
Malicious Security Comes Free in Honest-Majority MPC

Vipul Goyal and Yifan Song(�)

Carnegie Mellon University, Pittsburgh, USA
vipul@cmu.edu, yifans2@andrew.cmu.edu

Abstract. We study the communication complexity of unconditionally secure MPC over point-to-point
channels for corruption threshold t < n/2. We ask the question: “is it possible to achieve security-with-
abort with the same concrete cost as the best-known semi-honest MPC protocol?” While a number
of works have focused on improving the concrete efficiency in this setting, the answer to the above
question has remained elusive until now.
We resolve the above question in the affirmative by providing a secure-with-abort MPC protocol with
the same cost per gate as the best-known semi-honest protocol. Concretely, our protocol only needs
5.5 field elements per multiplication gate per party which matches (and even improves upon) the
corresponding cost of the best known protocol in the semi-honest setting by Damg̊ard and Nielsen.
Previously best-known maliciously secure (with abort) protocols require 12 field elements. An additional
feature of our protocol is its conceptual simplicity.

1 Introduction

In secure multiparty computation (MPC), a set of n parties together evaluate a function f on their private
inputs. This function f is public to all parties, and, may be modeled as an arithmetic circuit over a finite field.
Very informally, a protocol of secure multiparty computation guarantees the privacy of the inputs of every
(honest) individual except the information which can be deduced from the output. This notion was first
introduced in the work [Yao82] of Yao. Since the early feasibility solutions proposed in [Yao82,GMW87],
various settings of MPC have been studied. Examples include semi-honest security vs malicious security,
security against computational adversaries vs unbounded adversaries, honest majority vs corruptions up to
n− 1 parties, security with abort vs guaranteed output delivery and so on.

In this work, we focus on the information-theoretical setting (i.e., security against unbounded adversaries).
The adversary is allowed to corrupt at most t < n/2 parties and is fully malicious. We assume the existence
of a private point-to-point communication channel between every pair of parties. We are interested in the
communication complexity of the secure MPC, which is measured by the number of bits via private point-
to-point channels. To achieve the best efficiency, our protocol allows a premature abort in the computation
(i.e., security-with-abort) and does not achieve fairness or guaranteed output delivery.

The first positive solutions in this setting were proposed in [RBO89,Bea89] and the focus subsequently
shifted to efficiency. In particular, several recent works [GIP+14,LN17,CGH+18,NV18] have focused on im-
proving the communication complexity. Genkin et al. [GIP+14] provided the first construction with malicious
security (with abort) having the same asymptotic communication complexity as the best-known semi-honest
protocol [DN07] (hereafter referred to as the DN protocol). Since then, the main focus in this line of research
has been to improve the concrete communication complexity per gate. Compared with the DN protocol,
the recent breakthrough [CGH+18,NV18] showed that achieving security-with-abort requires only twice the
cost of achieving semi-honest security. In the setting of 1/3 corruption threshold, a recent beautiful work
of Furukawa and Lindell [FL19] presented a construction which achieves the same communication cost as

V. Goyal—Research supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via 2019-1902070008, an NSF award 1916939, a gift from Ripple,
a JP Morgan Faculty Fellowship, a PNC center for financial services innovation award, and a Cylab seed funding
award.
Y. Song—Research supported in part by a Cylab Presidential Fellowship and grants of Vipul Goyal mentioned
above.

the DN protocol. When considering a 3-party computation for a binary circuit, a recent work [ABF+17]
presented a construction where each AND gate only requires 7 bits per party. As a result, over a billion AND
gates could be processed within one second.

Despite all these improvements in concrete efficiency, the question of whether the efficiency gap between
malicious security (with abort) and semi-honest security is inherent in the honest majority setting still
remains open. In this paper, we ask the following natural question:

“Is it possible to achieve malicious security-with-abort with the same concrete cost as the best-known
semi-honest MPC protocol?”

The best-known results in this setting [CGH+18,NV18] achieved concrete efficiency of 12 field elements
per multiplication gate, while the best-known semi-honest result [DN07] only requires 6 field elements per
multiplication gate. Note that, by representing the functionality as an arithmetic circuit, the communication
complexity of the protocol in the unconditional setting is typically dominated by the number of multiplication
gates in the circuit. This is because the addition gates can usually be done locally, requiring no communication
at all.

1.1 Our Results.

In this work, we answer the above question in the affirmative by presenting an MPC protocol with concrete
efficiency of 5.5 field elements per gate, which matches (and even improves upon) the concrete cost of the
best-known result [DN07] in the semi-honest setting. Our result is obtained by building on the technique
in [BBCG+19]. We observe that the additional cost in [CGH+18,NV18] comes from the verification of the
multiplications. We introduce a new technique inspired by [BBCG+19], which allows us to bring down
the cost to a term that only has a sub-linear dependence on the circuit size. In this way, the cost of the
verification no longer affects the concrete efficiency, and our result achieves the same concrete efficiency as
the DN protocol. Our protocol additionally makes a simple optimization to the DN protocol, which brings
down the cost from 6 field elements per gate to 5.5 field elements per gate. A sketch of our new technique
can be found in Section 2.

A particularly attractive feature of our protocol is its relative simplicity. Compared with the constructions
in [CGH+18,NV18], we also remove several checks to make the protocol as succinct as possible. Specifically,
the verification a batch of multiplication tuples is the only check in the protocol and the remaining parts
are the same as the semi-honest DN protocol. In particular, we do not check the consistency/validity of the
sharings as required in [CGH+18,NV18].

Furthermore, the security of our construction does not depend upon the field size. One can use a field
with size as low as n + 1 where n is the number of parties. On the other hand, the concrete efficiency of
both constructions from [CGH+18,NV18] suffers from having a large field size. An alternative presented in
[CGH+18] is to use a small field but then the verification must be done several times to reach the desired
security parameter. This however would increase the number of field elements per multiplication gate several
times. Another option presented in [NV18] allows one to reduce the field size without substantially increasing
the number of fields elements per gate. However, the field size must still be at least as large as the circuit
size and also depends upon the security parameter (and, e.g., cannot be a constant).

1.2 Related Works

In this section, we compare our result with several related constructions in both techniques and the efficiency.
In the following, let C denote the size of the circuit, φ denote the size of a field element, κ denote the security
parameter, and n denote the number of parties participating in the computation.

Security with abort. In [DN07], Damg̊ard and Nielsen introduce the best-known semi-honest protocol, which
we refer to as the DN protocol. The communication complexity of the DN protocol is O(Cnφ) bits. The
concrete efficiency is 6 field elements per multiplication gate (per party). In [GIP+14], Genkin, et al. show
that the DN protocol is secure up to an additive attack when running in the fully malicious setting. Based

2

on this observation, a secure-with-abort MPC protocol can be constructed by combining the DN protocol
and a circuit which is resilient to an additive attack (referred to as an AMD circuit). As a result, Genkin, et
al. [GIP+14] give the first construction against a fully malicious adversary with communication complexity
O(Cnφ) bits (for a large enough field), which matches the asymptotic communication complexity of the DN
protocol.

The construction in [CGH+18] also relies on the theorem showed in [GIP+14]. The idea is to check
whether the adversary launches an additive attack. In the beginning, all parties compute a random secret
sharing of the value r. For each wire w with the value x associated with it, all parties will compute two secret
sharings of the secret values x and r · x respectively. Here r · x can be seen as a secure MAC of x when the
only possible attack is an additive attack. In this way, the protocol requires two operations per multiplication
gate. The asymptotic communication complexity is O(Cnφ) bits (for a large enough field) and the concrete
efficiency is reduced to 12 field elements per multiplication gate.

An interesting observation is that the theorem showed in [GIP+14] implies that the DN protocol provides
perfect privacy of honest parties (before the output phase) in the presence of a fully malicious adversary. To
achieve security with abort, the only task is to check the correctness of the computation before the output
phase. This observation has been used in [LN17,NV18]. In particular, the construction in [NV18] achieves
the same concrete efficiency as [CGH+18] by using the Batch-wise Multiplication Verification technique
in [BSFO12], i.e., 12 field elements per multiplication gate. Our construction also relies on this observation.
Therefore, the main task is to efficiently verify a batch of multiplications such that the communication
complexity is sublinear in the number of parties.

In [BBCG+19], Boneh, et al. introduce a very powerful tool to achieve this task when the number of
parties is restricted to be a constant. Our result is obtained by instantiating this technique with a different
secret sharing scheme, which allows us to overcome this restriction so that it works for any (polynomial)
number of parties. Furthermore, we simplify this technique by avoiding the use of a robust secret sharing
scheme and a verifiable secret sharing scheme, which are required in [BBCG+19]. Our protocol additionally
makes a simple optimization to the DN protocol, which brings down the cost from 6 field elements per
multiplication gate to 5.5 field elements. More details about the comparison for techniques can be found in
the last paragraph of Section 2.6. A subsequent work [GLOS20] implements our construction and shows that
the performance beats the previously best-known implementation result [CGH+18] in this setting.

In [BGIN19], Boyle, et al. use the technique in [BBCG+19] to construct a 3-party computation with
guaranteed output delivery. In particular, they implement their verification for multiplication gates. As
shown in their implementation result, just the local computation of checking the correctness of 1 million
multiplication gates in the 31-bit Mersenne Field requires around 1 second. Note that this does not include any
computation cost related to the circuit and any communication cost. On the other hand, the implementation
result from [GLOS20] shows that our construction only needs 0.7 second for computing the whole circuit in
an even large field (61-bit Mersenne Field) in the 3-party setting. This shows that our construction is several
times faster.

Other Related Works. The notion of MPC was first introduced in [Yao82] and [GMW87] in 1980s. Feasibility
results for MPC were obtained by [Yao82,GMW87] [CDVdG87] under cryptographic assumptions, and
by [BOGW88,CCD88] in the information-theoretic setting. Subsequently, a large number of works have
focused on improving the efficiency of MPC protocols in various settings.

A series of works focus on improving the communication efficiency of MPC with output delivery guarantee
in the settings with different threshold on the number of corrupted parties. In the setting of honest majority,
a public broadcast channel is required. A rich line of works [CDD+99,BTH06,BSFO12,IKP+16] have focused
on improving the asymptotic communication complexity in this setting. In the setting of 1/3 corruption
threshold, a public broadcast channel can be securely simulated and therefore, only private point-to-point
communication channels are required. A rich line of works [HMP00,HM01,DN07,BTH08,GLS19] have focused
on improving the asymptotic communication complexity in this setting. In the setting where t < (1/3− ε)n,
packed secret sharing can be used to hide a batch of values, resulting in more efficient protocols. E.g., Damg̊ard
et al. [DIK10] introduced a protocol with communication complexity O(C logC log n·κ+D2

Mpoly(n, logC)κ)
bits.

3

When the number of corrupted parties is bounded by (1/2 − ε)n, Genkin et al. [GIP+14] showed that
one can even achieve sub-constant cost per gate relying on packed secret sharing. Several works have also
focused on the performance of 2-party computation and 3-party computation in practice. Examples in-
clude [LP12,NNOB12] for 2-party computation, [FLNW17,ABF+17] for 3-party computation and so on.

2 Technical Overview

2.1 Notations

In the following, we will use n to denote the number of parties and t to denote the number of corrupted
parties. In the setting of the honest majority, we have n = 2t+ 1.

The construction is based on Shamir Secret Sharing Scheme [Sha79]. We will use [x]d to denote a degree-d
sharing, or a (d+ 1)-out-of-n Shamir sharing. It requires at least d+ 1 shares to reconstruct the secret and
any d shares do not leak any information about the secret.

2.2 General Strategy and Protocol Overview

In [GIP+14], Genkin, et al. showed that several semi-honest MPC protocols are secure up to an additive
attack in the presence of a fully malicious adversary. As one corollary, these semi-honest protocols provide full
privacy of honest parties before reconstructing the output. Therefore, a straightforward strategy to achieve
security-with-abort is to (1) run a semi-honest protocol till the output phase, (2) check the correctness of
the computation, and (3) reconstruct the output only if the check passes.

Fortunately, the best-known semi-honest protocol in this setting [DN07] is secure up to an additive
attack. Our construction will follow the above strategy. The main task is the second step, i.e., checking the
correctness of the computation before reconstructing the final results.

2.3 Review: DN Semi-Honest Protocol

The best-known semi-honest protocol was proposed in the work of Damg̊ard and Nielsen [DN07]. The protocol
consists of 4 phases: Preparation Phase, Input Phase, Computation Phase, and Output Phase. Here we give
a brief description of these four phases.

Preparation Phase. In the preparation phase, all parties need to prepare several random sharings which
will be used in the computation phase. Specifically, there are two kinds of random sharings needed to be
prepared. The first kind is a random degree-t sharing [r]t. The second kind is a pair of random sharings
([r]t, [r]2t), which is referred to as double sharings. At a high-level, these two kinds of random sharings are
prepared in the following manner:

1. Each party generates and distributes a random degree-t sharing (or a pair of random double sharings).

2. Each random sharing (or each pair of double sharings) is a linear combination of the random sharings
(or the random double sharings) distributed by each party.

More details can be found in Section 3.3 and Section 3.4.

Input Phase. In the input phase, each input holder generates and distributes a random degree-t sharing of
its input.

4

Computation Phase. In the computation phase, all parties need to evaluate addition gates and multiplication
gates. For an addition gate with input sharings [x]t, [y]t, all parties just locally add their shares to get
[x + y]t = [x]t + [y]t. For a multiplication gate with input sharings [x]t, [y]t, one pair of double sharings
([r]t, [r]2t) is consumed. All parties execute the following steps.

1. All parties first locally compute [x · y + r]2t = [x]t · [y]t + [r]2t.
2. Pking collects all shares of [x · y + r]2t and reconstructs the value x · y + r. Then Pking sends the value
x · y + r back to all other parties.

3. All parties locally compute [x · y]t = x · y + r − [r]t.

Here Pking is the party all parties agree on in the beginning.

Output Phase. In the output phase, all parties send their shares of the output sharing to the party who
should receive this result. Then that party can reconstruct the output.

Improvement to 5.5 Field Elements. We note that in the second step of the multiplication protocol,
Pking can alternatively generate a degree-t sharing [x · y + r]t and distribute the sharing to all other parties.
Then in the third step, [x · y]t can be computed by [x · y + r]t − [r]t. In fact, Pking can set the shares of (a
predetermined set of) t parties to be 0 in the sharing [x·y+r]t. This means that Pking need not to communicate
these shares at all, reducing the communication by half. We rely on the following two observations:

– While normally setting some shares to be 0 could compromise the privacy of the secret (by effectively
reducing the reconstruction threshold), note that here x · y + r need not to be private at all.

– Parties do not actually need to receive x ·y+r from Pking. Rather, receiving shares of x ·y+r is sufficient
to allow them to proceed in the protocol.

This simple observation leads to an improvement of reducing the cost per gate from 6 elements to 5.5
elements. Note that in this construction, all multiplication gates at the same “layer” in the circuit can be
evaluated in parallel. Hence, it is even possible to perform a “load balancing” such that the overall cost of
different parties roughly remains the same.

2.4 Review: Batch-wise Multiplication Verification

This technique is introduced in the work of Ben-Sasson, et al. [BSFO12]. It is used to check a batch of
multiplication tuples efficiently. Specifically, given m multiplication tuples

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(m)]t, [y
(m)]t, [z

(m)]t),

we want to check whether x(i) · y(i) = z(i) for all i ∈ [m].
The high-level idea is constructing three polynomials f(·), g(·), h(·) such that

∀i ∈ [m], f(i) = x(i), g(i) = y(i), h(i) = z(i).

Then check whether f · g = h. Here f(·), g(·) are degree-(m− 1) polynomials so that they can be determined
by {x(i)}i∈[m], {y(i)}i∈[m] respectively. In this case, h(·) should be a degree-2(m − 1) polynomial which is

determined by 2m− 1 values. To this end, for i ∈ {m+ 1, . . . , 2m− 1}, we need to compute z(i) = f(i) · g(i)
so that h(·) can be computed by {z(i)}i∈[2m−1].

All parties first locally compute [f(·)]t and [g(·)]t using {[x(i)]t}i∈[m] and {[y(i)]t}i∈[m] respectively. Here a
degree-t sharing of a polynomial means that each coefficient is secret-shared. For i ∈ {m+ 1, . . . , 2m−1}, all
parties locally compute [f(i)]t, [g(i)]t and then compute [z(i)]t using the multiplication protocol in [DN07].
Finally, all parties locally compute [h(·)]t using {[z(i)]t}i∈[2m−1].

Note that if x(i) · y(i) = z(i) for all i ∈ [2m − 1], then we have f · g = h. Otherwise, we must have
f · g 6= h. Therefore, it is sufficient to check whether f · g = h. Since h(·) is a degree-2(m− 1) polynomials,

5

in the case that f · g = h, the number of x such that f(x) · g(x) = h(x) holds is at most 2(m − 1). Thus,
it is sufficient to test whether f(x) · g(x) = h(x) for a random x. As a result, this technique compresses m
checks of multiplication tuples to a single check of the tuple ([f(x)]t, [g(x)]t, [h(x)]t). A secure technique for
checking the tuple ([f(x)]t, [g(x)]t, [h(x)]t) was given in [BSFO12,NV18].

The main drawback of this technique is that it requires one additional multiplication operation per tuple.
Our idea is to improve this technique so that the check will require fewer multiplication operations.

2.5 Extensions

We would like to introduce two natural extensions of the DN multiplication protocol and the Batch-wise
Multiplication Verification technique respectively.

Extension of the DN Multiplication Protocol. In essence, the DN multiplication protocol uses a pair of random
double sharings to reduce a degree-2t sharing [x · y]2t to a degree-t sharing [x · y]t. Therefore, an extension of
the DN multiplication protocol is used to compute the inner-product of two vectors of the same dimension.

Specifically, let � denote the inner-product operation. Given two input vectors of sharings [x]t, [y]t, we
can compute [x � y]t using the same strategy as the DN multiplication protocol and in particular, with
the same communication cost. This is because, just like in the multiplication protocol, here all the parties
can locally compute the shares of the result. These shares are then randomized and sent to Pking for degree
reduction. More details can be found in Section 4.1. This extension is observed in [CGH+18].

Extension of the Batch-wise Multiplication Verification. We can use the same strategy as the Batch-wise
Multiplication Verification to check the correctness of a batch of inner-product tuples.

Specifically, given a set of m inner-product tuples {([x(i)]t, [y
(i)]t, [z

(i)]t)}i∈[m], we want to check whether

x(i) � y(i) = z(i) for all i ∈ [m]. Here {x(i),y(i)}i∈[m] are vectors of the same dimension. The only difference
is that all parties will compute f(·), g(·) such that

∀i ∈ [m],f(i) = x(i), g(i) = y(i),

and all parties need to compute [z(i)]t = [f(i)� g(i)]t for all i ∈ {m+ 1, . . . , 2m− 1}, which can be done by
the extension of the DN multiplication protocol. Let h(·) be a degree-2(m− 1) polynomial such that

∀i ∈ [2m− 1], h(i) = z(i).

Then, it is sufficient to test whether f(x)�g(x) = h(x) for a random x. As a result, this technique compresses
m checks of inner-product tuples to a single check of the tuple ([f(x)]t, [g(x)]t, [h(x)]t). It is worth noting
that the communication cost remains the same as the original technique. More details can be found in 4.2.
This extension is observed in [NV18].

Using these Extensions for Reducing the Field Size. We point out that these extensions are not used in
any way in the main results of [CGH+18,NV18]. In [CGH+18], the primary purpose of the extension is to
check more efficiently in a small field. In more detail, [CGH+18] has a “secure MAC” associated with each
wire value in the circuit. At a later point, the MACs are verified by computing a linear combination of the
value-MAC pairs with random coefficients. Unlike the case in a large field, the random coefficients cannot be
made public due to security reasons. Then a computation of a linear combination becomes a computation of
an inner-product. [CGH+18] relies on the extension of the DN multiplication protocol to efficiently compute
the inner-product of two vector of sharings. However we note that with the decrease in the field size, the
number of field elements required per gate grows up and hence the concrete efficiency goes down. In [NV18],
the extension of the Batch-wise Multiplication Verification technique is only pointed out as a corollary of
independent interest.

6

2.6 Fast Verification for a Batch of Multiplication Tuples

Now we are ready to present our technique. Suppose the multiplication tuples we want to verify are

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(m)]t, [y
(m)]t, [z

(m)]t).

The starting idea is to transform these m multiplication tuples into one inner-product tuple. A straightfor-
ward way is just setting

[x]t = ([x(1)]t, [x
(2)]t, . . . , [x

(m)]t)

[y]t = ([y(1)]t, [y
(2)]t, . . . , [y

(m)]t)

[z]t =

m∑
i=1

[z(i)]t.

However, it is insufficient to check this tuple. For example, if corrupted parties only maliciously behave when
computing the first two tuples and cause z(1) to be x(1) ·y(1) +1 and z(2) to be x(2) ·y(2)−1, we cannot detect
it by using this approach. We need to add some randomness so that the resulting tuple will be incorrect with
overwhelming probability if any one of the original tuples is incorrect.

Step One: De-Linearization. Our idea is to use two polynomials with coefficients {x(i) · y(i)} and {z(i)}
respectively. Concretely, let

F (X) = (x(1) · y(1)) + (x(2) · y(2))X + . . .+ (x(m) · y(m))Xm−1

G(X) = z(1) + z(2)X + . . .+ z(m)Xm−1.

Then if at least one multiplication tuple is incorrect, we will have F 6= G. In this case, the number of x such
that F (x) = G(x) is at most m − 1. Therefore, with overwhelming probability, F (r) 6= G(r) where r is a
random element.

All parties will generate a random degree-t sharing [r]t in the same way as that in the preparation phase
of the DN protocol. Then they reconstruct the value r. We can set

[x]t = ([x(1)]t, r[x
(2)]t, . . . , r

m−1[x(m)]t)

[y]t = ([y(1)]t, [y
(2)]t, . . . , [y

(m)]t)

[z]t =

m∑
i=1

ri−1[z(i)]t.

Then F (r) = x� y and G(r) = z. The inner-product tuple ([x]t, [y]t, [z]t) is what we wish to verify.

Step Two: Dimension-Reduction. Although we only need to verify the correctness of a single inner-product
tuple, it is unclear how to do it efficiently. It seems that verifying an inner-product tuple with dimension m
would require communicating at least O(mn) field elements. Therefore, instead of directly doing the check,
we want to first reduce the dimension of this inner-product tuple.

Towards that end, even though we only have a single inner-product tuple, we will try to take advantage of
batch-wise verification of inner-product tuples. Let k be a compression parameter. Our goal is to transform
the original tuple of dimension m to be a new tuple of dimension m/k.

To utilize the extension, let ` = m/k and

[x]t = ([a(1)]t, [a
(2)]t, . . . , [a

(k)]t)

[y]t = ([b(1)]t, [b
(2)]t, . . . , [b

(k)]t),

where {a(i), b(i)}i∈[k] are vectors of dimension `. For each i ∈ [k− 1], we compute [c(i)]t = [a(i)� b(i)]t using

the extension of the DN multiplication protocol. Then set [c(k)]t = [z]t −
∑k−1
i=1 [c(i)]t. In this way, if the

original tuple is incorrect, then at least one of the new inner-product tuples is incorrect.

7

Finally, we use the extension of the Batch-wise Multiplication Verification technique to compress the check
of these k inner-product tuples into one check of a single inner-product tuple. In particular, the resulting
tuple has dimension ` = m/k.

Note that the cost of this step is O(k) inner-product operations, which is just O(k) multiplication opera-
tions, and a reconstruction of a sharing, which requires O(n2) elements. After this step, our task is reduced
from checking the correctness of an inner-product tuple of dimension m to checking the correctness of an
inner-product tuple of dimension `.

Step Three: Recursion and Randomization. We can repeat the second step logkm times so that we only need
to check the correctness of a single multiplication tuple in the end. To simplify the checking process for the
last tuple, we make use of additional randomness.

In the last call of the second step, we need to compress the check of k multiplication tuples into one
check of a single multiplication tuple. We include an additional random multiplication tuple as a random
mask of these k multiplication tuples. That is, we will compress the check of k + 1 multiplication tuples
in the last call of the second step. In this way, to check the resulting multiplication tuple, all parties can
simply reconstruct the sharings and check whether the multiplication is correct. This reconstruction reveals
no additional information about the original inner-product tuple because of this added randomness.

The random multiplication tuple is prepared in the following manner.

1. All parties prepare two random sharings [a]t, [b]t in the same way as that in the preparation phase of the
DN protocol.

2. All parties compute [c]t = [a · b]t using the DN multiplication protocol.

Efficiency Analysis. Note that each step of compression requires O(k) inner-product (or multiplication)
operations, which requires O(kn) field elements. Also, each step of compression requires to reconstruct a
random sharing, which requires O(n2) field elements. Therefore, the total amount of communication of
verifying m multiplication tuples is O((kn+ n2) · logkm) field elements. Since the number of multiplication
tuples m is bounded by poly(κ) where κ is the security parameter. If we choose k = κ, then the cost is just
O(κn+ n2) field elements, which is independent of the number of multiplication tuples.

Therefore, the communication complexity per gate of our construction is the same as the DN semi-honest
protocol.

Remark 1. An attractive feature of our approach is that the communication cost is not affected by the
field size. To see this, note that the cost of our check only has a sub-linear dependence on the circuit size.
Therefore, we can run the check over an extension field of the original field with large enough size, which
does not influence the concrete efficiency of our construction.

As a comparison, the concrete efficiency of both constructions [CGH+18,NV18] suffer if one uses a small
field. This is because in both constructions, the failure probability of the verification depends on the size of
the field. For a small field, they need to do the verification several times to acquire the desired security. The
same trick does not work because the cost of their checks has a linear dependency on the circuit size.

Remark 2. Compared with the constructions in [CGH+18,NV18], we also remove unnecessary checks to make
the protocol as succinct as possible. Specifically, this new technique of verifying a batch of multiplication
tuples is the only check in the protocol and the remaining parts are the same as the DN protocol. In particular,
we do not check the consistency/validity of the sharings.

Relation with the Technique in [BBCG+19]. We note that our idea is similar to the technique in [BBCG+19]
when it is used to construct MPC protocols. When n = 3 and t = 1, our construction is very similar to
the construction in [BBCG+19]. For a general n-party setting, the construction in [BBCG+19] relies on
the replicated secret sharings and builds upon the sublinear distributed zero knowledge proofs constructed
in [BBCG+19]. However, the computation cost of the replicated secret sharings goes exponentially in the
number of parties. This restricts the construction in [BBCG+19] to only work for a constant number of
parties. On the other hand, we explore the use of the Shamir secret sharing scheme in the n-party setting.

8

Our idea is inspired by the extensions of the DN multiplication protocol [DN07,CGH+18] and the Batch-
wise Multiplication Verification [BSFO12,NV18]. This allows us to get a positive result without relying on
replicated secret sharings. We also note that the construction in [BBCG+19] requires the sharings (related
to the distributed zero knowledge proof) to be robust and verifiable. We simplify this technique by removing
the use of a robust secret sharing scheme and a verifiable secret sharing scheme.

Moreover, we explore a recursion trick to further improve the communication complexity of verifying
multiplications. Compared with the construction in [BBCG+19] which requires to communicate O(

√
C) bits,

we achieve O((kn+ n2) · logk C · κ) bits. Our protocol additionally makes a simple optimization to the DN
protocol, which brings down the cost from 6 field elements per multiplication to 5.5 field elements.

3 Preliminaries

3.1 Model

We consider a set of parties P = {P1, P2, ..., Pn} where each party can provide inputs, receive outputs,
and participate in the computation. For every pair of parties, there exists a secure (private and authentic)
synchronous channel so that they can directly send messages to each other. The communication complexity
is measured by the number of bits via private channels between every pair of parties.

We focus on functions that can be represented as arithmetic circuits over a finite field F (with |F| ≥ n+1)
with input, addition, multiplication, random, and output gates. Let φ = log |F| be the size of an element
in F. We use κ to denote the security parameter and let K be an extension field of F (with |K| ≥ 2κ). For
simplicity, we assume that κ is the size of an element in K.

An adversary is able to corrupt at most t < n/2 parties, provide inputs to corrupted parties and receive
all messages sent to corrupted parties. Corrupted parties can deviate from the protocol arbitrarily. For
simplicity, we assume that n = 2t+ 1. Let C denote the set of all corrupted parties and H denote the set of
all honest parties.

Each party Pi is assigned a unique non-zero field element αi ∈ F\{0} as the identity. Let cI , cM , cR, cO be
the numbers of input, multiplication, random, and output gates respectively. We set C = cI + cM + cR + cO
to be the size of the circuit.

Client-Server Model. For the simplicity of the proof, we will show the security of our protocol in the client-
server model. In the client-server model, clients provide inputs to the functionality and receive outputs, and
servers can participate in the computation but do not have inputs or get outputs. Each party may have
different roles in the computation. Note that, if every party plays a single client and a single server, this
corresponds to a protocol in the standard MPC model. Let c denote the number of clients and n = 2t + 1
denote the number of servers. We will show that our construction is secure against a fully malicious adversary
controlling at most c clients and t servers.

One benefit of the client-server model is the following theorem shown in [GIP+14].

Theorem 1 (Lemma 5.2 [GIP+14]). Let Π be a protocol computing an c-client circuit C using n = 2t+1
servers. Then, if Π is secure against any adversary controlling exactly t servers, then Π is secure against
any adversary controlling at most t servers.

This theorem allows us to only consider the case where the adversary controls exactly t servers. Therefore,
in the following, we assume that there are exactly t corrupted servers.

In our construction, the clients only participate in the input phase and the output phase. The main
computation is conducted by the servers. For simplicity, we continue to use {P1, . . . , Pn} for the n servers,
and refer to the servers as parties.

3.2 Secret Sharing

In our protocol, we use the standard Shamir secret sharing scheme [Sha79].

9

For a finite field G, a degree-d Shamir sharing of w ∈ G is a vector (w1, . . . , wn) which satisfies that, there
exists a polynomial f(·) ∈ G[X] of degree at most d such that f(0) = w and f(αi) = wi for i ∈ {1, . . . , n}.
Each party Pi holds a share wi and the whole sharing is denoted by [w]d.

For simplicity, we use [w]d, where w = (w(1), w(2), . . . , w(`)) ∈ G`, to represent a vector of degree-d
Shamir sharings ([w(1)]d, [w

(2)]d, . . . , [w
(`)]d).

Properties of the Shamir Secret Sharing Scheme. In the following, we will utilize two properties of the Shamir
secret sharing scheme.

– Linear Homomorphism:
∀ [x]d, [y]d, [x+ y]d = [x]d + [y]d.

– Multiplying two degree-d sharings yields a degree-2d sharing. The secret value of the new sharing is the
product of the original two secrets.

∀ [x]d, [y]d, [x · y]2d = [x]d · [y]d.

For the first property, we equivalently add the underlying two polynomials. Therefore, the degree remains
the same and the secret value becomes the summation of the original two secrets. For the second property,
we equivalently multiply the underlying two polynomials. As a result, the degree becomes 2d and the secret
value is the product of the original two secrets.

Terminologies and Remarks. For a degree-k polynomial f(·) ∈ G[X], let c0, . . . , ck denote the coefficients of
f(·). If all parties hold degree-d sharings of c0, . . . , ck, then for all public input x ∈ G, all parties can locally
compute the degree-d sharing [f(x)]d, which is a linear combination of [c0]d, [c1]d, . . . , [ck]d. Essentially, it
means that all parties hold a degree-d sharing of the polynomial f(·). In the following, we use [f(·)]d to
denote a degree-d sharing of the polynomial f(·).

We refer to a pair of sharings ([r]t, [r]2t) of the same secret value r as a pair of double sharings. Since
n = 2t + 1 and t parties are corrupted, the rest of t + 1 parties are honest. Therefore, the secret value of a
degree-t sharing is determined by the shares held by honest parties. Let H denote the set of honest parties
and C denote the set of corrupted parties. Note that once a degree-t sharing is distributed, the secret value
is fixed and in particular, corrupted parties can no longer change the secret value even if the sharing is dealt
by a corrupted party.

3.3 Generating Random Sharings

We introduce a simple protocol Rand, which comes from [DN07], to let all parties prepare t + 1 = O(n)
random degree-t sharings in the semi-honest setting. The functionality is presented in Functionality 1.

Functionality 1: Frand

1. Frand receives from the adversary the set of shares {ri}i∈C .
2. Frand randomly samples r. Based on the secret r and the t shares {ri}i∈C of corrupted parties, Frand

reconstructs the whole sharing [r]t and distributes the shares of [r]t to honest parties.

The protocol will utilize a predetermined and fixed Vandermonde matrix of size n × (t + 1), which is
denoted by MT (therefore M is a (t+ 1)× n matrix). An important property of a Vandermonde matrix is
that any (t + 1) × (t + 1) submatrix of MT is invertible. The description of Rand appears in Protocol 2.
The communication complexity of Rand is O(n2) field elements.

We show that this protocol securely computes Functionality 1 in the presence of a fully malicious adver-
sary.

10

Protocol 2: Rand

1. Each party Pi randomly samples a sharing [s(i)]t and distributes the shares to other parties.
2. All parties locally compute

([r(1)]t, [r
(2)]t, . . . , [r

(t+1)]t)
T = M([s(1)]t, [s

(2)]t, . . . , [s
(n)]t)

T

and output [r(1)]t, [r
(2)]t, . . . , [r

(t+1)]t.

Lemma 1. The protocol Rand securely computes the functionality Frand in the presence of a fully malicious
adversary controlling t corrupted parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Recall that C denotes the set of corrupted parties and H denotes the set of honest parties.

Simulation of Rand. In the first step, when an honest party Pi needs to distribute a random sharing [s(i)]t,
S samples t random elements as the shares of corrupted parties and sends them to the adversary. For each
corrupted party Pi, S receives the shares of [s(i)]t held by honest parties. Note that S learns t+ 1 shares of
[s(i)]t, which determines the whole sharing. S computes the shares of [s(i)]t held by corrupted parties.

In the second step, S computes the shares of each [r(i)]t held by corrupted parties and passes these shares
to Frand.

Hybrids Argument. Now we show that S perfectly simulates the behaviors of honest parties. Consider the
following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S changes the way of preparing a random sharing for each honest party Pi:

1. S first randomly samples the shares of [s(i)]t held by corrupted parties and sends them to corrupted
parties.

2. Then, S randomly samples the secret s(i). Based on the secret s(i) and the t shares of [s(i)]t held by
corrupted parties, Pi reconstructs the whole sharing [s(i)]t and distributes the shares to the rest of honest
parties.

For each corrupted party Pi, S locally computes the shares of [s(i)]t held by corrupted parties.
Note that this does not change the distribution of the random sharings generated by honest parties. The

distribution of Hybrid0 is identical to the distribution of Hybrid1.
Hybrid2: In this hybrid, S omits the second step when preparing a random sharing for each honest

party Pi in Hybrid1. Recall that in Hybrid1, for all i ∈ [n], S has computed the shares of [s(i)]t held by
corrupted parties. For each [r(i)]t, S computes the shares of corrupted parties and sends them to Frand.

We show that the distribution of Hybrid2 is identical to the distribution of Hybrid1.
Let MH denote the sub-matrix of M containing the columns of M with indices in H and MC denote

the sub-matrix of M containing the columns of M with indices in C. Let ([s(i)]t)H denote the vector of the
sharings dealt by parties in H and ([s(i)]t)C denote the vector of the sharings dealt by parties in C. Then,

([r(1)]t, [r
(2)]t, . . . , [r

(t+1)]t)
T = M([s(1)]t, [s

(2)]t, . . . , [s
(n)]t)

T

= MH([s(i)]t)
T
H + MC([s(i)]t)

T
C .

Note that MH is a (t + 1) × (t + 1) matrix. By the property of Vandermonde matrices, MH is in-
vertible. Therefore, given the sharings {[s(i)]t}i∈C dealt by corrupted parties, there is a one-to-one map
from {[s(i)]t}i∈H to {[r(i)]t}i∈[t+1]. Note that the only difference between Hybrid1 and Hybrid2 is that, in

11

Hybrid1, {[s(i)]t}i∈H is randomly generated (based on the shares which have been sent to corrupted parties)
while in Hybrid2, Frand directly generates {[r(i)]t}i∈[t+1] based on the shares that corrupted parties should

hold. However, this does not change the distribution of the shares of {[r(i)]t}i∈[t+1] held by honest parties.
Therefore, the distribution of Hybrid2 is identical to the distribution of Hybrid1.

Note that Hybrid2 is the execution in the ideal world and the distribution of Hybrid2 is identical to
the distribution of Hybrid0, the execution in the real world. ut

3.4 Generating Random Double Sharings

We introduce a simple protocol DoubleRand, which comes from [DN07], to let all parties prepare t+ 1 =
O(n) pairs of random double sharings in the semi-honest setting. Recall that a pair of double sharings
([r]t, [r]2t) contains two sharings of the same secret value r. Double sharings will be used to evaluate multi-
plication gates.

The functionality is presented in Functionality 3. The description of the protocol DoubleRand appears
in Protocol 4. The communication complexity of DoubleRand is O(n2) field elements.

Functionality 3: FdoubleRand

1. FdoubleRand receives from the adversary two sets of shares {ri}i∈C and {r′i}i∈C . FdoubleRand view the first set
as the shares of corrupted party for the degree-t sharing, and the second set as the shares for the degree-2t
sharing.

2. FdoubleRand randomly samples r and prepares the double sharings as follows.
– For the degree-t sharing, based on the secret r and the t shares {ri}i∈C of corrupted parties, FdoubleRand

reconstructs the whole sharing [r]t.
– For the degree-2t sharing, FdoubleRand randomly samples t elements as the shares of the first t honest

parties. Based on the secret r, the t shares of the first t honest parties, and the t shares {r′i}i∈C of
corrupted parties, FdoubleRand reconstructs the whole sharing [r]2t.

Finally, FdoubleRand distributes the shares of ([r]t, [r]2t) to honest parties.

Protocol 4: DoubleRand

1. Each party Pi randomly samples a pair of double sharings ([s(i)]t, [s
(i)]2t) and distributes the shares to other

parties.
2. All parties locally compute

([r(1)]t, [r
(2)]t, . . . , [r

(t+1)]t)
T = M([s(1)]t, [s

(2)]t, . . . , [s
(n)]t)

T

([r(1)]2t, [r
(2)]2t, . . . , [r

(t+1)]2t)
T = M([s(1)]2t, [s

(2)]2t, . . . , [s
(n)]2t)

T

and output ([r(1)]t, [r
(1)]2t), ([r

(2)]t, [r
(2)]2t), . . . , ([r

(t+1)]t, [r
(t+1)]2t).

We show that this protocol securely computes Functionality 3 in the presence of a fully malicious adver-
sary.

Lemma 2. The protocol DoubleRand securely computes the functionality FdoubleRand in the presence of
a fully malicious adversary controlling t corrupted parties.

12

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Recall that C denotes the set of corrupted parties and H denotes the set of honest parties.

Simulation of DoubleRand. In the first step, when an honest party Pi needs to distribute a pair of
random double sharings ([s(i)]t, [s

(i)]2t), for each corrupted party Pj , S samples 2 random elements as its
shares of ([s(i)]t, [s

(i)]2t) and sends them to the adversary. For each corrupted party Pi, S receives the shares
of ([s(i)]t, [s

(i)]2t) held by honest parties. Note that S learns t+1 shares of [s(i)]t, which determines the whole
sharing. S computes the secret s(i) and the shares of [s(i)]t held by corrupted parties. For [s(i)]2t, S samples
a random degree-2t sharing based on the secret s(i) and the shares held by honest parties, and views this
degree-2t sharing as the one distributed by Pi.

In the second step, S computes the shares of each pair ([r(i)]t, [r
(i)]2t) held by corrupted parties and

passes these shares to FdoubleRand.

Hybrids Argument. Now we show that S perfectly simulates the behaviors of honest parties. Consider the
following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S changes the way of preparing a pair of random sharings for each honest party

Pi:

1. S first randomly samples the shares of ([s(i)]t, [s
(i)]2t) held by corrupted parties and sends them to

corrupted parties.
2. Then, S randomly samples the secret s(i). Based on the secret s(i) and the t shares of [s(i)]t held by

corrupted parties, Pi reconstructs the whole sharing [s(i)]t. Based on the secret s(i) and the shares of
[s(i)]2t held by corrupted parties, Pi samples a random degree-2t sharing [s(i)]2t (in the same way as
FdoubleRand in Step 2). Then S distributes the shares to the rest of honest parties.

For each corrupted party Pi, S locally computes the shares of ([s(i)]t, [s
(i)]2t) held by corrupted parties.

Note that this does not change the distribution of the random double sharings generated by honest
parties. The distribution of Hybrid0 is identical to the distribution of Hybrid1.

Hybrid2: In this hybrid, S omits the second step when preparing a pair of random sharings for each honest
party Pi in Hybrid1. Recall that in Hybrid1, for all i ∈ [n], S has computed the shares of ([s(i)]t, [s

(i)]2t)
held by corrupted parties. For each pair ([r(i)]t, [r

(i)]2t), S computes the shares of corrupted parties and
sends them to FdoubleRand.

We show that the distribution of Hybrid2 is identical to the distribution of Hybrid1.
Let MH denote the sub-matrix of M containing the columns of M with indices in H and MC denote

the sub-matrix of M containing the columns of M with indices in C. Let ([s(i)]t)H, ([s
(i)]2t)H denote the

vectors of the sharings dealt by parties in H and ([s(i)]t)C , ([s
(i)]2t)C denote the vectors of the sharings dealt

by parties in C. Then,

([r(1)]t, [r
(2)]t, . . . , [r

(t+1)]t)
T = M([s(1)]t, [s

(2)]t, . . . , [s
(n)]t)

T

= MH([s(i)]t)
T
H + MC([s(i)]t)

T
C

([r(1)]2t, [r
(2)]2t, . . . , [r

(t+1)]2t)
T = M([s(1)]2t, [s

(2)]2t, . . . , [s
(n)]2t)

T

= MH([s(i)]2t)
T
H + MC([s(i)]2t)

T
C

Note that MH is a (t+ 1)× (t+ 1) matrix. By the property of Vandermonde matrices, MH is invertible.
Therefore, given the sharings {([s(i)]t, [s(i)]2t)}i∈C dealt by corrupted parties, there is a one-to-one map from
{([s(i)]t, [s(i)]2t)}i∈H to {([r(i)]t, [r(i)]2t)}i∈[t+1]. Note that the only difference between Hybrid1 and Hybrid2

is that, in Hybrid1, {([s(i)]t, [s(i)]2t)}i∈H is randomly generated (based on the shares which have been sent
to corrupted parties) while in Hybrid2, FdoubleRand directly generates {([r(i)]t, [r(i)]2t)}i∈[t+1] based on the
shares that corrupted parties should hold. However, this does not change the distribution of the shares of
{[r(i)]t}i∈[t+1] held by honest parties. To see this, note that for any double sharings {([r(i)]t, [r(i)]2t)}i∈[t+1]

13

generated by FdoubleRand, we can compute back to a set of valid double sharings {([s(i)]t, [s(i)]2t)}i∈H. There-
fore, the distribution of Hybrid2 is identical to the distribution of Hybrid1.

Note that Hybrid2 is the execution in the ideal world and the distribution of Hybrid2 is identical to
the distribution of Hybrid0, the execution in the real world. ut

3.5 Generating Random Coins

Relying on Frand, we show how to securely generate a random field element. The functionality Fcoin is
presented in Functionality 5. The description of Coin appears in Protocol 6. The communication complexity
of Coin is O(n2) field elements.

Functionality 5: Fcoin

1. Fcoin samples a random field element r.
2. Fcoin sends r to the adversary.

– If the adversary replies continue, Fcoin sends r to honest parties.
– If the adversary replies abort, Fcoin sends abort to honest parties.

Protocol 6: Coin

1. All parties invoke Frand to prepare a random sharing [r]t.
2. Every party Pi sends its share of [r]t to all other parties. After receiving all the shares, Pi checks that whether

[r]t is a valid sharing, i.e., all the shares lie on a polynomial of degree at most t.
– If true, Pi reconstructs the secret r and takes it as output.
– Otherwise, Pi sends abort to all other parties and aborts.

Lemma 3. The protocol Coin securely computes Fcoin with abort in the Frand-hybrid model in the presence
of a fully malicious adversary controlling t corrupted parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Recall that C denotes the set of corrupted parties and H denotes the set of honest parties.

Simulation of Coin. In the beginning, S receives the random element r from Fcoin. When invoking Frand,
S emulates Frand and receives a set of shares {ri}i∈C from the adversary. Based on the secret r, and the
shares {ri}i∈C held by corrupted parties, S reconstructs the whole sharing [r]t.

After obtaining the whole sharing [r]t, S can faithfully follow the protocol in Coin. If an honest party
aborts, S sends abort to Fcoin. Otherwise, S sends continue to Fcoin.

Analysis of the security. Note that the only difference between the real world execution and the ideal world
execution is that, in the real world, the secret value r is randomly sampled by Frand, while in the ideal
world, r is received from Fcoin. However, in both Frand and Fcoin, r is randomly sampled. Therefore, the
distributions of both executions are identical. ut

14

4 Extensions of the DN Multiplication Protocol and the Batch-wise
Multiplication Verification Technique

4.1 Extension of the DN Multiplication Protocol

In this part, we introduce a natural extension to the DN Multiplication Protocol [DN07]. We first introduce
the basic protocol, which takes two input sharings [x]t, [y]t and outputs [x · y]t. In [GIP+14], Genkin et al.
prove that the semi-honest DN protocol is secure up to an additive attack in the presence of a fully malicious
adversary. An additive attack means that the adversary is able to change the multiplication result x · y by
adding an arbitrary fixed value d to x · y + d. Therefore, in the functionality Fmult, we allow the adversary
to change the result by sending d to Fmult. The functionality Fmult also sends the shares of [x]t, [y]t held
by corrupted parties to the adversary. Note that these shares are known to the adversary. The functionality
Fmult is presented in Functionality 7.

Functionality 7: Fmult

1. Let [x]t, [y]t denote the input sharings. Fmult receives from honest parties their shares of [x]t, [y]t. Then Fmult

reconstructs the secrets x, y. Fmult further computes the shares of [x]t, [y]t held by corrupted parties, and
sends these shares to the adversary.

2. Fmult receives from the adversary a value d and a set of shares {zi}i∈C .
3. Fmult computes x · y + d. Based on the secret z := x · y + d and the t shares {zi}i∈C , Fmult reconstructs the

whole sharing [z]t and distributes the shares of [z]t to honest parties.

The protocol needs to consume a pair of random double sharings, which is prepared by calling FdoubleRand.
The description of the DN Multiplication Protocol (denoted by Mult) appears in Protocol 8. The commu-
nication complexity of Mult is O(n) field elements.

Protocol 8: Mult

1. All parties agree on a special party Pking. Let [x]t, [y]t denote the input sharings.
2. All parties invoke FdoubleRand to prepare a pair of random double sharings ([r]t, [r]2t).
3. All parties locally compute [x · y + r]2t = [x]t · [y]t + [r]2t.
4. Pking collects all shares and reconstructs the secret value x · y + r. Then Pking randomly generates a degree-t

sharing [x · y + r]t and distributes the shares to other parties.
5. All parties locally compute [x · y]t = [x · y + r]t − [r]t.

Lemma 4. The protocol Mult securely computes the functionality Fmult in the FdoubleRand-hybrid model
in the presence of a fully malicious adversary controlling t corrupted parties.

Proof. Recall that C denotes the set of corrupted parties and H denotes the set of honest parties. We first
show that the random degree-2t sharing [r]2t output by FdoubleRand satisfies that the shares of honest parties
are uniformly random, and are independent of the shares chosen by the adversary. Recall that FdoubleRand

receives from the adversary two sets of shares {ri}i∈C , {r′i}i∈C and randomly samples ([r]t, [r]2t) such that the
shares of [r]t, [r]2t held by corrupted parties are {ri}i∈C , {r′i}i∈C respectively. Consider the following sampling
process:

15

1. FdoubleRand randomly samples t+1 shares as the shares of [r]2t held by honest parties. Then, FdoubleRand

reconstructs the whole sharing [r]2t using the shares of honest parties and the shares {r′i}C of corrupted
parties, and computes the secret r.

2. FdoubleRand reconstructs the whole sharing [r]t based on the secret r and the shares {ri}i∈C of corrupted
parties.

Note that the above process output a pair of random double sharings with the same distribution as that
described in the original FdoubleRand. However, the shares of [r]2t held by honest parties are randomly chosen
in the first step and is independent of the shares {ri}i∈C , {r′i}i∈C .

Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest parties.

Simulation of Mult. In the beginning, S receives from Fmult the shares of [x]t, [y]t held by corrupted parties.
When invoking FdoubleRand, S emulates FdoubleRand and receives from the adversary the shares of [r]t, [r]2t
held by corrupted parties.

In Step 3, for each honest party, S samples a random element as its share of [x·y+r]2t. For each corrupted
party, S computes its share of [x ·y+r]2t. Then S reconstructs the secret z := x ·y+r. Depending on whether
Pking is an honest party, there are two cases:

– If Pking is an honest party, S receives from corrupted parties their shares of [x · y + r]2t (which can
be different from the shares computed by S). S uses these shares and the shares of honest parties to
reconstruct the secret z′. Then, S computes the difference d := z′ − z. S randomly generates a degree-t
sharing [z′]t and distributes the shares to corrupted parties.

– If Pking is a corrupted party, S sends the shares of [x · y+ r]2t of honest parties to Pking. S receives from
Pking the shares of [x · y + r]t held by honest parties. Then S reconstructs the secret z′ and computes
the difference d := z′ − z. S also computes the shares of [x · y + r]t held by corrupted parties.

In Step 5, S computes the shares of [x · y]t held by corrupted parties. Note that S has computed the
shares of [x · y+ r]t held by corrupted parties and received the shares of [r]t held by corrupted parties when
emulating FdoubleRand. Finally, S sends the difference d and the shares of [x ·y]t of corrupted parties to Fmult.

Hybrids Argument. Now we show that S perfectly simulates the behaviors of honest parties. Consider the
following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S computes the difference d and the shares of [x · y]t held by corrupted parties

as described above. S sends d and the shares of [x · y]t of corrupted parties to Fmult. Each honest party uses
the share received from Fmult instead of the real share.

Note that the shares of [x · y]t held by honest parties are determined by the shares of corrupted parties
and the secret, which is determined by the multiplication result x · y and the difference d. Therefore, the
distribution of Hybrid1 is the same as Hybrid0.

Hybrid2: In this hybrid, S simulates honest parties in the whole protocol Mult. Note that the only
difference is that, in Hybrid1, S uses the real shares of [x · y + r]2t of honest parties, while in Hybrid2,
S generates random elements as the shares of [x · y + r]2t of honest parties. However, as we showed in the
beginning, the shares of [r]2t held by honest parties are uniformly random. Therefore, the shares of [x·y+r]2r
held by honest parties are also uniformly random. Thus, the distribution of Hybrid2 is the same as Hybrid1.

Note that Hybrid2 is the execution in the ideal world, and the distribution of Hybrid2 is identical to
the distribution of Hybrid0, the execution in the real world. ut

In essence, the DN Multiplication Protocol does a degree reduction from [x·y]2t = [x]t ·[y]t to [x·y]t. Let �
denote the inner-product operation. For two vectors of degree-t sharings [x]t, [y]t of dimension `, to compute
[x � y]t, we can first compute [x � y]2t = [x]t � [y]t and then use the same idea as the DN Multiplication
Protocol to compute [x� y]t from [x� y]2t. In this way, the cost is just one multiplication operation. This
idea has been observed in several previous works and in particular, has been used in [CGH+18] to design an
MPC protocol for a small field.

16

The description of the functionality FextendMult appears in Functionality 9, and the description of the ex-
tended DN Multiplication Protocol (denoted by Extend-Mult) appears in Protocol 10. The communication
complexity of Extend-Mult is O(n) field elements.

Functionality 9: FextendMult

1. Let [x]t, [y]t denote the input vectors of sharings. FextendMult receives from honest parties their shares of
[x]t, [y]t. Then FextendMult reconstructs the secrets x,y. FextendMult further computes the shares of [x]t, [y]t
held by corrupted parties, and sends these shares to the adversary.

2. FextendMult receives from the adversary a value d and a set of shares {zi}i∈C .
3. FextendMult computes x � y + d. Based on the secret z := x · y + d and the t shares {zi}i∈C , FextendMult

reconstructs the whole sharing [z]t and distributes the shares of [z]t to honest parties.

Protocol 10: Extend-Mult

1. All parties agree on a special party Pking. Let [x]t, [y]t denote the input vectors of sharings.
2. All parties invoke FdoubleRand to prepare a pair of random double sharings ([r]t, [r]2t).
3. All parties locally compute [x� y + r]2t = [x]t � [y]t + [r]2t.
4. Pking collects all shares and reconstructs the secret value x�y+r. Then Pking randomly generates a degree-t

sharing [x� y + r]t and distributes the shares to other parties.
5. All parties locally compute [x� y]t = [x� y + r]t − [r]t.

Lemma 5. The protocol Extend-Mult securely computes the functionality FextendMult in the FdoubleRand-
hybrid model in the presence of a fully malicious adversary controlling t corrupted parties.

This lemma can be proved in the same way as that for Lemma 4. Therefore, for simplicity, we omit the
details.

Remark 3. We note that Extend-Mult can be further extended so that given ([x]t, [y]t, c), all parties

can compute a degree-t sharing of
∑`
i=1 ci · x(i) · y(i). To see this, all parties can first compute [x′]t =

(c1[x(1)]t, c2[x(2)]t, . . . , c`[x
(`)]t). Then invoke Extend-Mult on [x′]t and [y]t to get the desired degree-t

sharing.

4.2 Extension of the Batch-wise Multiplication Verification Technique

In this part, we introduce a natural extension to the Batch-wise Multiplication Verification Technique [BSFO12].
We first introduce the basic technique, which is used to check the correctness of a batch of multiplication
tuples efficiently.

Overview of the Batch-wise Multiplication Verification Technique. For simplicity, suppose that we are working
on a large enough finite field G. Given m multiplication tuples

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(m)]t, [y
(m)]t, [z

(m)]t),

17

we want to check whether x(i) · y(i) = z(i) for all i ∈ [m].
The high-level idea is constructing three polynomials f(·), g(·), h(·) such that

∀i ∈ [m], f(i) = x(i), g(i) = y(i), h(i) = z(i).

Then check whether f · g = h. Here f(·), g(·) are set to be degree-(m − 1) polynomials in G so that they
can be determined by {x(i)}i∈[m], {y(i)}i∈[m] respectively. In this case, h(·) should be a degree-2(m − 1)
polynomial which is determined by 2m − 1 values. To this end, for i ∈ {m + 1, . . . , 2m − 1}, we need to
compute z(i) = f(i) · g(i) so that h(·) can be determined by {z(i)}i∈[2m−1].

In more detail, all parties first locally compute [f(·)]t, [g(·)]t using {[x(i)]t}i∈[m] and {[y(i)]t}i∈[m] respec-
tively. For i ∈ {m+1, . . . , 2m−1}, all parties locally compute [f(i)]t, [g(i)]t and then invoke Fmult to compute
[z(i)]t. Finally, all parties locally compute [h(·)]t using {[z(i)]t}i∈[2m−1].

Note that if x(i) ·y(i) = z(i) for all i ∈ [2m−1], then we have f ·g = h. Otherwise, we must have f ·g 6= h.
Therefore, it is sufficient to check whether f · g = h. Since h(·) is a degree-2(m− 1) polynomials, in the case
that f · g 6= h, the number of x ∈ G such that f(x) · g(x) = h(x) holds is at most 2(m − 1). Therefore, by
randomly selecting x ∈ G, with probability 2(m− 1)/|G| we have f(x) · g(x) 6= h(x).

Therefore, to check whether f ·g = h, all parties invoke Fcoin to generate a random challenge r. All parties
locally compute [f(r)]t, [g(r)]t and [h(r)]t. In the case that |G| is large enough (say |G| = 2κ where κ is the
security parameter), it is sufficient to only check whether ([f(r)], [g(r)]t, [h(r)]t) is a correct multiplication
tuple since we accept errors with negligible probability.

Checking the Single Multiplication Tuple. In [BSFO12], this check is done using an “expensive” MPC pro-
tocol. Since the number of checks is independent of the number of original multiplication tuples we need to
check, the cost of this check does not affect the overall communication complexity. In [NV18], a random multi-
plication tuple is included when using the Batch-wise Multiplication Verification technique (so that the tech-
nique applies on m+1 multiplication tuples). In this way, revealing the whole sharings ([f(r)]t, [g(r)]t, [h(r)]t)
does not compromise the security of the original multiplication tuples. Therefore, all parties simply send their
shares of [f(r)]t, [g(r)]t, [h(r)]t to all other parties and then check whether f(r) · g(r) = h(r).

Description of Compress. In essence, this technique compresses m checks of multiplication tuples into 1
check of a single tuple. The protocol takesmmultiplication tuples as input and outputs a single tuple. We refer
to this protocol as Compress. The description of Compress appears in Protocol 11. The communication
complexity of Compress is O(mn+ n2) field elements.

Lemma 6. If at least one multiplication tuple is incorrect, then the resulting tuple output by Compress is
incorrect with probability 1− 3m−2

|G| .

Proof. Suppose there is at least one incorrect multiplication tuple. We first count the number of r which
causes either an abort of the protocol or a correct output tuple.

In Compress, all parties abort if r ∈ [m]. Therefore, there are m choices of r which causes an abort of
the protocol. Since there is at least one incorrect multiplication tuple, we have f ·g 6= h. Since the polynomial
h− f · g is a degree-2(m− 1) non-zero polynomial, the number of r ∈ G such that h(r)− f(r) · g(r) = 0 is
at most 2(m− 1). Therefore, there are at most 2(m− 1) choices of r which causes a correct output tuple. In
total, the number of r which causes either an abort of the protocol or a correct output tuple is bounded by
m+ 2(m− 1) = 3m− 2.

Since r is randomly sampled by Fcoin, the probability that Fcoin outputs such a bad r is bounded by
3m−2
|G| . Therefore, with probability 1− 3m−2

|G| , the tuple output by Compress is incorrect. ut

Extension. A natural extension of the Batch-wise Multiplication Verification technique is to check the cor-
rectness of m inner-product tuples. This idea has been observed in [NV18]. However, this extension is not
used in the main result of [NV18].

18

Protocol 11: Compress

1. The multiplication tuples are denoted by

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(m)]t.[y
(m)]t, [z

(m)]t).

2. Let f(·), g(·) be degree-(m− 1) polynomials such that

∀i ∈ [m], f(i) = x(i), g(i) = y(i).

All parties locally compute [f(·)]t and [g(·)]t by using {[x(i)]t}i∈[m] and {[y(i)]t}i∈[m] respectively.
3. For all i ∈ {m + 1, . . . , 2m − 1}, all parties locally compute [f(i)]t and [g(i)]t, and then invoke Fmult on

([f(i)]t, [g(i)]t) to compute [z(i)]t = [f(i) · g(i)]t.
4. Let h(·) be a degree-2(m− 1) polynomials such that

∀i ∈ [2m− 1], h(i) = z(i).

All parties locally compute [h(·)]t by using {[z(i)]t}i∈[2m−1].
5. All parties invoke Fcoin to generate a random field element r. If r ∈ [m], all parties abort. Otherwise, output

([f(r)]t, [g(r)]t, [h(r)]t).

Given m inner-product tuples

([x(1)]t, [y
(1)]t, [z

1]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(m)]t, [y
(m)]t, [z

(m)]t),

where x(i),y(i) ∈ G` for all i ∈ [m], we want to check whether x(i) � y(i) = z(i) for all i ∈ [m]. The idea is
to construct two vectors of degree-(m− 1) polynomials f(·), g(·) such that

∀i ∈ [m],f(i) = x(i), g(i) = y(i).

All parties can locally compute [f(·)]t and [g(·)]t by using {[x(i)]t}i∈[m] and {[y(i)]t}i∈[m] respectively.
For i ∈ {m + 1, . . . , 2m − 1}, all parties compute [f(i)]t, [g(i)]t, and then compute the degree-t sharing

[z(i)]t by invoking FextendMult on ([f(i)]t, [g(i)]t). Let h(·) be a degree-2(m− 1) polynomial such that

∀i ∈ [2m− 1], h(i) = z(i).

All parties can locally compute [h(·)]t by using {[z(i)]t}i∈[2m−1].
The remaining steps are similar to that in Compress. We refer to this extension as Extend-Compression.

The description of Extend-Compress appears in Protocol 12. The communication complexity of Extend-
Compress is O(mn+ n2) field elements.

Lemma 7. If at least one inner-product tuple is incorrect, then the resulting tuple output by Extend-
Compress is incorrect with probability 1− 3m−2

|G| .

This lemma can be proved in the same way as that for Lemma 6. Therefore, for simplicity, we omit the
details.

Remark 4. We note that the field G should contain at least 2m − 1 elements. Otherwise the polynomial
h(·) is not well-defined. However, the condition that |G| = 2κ can be relaxed without blowing up the failure
probability. The main observation is that a polynomial f(·) ∈ G is also a valid polynomial in an extension
field of G. We can choose a large enough extension field G̃ of G and generate the random sharing [r]t in G̃.
In this way, the failure probability only depends on the size of the extension field and is independent of the
size of G.

19

Protocol 12: Extend-Compress

1. The inner-product tuples are denoted by

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(m)]t.[y
(m)]t, [z

(m)]t).

2. Let f(·), g(·) be vectors of degree-(m− 1) polynomials such that

∀i ∈ [m],f(i) = x(i), g(i) = y(i).

All parties locally compute [f(·)]t and [g(·)]t by using {[x(i)]t}i∈[m] and {[y(i)]t}i∈[m] respectively.
3. For all i ∈ {m + 1, . . . , 2m − 1}, all parties locally compute [f(i)]t and [g(i)]t, and then invoke FextendMult

on ([f(i)]t, [g(i)]t) to compute [z(i)]t = [f(i)� g(i)]t.
4. Let h(·) be a degree-2(m− 1) polynomials such that

∀i ∈ [2m− 1], h(i) = z(i).

All parties locally compute [h(·)]t by using {[z(i)]t}i∈[2m−1].
5. All parties invoke Fcoin to generate a random field element r. If r ∈ [m], all parties abort. Otherwise, output

([f(r)]t, [g(r)]t, [h(r)]t).

5 Multiplication Verification

In this section, we introduce our new method to efficiently verify a batch of multiplication tuples. We refer
the readers to Section 2 for a high-level idea of our method.

5.1 Step One: De-Linearization

The first step is to transform the check of m multiplication tuples into one check of an inner-product tuple of
dimension m. The description of De-Linearization appears in Protocol 13. The communication complexity
of De-Linearization is O(n2) elements in K.

Protocol 13: De-Linearization

1. The multiplication tuples are denoted by

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(m)]t.[y
(m)]t, [z

(m)]t).

2. All parties invoke Fcoin to generate a random field element r ∈ K.
3. All parties set

[x]t = ([x(1)]t, r[x(2)]t, . . . , r
m−1[x(m)]t)

[y]t = ([y(1)]t, [y
(2)]t, . . . , [y

(m)]t)

[z]t =
m∑
i=1

ri−1[z(i)]t,

and output ([x]t, [y]t, [z]t).

20

Lemma 8. If at least one multiplication tuple is incorrect, then the resulting inner-product tuple output by
De-Linearization is also incorrect with overwhelming probability.

Proof. Suppose there is at least one incorrect multiplication tuple. We first count the number of r which
causes a correct output tuple.

Consider the following two polynomials of degree-(m− 1) in K:

F (X) = (x(1) · y(1)) + (x(2) · y(2))X + . . .+ (x(m) · y(m))Xm−1

G(X) = z(1) + z(2)X + . . .+ z(m)Xm−1.

In the case that there exists an incorrect multiplication tuple, we have F (·) 6= G(·). Since the polynomial
F (·) −G(·) is a degree-(m − 1) non-zero polynomial, the number of r ∈ K such that F (r) −G(r) = 0 is at
most m− 1. Therefore there are at most m− 1 choices of r which causes a correct output tuple.

Since r is randomly sampled by Fcoin, the probability that Fcoin outputs such a bad r is bounded by
3m−2
|K| . Recall that κ is the security parameter and the size of K is at least 2κ. Therefore, with probability

1− 3m−2
|K| ≥ 1− 3m−2

2κ , the tuple output by Compress is incorrect. ut

5.2 Step Two: Dimension-Reduction

The second step is to reduce the dimension of the inner-product tuple output by De-Linearization. We
will use Extend-Compress as a building block. The description of Dimension-Reduction appears in
Protocol 14. The communication complexity of Dimension-Reduction is O(kn+n2) elements in K, where
k is the compression parameter.

Protocol 14: Dimension-Reduction

1. The inner-product tuple is denoted by ([x]t, [y]t, [z]t). Let k denote the compression parameter and m denote
the dimension of the inner-product tuple (i.e., the dimension of the vector x). Let ` = m/k.

2. All parties interpret [x]t, [y]t as

[x]t = ([a(1)]t, [a
(2)]t, . . . , [a

(k)]t)

[y]t = ([b(1)]t, [b
(2)]t, . . . , [b

(k)]t),

where {a(i), b(i)}i∈[k] are vectors of dimension `.

3. For i ∈ [k − 1], all parties invoke FextendMult on ([a(i)]t, [b
(i)]t) to compute [c(i)]t where c(i) = a(i) � b(i).

Then set

[c(k)]t = [z]t −
k−1∑
i=1

[c(i)]t.

4. All parties invoke Extend-Compress on

([a(1)]t, [b
(1)]t, [c

(1)]t), ([a
(2)]t, [b

(2)]t, [c
(2)]t), . . . , ([a

(k)]t, [b
(k)]t, [c

(k)]t).

The output is denoted by ([a]t, [b]t, [c]t). All parties take this new inner-product tuple as output.

Lemma 9. If the input inner-product tuple is incorrect, then the resulting inner-product tuple output by
Dimension-Reduction is also incorrect with overwhelming probability.

21

Proof. Suppose that the input inner-product tuple ([x]t, [y]t, [z]t) is incorrect. We first show that at least
one of the following k inner-product tuples is incorrect:

([a(1)]t, [b
(1)]t, [c

(1)]t), ([a
(2)]t, [b

(2)]t, [c
(2)]t), . . . , ([a

(k)]t, [b
(k)]t, [c

(k)]t)

Note that the first k − 1 tuples are computed via FextendMult. If at least one of the inner-product tuples in
the first k− 1 tuples is incorrect, then the statement holds. Assume that the first k− 1 tuples are all correct,
i.e., for all i ∈ [k − 1], a(i) � b(i) = c(i). Since the input inner-product tuple is incorrect, we have x� y 6= z.
Therefore

a(k) � b(k) = x� y −
k−1∑
i=1

a(i) � b(i) = x� y −
k−1∑
i=1

c(i) 6= z −
k−1∑
i=1

c(i) = c(k),

which means that the last inner-product tuple must be incorrect.
According to Lemma 7, the resulting tuple ([a]t, [b]t, [c]t) output by Extend-Compress is incorrect with

probability 1− 3k−2
|K| ≥ 1− 3k−2

2κ . ut

5.3 Step Three: Randomization

In the final step, we add a random multiplication tuple when we use Compress so that the verification
of the resulting multiplication tuple can be done by simply opening all the sharings. The description of
Randomization appears in Protocol 15. The communication complexity of Randomization is O(mn+n2)
elements in K, where m is the dimension of the inner-product tuple.

Protocol 15: Randomization

1. The inner-product tuple is denoted by ([x]t, [y]t, [z]t). Let m denote the dimension of the inner-product
tuple.

2. All parties interpret [x]t, [y]t as

[x]t = ([a(1)]t, [a
(2)]t, . . . , [a

(m)]t)

[y]t = ([b(1)]t, [b
(2)]t, . . . , [b

(m)]t).

3. All parties invoke two times of Frand to prepare two random degree-t sharings [a(0)]t, [b
(0)]t.

4. All parties invoke Fmult on ([a(0)]t, [b
(0)]t) to compute [c(0)]t where c(0) = a(0) · b(0).

5. For i ∈ [m− 1], all parties invoke Fmult on ([a(i)]t, [b
(i)]t) to compute [c(i)]t where c(i) = a(i) · b(i). Then set

[c(m)]t = [z]t −
m−1∑
i=1

[c(i)]t.

6. All parties invoke Compress on

([a(0)]t, [b
(0)]t, [c

(0)]t), ([a
(1)]t, [b

(1)]t, [c
(1)]t), . . . , ([a

(m)]t, [b
(m)]t, [c

(m)]t).

The output is denoted by ([a]t, [b]t, [c]t).
7. All parties send their shares of [a]t, [b]t, [c]t to all other parties.
8. All parties reconstruct a, b, c. For each party Pi, if the shares of [a]t, [b]t, [c]t are inconsistent or a · b 6= c, Pi

aborts. Otherwise, Pi takes accept as output.

Lemma 10. If the input inner-product tuple is incorrect, then at least one honest party will either abort or
take reject as output with overwhelming probability.

22

Proof. Suppose that the input inner-product tuple ([x]t, [y]t, [z]t) is incorrect. We first show that at least
one of the following m multiplication tuples is incorrect:

([a(1)]t, [b
(1)]t, [c

(1)]t), ([a
(2)]t, [b

(2)]t, [c
(2)]t), . . . , ([a

(k)]t, [b
(m)]t, [c

(m)]t)

Note that the first m − 1 tuples are computed via Fmult. If at least one of the multiplication tuples in the
first m− 1 tuples is incorrect, then the statement holds. Assume that the first m− 1 tuples are all correct,
i.e., for all i ∈ [m− 1], a(i) � b(i) = c(i). Since the input inner-product tuple is incorrect, we have x� y 6= z.
Therefore

a(m) · b(m) = x� y −
m−1∑
i=1

a(i) · b(i) = x� y −
m−1∑
i=1

c(i) 6= z −
m−1∑
i=1

c(i) = c(m),

which means that the last multiplication tuple must be incorrect.
According to Lemma 6, the resulting tuple ([a]t, [b]t, [c]t) output by Compress is incorrect with proba-

bility 1 − 3m+1
|K| ≥ 1 − 3m+1

2κ . Note that an incorrect tuple will cause at least one honest party aborting or

taking reject as output. ut

5.4 Summary: Multiplication Verification with Sub-linear Communication

In this section, we show how to check the correctness of m multiplication tuples with communication complex-
ity o(m). It is a simple combination of the three protocols De-Linearization, Dimension-Reduction,
and Randomization. The functionality FmultVerify is introduced in Functionality 16. The description of
MultVerification appears in Protocol 17.

Functionality 16: FmultVerify

1. Let m denote the number of multiplication tuples. The multiplication tuples are denoted by

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(m)]t.[y
(m)]t, [z

(m)]t).

2. For all i ∈ [m], FmultVerify receives from honest parties their shares of [x(i)]t, [y
(i)]t, [z

(i)]t. Then FmultVerify

reconstructs the secrets x(i), y(i), z(i). FmultVerify further computes the shares of [x(i)]t, [y
(i)]t, [z

(i)]t held by
corrupted parties and sends these shares to the adversary.

3. For all i ∈ [m], FmultVerify computes d(i) = z(i) − x(i) · y(i) and sends d(i) to the adversary.
4. Finally, let b ∈ {abort, accept} denote whether there exists i ∈ [m] such that d(i) 6= 0. FmultVerify sends b to

the adversary and waits for its response.
– If the adversary replies continue, FmultVerify sends b to honest parties.
– If the adversary replies abort, FmultVerify sends abort to honest parties.

Lemma 11. The protocol MultVerification securely computes FmultVerify with abort in the {Fcoin,Fmult,
FextendMult}-hybrid model in the presence of a fully malicious adversary controlling t corrupted parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Recall that C denotes the set of corrupted parties and H denotes the set of honest parties.

Simulation of MultVerification. In the beginning, S receives from FmultVerify the shares of [x(i)]t, [y
(i)]t, [z

(i)]t
held by corrupted parties and the difference d(i) = z(i) − x(i) · y(i) for all i ∈ [m]. Furthermore, S receives
b ∈ {abort, accept} indicating whether the multiplications are correct.

23

Protocol 17: MultVerification

1. Let k be the compression parameter, m denote the number of multiplication tuples. The multiplication tuples
are denoted by

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(m)]t.[y
(m)]t, [z

(m)]t).

2. All parties invoke De-Linearization on these m multiplication tuples. Let ([x]t, [y]t, [z]t) denote the output.
3. While the dimension of ([x]t, [y]t, [z]t) is larger than k, all parties invoke Dimension-Reduction and set

([x]t, [y]t, [z]t) := Dimension-Reduction(([x]t, [y]t, [z]t), k).

4. All parties invoke Randomization on ([x]t, [y]t, [z]t).

– Simulation of De-Linearization:
When Fcoin is invoked in Step 2, S emulates Fcoin and generates a random field element r ∈ K. Then,
S computes the shares of [x]t, [y]t, [z]t held by corrupted parties and the difference d = z − x� y. This
can be achieved by using the shares of [x(i)]t, [y

(i)]t, [z
(i)]t held by corrupted parties and the difference

d(i) = z(i) − x(i) · y(i) for all i ∈ [m].
– Simulation of Dimension-Reduction:

We will maintain the invariance that, for the input inner-product tuple ([x]t, [y]t, [z]t), S learns the
shares held by corrupted parties and the difference d = z − x � y. Note that this is true for the first
time of invocation of Dimension-Reduction since these shares and the difference are computed when
simulating De-Linearization.
In Step 2 and Step 3, S computes the shares of [a(i)]t, [b

(i)]t, [c
(i)]t held by corrupted parties and the

difference d(i) = c(i) − a(i) � b(i) for all i ∈ [k]. Concretely,
• For all i ∈ [k], the shares of [a(i)]t, [b

(i)]t held by corrupted parties can be directly obtained from the
shares of [x]t, [y]t held by corrupted parties.
• For all i ∈ [k − 1], S emulates FextendMult and receives from the adversary the shares of [c(i)]t held

by corrupted parties. S also receives the difference d(i) from the adversary.
• For [c(k)]t and d(k), recall that [c(k)]t is computed by

[c(k)]t = [z]t −
k−1∑
i=1

[c(i)]t.

Therefore, S can computes the shares held by corrupted parties from the above equation. Further-
more, S computes d(k) by

d(k) = d−
k−1∑
i=1

d(i).

In Step 4, S needs to simulate the behaviors of honest parties in Extend-Compress. Note that Extend-
Compress only contains local computation and invocations of FextendMult,Fcoin. For Fcoin, S faithfully
generates a random element. For FextendMult, S receives from the adversary the shares of corrupted
parties and the difference. S follows Extend-Compress to computes the shares of [a]t, [b]t, [c]t held by
corrupted parties and the difference d′ = c− a� b.

– Simulation of Randomization:
Note that, for the input inner-product tuple ([x]t, [y]t, [z]t), the simulator S learns the shares held by
corrupted parties and the difference d = z−x�y since they are computed when simulating Dimension-
Reduction.
In Randomization, for all i ∈ [m], S computes the shares of [a(i)]t, [b

(i)]t, [c
(i)]t held by corrupted

parties and the difference d(i) = c(i) − a(i) · b(i) in the same way as that in Dimension-Reduction. For

24

[a(0)]t, [b
(0)]t, S receives from the adversary the shares held by corrupted parties when emulating Frand.

For [c(0)]t, S receives the shares from the adversary held by corrupted parties and the difference d(0)

when emulating Fmult.
In Step 6, S needs to simulate the behaviors of honest parties in Compress. This can be simulated in
the same way as that for Extend-Compress. At the end of this step, S learns the shares of [a]t, [b]t, [c]t
held by corrupted parties and also the difference d′ = c − a · b. S randomly samples a, b and computes
c = a · b + d′. Based on the secrets a, b, c and the shares held by corrupted parties, S reconstructs the
whole sharings [a]t, [b]t, [c]t.
In Step 7 and Step 8, S faithfully follows the protocol. Recall that S receives b ∈ {abort, accept} from
FmultVerify indicating whether the multiplications are correct. If b = accept but an honest party takes
abort as output, S sends abort to FmultVerify. Otherwise, S sends continue to FmultVerify.

Hybrids Argument. Now we show that S perfectly simulates the behaviors of honest parties with overwhelm-
ing probability. Consider the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S computes the difference for each multiplication tuple and inner-product tuple

as described above. Note that this does not change the behaviors of honest parties. Therefore, the distribution
of Hybrid0 is identical to Hybrid1.

Hybrid2: In this hybrid, instead of using the real sharings [a]t, [b]t, [c]t in Randomization, S constructs
the sharings [a]t, [b]t, [c]t as described above. Concretely, S randomly samples the secrets a, b and reconstructs
the whole sharings [a]t, [b]t based on the shares held by corrupted parties. Then based on the difference d′

of this tuple, S computes c = a · b+ d′ and reconstructs the whole sharing [c]t based on the shares held by
corrupted parties.

Note that in Randomization, a and b are linear combinations of {a(i)}mi=0 and {b(i)}mi=0 respectively
and the coefficients are all non-zero, where the latter follows from the property of polynomials. Also note
that a(0) and b(0) are randomly chosen by Frand. Thus, a and b are uniformly random. The only difference
between Hybrid1 and Hybrid2 is that, in Hybrid1, a and b are masked by a(0) and b(0) which are randomly
chosen by Frand, while in Hybrid2, a and b are randomly chosen by S. However the distributions of a and
b remains unchanged. Since c is determined by a, b and the difference d′, the distribution of c remains the
same in both hybrids.

Therefore, the distribution of Hybrid2 is identical to Hybrid1.
Hybrid3: In this hybrid, at least one of the input multiplication tuples is incorrect, S aborts in the end

of the protocol. Note that in the real protocol, it is possible that while one of the input multiplication tuples
is incorrect, the final multiplication tuple verified in Randomization is correct. In this case, honest parties
in Hybrid2 do not abort.

However, according to Lemma 8, Lemma 9, Lemma 10, this happens with negligible probability.
Therefore, the distribution of Hybrid3 is statistically close to Hybrid2.
Hybrid4: In this hybrid, S simulates the behaviors of honest parties as described above. Note that

the only place where honest parties need to communicate with corrupted parties is Step 7 in Randomiza-
tion where all parties verify the correctness of the final multiplication tuple. However, the preparation of
[a]t, [b]t, [c]t only depends on the the shares and the differences of the input multiplication tuples, which can
be obtained from FmultVerify.

Therefore, the distribution of Hybrid4 is identical to Hybrid3.
Note that Hybrid4 is the execution in the ideal world, and the distribution of Hybrid4 is statistically

close to the distribution of Hybrid0, the execution in the real world. ut

Concrete Efficiency. Now we analyze the communication complexity of MultVerification. Recall that
each time of running Dimension-Reduction reduces the dimension of the inner-product tuple to be 1/k
of the original dimension. Therefore, MultVerification includes 1 invocation of De-Linearization,
(logkm − 1) invocations of Dimension-Reduction and 1 invocation of Randomization. The commu-
nication complexity of MultVerification is

O(n2) + (logkm− 1) ·O(kn+ n2) +O(kn+ n2) = O((kn+ n2) logkm)

25

field elements in K.

Remark 5. We note that the circuit size is bounded by poly(κ) where κ is the security parameter. Therefore,
if we set k = κ, the communication complexity of MultVerification becomes O(nκ + n2) field elements
in K.

Remark 6. Note that MultVerification requires O(logkm) rounds. In the real world, one can adjust k
based on the overhead of each round and the overhead of sending each bit via a private channel to achieve
the best running time.

6 Protocol

In this section, we show how to use our new technique to construct a secure-with-abort protocol. Recall that
we are in the client-server model where there are c clients and n = 2t+ 1 servers (denoted by parties). The
adversary is able to control up to c clients and t parties. In our construction, the clients only participate in
the input phase and the output phase.

At a high-level, the main protocol is consist of the following steps:

1. Input: Each client uses degree-t Shamir secret sharing scheme to share its inputs to the parties.
2. Computation Phase: All parties evaluate the circuit gate by gate.
3. Verification Phase: All parties check the correctness of multiplications.
4. Output: For each output gate, all parties send their shares to the client who should receive it.

The functionality Fmain is described in Functionality 18. The main protocol Main appears in Protocol 19.
The communication complexity of Main is O(Cnφ+ logk C · (kn+ n2)κ) bits, where C is the circuit size, k
is the compression parameter, φ is the size of an field element in F and κ is the security parameter.

Functionality 18: Fmain

1. Fmain receives from all clients their inputs.
2. Fmain evaluates the circuits and computes the output. Fmain first sends the output of corrupted clients to

the adversary.
– If the adversary replies continue, Fmain distributes the output to honest clients.
– If the adversary replies abort, Fmain sends abort to honest clients.

Theorem 2. Let c be the number of clients and n = 2t+ 1 be the number of parties. The protocol Main se-
curely computes Fmain with abort in the {Fmult,FmultVerify}-hybrid model in the presence of a fully malicious
adversary controlling up to c clients and t parties.

Proof. According to Theorem 1, we assume that the adversary controls exactly t parties.
Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest parties

and honest clients. Recall that C denotes the set of corrupted parties and H denotes the set of honest parties.

Simulation of Main. We describe the strategy of S phase by phase.

– Simulation of Input Phase:
For an input x belongs to an honest client, S randomly samples t elements as the shares of [x]t of
corrupted parties. Then S sends these shares to corrupted parties.
For an input x belongs to a corrupted client, S receives from the adversary the shares held by honest
parties. Note that, S learns t+ 1 shares of [x]t. S reconstructs the whole sharing [x]t and sends x as the
input of this corrupted client to Fmain.
Note that for each input sharing, S learns the shares held by corrupted parties.

26

Protocol 19: Main

1. Input Phase:
For each input x belongs to client, client randomly samples a degree-t sharing [x]t and distributes the shares
to all parties.

2. Computation Phase:
All parties start with holding a degree-t sharing for each input gate. The circuit is evaluated in a predeter-
mined topological order.

– For each addition gate with input sharings [x]t, [y]t, all parties locally compute [z]t = [x]t + [y]t.
– For each multiplication gate with input sharings [x]t, [y]t, all parties invoke Fmult on [x]t, [y]t to compute

[z]t where z = x · y.
3. Verification Phase:

All parties invoke FmultVerify to check the correctness of the multiplications.
4. Output Phase:

For each output gate, let [x]t be the sharing associated with this gate and client be the client who should
receive this output. All parties send their shares of [x]t to client. client checks whether the shares of [x]t is
consistent. If not, client aborts. Otherwise, client reconstructs the result x.

– Simulation of Computation Phase:
In the computation phase, S will compute the shares of each sharing held by corrupted parties. Note
that this already holds for the sharing of each input gate.

• For each addition gate with input sharings [x]t, [y]t, S computes the shares of [z]t = [x]t + [y]t held
by corrupted parties.

• For each multiplication gate with input sharings [x]t, [y]t, S emulates Fmult and receives the shares
of [z]t held by corrupted parties and the difference d.

Note that for each multiplication tuple ([x]t, [y]t, [z]t), S learns the shares held by corrupted parties and
the difference d = z − x · y.

– Simulation of Verification Phase:
S emulates the functionality FmultVerify. Recall that in the simulation of the computation phase, S has
computed the shares of each multiplication tuple held by corrupted parties and the difference. S directly
sends these shares and differences to the adversary as in FmultVerify. If there exists a non-zero difference,
S sets b = abort. Otherwise, S sets b = accept. Then S sends b to the adversary.

• If b = accept and the adversary replies continue, S moves to the next phase.
• Otherwise, S sends abort to Fmain and aborts.

– Simulation of Output Phase:
For each output gate with [x]t associated with it, if the receiver is an honest client, S receives from the
adversary the shares held by corrupted parties. Then S checks whether the shares are the same as the
ones computed by S. If true, S accepts the output. Otherwise, S rejects the output.
If the receiver is a corrupted client, S receives the result x from Fmain. Then, based on the shares of [x]t
held by corrupted parties and the secret x, S reconstructs the shares held by honest parties, and sends
these shares to the adversary.
Finally, if S rejects any output of honest clients, S sends abort to Fmain. Otherwise, S sends continue
to Fmain.

Hybrids Argument. Now we show that S perfectly simulates the behaviors of honest parties. Consider the
following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S computes the input of corrupted clients and send them to Fmain. The distri-

bution of Hybrid1 is identical to Hybrid0.

27

Hybrid2: In this hybrid, S simulates the output phase as described above. Note that the output phase
is executed only when the computation is correct. For an output gate with [x]t associated with it, if the
receiver is an honest client, the shares that corrupted parties should hold are determined by the shares of
honest parties. Therefore, if corrupted parties send different shares from the ones computed by S, the shares
of [x]t will be inconsistent and the client will reject the output. If the receiver is a corrupted client, the shares
of honest parties are determined by the output x and the shares held by corrupted parties. Therefore, the
shares prepared by S are identical to the real shares held by honest parties.

Therefore, the distribution of Hybrid2 is identical to the distribution of Hybrid1.
Hybrid3: In this hybrid, S computes the difference of each multiplication tuple in the computation phase.

Then S simulates the verification phase. Note that FmultVerify simply checks whether there is an incorrect
multiplication tuple, which is equivalent to check whether there is a non-zero difference.

Therefore, the distribution of Hybrid3 is identical to the distribution of Hybrid2.
Hybrid4: In this hybrid, S simulates the computation phase. Note that S receives the shares of corrupted

parties and the difference when emulating Fmult. These are sufficient to simulating the verification phase and
the output phase. Since there is no communication in this phase, the distribution of Hybrid4 is identical to
the distribution of Hybrid3.

Hybrid5: In this hybrid, S simulates the input phase. The only difference between Hybrid4 and Hybrid5

is that, in Hybrid4, S uses the real input of honest clients to generate the input sharings, while in Hybrid5,
S simply samples random elements as the shares of corrupted parties. Note that the distributions of the
shares of corrupted parties in both hybrids are the same. Therefore, the distribution of Hybrid5 is the same
as Hybrid4.

Note that Hybrid5 is the execution in the ideal world, and the distribution of Hybrid5 is identical to
the distribution of Hybrid0, the execution in the real world. ut

Analysis of the Concrete Efficiency. We point out that, without MultVerification, Main is the same as
the best-known semi-honest protocol [DN07]. The cost per multiplication gate is 6 field elements in F per
party, including 4 field elements to prepare a pair of random double sharings, 1 element sending to Pking, 1
element receiving from Pking. Note that the cost of MultVerification is bounded by O(logk C ·(kn+n2)κ)
bits, which does not influence the cost per multiplication gate. Therefore, Main achieves the same concrete
efficiency as the best-known semi-honest protocol [DN07].

6.1 An Optimization of DN Multiplication Protocol

We note that since Pking can potentially be corrupted in Mult, there is no need to protect the secrecy of the
sharing distributed by Pking. Recall that Pking needs to generate and distribute a degree-t sharing [x · y+ r]t.
Since any t shares of a degree-t sharing are independent of its secret value, Pking can predetermine t shares
to be 0 and still generate a valid degree-t sharing of [x · y+ r]t. In this way, however, a party whose share is
0 automatically learns it without any communication.

In more detail, all parties first choose a set of t + 1 parties (including Pking). Let T denote the set of
these t + 1 parties. Pking first sets the shares held by parties outside of T to be 0. Then use these t shares
and the secret value to recover the shares held by parties in T . Pking only distributes the shares to parties
in T . The description of Opt-Mult appears in Protocol 20.

The concrete efficiency of Opt-Mult is 5.5 field elements per party. This trick can also be used in
Extend-Mult. After applying this optimization, the concrete efficiency of our protocol reduces to 5.5 field
elements per gate (per party).

Lemma 12. The protocol Opt-Mult securely computes the functionality Fmult in the FdoubleRand-hybrid
model in the presence of a fully malicious adversary controlling t corrupted parties.

This lemma can be proved in the same way as that for Lemma 4. Therefore, for simplicity, we omit the
details.

28

Protocol 20: Opt-Mult

1. All parties agree on a special party Pking. Let T be a set of t + 1 parties (including Pking) all parties agree
on. Let [x]t, [y]t denote the input sharings.

2. All parties invoke FdoubleRand to prepare a pair of random double sharings ([r]t, [r]2t).
3. All parties locally compute [x · y + r]2t = [x]t · [y]t + [r]2t.
4. Pking collects all shares and reconstructs the secret value x ·y+r. Then Pking sets the shares of parties outside

of T to be 0. Pking recovers the whole sharing [x ·y+r]t using these t shares of 0 and the secret value x ·y+r.
5. Pking distributes the shares of [x · y + r]t to parties in T . The parties outside of T set their shares to be 0.
6. All parties locally compute [x · y]t = [x · y + r]t − [r]t.

References

ABF+17. Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel Nof, Kazuma Ohara,
Adi Watzman, and Or Weinstein. Optimized honest-majority mpc for malicious adversariesbreaking
the 1 billion-gate per second barrier. In Security and Privacy (SP), 2017 IEEE Symposium on, pages
843–862. IEEE, 2017.

BBCG+19. Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge proofs
on secret-shared data via fully linear pcps. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology – CRYPTO 2019, pages 67–97, Cham, 2019. Springer International Publishing.

Bea89. Donald Beaver. Multiparty protocols tolerating half faulty processors. In Conference on the Theory and
Application of Cryptology, pages 560–572. Springer, 1989.

BGIN19. Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Practical fully secure three-party computation via
sublinear distributed zero-knowledge proofs. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS ?19, page 869?886, New York, NY, USA, 2019. Association
for Computing Machinery.

BOGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proceedings of the twentieth annual ACM symposium on
Theory of computing, pages 1–10. ACM, 1988.

BSFO12. Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-secure multiparty com-
putation with a dishonest minority. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, pages 663–680, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

BTH06. Zuzana Beerliova-Trubiniova and Martin Hirt. Efficient multi-party computation with dispute control.
In Theory of Cryptography Conference, pages 305–328. Springer, 2006.

BTH08. Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure mpc with linear communication complex-
ity. In Ran Canetti, editor, Theory of Cryptography, pages 213–230, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

CCD88. David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally secure protocols. In
Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 11–19. ACM, 1988.

CDD+99. Ronald Cramer, Ivan Damg̊ard, Stefan Dziembowski, Martin Hirt, and Tal Rabin. Efficient multiparty
computations secure against an adaptive adversary. In Jacques Stern, editor, Advances in Cryptology —
EUROCRYPT ’99, pages 311–326, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

CDVdG87. David Chaum, Ivan B Damg̊ard, and Jeroen Van de Graaf. Multiparty computations ensuring privacy
of each partys input and correctness of the result. In Conference on the Theory and Application of
Cryptographic Techniques, pages 87–119. Springer, 1987.

CGH+18. Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, and Ariel Nof.
Fast large-scale honest-majority mpc for malicious adversaries. In Annual International Cryptology Con-
ference, pages 34–64. Springer, 2018.

DIK10. Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty computation and the com-
putational overhead of cryptography. In Annual international conference on the theory and applications
of cryptographic techniques, pages 445–465. Springer, 2010.

DN07. Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty computation.
In Annual International Cryptology Conference, pages 572–590. Springer, 2007.

29

FL19. Jun Furukawa and Yehuda Lindell. Two-thirds honest-majority mpc for malicious adversaries at almost
the cost of semi-honest. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’19, pages 1557–1571, New York, NY, USA, 2019. Association for Computing
Machinery.

FLNW17. Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure three-party com-
putation for malicious adversaries and an honest majority. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 225–255. Springer, 2017.

GIP+14. Daniel Genkin, Yuval Ishai, Manoj M. Prabhakaran, Amit Sahai, and Eran Tromer. Circuits resilient to
additive attacks with applications to secure computation. In Proceedings of the Forty-sixth Annual ACM
Symposium on Theory of Computing, STOC ’14, pages 495–504, New York, NY, USA, 2014. ACM.

GLOS20. Vipul Goyal, Hanjun Li, Rafail Ostrovsky, and Yifan Song. Fathom: Fast honest majority mpc.
Manuscript, 2020.

GLS19. Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient unconditional mpc with guaranteed
output delivery. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, pages 85–114, Cham, 2019. Springer International Publishing.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In Proceedings of the
nineteenth annual ACM symposium on Theory of computing, pages 218–229. ACM, 1987.

HM01. Martin Hirt and Ueli Maurer. Robustness for free in unconditional multi-party computation. In Annual
International Cryptology Conference, pages 101–118. Springer, 2001.

HMP00. Martin Hirt, Ueli Maurer, and Bartosz Przydatek. Efficient secure multi-party computation. In Interna-
tional Conference on the Theory and Application of Cryptology and Information Security, pages 143–161.
Springer, 2000.

IKP+16. Yuval Ishai, Eyal Kushilevitz, Manoj Prabhakaran, Amit Sahai, and Ching-Hua Yu. Secure protocol
transformations. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology – CRYPTO
2016, pages 430–458, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

LN17. Yehuda Lindell and Ariel Nof. A framework for constructing fast mpc over arithmetic circuits with
malicious adversaries and an honest-majority. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 259–276. ACM, 2017.

LP12. Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious transfer.
Journal of cryptology, 25(4):680–722, 2012.

NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new ap-
proach to practical active-secure two-party computation. In Advances in Cryptology–CRYPTO 2012,
pages 681–700. Springer, 2012.

NV18. Peter Sebastian Nordholt and Meilof Veeningen. Minimising communication in honest-majority mpc
by batchwise multiplication verification. In Bart Preneel and Frederik Vercauteren, editors, Applied
Cryptography and Network Security, pages 321–339, Cham, 2018. Springer International Publishing.

RBO89. Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority.
In Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages 73–85. ACM,
1989.

Sha79. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November 1979.
Yao82. Andrew C Yao. Protocols for secure computations. In Foundations of Computer Science, 1982. SFCS’08.

23rd Annual Symposium on, pages 160–164. IEEE, 1982.

30

	Malicious Security Comes Free in Honest-Majority MPC

