that can be split up into two separate keys and uses these keys for an authenticated encryption
experiment. The adversary then can issue queries for both client and server individually.

To incorporate the result of [41], we extend their authenticated encryption experiment (see [41, Sect.
2.1]) accordingly.

Definition 12. Let AEAD[E] = (AEAD[E].Gen,AEAD[E].Enc,AEAD[E].Dec) be an authenticated en-
cryption scheme with associated data using an ideal cipher E : {0,1}k × {0,1}n → {0,1}n, where k,n ∈ N.
Further, let the Gen output keys of length ν ∈ N such that 2 | ν and Enc outputs ciphertexts that are λ-bit
longer then the message.

Consider the following experiment ExpCOMP-MU-AE
AEAD[E],U (A) played between a challenger and an adversary

A:

1. The challenger generates a key Ki
$
← AEAD[E].Gen for each user i ∈ [U]. We view each key as

KC
i ‖ KS

i B Ki. Further, it samples a bit b
$
← {0,1}.

2. The adversary may adaptively issue queries to the following oracles:

• ClientEnc(i,N, A,M): If b = 0, output AEAD[E].Enc(KC
i ,N, A,M). Otherwise, return

C
$
← {0,1} |M |+λ.

• ClientVf(i,N, A,C): If b = 0, set V B AEAD[E].Dec(KC
i ,N, A,C) and return (V ,⊥).

Otherwise, return false.
• ServerEnc(i,N, A,M): If b = 0, output AEAD[E].Enc(KS

i ,N, A,M). Otherwise, return
C

$
← {0,1} |M |+λ.

• ServerVf(i,N, A,C): If b = 0, set V B AEAD[E].Dec(KS
i ,N, A,C) and return (V ,⊥).

Otherwise, return false.
• Prim(J,X): If X = (+, x), return EJ (x). Otherwise, if X = (−, y), return E−1

j (y).

Further, we restrict the adversary in the following sense: We requireA that it must not repeat (i,N)
for any ClientEnc and ServerEnc query, respectively. It can repeat nonces for ClientVf and ServerVf
queries. However, it is not allowed to issue a query {Client,Server}Enc(i,N, A,M) to obtain a
ciphertext C and then query the corresponding {Client,Server}Vf(i,N, A,C) oracle to avoid trivial
wins.

3. Finally, the adversary outputs a guess b′ ∈ {0,1}.

4. The experiment outputs 1 if b = b′ and the above stated conditions were not hurt. Otherwise, it
outputs 0.
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We denote the advantage of an adversary A in winning the experiment ExpCOMP-MU-AE
AEAD[E],U (A) by

AdvCOMP-MU-AE
AEAD[E],U (A) B

����Pr[ExpCOMP-MU-AE
AEAD[E],U (A)] −

1
2

����
where ExpCOMP-MU-AE

AEAD[E],U (A) denotes the experiment defined above.

It remains to show that the tight bound given by Hoang et al. [41] implies tight security of AES-GCM
in the model given in Definition 12.

Theorem 8. Let E : {0,1}k × {0,1}n → {0,1}n, where k,n ∈ N, be a blockcipher that is modeled
as an ideal cipher. Let AEAD[E] = (AEAD[E].Gen,AEAD[E].Enc,AEAD[E].Dec) be an authenticated
encryption scheme with associated data using an ideal cipher E : {0,1}k × {0,1}n → {0,1}n, where
k,n ∈ N. Further, let the Gen output keys of length ν ∈ N such that 2 | ν and Enc outputs ciphertexts that
are λ-bit longer then the message.

Further, let A be an adversary against AEAD[E] in ExpCOMP-MU-AE
AEAD[E],U (A). Then, we can construct an

adversary B such that

AdvCOMP-MU-AE
AEAD[E],U (A) ≤

1
2

Advmu-ae
AEAD[E],2U (B)

where AdvCOMP-MU-AE
AEAD[E],U (·) is defined as in Definition 12 and Advmu-ae

AEAD[E],2U (·) is as defined in [41, Sect. 2.1].

Remark 4. Observe that the factor of 1
2 results from the fact that the experiment ExpCOMP-MU-AE

AEAD[E],U (·) is a
“bit-guessing experiment” in contrast to the “real-or-random experiment” used in [41]. Further, we add a
parameter of users to the advantage notation of Advmu-ae

AEAD[E],2U (·) to clarify the number of users running in
the corresponding experiment.

Sketch. We briefly give the main idea in form of sketch. The adversary B gets keys (K1, . . . ,K2U ) as
input from its challenger. It then defines U keys

(K ′
(1,2),K

′
(3,4), . . . ,K

′
(2U−1,2U)) B (K1 ‖ K2,K3 ‖ K4, . . . ,K2U−1 ‖ K2U ).

Subsequently, it hands (K ′
(1,2),K

′
(3,4), . . . ,K

′
(2U−1,2U)) toA and simulates the experimentExpCOMP-MU-AE

AEAD[E],U (A).
The important step now is the correct mapping of oracles:

Let (i, j) be any key identifier such that K(i, j) was handed to A. We map the oracles of A to the
oracles of B as follows:

ClientEnc((i, j), ·) 7→ Enc(i, ·) ClientVf((i, j), ·) 7→ Vf(i, ·)
ServerEnc((i, j), ·) 7→ Enc( j, ·) ServerVf((i, j), ·) 7→ Vf( j, ·)

The Prim oracle queries are just relayed to the Prim oracle of B. This way B provides a perfect simulation
of ExpCOMP-MU-AE

AEAD[E],U (A).

7.3.2 Implications of Theorem 8

We stress that the tight bound given for the nonce-randomization of AES-GCM given in [41] is independent
of the number of users. Thus, Theorem 8 shows that the given tight bound still applies to the experiment
ExpCOMP-MU-AE

AEAD[E],U (·) although it involves twice as much users.
Using the composition theorem stated in Theorem 7 we obtain that given a MSKE protocol KE that

provides a tight bound on both Match-security (Definition 9) and MSKE-security (Definition 10) and a
symmetric key protocol Π that provides a tight bound in its respective security model, we result in a
tightly secure composed protocol. For TLS 1.3, we were able to show in Theorem 6 when instantiated
with suitable, tightly-secure primitives that the TLS 1.3 Handshake protocol is tightly-MSKE-secure in
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the random oracle model. The results of Section 5 on the tight security of the PRFs used in the TLS 1.3
Handshake protocol supplies in Corollary 4 that we are indeed able to instantiate TLS 1.3 tightly-secure
in the random oracle model with the exception of the signature scheme SIG. For the TLS 1.3 Record
Layer, we can use Theorem 8 and the intermediate experiment defined in Definition 12 to incorporate
the tight bound of Hoang et al. [41] for AES-GCM’s nonce randomization mechanism. Hence, we have
that the composition of the TLS 1.3 Handshake protocol when using the keys derived in stage 2, i. e., the
application traffic key, in the experiment Definition 12 enables an almost tight instantiation of TLS 1.3 for
every TLS_AES_*_GCM_* ciphersuites.

Also, security for the Record Protocol in a stronger security model in a tightly-secure manner remains
an open question. The result of Hoang et al. [41] is stateless, however as attacks in the past have shown,
security against reordering attacks is an important property for TLS. We note at this point that the in
the way we did it in Definition 12, one can transfer every multi-user notion into a similar experiment.
Therefore, stronger results easily can be incorporated by a generalization of the experiment given in
Definition 12.
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