
Efficient Fair Multiparty Protocols using
Blockchain and Trusted Hardware

Souradyuti Paul1 and Ananya Shrivastava2

1 Indian Institute of Technology Bhilai,
souradyuti@iitbhilai.ac.in

2 Indian Institute of Technology Gandhinagar,
ananya.shrivastava@iitgn.ac.in

Abstract. In ACM CCS’17, Choudhuri et al. designed two fair public-
ledger-based multi-party protocols (in the malicious model with dishon-
est majority) for computing an arbitrary function f . One of their proto-
cols is based on a trusted hardware enclave G (which can be implemented
using Intel SGX-hardware) and a public ledger (which can be imple-
mented using a blockchain platform, such as Ethereum). Subsequently,
in NDSS’19, a stateless version of the protocol was published. This is
the first time, (a certain definition of) fairness – that guarantees either
all parties learn the final output or nobody does – is achieved without
any monetary or computational penalties. However, these protocols are
fair, if the underlying core MPC component guarantees both privacy
and correctness. While privacy is easy to achieve (using a secret sharing
scheme), correctness requires expensive operations (such as ZK proofs
and commitment schemes). We improve on this work in three different
directions: attack, design and performance.
Our first major contribution is building practical attacks that demon-
strate: if correctness is not satisfied then the fairness property of the
aforementioned protocols collapse. Next, we design two new protocols –
stateful and stateless – based on public ledger and trusted hardware that
are: resistant against the aforementioned attacks, and made several or-
ders of magnitude more efficient (related to both time and memory) than
the existing ones by eliminating ZK proofs and commitment schemes in
the design.
Last but not the least, we implemented the core MPC part of our pro-
tocols using the SPDZ-2 framework to demonstrate the feasibility of its
practical implementation.

Keywords: Blockchain, fairness, multi-party computation

1 Introduction

Background In a secure multiparty computation (MPC), a set of mutually dis-
trusting parties can jointly execute an algorithm (or a program) without reveal-
ing their individual secrets. The notion of MPC was introduced in the seminal

work of Yao in 1982 [22], and since then its applicability has grown from strength
to strength. Multiparty protocols are used in, among others, various day-to-day
applications such as Blockchain, e-auction, e-voting, e-lottery, smart contracts,
privacy-preserving data mining, IoT-based applications, cloud-computing, grid
computing, and identity/asset management [12, 19].

For real-life deployment, a multiparty protocol should have the fairness prop-
erty that should guarantee: either all the parties learn the final output or nobody
does. While unconditional fairness is impossible to achieve [9], based on the use
cases, several weaker variants of this property have been proposed. For an elab-
orate discussion on this, see [6].

In [8], for the first time, a fair multiparty protocol in the malicious model
with the dishonest majority has been proposed that depends neither on mone-
tary nor computational penalties.3 This protocol can be implemented using the
existing (and easily available) infrastructure, such as Blockchain, Google’s CT
log and Intel SGX [1, 10, 19]. While this is an important piece of result with
significant practical implications, there is still room for improvement.

Motivation We start with the fact that the protocols described in [8, 16] (de-
note them by Π) essentially consist of three generic components – a public ledger
BB (a.k.a. bulletin board), a protective memory region G (a.k.a. enclave), and
an underlying multi-party protocol π (modeled in Fig. 1).4 We observe that the
security of Π is proved (in the malicious model with dishonest majority) under
the condition that π supports the privacy of the individual secrets, and the cor-
rectness of the output. While privacy is ensured using a secret-sharing scheme
[21], achieving correctness of output requires expensive operations such as ZKP
and commitment schemes [11, 14]. We now ask the following questions:

1. Can we break the fairness property of the protocols described in [8, 16],
if π is allowed to output an incorrect value?

2. If the answer to the previous question is yes, can we design a new
protocol Γ , which is fair as well as efficient even when π is allowed to
output an incorrect value?

We now show that answers to the above questions are indeed in the affirmative.

Our Contribution Our first contribution is showing concrete attacks on the
protocols described in CGJ+ and KMG [8, 16], when the underlying protocol π
allows incorrect output to be returned (formalized in Def. 4).

Next, we design a new protocol Γ based on public ledger and trusted hard-
ware (see Fig. 1 and Sect. 5), and prove that it is fair, even if π returns an
incorrect value. We extended our work to design a stateless version of Γ , namely
Υ , and also prove its fairness.

3 See [6] and [7] for description of monetary and computational (a.k.a. ∆-fairness)
penalties.

4 G is implemented using Intel SGX hardware.

K

Public Ledger BB

�0
�1

K

Partition 0 Partition 1
Enclave

Protocol �



Output Output

Fig. 1. Generic structure of the protocols of Table 1: public ledger BB, enclave G, and
the underlying core MPC component π. K is the (identical) symmetric key stored
in all partitions of the (tamper-resistant) hardware enclave G. Arrowhead denotes the
direction in which a query is submitted. Thick arrowhead denotes the release of output.

Table 1. Comparison of multiparty protocols following the framework of Fig. 1. Cryp-
tographic primitives: SSS = Shamir’s secret sharing, MAC = Message authentication
code, ZKPoPK = Zero-knowledge proof of plaintext knowledge, Comm. = CS.Com,
Enc. = AE.Enc, Dec. = AE.Dec, OWF = One-way function, and PRF = Pseudo-random
function. Here, k = size of encryption and λ = security parameter.

Protocol Stateful/ Primitives ZKPoPK π security # of var. # of calls Ref.
Stateless used in π amortized compl. Def. 3 Def. 4 in G in G

Π Stateful SSS O(k + λ) bits Fair Attack 13 Comm.: 1 [8]
+ AE Enc.: 1

+ MAC Dec.: 2
+ ZKPoPK OWF: 2

Γ Stateful SSS 0 bits Fair Fair 8 Comm.: 0 Sect. 5
+ AE Enc.: 1

Dec.: 2
OWF: 0

KMG Stateless SSS O(k + λ) bits Fair Attack 2 Comm.: 2 [16]
+ AE Encr.: 2

+ MAC Dec.: 3
+ ZKPoPK OWF: 2

PRF: 2
Hash: 3

Υ Stateless SSS 0 bits Fair Fair 2 Comm.: 1 Sect. 5
+ AE Enc.: 2

Dec.: 3
OWF: 0
PRF: 2
Hash: 3

Finally, we establish that our protocols are not only better secure than the
existing ones, they also require fewer variables and cryptographic operations in
the hardware enclave, not to mention the elimination of the expensive ZK proofs
and the commitment scheme (see Table 1 for details).

We conclude with an open question regarding how our strategy can be
adapted to design a fair and efficient protocol based on witness encryption
(rather than any protective hardware enclave), where the internal component π
is allowed to release incorrect values.

Our results have been applied to 2-party protocols, nevertheless, they can be
easily generalized to n-party protocols (with n > 2).

Related Work In the beginning of this section, we briefly discussed the works
of Yao and Cleve [22, 9]. Other than them, we mentioned [8, 16] that form the
basis of our work in this paper. In addition, the following papers, similar to ours,
deal with the many other variants of the fairness property [4–6, 17, 18].

Organization We start with the overview of our main results in Sect. 2. In
Sect. 3 we describe various security properties of a multiparty protocol as pre-
liminaries. Thereafter, in Sect. 4, we design the fairness attacks on several con-
structions in [8, 16] under various realistic scenarios. We present the full descrip-
tion of our protocols along with their security proofs in Sect. 5. Then, we discuss
the feasibility of practical implementation our protocols in Sect. 6. Finally, we
conclude with an open problem in Sect. 7.

2 Overview of the Main Results

We improve on the existing works of [8, 16] on three different directions: attack,
design and performance.

Attack We mount a fairness attack on the protocols described in [8, 16], where
the underlying protocol π returns an incorrect encryption of the function f(·)
to the honest party P0 (see Fig. 1), but it returns the correct encryption to the
dishonest party P1. Also note that, in these protocols, the parties are supplied
with a protective memory region, known as enclave G, which nobody can tamper
with. In addition, there is a public ledger BB that generates an authentication
tag, given a random string. The gist of the attack is as follows (see Sect. 4 for
details).

The protocols of [8, 16], denoted Π, essentially consist of three components
Π = Π2 ◦ π ◦Π1. As usual, Pi stores (xi, ki) as its secret. The first component
Π1 executes the Diffie-Hellman protocol to store the symmetric key K = (k0, k1)
in the enclave G. The second component π computes the encryption of f using
(k0, k1). Finally, the third component Π2 decrypts f by submitting to G the ran-
dom strings (a.k.a. release tokens) and the corresponding tags of all the parties
obtained from the public ledger BB. Finally, the enclave G computes f , only if
the release tokens and the corresponding tags of all the parties are valid. Our

attack exploits the crucial fact that the release tokens are generated indepen-
dently of the ciphertext, enabling the dishonest party P1 with the correct output
from π, to obtain from BB the correct release token and the corresponding tag
of the honest party P0 as well. The attack works because P0 submits to BB his
correct release token, without realizing that it received an incorrect encryption
from π.

Design Next, using the lesson learnt from the aforementioned fairness attack
on Π, we now design a new fair protocol Γ , which works even if the internal
component π returns an incorrect value. We reiterate that the origin of the
attack in Π is the release tokens being generated independently of the ciphertext.
Therefore, our cardinal observation is as follows:

We remove the release token altogether from the protocol and generate
a tag from BB using the ciphertext directly. Now, the enclave G decrypts
in the following way: it computes f only if the ciphertext and the tag
submitted by a party are both authenticated. (The full details of Γ can
be found in Sect. 4.)

Now, we briefly explain why Γ is a fair protocol. Suppose, P0 and P1 receive
incorrect and correct outputs from π. Then, as soon as P1 posts the ciphertext to
BB, it immediately becomes available to P0 as well, enabling him to obtain f from
G by submitting the correct ciphertext-tag pair. Thus, fairness is preserved.5

At a very high level, we achieved security as well as the improved perfor-
mance of Γ by weakening the security property of the underlying sub-protocol π
(thereby achieving high performance), while rescuing this lost security by better
exploiting the existing hardware enclave G without any performance penalty.

Similar techniques can be used to construct a stateless version of Γ , denoted
Υ . The full details are given in Sect. 5.

Performance In our new protocol Γ , we obtain reduction in costs, mainly,
due to the following two factors: the inner protocol π is now stripped of the
expensive functionalities ZK proofs and commitment schemes; the enclave G
now works without commitments and one-way functions. The various details
can be found in Table 1.

3 Preliminaries

3.1 Cryptographic Primitives

Due to space constraints, we refer the reader to [13] and [20] for the rigorous
definitions of various well-known cryptographic schemes used in our construc-
tions, namely, secret sharing scheme SSS, mesage authentication code MAC,
one-way function OWF, pseudorandom function PRF, collision-resistant hash

5 If P1 posts an incorrect ciphertext to BB then he himself gets a wrong tag from BB,
preventing him from obtaining the f from G.

function H, signature Σ = (Σ.Gen, Σ.Sign, Σ.Verify), and commitment CS =
(CS.Setup,CS.Com,CS.Open). For Authentication scheme (with public verifica-
tion) AS = (AS.Gen,AS.Tag,AS.Verify), and authenticated encryption AE =
(AE.Gen,AE.Enc,AE.Dec), we refer the reader to [8]. Because of their critical
nature in our protocol, we describe the following functionalities in detail.

Public Ledger (Bulletin Board BB) A Bulletin Board BB is a publicly
verifiable database that allows parties to update arbitrary strings on it [8]. These
strings of the BB are called release tokens. When a party submits a release token
ρ to the BB, it returns an authentication tag σ corresponding to ρ, and an index
to the database t. The σ is the proof of the submission of ρ by the party.

It is a 3-tuple of algorithms, BB={BB.getCurrCount, BB.post, BB.getCont}

– BB.getCurrCount() returns the current index t.
– On given a release token ρ, BB.post(ρ), computes the authentication tag
σ = AS.Tag(t, ρ) and its corresponding index t and returns (σ, t) to the
posting party.

– On given the index t′, BB.getCont(t′) returns (σ, ρ) corresponding to t′, if t′

is less than or equal to the current index t of BB. Otherwise it returns ⊥.
– AS.Verify(σ, (t, ρ)) returns 1, if the triplet (σ, t, ρ) is correct .

Enclaves G and G′ They are the private regions of memory for running pro-
grams. An enclave provides confidentiality and integrity of a program in the
presence of adversarial environment. This can establish a secure channel with
other enclaves, as well as can remotely attest to its correct functioning [10]. An
enclave can be practically implemented using Intel SGX-hardware.

Stateful enclave G. It is a 4-tuple of algorithms G = (G.Σ,G.getpk,G.install,
G.resume) associated with a state State. We describe the individual algorithms
and state as follows.

– G.Σ is a signature scheme with security parameter 1λ. G.Σ.Gen(1λ) gen-
erates the pair of signing and verification keys (msk, mpk), and stores it
locally.

– G.getpk() returns a copy of mpk.
– G.install(·): On input a party P , and the program prog, it does the following:

1. generate enclave-id: eid
$← {0, 1}λ

2. store in enclave: T [eid, P] := (prog, 0)
3. return eid

– G.resume(·): On input a party P , the enclave-id eid, and the input inp, it
does the following:
1. If T [eid, P] 6= ∅ then (prog,mem) := T [eid, P]

else abort.
2. (outp,mem) := prog(inp, P,mem)
3. update enclave: T [eid, P] := (prog,mem)
4. signature generation: sig ← G.Σ.Sign(msk, eid, prog, outp︸ ︷︷ ︸

message

)

5. return (outp, sig)
– The state State is defined to be S ∪ T , where S = (msk, mpk). Initially, T

and S are empty sets.

Stateless enclave G′. Unlike the stateful G, as described above, here there
is no persistent storage; nevertheless, the parties maintain a state in the en-
crypted form outside of G′ (for more details see [16]). We model it as a 2-tuple
of algorithms G′ = (G′.Setup,G′.execute) as follows [16].

– G′.Setup(·): On input the security parameter 1λ:
1. generates secret key for enclave: K ← {0, 1}λ
2. generates public commitment parameter: pp← CS.Setup(1λ)
3. generates signing and verification key pair: (msk, mpk)← Σ.Gen(1λ)
4. returns (mpk, pp)

– G′.execute(·): On input program prog, round l, encrypted previous state Sl−1,
program input Il, random number rl, commitment value Cl, BB’s index tl,
and authentication tag σl, it does the following (initially, l = 0, S0 = ∅):
1. Check if VerifyBB(Cl, tl, σl) 6= 1 then return ⊥
2. Check if Cl 6= CS.Com(pp, prog, l, Sl−1, Il, rl) then return ⊥
3. If l > 1 ∧ Sl−1 = ∅ then return ⊥
4. Compute (l − 1)th round encryption key kl−1 ← PRF(K, tl−1)
5. (sl−1, h)← AE.Dec(kl−1, Sl−1)
6. Check if (sl−1, h) =⊥ then return ⊥
7. Check if h 6= H(prog||l − 1) then return ⊥
8. Compute random number and lth round encryption key: (kl, r

′
l)← PRF(K, tl)

9. Execute program and determine: (sl, outl)← prog(sl−1, Il, r
′
l)

10. If (sl, outl) =⊥ then return ⊥
11. Encrypt state: Sl ← AE.Enc

(
kl, sl‖H(prog‖l)

)
12. Signature generation: sigl ← Σ.Sign(msk, pp, prog, outl︸ ︷︷ ︸

message

)

13. return (Sl, outl, sigl)

Enclave-Ledger Interaction (ELI) An ELI is a 3-tuple of algorithms, ELI =
(ELI.Setup,ELI.ExecEnc, ,ELI.ExecApp), that allows a party to securely commu-
nicate with the enclave G′ and the public ledger BB [16]. The algorithmic de-
scriptions of ELI.Setup and ELI.ExecEnc are identical to that of G′.Setup and
G′.execute. We now describe the algorithm ELI.Exec as follows.

– ELI.Exec(·): On input security parameter 1λ, public commitment parameter
pp, program prog, round l, encrypted previous state Sl−1, and input Il, it
does the following.

1. If Il =⊥ then return ⊥
2. Choose random number: rl ← {0, 1}λ
3. Compute commitment on input values: Cl ← CS.Com(pp, prog, l, Sl−1, Il, rl)
4. Invokes BB.Post(Cl) to receive (tl, σl)
5. Invokes ELI.ExecEnc(prog, l, Sl−1, Il, rl, Cl, tl, σl) to receive (Sl, outl, sigl)

Definition 1 ([16]). A protocol ELI is said to be secure, if for every non-
uniform p.p.t. adversary A, security parameter 1λ, and non-negative integer n in
the real world, there exists a non-uniform p.p.t. simulator S in the ideal world
such that,

IDEAL(S, 1λ, n)
c≡ REAL(A, 1λ, n)

The IDEAL(·) and REAL(·) are described in [16].

Theorem 1 ([16]). Suppose the following assumptions hold good: the commit-
ment scheme CS is secure; the authenticated encryption scheme AE is INT-
CTXT secure; the authentication scheme AS is unforgeable; the hash function H
is collision-resistant; and PRF is pseudorandom. The ELI satisfies Def. 1.

3.2 Security Properties

Consider a set of parties P = {P0, P1} executing a protocol π for computing a
function f on x0 and x1; x0 and x1 are chosen according to some distributions
from the sets Xκ and Yκ, where κ is the security parameter. W.l.g., we assume
P0 and P1 are the honest and corrupt parties respectively in the real world. H
and P1 are the honest and corrupt parties in the ideal world. Other than them,
we will be using two more entities, attacker A and a simulator S, that control the
corrupt party P1 in the real and the ideal worlds. Now, P1 has input x1; both H
and P0 has x0; A and S have x1, and the auxiliary input6 z ∈ {0, 1}∗.

The adversary A’s view consists of the following: the input of A, the val-
ues sent to and received from P0, and the content of its internal random tape.
Similarly, the views of P0 and H can be defined. The view of the simulator is a
function of (x1, z, f(x0, x1), κ). The outputs of P0, H, A and S can be computed
from there respective views.

(G,BB)-Fairness with abort Unconditional fairness is impossible to achieve
[9]; (G,BB)-fairness with abort is a variant of it. If a protocol – which is built on
enclave G, and the Bulletin Board BB – has (G,BB)-fairness with abort property
then it is guaranteed that either all parties learn the final output or nobody
does; the privacy property is preserved implicitly as well. We formally define
this property in the spirit of semantic security which is based on designing ap-
propriate real and ideal worlds. The pictorial description of the ideal and real
worlds is given in Fig. 2.

The ideal world Here, F is the trusted party. Also, the view of S, and the output of
H are denoted by view and outH respectively. Let IDEALsb-fair

f(x0,x1),S(x1,z)(x0, x1, κ)
denote outH‖view. Here, S has access to the honest oracles: the enclave G and
the public ledger BB in a similar fashion as described in [16]. The instructions

6 The auxiliary input is derived by the adversary (as well as the simulator) from the
previous executions of the protocol.

executed in the ideal world are described below.

1. H sends x0 to F . Depending on x1 and the auxiliary information z, S sends
x′1 to F , where |x′1| = |x1|.
2. F returns f(x0, x

′
1) to S.

3. S sends either continue or abort to F , depending on its view.
4. If S sends abort to F , then F , in turn, sends abort to H. If S sends continue
to F , then F returns f(x0, x

′
1) to H.

5. H outputs, outH, which is whatever it obtained from F ; P1 outputs nothing;
and S outputs out, which is a function of view.

The real world Let REALsb-fair
π,A(x1,z)(x0, x1, κ) denote out0‖viewA, where out0 de-

note output of P0, and viewA denote A’s view. P0 and P1 execute π which
consists of two honest oracles: G and BB. Throughout the execution of π, as
before, A sends messages on behalf of P1, while P0 correctly follows the protocol
instructions. Finally, P0 outputs out0; P1 outputs nothing; and A outputs outA,
which is a function of viewA.

K

Public Ledger BB

�0 �1

K

Partition 0 Partition 1
Enclave

Public Ledger BB

�
�1

�

Enclave

�
�



KK

Partition 0 Partition 1



Protocol �

Arbitrary
Output

Arbitrary
Output

Arbitrary
Output

Arbitrary
Output

� 1
vi

ew

REALIDEAL



continue/
abort

vi
ew

Fig. 2. Execution of ideal and real worlds of (G,BB)-Fairness with abort. Arrowhead
denotes the direction in which a query is submitted. Thick arrowhead denotes the
release of output.

Definition 2. A protocol π is said to securely compute f with (G,BB)-fairness
with abort, if for every non-uniform PPT adversary A in the real world, there
exists a non-uniform PPT simulator S in the ideal world such that

IDEALsb-fair
f(x0,x1),S(x1,z)(x0, x1, κ)

c≡ REALsb-fair
π,A(x1,z)(x0, x1, κ),

for all (x0, x1) ∈ Xk × Yk, z ∈ {0, 1}∗, κ ∈ N.

Privacy-and-Correctness with abort If a protocol has privacy-and-correctness
with abort property then it guarantees that the honest party: (1) does not reveal
its secret (privacy), and (2) outputs the correct value or ⊥.

The ideal world Let IDEALprv-corr
f(x0,x1),S(x1,z)(x0, x1, κ) denote outH‖view. The in-

structions of the ideal world are identical to that of (G,BB)-fairness with abort.

The real world Let REALprv-corr
π,A(x1,z)(x0, x1, κ) denote out0‖viewA. P0 and P1 ex-

ecute π without any trusted party. Throughout the execution of π, A sends
messages on behalf of P1, while P0 correctly follows the protocol instructions.
Finally, P0 outputs out0; P1 outputs nothing; and A outputs outA, which is a
function of viewA.

Definition 3. A protocol π is said to securely compute f with privacy-and-
correctness with abort, if for every non-uniform PPT adversary A in the real
world, there exists a non-uniform PPT simulator S in the ideal world such that

IDEALprv-corr
f(x0,x1),S(x1,z)(x0, x1, κ)

c≡ REALprv-corr
π,A(x1,z)(x0, x1, κ),

for all (x0, x1) ∈ Xk × Yk, z ∈ {0, 1}∗, κ ∈ N.

Privacy Property If a protocol has privacy property then it guarantees that
the honest party does not reveal its secret. Note that this is a weaker property
(and therefore, easy to achieve) than Def. 3.

The ideal world Let IDEALPRV
f(x0,x1),S(x1,z)(x0, x1, κ) denote the view whose in-

structions are described below.
1. H sends x0 to F . Depending on x1 and the auxiliary information z, S sends
x′1 to F , where |x′1| = |x1|.
2. F returns f(x0, x

′
1) to H and S.

3. H outputs outH; P1 outputs nothing; and S outputs out, which is a function
of view.

The real world Let REALPRV
π,A(x1,z)(x0, x1, κ) denote viewA. The P0 and P1 execute

π without any trusted party. Throughout the execution of π, A sends messages
on behalf of P1, while P0 correctly follows the protocol instructions. Finally, P0

outputs out0; P1 outputs nothing; and A outputs outA, which is a function of
viewA.

Definition 4. A protocol π is said to securely compute f with privacy property,
if for every non-uniform PPT adversary A in the real world, there exists a non-
uniform PPT simulator S in the ideal world such that

IDEALPRV
f(x0,x1),S(x1,z)(x0, x1, κ)

c≡ REALPRV
π,A(x1,z)(x0, x1, κ),

for all (x0, x1) ∈ Xκ × Yκ, z ∈ {0, 1}∗, κ ∈ N.

4 Fairness Attacks on CGJ+ and KMG protocols

The protocol of CGJ+ which is based on an enclave G (implemented using SGX-
hardware) is now denoted by Π. The description of Π is given in Fig. 3. The Π

Π[∆t, π,BB,G, λ,P]

Input: For all i ∈ {0, 1}, Pi inputs xi.
Output: Both P0 and P1 output either f(x0, x1) or ⊥.[
If π is replaced by π0 then P1 outputs f(x0, x1), and P0 outputs f ′(x0, x1) 6= f(x0, x1).

]
1. [Setting up parameters (Offline)] For all i ∈ {0, 1}:

(a) Pi samples the release token ρi
$← {0, 1}λ, key share ki

$← {0, 1}λ, and random number

share ri
$← {0, 1}λ [used in Steps 5 and 8].

(b) Pi invokes BB.getCurrCount() to obtain the current index ti [used in Step 6].

2. [Exchange of enclaves’ verification-keys (Offline+Online)] For all i ∈ {0, 1}, Pi invokes
G.getpk() to receive mpki which is then sent to Pj [used in Steps 4 and 6].

3. [Install prog in enclave (Offline)] For all i ∈ {0, 1}, party Pi invokes
G.install(prog[∆t, vkBB,P, i]) and receives output eidi [used in Steps 4-7, 9(a) and
10].

4. [Diffie-Hellman key-exchange by enclaves (Offline+Online)] For all i ∈ {0, 1}: Pi in-

vokes G.resume(eidi, keyex) to receive (gai , sig
(1)
i), and broadcasts (eidi, g

ai , sig
(1)
i); Pi checks,

if G.Σ.Vermpkj
((eidj , prog[∆t, vkBB,P, j], gaj), sig

(1)
j) = 1 then continue, else abort. (Thus, a se-

cure channel is established between the enclaves using Diffie-Hellman key.) [used in Steps 6
and 7]

5. [Enclave stores (ρi, ki, ri) and returns each party’s commitments (Offline)] For all i ∈
{0, 1}, Pi invokes G.resume(eidi, init, ρi, ki, ri) and receives (comii, sig

(2)
i). (The commitment

comii on key share is used as one of the inputs in MPC protocol to ensure correctness property.)
[used in Steps 6 and 8]

6. [Enclave stores ti and returns ciphertext (Offline+Online)] For all i ∈ {0, 1}: Pi in-

vokes G.resume(eidi, send, g
aj , ti) to receive (ctij , sig

(3)
i) which is then sent to Pj ; Pi checks if

G.Σ.Vermpkj
((eidj , prog[∆t, vkBB,P, j], ctij), sig(3)j) = 1 then continue, else abort [used in Step

7].

7. [Obtaining each other’s commitments (Offline)] For all i ∈ {0, 1}: Pi invokes

G.resume(eidi, receive, ctji) and receives (comji, sig
(4)
i), where comji is the 4th component in

the decryption of ctji under secret key skji (Here skji = skij). (Note that in this step both the
enclave stores other parties secret values securely.) [used in Step 8 and 9(a)]

8. [Execute π to obtain encryption of f(·) (Online)] The a denotes π’s output (see Sect. 4)
[used in Step 10].

9. [Parameters required to obtain f(·) by decryption (Offline+Online)]

(a) For all i ∈ {0, 1}, Pi invokes G.resume(eidi, getParams) and receives (T, y, sig
(5)
i), where

T = max(t0, t1), and y = OWF(ρ0 ⊕ ρ1) [used in Step 9(b)].

(b) For all i ∈ {0, 1}, Pi sends ρi to Pj , and receives (ρj , t, σ) from BB. Here, T and y are
used for verification of ρj and t. (see [8] for details) [used in Step 10].

10. [Computing f(·) by decryption (Offline)] For all i ∈ {0, 1}, Pi invokes
G.resume(eidi, output, a, ρ0 ⊕ ρ1, t, σ) to receive f(·).

Fig. 3. Algorithmic description of Π in (π,G,BB)-hybrid model. In all the cases, j =
1 − i. The program prog is described in Appendix A. It is parameterized by: cut-off
time ∆t (which is poly(λ)), a 2-party protocol π, a Bulletin Board BB, an enclave G,
the security parameter 1λ, and a set of parties P = {P0, P1}. The orange colored steps
in the algorithm represent the local computation done by a party. The purple colored
step in the algorithm represents the communication among the parties and BB.

works in (π,G,BB)-hybrid model, where π is a 2-party protocol computing the
encryption of the given function f(·). Note that G and BB have already been
described. Below we give the description of π.

Description of π: It is a 2-party protocol that computes an encryption of the
given function f(x0, x1). Concretely:

π
({
xi, ki, com0,i, com1,i

}
i∈{0,1}

)
def
= a =

{
ct′, if P1 is malicious

ct, otherwise.

Here, the private input xi, and the key share ki are generated by Pi; comj,i =
CS.Com(kj , rj), which is commitment of kj computed by Pj and given to Pi.

Also, ct = AE.Enc
(
⊕1
i=0 ki, f(x0, x1)

)
, and ct′ 6= ct.

We recall that such a π which is secure in terms of privacy-and-correctness
with abort in the malicious model with dishonest majority – as defined in Def. 3
– can be obtained in the following way: first design a privacy secure semi-honest
multi-party protocol π0, and then execute the GMW compiler on input π0 to
obtain π [15].7 For such a π, ct′ =⊥.

The components of π are: (1) (n, n)-secret sharing scheme; (2) AE scheme;
(3) ZK proofs; and (4) CS scheme. The π inherits: (1) and (2) from π0 which
ensures privacy ; it inherits (3) and (4) from the GMW compiler which ensures
correctness [14]. �

Description of Π (see Fig. 3): It is a 2-party protocol such that:

Π(x0, x1)
def
=

{
f ′(x0, x1), if P1 is malicious

f(x0, x1), otherwise.

Here f(·) is an arbitrary function and f ′(·) 6= f(·). From the standpoint of design,
Π can be seen as the composition of the following 3 sub-protocols, all executed
by the parties (P0, P1); note that each Pi is inherently supplied with an enclave
Gi:

Π = Π2 ◦ π ◦Π1.

The Π1 securely stores the internally generated symmetric key K = (k0, k1)
(and various other auxiliary data) inside the enclave G = (G0,G1) using Diffie-
Hellman key-exchange.8 It returns ki along with the commitment values (com0,i, com1,i)
on (k0, k1) to Pi to be used in the next stage π. The description of Π1 is in steps
1-7.

The second stage π – which is invoked in step 8 – has already been described
in detail. It returns the symmetric encryption of f using (k0, k1) to all the parties
to be used for the next stage Π2. At this point, there are two possible cases –
P0 receives either ⊥ (case 1), or the correct encryption of f (case 2). In the

7 Another way of designing π is by using SPDZ directly [11].
8 Note that none of the parties know the key K; Pi knows only ki.

former case, P0 stops execution, while in the latter, both the parties (P0, P1)
start executing the final stage Π2.

The final stage Π2 returns f after decrypting the output of π inside the en-
clave G, using the various data generated in Π1. It also uses the release tokens
and the corresponding tags of both the parties obtained from BB. Note that any
enclave in G would never decrypt, if any of the following five checks fails: the
release tokens are incorrect; any pair of the release-tokens-tags is invalid; the
authentication of the ciphertext fails; and the input is supplied after the cut-off
time ∆t. Otherwise, it would allow the dishonest party P1 to obtain f using G1,
while the honest party P0 is unable to obtain it, due to the occurrence of case
1 as above, or due to aborting the protocol after waiting for a time longer than
∆t; in either case it violates the fairness property. It is easy to observe that any
attempt to attack the fairness property when case 2 has occurred can also be
prevented by these aforementioned five checks. The description of Π2 is in steps
9-10. In [8], it has been proved that if π satisfies the privacy-and-correctness with
abort property (Def. 3), then Π satisfies (G,BB)-fairness with abort (Def. 2).

Attack on Π when π is replaced by π0: It is obvious from the previous
discussion that π is more expensive than π0, although the input and output for
both of them are identical. We note that, π0 preserves privacy in the malicious
model with dishonest majority, but may not guarantee correctness [14]. Now we
show that setting π = π0, immediately leads to a fairness attack in Π. The
attack works as follows: suppose π = π0; and the honest party P0 receives in-
correct ciphertext ct′ 6=⊥ (see step 8), however, the dishonest party P1 receives
the correct output ct. Since, no parties receive ⊥ from π, they post the release
tokens to get the tags from BB (step 9(b)). Now, P0 invokes G0 by supplying
the incorrect ciphertext ct′ (along with all the release tokens and the tags) only
to receive ⊥, while P1 receives the correct f(·). The fairness attack is now com-
plete. �

Attacks on WE-based CGJ+ and KMG protocols: In WE-based CGJ+,
the enclave G is replaced with a witness encryption WE; in KMG, the state is
stored by the parties, while the enclaves are stateless; nevertheless, both of them
use π as described above. The attack follows from the fact that the last two steps
of these protocols constitute a sub-protocol which is identical to the third stage
of Π, namely, Π2. We note that the aforementioned fairness attack on Π takes
place inside the sub-protocol Π2. From this observation, the similar attacks on
WE-based CGJ+ and KMG protocols follow.

5 New Constructions

In this section, we design two new protocols – more efficient than the existing
ones – that are also fair in the malicious model with dishonest majority. Our
first protocol, denoted Γ (see Fig. 4), works in (π′,G,BB)-hybrid model, where
π′ is a 2-party protocol computing the encryption of the given function f(·).

Following is the description of π′.

Description of π′: It is a 2-party protocol that computes an encryption of the
given function f(x0, x1). Concretely:

π′
(
{xi, ki}i∈{0,1}

)
def
= a =

{
ct′, if P1 is malicious

ct, otherwise.

We can design such a π′ – which is privacy secure in the malicious model with
dishonest majority (as defined in Def. 4) – using known techniques in the exist-
ing literature [14]. The cryptographic components used in π′ are: an (n, n)-secret
sharing scheme and an AE scheme. Therefore, the differences between π (of pro-
tocol Π) and π′ are the following: (1) the input size is less since we do not have
the commitments; (2) removed are the expensive components ZK proofs and CS
scheme; (3) while π is secure under privacy-and-correctness with abort in the
malicious model with dishonest majority, π′ is only privacy secure in the same
setting. �

Description of Γ : The Γ is a composition of 3 sub-protocols:

Γ = Γ2 ◦ π′ ◦ Γ1.

The Γ1 securely stores the internally generated symmetric key K = (k0, k1)
(and various other auxiliary data) inside the enclave G = (G0,G1) using Diffie-
Hellman key-exchange. It returns ki to Pi to be used in the next stage π′. Unlike
Π1, the execution of Γ1 does not require the following components: the release
tokens ρi’s, the commitments of the key-shares comj,i’s and the OWF inside the
enclave G (see Appendix. A for more details). The description of Γ1 is in steps
1-7.

The second stage π′ – which is invoked in step 8 – has already been described
in detail. It returns the symmetric encryption of f using (k0, k1) to all the parties
to be used for the next stage Γ2. At this point, there are two possible cases – P0

receives either ct′ (6= ct) (case 1), or the correct encryption of f (case 2). Unlike
in π, in both the cases, the parties (P0, P1) start executing the final stage Γ2.

The final stage Γ2 returns f after decrypting the output of π′ inside the
enclave G, using the various data generated in Γ1 along with the data obtained
from BB. The protocol works as follows: Each party directly posts the ciphertext
obtained in π′ to BB, and gets the corresponding tag. Finally, each party submits
the ciphertext-tag pair to the enclave G to obtain the correct f . The enclave
would never decrypt, if any of the following three checks fails: the ciphertext-
tag pair is invalid; the authentication of the ciphertext fails; and the input is
supplied after the cut-off time ∆t. Otherwise, it would allow the dishonest party
P1 to obtain f using G1, while the honest party P0 is unable to obtain it, due to
the occurrence of case 1 as above, or due to aborting the protocol after waiting
for a time longer than time ∆t; in either case it violates the fairness property.
The description of Γ2 is in steps 9-10. The differences between Γ2 and Π2 are
the following: (1) we post the ciphertext (as opposed to the release tokens) to
BB; and (2) consequently, the release tokens verification inside the enclave G

are eliminated. The fairness property of Γ as argued so far is formalized in the
following theorem.

Γ [∆t, π′,BB,G, λ,P]

Input: For all i ∈ {0, 1}, Pi inputs xi.

Output: Both P0 and P1 output either f(·) or ⊥.

1. [Setting up parameters (Offline)] For all i ∈ {0, 1}:
(a) Pi samples key share ki

$← {0, 1}λ [used in Steps 5 and 8].

(b) Pi invokes BB.getCurrCount() to obtain the current index ti [used in Step 6].

2. [Exchange of enclaves’ verification-keys (Offline+Online)] For all i ∈ {0, 1}, Pi invokes
G.getpk() to receive mpki which is then sent to Pj [used in Steps 4 and 6].

3. [Install prog′ in enclave (Offline)] For all i ∈ {0, 1}, party Pi invoke
G.install(prog′[∆t, vkBB,P, i]) and receives output eidi [used in Steps 4-7 and 9-10].

4. [Diffie-Hellman key-exchange by enclaves (Offline+Online)] For all i ∈ {0, 1}: Pi in-

vokes G.resume(eidi, keyex) to receive (gai , sig
(1)
i), and broadcasts (eidi, g

ai , sig
(1)
i); Pi checks

if G.Σ.Vermpkj
((eidj , prog

′[∆t, vkBB,P, j], gaj), sig
(1)
j) = 1 then continue, else abort. (Thus, a se-

cure channel is established between the enclaves using Diffie-Hellman key.) [used in Steps 6
and 7]

5. [Enclave stores own key-share ki (Offline)] For all i ∈ {0, 1}, Pi invokes
G.resume(eidi, init, ki) [used in Step 6].

6. [Enclave stores ti and returns ciphertext (Offline+Online)] For all i ∈ {0, 1}: Pi in-

vokes G.resume(eidi, send, g
aj , ti) to receive (ctij , sig

(3)
i) which is then sent to Pj ; Pi checks if

G.Σ.Vermpkj
((eidj , prog

′[∆t, vkBB,P, j], ctij), sig(3)j) = 1 then continue, else abort [used in Step

7].

7. [Enclave stores other’s key-share kj (Offline)] For all i ∈ {0, 1}, Pi invokes
G.resume(eidi, receive, ctji). If G returns ⊥ then Pi abort, else continue. [Note that in this step
both the enclave stores other parties secrets securely.] [used in Step 8 and 9]

8. [Execute π′ to obtain encryption of f(·) (Online)] The a denotes π′ output (see Sect. 5)
[used in Step 10].

9. [Enclave returns BB’s index T (Offline)] For all i ∈ {0, 1}, Pi invokes

G.resume(eidi, getParams) and receives (T, sig
(5)
i) [used in Step 10].

10. [Obtaining parameters and computing f(·) (Online+Offline)] For all i ∈ {0, 1}, Pi posts
a to BB and receives (t, σ) from it. Finally, Pi invokes G.resume(eidi, output, a, t, σ), and receives
f(x0, x1).

Fig. 4. Description of Γ in (π′,G,BB)-hybrid model. In all the cases, j = 1 − i. The
program prog′ is described in Appendix A. It is parameterized by: a cut-off time ∆t
(which is poly(λ)), a 2-party protocol π′, a Bulletin Board BB, an enclave G, the
security parameter 1λ, and a set of parties P = {P0, P1}. The orange colored steps
in the algorithm represent the local computation done by a party. The purple colored
steps in the algorithm represent the communication among the parties and the BB.

Theorem 2. Suppose the following assumptions hold good: the signature scheme
Σ is existentially unforgeable under chosen message attack; the authenticated
encryption scheme AE is INT-CTXT secure; the authentication scheme AS is

unforgeable; the DDH assumption is valid in the underlying algebraic group Zp;
and π′ is secure under Def. 4. The protocol Γ – as described in Fig. 4 – satisfies
Def. 2 in the (π′,G,BB)-hybrid model.

Proof sketch. We first sketch the simulator S, and prove that Γ is simulat-
able, that is, for all PPT adversary A, the execution of Γ in the (π′,G,BB)-
hybrid world and the simulated execution in the ideal world are indistinguish-
able. Briefly, in order to ensure fairness, S needs to simulate the following abort
conditions of the real world: (1) If P1 aborts immediately after receiving the
output without P0 getting it, then S sends abort to F , and continues to execute.
If P1 queries G for the output on a valid authentication tag, then S aborts; (2)
if P1 does not post correct ct1 (i.e. the ciphertext is not the same as received
from π′(·)) during the interval T and T +∆t, but queries G for the output on a
valid authentication tag, then S sends abort to F and aborts. �

A new stateless protocol Υ We now design a stateless protocol Υ which
is more efficient than the KMG stateless protocol [16]; although, both achieve
fairness in the malicious model with dishonest majority.

We design Υ by making changes to Γ which is described in Fig. 4: First,
we replace G with ELI (see Sect. 3); inside ELI we use p̃rog instead of prog′ (see
Appendix. A). The difference between p̃rog and prog′ is that the stored state
in prog′ is first encrypted which is then returned to the parties, along with the
output of the function invoked. Therefore, the security of Υ follows from the
security of Γ , which is formalized in the theorem below.

Since KMG is derived from Π in the same way Υ is derived from Γ , Υ is more
efficient than KMG because Γ is more efficient than Π.

Theorem 3. Suppose the following assumptions hold good: the signature scheme
Σ is existentially unforgeable under chosen message attack; the authenticated
encryption scheme AE is INT-CTXT secure; the authentication scheme AS is
unforgeable; the hash function H is collision-resistant; PRF is pseudorandom;
the DDH assumption is valid in the underlying algebraic group Zp; π′ is secure
under Def. 4; and ELI is secure under Def. 1. The Υ satisfies Def. 2 in the
(π′,ELI,BB)-hybrid model.

Proof sketch. We first divide the simulator S into two parts: (i) simulation for
real-world interaction between party P1 and ELI, and (ii) simulation for real-
world interaction between P0 and P1. For case (i), the security follows directly
from Theorem 1 (as described in Sect. 3.1). For case (ii), the proof is obtained
from Theorem 2. Together, (i) and (ii) complete the proof of the theorem. �

6 Feasibility of Implementing Our Protocols

In this section, we describe the feasibility of implementing Γ and Υ (as de-
scribed in Sect. 5). We will describe the implementation details for Γ ; Υ can be
implemented in a similar way.

The Γ consists of three components: the Bulletin Board BB implemented
using Bitcoin, π′ implemented using the SPDZ-2 framework, and an enclave G
implemented using Intel SGX. The details are given below.

Bitcoin as a bulletin board. We are adapting the implementation of CGJ+
bulletin board for our construction. We can use the Bitcoin testnet which has
a zero-value currency, but the functions are similar to that of the Bitcoin main
network. The testnet also allows faster block generation and easier sandbox-
ing. For our implementation, we will use Bitcoin script that supports a special
instruction named OP RETURN, which allows a creator of a transaction to in-
clude up to 40 bytes of arbitrary data into a transaction. We can implement
BB.post(·) in the following way: each party broadcasts a transaction, namely Tx,
by including OP RETURN‖“ct” in the output script, and the authentication tag
σ = B||B1|| · · · ||B6, where B denotes the block containing Tx; and B1, · · · , B6

denote six consecutive blocks after B in the consensus chain. In order to verify
σ, one can simply check that the blocks B||B1|| · · · ||B6 exist in the Blockchain.

Implementing π′ using SPDZ-2. We have implemented the inner MPC com-
ponent π′(·) in SPDZ-2 framework [2], where f(·) is Yao’s circuit, and the en-
cryption circuit is the AES. The SPDZ-2 is an MPC protocol that computes
arbitrary function in the presence of a malicious adversary. The computation is
done in two phases: an offline phase, where a party generates the preprocessed
data, and an online phase where parties perform the actual computation.

We implemented millionaire’s protocol to demonstrate the proof-of-concept of
our results. We first fixed the offline phase parameters, which are then converted
into SPDZ-2 format. Finally, these parameters were stored in their respective
data files. Then, we executed the code for Yao’s millionaire’s protocol (embed-
ded with the AES circuit) with the number of parties n = 2, 3, . . . , 6. Then, we
ran 50 trials with as many distinct keys, and benchmarked the running times
by computing their average. We have plotted the results in Fig. 5. We observed
that the running time to execute the online phase increases with the number
of parties, most likely because the total size of the key shares increases with n.
However, it still adds only a fraction of a second; therefore, we conclude that π′ is
feasible to implement. Our implementation of π′ differs from that of π of CGJ+
in the following way: π′’s input does not contain commitments; π′’s instructions
do not have the commitment schemes and the ZK proofs.

Implementing enclave G using Intel SGX-hardware. To implement G, we
adapt the existing SGX -BB client called Obscuro [3] that provides the interface
to execute the program prog′ inside the enclave. The Obscuro client is invoked
by both P0 and P1, and it returns the respective enclave id’s to both the parties.
The parties then interact with the client to store the secret values inside it.
Finally, it returns T to both the parties. After the successful execution of π′,
each party sends the received ciphertext along with the tag to the client by
invoking the respective function securely residing inside it. The program then

returns the function output f(·) upon successful verification of all the credentials.
Our enclave implementation of G differs from that in [8] in the following way:
the stored program for our enclave is prog′, where in their case it is prog (see
Appendix A for details).

Fig. 5. Runtime of the online phase of the Yao’s millionaire protocol embedded with
the AES circuit vs. the number of players, implemented using the SPDZ-2 framework.

7 Conclusion

This paper has demonstrated attacks on the fairness properties of the various
multiparty protocols described in [8, 16]; these attacks are only effective, if we
weaken the security of their underlying sub-protocol. We provide techniques to
avoid these attacks (even if the sub-protocols are weak). These techniques not
only make our new protocols more secure, but also boost their performances,
both with respect to memory and the number of operations. A possible future
work will be extending this techniques to design highly efficient fair multiparty
protocols based on witness-based encryption, instead of on the trusted hardware.

Acknowledgment Second author is supported by a research fellowship gener-
ously provided by Tata Consultancy Services (TCS). We thank the anonymous
reviewers for their constructive comments.

References

1. Certificate transparency. https://www.certificate-transparency.org/. Last
accessed: 2019-02-25.

2. SPDZ, MASCOT, and Overdrive offline phases Github, 2017. https://github.

com/bristolcrypto/SPDZ-2.
3. Obscuro. Github, 2017. https://github.com/BitObscuro/Obscuro.
4. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Fair two-party

computations via bitcoin deposits. In: International Conference on Financial Cryp-
tography and Data Security, pp. 105–121. Springer (2014).

5. Bahmani, R., Barbosa, M., Brasser, F., Portela, B., Sadeghi, A.-R., Scerri, G.,
Warinschi, B.: Secure multiparty computation from SGX. In: International Con-
ference on Financial Cryptography and Data Security, pp. 477–497. Springer (2017)

6. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Inter-
national Cryptology Conference, pp. 421–439. Springer (2014)

7. Boneh, D., Naor, M.: Timed commitments. In: Annual International Cryptology
Conference, pp. 236–254. Springer (2000)

8. Choudhuri, A. R., Green, M., Jain, A., Kaptchuk, G., Miers, I.: Fairness in an unfair
world: Fair multiparty computation from public bulletin boards. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 719–728. ACM (2017)

9. Cleve, R.: Limits on the security of coin flips when half the processors are faulty.
In: Proceedings of the eighteenth annual ACM symposium on Theory of computing,
pp. 364–369. ACM (1986)

10. Costan, V., Devadas, S.: Intel SGX explained. In: IACR Cryptology ePrint Archive,
2016(086), pp. 1–118, 2016.

11. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N. P.: Prac-
tical covertly secure mpc for dishonest majority–or: breaking the spdz limits. In:
European Symposium on Research in Computer Security, pp. 1–18. Springer (2013)

12. Du, W., Atallah, M. J.: Secure multi-party computation problems and their ap-
plications: a review and open problems. In: Proceedings of the 2001 workshop on
New security paradigms, pp. 13–22. ACM (2001)

13. Goldreich, O.: Foundations of cryptography: volume 1, basic tools. Cambridge
university press, 2007.

14. Goldreich, O.: Foundations of cryptography: volume 2, basic applications. Cam-
bridge university press, 2009.

15. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In:
Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pp. 218–229. ACM (1987)

16. Kaptchuk, G., Green, M., Miers, I.: Giving state to the stateless: Augmenting
trustworthy computation with ledgers. In: 26th Annual Network and Distributed
System Security Symposium, NDSS (2019)

17. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pp. 705–734. Springer (2016)

18. Kumaresan, R., Moran, T., Bentov, I.: How to use bitcoin to play decentralized
poker. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pp. 195–206. ACM (2015)

19. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Consulted,
1(2012):28, 2008.

20. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for
efficient authenticated encryption. In: ACM Transactions on Information and
System Security (TISSEC), pp. 365–403 (2003)

21. Shamir, A.: How to share a secret. In: Communications of the ACM, pp. 612–613
(1979)

22. Yao, A. C.-C.: Protocols for secure computations. In: FOCS, pp. 160–164, IEEE
(1982)

A Program prog and prog′ for G

The algorithmic description of prog and prog′ is given in Fig. 6.

prog′ prog [∆t, vkBB,P, i]

1. If inp = (keyex) then:

(a) Choose ai
$← Zp

(b) return gai , where g is the primitive
root modulo p

2. If inp = (init, k, ρ, r) then:

(a) ki := k, ρi := ρ, ki := k, ri := r

(b) comi,i := CS.Com(ki, ri)

(c) return comi,i

3. If inp = (send, gaj , t) then:
(a) ti = t
(b) skij = (gaj)ai mod p

(c) ctij := AE.Encskij (ki, ti ρi)

(Here, comi,j = comi,i)
(d) return ctij

4. If inp = (receive, ctji) then:
(a) assert init and send

(b) (kj , tj , ρj , comj,i) := AE.Decskij (ctji)

(c) If (kj , tj , ρj , comj,i) =⊥ then return ⊥

else return comj,i

5. If inp = (getParams) then:
(a) assert init, send and receive
(b) T := max(t0, t1),

y := OWF(ρ0 ⊕ ρ1)

(c) K := (k0 ⊕ k1)

(d) return T , y

6. If inp = (output, ct, t, σ, ρ) then:

(a) assert getParams
(b) If t /∈ {T , · · · , T +∆t} then

return ⊥
(c) If VervkBB (t, ct, σ) 6= 1 then

return ⊥
(d) If OWF(ρ) 6= y then return ⊥
(e) out = AE.DecK(ct)
(f) If out 6=⊥ then return out

Fig. 6. Algorithmic descriptions of prog and prog′. We get prog′ by removing the boxed
statements of prog. Here, j = 1−i. It is parameterized by: a cut-off time ∆t, the verifica-
tion key vkBB of Bulletin Board, a set of parties P = {P0, P1}, and the party index i. It
uses the following primitives: commitment Com, the authenticated encryption scheme
AE, a one-way function OWF, and the Bulletin Board BB (see Sect. 3 for more details).
Here, the state variables are marked blue, and the variables that are not stored locally
are marked purple.

