
Efficient Lattice-Based Zero-Knowledge
Arguments with Standard Soundness:

Construction and Applications

Rupeng Yang 1,2 , Man Ho Au 2 ?, Zhenfei Zhang 3 , Qiuliang Xu 4 ?, Zuoxia
Yu 2 , and William Whyte 5

1 School of Computer Science and Technology, Shandong University,
Jinan, 250101, China
orbbyrp@gmail.com

2 Department of Computing, The Hong Kong Polytechnic University,
Hung Hom, Hong Kong

csallen@comp.polyu.edu.hk, zuoxia.yu@gmail.com
3 Algorand, USA

zhenfei@algorand.com
4 School of Software, Shandong University, Jinan, 250101, China

xql@sdu.edu.cn
5 Qualcomm Technologies Incorporated, USA

wwhyte@qti.qualcomm.com

Abstract. We provide new zero-knowledge argument of knowledge sys-
tems that work directly for a wide class of language, namely, ones in-
volving the satisfiability of matrix-vector relations and integer relations
commonly found in constructions of lattice-based cryptography. Prior to
this work, practical arguments for lattice-based relations either have a
constant soundness error (2/3), or consider a weaker form of soundness,
namely, extraction only guarantees that the prover is in possession of
a witness that “approximates” the actual witness. Our systems do not
suffer from these limitations.

The core of our new argument systems is an efficient zero-knowledge ar-
gument of knowledge of a solution to a system of linear equations, where
variables of this solution satisfy a set of quadratic constraints. This ar-
gument enjoys standard soundness, a small soundness error (1/poly),
and a complexity linear in the size of the solution. Using our core argu-
ment system, we construct highly efficient argument systems for a variety
of statements relevant to lattices, including linear equations with short
solutions and matrix-vector relations with hidden matrices.

Based on our argument systems, we present several new constructions
of common privacy-preserving primitives in the standard lattice setting,
including a group signature, a ring signature, an electronic cash system,
and a range proof protocol. Our new constructions are one to three orders
of magnitude more efficient than the state of the art (in standard lattice).
This illustrates the efficiency and expressiveness of our argument system.

? Corresponding author.

1 Introduction

Traditional cryptographic schemes based on number theoretic assumptions are at
risk due to possible attacks from quantum computers. Among all alternatives, the
lattice-based ones appear to be the most promising. To date, we have good can-
didates to fundamental cryptographic primitives such as public key encryption
schemes (e.g., [6, 18, 19, 45]) and signature schemes (e.g., [15, 31, 35, 64]). How-
ever, lattice-based privacy-preserving primitives, such as group signatures [26],
ring signatures [75], electronic cash (E-cash) [25], etc., are still significantly less
efficient than their traditional counterparts, partially due to the lack of suitable
lattice-based zero-knowledge proofs. Specifically, current zero-knowledge proofs
for lattice-based relations either have a poor efficiency or have great restrictions
when employed in constructing advanced applications.

The study of lattice-based zero-knowledge proofs is initialized by Goldreich
and Goldwasser in [38]. Goldreich and Goldwasser’s proof system, as well as proof
systems developed in subsequent works [3, 43, 69, 73], are mainly of theoretical
interest. While one can construct applications such as verifiable encryption [40]
and group signature [24, 41] from these protocols, their lack of efficiency prevents
them from being employed in practice.

For practical lattice-based zero-knowledge proofs, there are two main ap-
proaches in current literature.

Stern-type Protocol. One approach, which follows techniques in [47, 77], is pro-
posed by Ling et al. in [58]. They construct an efficient zero-knowledge argument
of knowledge (ZKAoK) for the basic Inhomogeneous Short Integer Solution (ISIS)
relation RISIS = {(A,y),x : A · x = y ∧ ‖x‖ ≤ β} . Focusing on arguing addi-
tional relations over witnesses, ZKAoKs for a wider class of lattice-based relations
are constructed in subsequent works. This gives rise to various applications, such
as verifiable encryption [58], group signature [51, 52, 54, 59, 61], ring signature
[54], group encryption [53] and E-cash [55].

The major issue for Stern-type protocols is their inherent large soundness
error. More precisely, a single round Stern-type protocol has a soundness error of
2/3 , i.e., a cheating prover is able to convince an honest verifier with probability
2/3 even if it does not possess any valid witness. Thus, to achieve a negligible
soundness error, the protocol is required to repeat for many (e.g., 219) times,
and the final proof consists of proofs generated in all iterations. Consequently,
its proof size is usually on the order of tens of megabytes to terabytes.

Fiat-Shamir with Abort. Another line of research follows the identification
schemes from [62–64]. Early works in this direction [50, 70] consider ZKAoK pro-
tocols with binary challenges, which leads to a soundness error of 1/2 for a
single iteration. Thus, multiple (e.g., 128) repetitions are needed to achieve a
negligible soundness error. Subsequently, ZKAoKs with larger challenge spaces are
adopted to reduce the number of rounds required. This results in one-round pro-
tocols with inverse-polynomial/negligible soundness error. Thus, we only need

2

to run them a few (e.g., 10 or even 1) time(s) to achieve a negligible soundness
error. Consequently, the proof size is usually a few megabytes or less.

We have seen some applications, such as verifiable encryption [13, 65], group
signature [20, 21, 29] and ring signature [33] from Fiat-Shamir with abort (FSwA)
protocols (with large challenge space). However, it is a complex task to design
cryptographic protocols using FSwA. This is mainly due to the so-called sound-
ness gap. For instance, for the ISIS relation RISIS , the FSwA proof only attests
the fact that the prover knows a witness for R′ISIS = {(A,y),x : A · x =
c · y ∧ ‖x‖ ≤ β′} , where β′ > β and c > 1 . Thus, to construct advanced
applications from them, we have to use cryptographic primitives that are com-
patible with such relaxed soundness, e.g., encryption schemes with a relaxed
decryption [13, 65], commitment schemes with a relaxed opening [10, 14] and
signature schemes with a relaxed verification [21]. Unfortunately, it is usually
hard or even impossible to construct primitives with such property. Meanwhile,
general frameworks in the literature for advanced applications may not work
when we use relaxed versions as building blocks. Thus, the construction and
security analysis has to be conducted from scratch. Additionally, we do not have
a simple manner to prove the relations over witnesses using Fiat-Shamir with
abort protocols. Ad-hoc techniques are used to circumvent this requirement,
which introduce additional complexity.

To summarize, we have some “user-friendly” lattice-based ZKAoKs that are
less efficient; and some efficient ZKAoKs that are very complicated for advanced
applications. 1 The goal of this paper is, therefore, to construct ZKAoKs that are
both efficient and easy to use.

On the Difficulty of Achieving Standard Soundness and Small Soundness Error.
Before presenting our main results, we would like to discuss why previous works
cannot achieve the standard soundness and a small soundness error simultane-
ously. First, for most (if not all) lattice-based relations, we need to prove that
(parts of) the witnesses are small integers. This can be done in two approaches,

1. In a Stern-type protocol, a short integer is decomposed into a binary vector
of bounded length. Then the prover proves that the decomposition outputs
are correct via a standard Stern protocol, which asks the prover to open 2
out of 3 commitments in the challenge phase. Therefore, the soundness error
2/3 is inherent for a Stern-type protocol.

2. In a Fiat-Shamir with abort protocol, the prover and the verifier run a
Schnorr-type protocol with some tweaks for arguing shortness of the witness.
However, the standard extraction procedure for the Schnorr protocol does
not work here. This is because the extracted witnesses will be scaled by
some large number (more accurately, the inverse of the difference of two
challenges) and may be large. To circumvent this problem, the extraction
procedure avoids multiplication of inverses. Correspondingly, the definition

1 In a concurrent and independent work [17], the problem is also addressed, using a
similar technique.

3

of soundness is relaxed in the sense that the extracted witness does not
necessarily satisfy the original relation.

1.1 Our Results

In this work, we present a new approach for constructing efficient zero-knowledge
arguments of knowledge for a large class of lattice-based relations. The core
component of our methodology is an efficient ZKAoK for linear equations with
additional quadratic constraints over the witnesses.

More concretely, let m , n , and ` be positive integers, and q be a large
enough integer that is a power-of-prime. The ZKAoK protocol proves the following
relation R∗ in Eq.(1)2:

R∗ = {(A,y,M), (x) ∈ (Zm×nq × Zmq × ([1, n]3)`)× (Znq) :

A · x = y ∧ ∀(h, i, j) ∈M,x[h] = x[i] · x[j]} (1)

where M is a set of ` triples that defines quadratic constraints over x . Usually,
` will be linear in n and in any case, we have ` ≤ n3 .

Building upon our main protocol, we present a variety of ZKAoKs for some
concrete lattice-based relations. The constructed ZKAoKs have standard sound-
ness, yet achieving an inverse polynomial soundness error. We summarize the
differences between our approaches and previous results in Table 1.

Table 1: Comparison of Approaches for Lattice-Based ZKAoKs.

Standard Soundness Soundness Error

Stern-Style 3 2/3

FSwA 7 1/poly or negl

This work 3 1/poly

To further demonstrate the usefulness of our methodology, we develop several
privacy-preserving primitives from these ZKAoKs. We illustrate the roadmap to
these applications in Figure 1.

In addition, we also examine the concrete efficiency (particularly, communi-
cation cost) of our applications. We highlight some of the results in Table 2. For
more details, see the appendix (Appendix D.3, E.3, F.3, and G).

We remark that the applications (and the performance data thereof) are to
illustrate the usefulness of our framework. They are by no means exhaustive
nor optimal. One may extend our results to other privacy-preserving primitives
such as anonymous credential, decentralized anonymous credential, group en-
cryption, traceable signature, linkable ring signature, CryptoNote protocol (and
thus Monero), k -times anonymous authentication, blacklistable anonymous cre-
dential, Zerocoin, etc. Also, one can improve the results of this work via utilizing

2 In this paper, operations over group elements in Zq are modulo q unless otherwise
specified.

4

Group Signature

Sec. E

Ring Signature

Sec. D

E-Cash

Sec. F

Range Proof

Sec. G

ZKAoK for

Membership

of

Accumulator

(Sec. 4.4)

ZKAoK for

Message-

Signature

Pair

(Sec. 4.3)

ZKAoK

for

Plaintext

of PKE

(Sec. 4.2)

ZKAoK

for

Preimage

of PRF

(Sec. 4.5)

ZKAoK

for

Opening of

Commitment

(Sec. 4.1)

ZKAoK

for

Integer

Addition

(Sec. G)

ZKAoK for RSS ZKAoK for Rshort ZKAoK for RHM

ZKAoK for R∗ (Sec. 3)

Fig. 1 The Roadmap for our ZKAoKs and their Applications. The starting point is our
core ZKAoK for R∗ . It is then used to construct ZKAoKs for some elementary relations,
namely, Rshort , RSS , and RHM (we define these elementary relations and explain how
to develop ZKAoKs for them in Sec. 1.2). Based on these elementary ZKAoKs, we further
construct ZKAoKs for cryptographic schemes. Finally, we construct privacy-preserving
primitives from these ZKAoKs.

structured lattices (such as ideal lattices or NTRU lattices) and application-
specific optimizations. Those extensions and optimizations are beyond the scope
of this paper.

Comparisons. Next, we give a brief comparison between the communication
cost of applications in this work and that of previous results. Our examples in
this section target 80 bits security unless otherwise specified.

We summarize the results in Table 2. Generally, for applications where so-
lutions were only available through Stern-type protocols, our constructions are
(much) more efficient than the state of the art. For applications where solu-
tions were also available through Fiat-Shamir with abort protocols, our con-
structions are less efficient. Note that constructions utilizing Fiat-Shamir with
abort are designed from scratch and these state-of-the-art constructions are op-
timized through the use of structured lattices (ideal lattices); while our solutions
are built on standard lattices, which are believed to offer better security.

We stress again that the main advantage of our framework is that it pro-
vides a fairly good efficiency yet keeping its user-friendliness. Optimizing toward
individual application, as stated earlier, is beyond the scope of this paper.

Ring Signatures. Following the framework of [54], a ring signature scheme can be
obtained with our ZKAoK. The signature size of [54] is estimated by [33] at 47.3

5

Table 2: Comparison of Communication Cost for Applications from Different ZKAoKs.

Application This paper Stern-type FSwA (ideal lattice)

Ring Signature 4.24MB 47.3MB [54] 1.41MB [33]

Group Signature 6.94MB 61.5MB [54] 0.58MB [29]

Range Proof 1.21MB 3.54MB [56] N/A

Electronic Cash 262MB ≈ 720TB [55] N/A

MB, for a ring of 210 users. In contrast, the signature size of our ring signature
scheme is 4.24 MB in the same setting.

To the best of our knowledge, the most efficient ring signature scheme is from
[33], using Fiat-Shamir with abort protocols. For the same number (i.e., 210)
of users, its signature size is about 1.41 MB at 100 bits security level. Using a
similar parameter setting, the signature size of our solution is 3.05 MB.3

Group Signatures. A group signature can also be obtained following a similar
approach in [54] using our ZKAoK. The signature size of [54] is 61.5 MB for a
group of 210 users. In contrast, the signature size of our solution is 6.94 MB in
the same setting.

The most efficient group signature scheme to date is from [29], achieving a
signature size of less than 1 MB. Nonetheless, our approach can achieve addi-
tional features. For example, one can convert our group signature scheme into
a fully dynamic one via the techniques in [60], without increasing its signature
size.

Electronic Cash. To the best of our knowledge, the only lattice-based (compact)
electronic cash system is from [55], but no concrete estimation of its performance
is provided. In Appendix F.3, we provide a rough estimation for the communica-
tion cost of their spend protocol, for a wallet of 210 coins. The estimation shows
that the communication cost of their spend protocol is at least several terabytes
while our spend protocol can achieve a communication cost of 262 MB in the
same setting.

There is no E-cash system from Fiat-Shamir with abort protocols in the
literature. This is due to the following technical barriers. First, in an E-cash
system, we need an argument of correct evaluation for pseudorandom function
(PRF). This requires an argument for the learning with rounding (LWR) rela-
tion, i.e., proving the (rounded) error terms lie exactly in an interval. Due to the
aforementioned soundness gap, it is not known how this proof can be done from
Fiat-Shamir with abort protocols. Moreover, we also need an adaptively secure
signature scheme and an argument of knowledge of a valid message/signature
pair for it. To date, signature schemes that admit an argument from Fiat-Shamir

3 In [33], parameters are set in a slightly mild way, so, the signature size is smaller if
we use their criterion to select parameters.

6

with abort protocols can only achieve selective security. Complexity leveraging
trick that converts a selectively secure scheme into an adaptively secure one does
not work here either, since the message space, which contains all possible PRF
keys, are exponentially large.

Range Proof. Prior to our work, the most efficient lattice-based range proof is
from [56]. When arguing knowledge of a 1000-bits committed value in a given
range, its proof size is 3.54 MB. In contrast, the proof led by our solution is only
1.21 MB in the same setting.

1.2 Technical Overview

Warm-Up: An Argument for RISIS . Before explaining the idea of our approach,
we would like to give a simple intuition on how one can argue the ISIS relation,
with standard soundness and small soundness error simultaneously. Our solution
can be viewed as a somewhat mix of the Stern-type protocol and the Fiat-Shamir
with abort protocol. In particular, we will first use the bit-decomposition tech-
nique to deal with small integers. Then we prove that the decomposition outputs
are binary via proving some quadratic constraint over them (i.e., arguing x = x2

for each bit x of the output). As shown in [42] (and its lattice variant [33]), this
can be proved via arguing linear relations over commitments and thus can be
instantiated with known commitment with a relaxed opening and Fiat-Shamir
with abort protocols. Since we do not argue shortness of witnesses explicitly in
the latter argument, soundness gap is not introduced.4 Surprisingly, this simple
strategy can produce much more than merely arguing shortness of witnesses. We
elaborate this next.

Building ZKAoK for R∗ . We start with a protocol that proves

R0 = {(A,y), (x) ∈ (Zm×nq × Zmq)× (Znq) : A · x = y} (2)

which is the linear equation part of R∗ . The protocol can be viewed as an
extension of the Schnorr protocol to the linear algebra setting. It proceeds as
follows:

1. The prover samples a vector r
$← Znq and sends t = A · r to the verifier.

2. The verifier samples a challenge α ∈ C and sends it to the prover. Here
C ⊂ Z is the challenge space of the protocol and will be specified later.

3. The prover sends z = α · x+ r to the verifier.
4. The verifier accepts the proof iff A · z = α · y + t .

Given two valid transcripts with distinct challenges, i.e., (t, α, z) and (t, α′, z′) ,
one can extract a vector x̄ = (α− α′)−1 · (z − z′) that satisfies Eq. (2). In the
meantime, a cheating prover cannot pass the verification unless it successfully

4 There exists a soundness gap in the proof, but it will not affect the proved argument
due to the commitment with a relaxed opening.

7

guesses the challenge α . Thus, the protocol achieves a soundness error of 1/‖C‖ .
Hence, we can obtain an inverse-polynomial soundness error if C contains poly-
nomial many distinct challenges.

In the remaining part of this section, we explain how to additionally prove
the quadratic constraints over the witnesses.

Let (h, i, j) be an item in M , our goal is to prove that x[h] = x[i] · x[j] .
First, from the response z = α · x+ r , the verifier can compute

d = α · z[h]− z[i] · z[j]

= (x[h]− x[i] · x[j]) · α2 + (r[h]− r[i] · x[j]− r[j] · x[i]) · α− r[i] · r[j]

:= (x[h]− x[i] · x[j]) · α2 + a · α− b

where a = r[h]−r[i]·x[j]−r[j]·x[i] and b = r[i]·r[j] . Note that x[h] = x[i]·x[j]
iff d is linear in α . Therefore, the main task is reduced to proving that the
quadratic polynomial d is indeed linear in α , or alternatively d− a · α+ b is a
zero polynomial.

To prove this, we can ask the prover to additionally send a and b in Step
1. Correspondingly, in Step 4, the verifier computes d and further checks if
d = a · α − b . Since the prover does not know α in advance, a and b must be
independent from α . Therefore, if the verification is successful, d is linear in α .

However, sending a and b in plaintext may leak information about the
witness. To solve this problem, we adopt a homomorphic commitment scheme
Commit(m; r) 7→ c that commits a message m to a commitment c using ran-
domness r . More precisely, in Step 1, the prover generates Ca = Commit(a; sa)
and Cb = Commit(b; sb) for some sa and sb , and send them to the verifier. In
Step 3, the prover also computes s = α · sa − sb and send s to the verifier. The
verifier then checks if Commit(d; s) = α · Ca − Cb .

Remark 1.1. In this work, we will use the commitment scheme in [10], which
is both additive homomorphic and supports multiplication by small constants.
Therefore, we require the challenge space C to be a set of polynomially-many
small integers. The commitment scheme also requires the randomness to be
drawn from some distributions with bounded norm. Here, we instantiate it with
the Gaussian distribution.

Since new variables Ca, Cb and s are introduced in the proof, we also need
to make sure that they will not compromise the privacy of a and b . First, Cb is
determined by α , d , s and Ca , thus, we only need to consider s and Ca in the
analysis. Recall that both sa and sb are drawn from the Gaussian distributions.
According to the rejection sampling lemma [64], we can use sb to mask α · sa ,
and enforce the output s to follow a specific distribution that is independent
from sa . Then, by the hiding property of the commitment scheme, Ca reveals
nothing about a . As a result, the commitments Ca, Cb and the randomness s
do not leak additional information to the verifier.

There is an additional subtlety that we need to deal with. Note that in
the aforementioned protocol, we try to argue that the quadratic polynomial

8

d−a ·α−b is a zero polynomial. Thus, in the proof for soundness, we need three
valid transcripts with distinct challenges after rewinding (note that a quadratic
polynomial with three distinct roots must be a zero polynomial). So, to fix the
extracted witnesses from these transcripts, the prover should also commit the
witness x and proves that the witness is properly committed (using a Fiat-
Shamir with abort protocol).

In summary, our ZKAoK protocol contains three parts.
1. A Schnorr-type protocol that proves possession of a witness for R0 .
2. A commitment of witness x and a Fiat-Shamir with abort protocol proving

that the committed value is actually x .
3. A proof for the quadratic constraints over the witnesses.

Building ZKAoK for More Relations. Next, we show how to develop ZKAoKs
for relations relevant to lattice-based cryptographic schemes. As we illustrated
in Figure 1, such relations can be viewed as combinations of some elementary
relations, namely, linear equations with short solutions (Rshort), subset sum
of linear equations (RSS), and linear equations with hidden matrices (RHM).
Thus, here we focus on how to deal with these elementary relations.5

Linear Equation with Short Solution. This is a primary lattice-based relation and
appears in (almost) all applications. Concretely, let m , n , and k be positive
integers, q be a large enough power-of-prime, and β = 2k − 1 . The relation
Rshort is given as

Rshort = {(P ,v), (w) ∈ (Zm×nq × Zmq)× ([0, β]n) : P ·w = v}

The reduction from Rshort to R∗ takes the following steps:

• set a new witness x as the binary decomposition of the original witness w ,
i.e., each element w in w is decomposed into k bits x1, . . . , xk such that
w =

∑k
i=1 xi · 2i−1 (note that a positive integer can be decomposed into k

bits iff it is in [0, 2k − 1]);
• set A = P ·G where the gadget matrix G := In⊗ (1 2 4 . . . 2k−1) (thus,

we have G · x = w);
• set y = v ;
• set M = {(i, i, i)}i∈[1,nk] ;

In doing so, we obtain a new relation in the form of R∗ where both the length
of witness and the size of M are nk .

Note that since q is a power-of-prime, for any x ∈ Zq , x2 = x iff x = 0 or
x = 1 . Thus, the new relation is equivalent to the original relation Rshort .

There are two common variants to Rshort . First, for simplicity, we have set
β + 1 to be a power-of-2. The first variant removes this unnecessary constraint

5 Detailed constructions of ZKAoKs for elementary relations can be found in Sec. 4,
e.g, the ZKAoK for lattice-based PKE is in fact a ZKAoK for a variant of Rshort .

9

and deals with arbitrary positive integer β . This is achieved by applying the re-
fined decomposition technique proposed in [58] and the length of the decomposed
witness is n · (blog βc+ 1) .

The second variant is to argue knowledge of a witness w ∈ [−β, β]n that
satisfies a linear equation. This can be reduced to the relation Rshort via adding
β to each element of w . Note that the linear equation will also need to be
modified accordingly.

Optimized arguments for Linear Equation with Short Solution. In some cases, it
is desirable to prove a relation Rshort with a large n , which makes it inefficient
to decompose all elements in x . We propose an alternative relation, given by
Eq. (3), to argue equations with short solutions more efficiently in this case, at
a cost of re-introducing some soundness gap for the argument. More precisely,
to argue a linear equation Pw = v with β -bounded solution w , the argument
can only guarantee that the prover possesses a n · β -bounded solution w′ that
satisfies Pw′ = v .

R′short = {(P ,v,H, c), (w,u, r) ∈
(Zm×nq × Zmq × [0, 1]λ×n × C)× (Znq × [0, n · β]λ × R) :

P ·w = v ∧ H ·w − u = 0 ∧ c = Commit(w; r)} (3)

where

• Commit is a commitment scheme and c = Commit(w; r) is the commitment;
• C and R are the output space and the randomness space of Commit ;
• H ← H(c) ∈ [0, 1]λ×n , where λ is the security parameter and H is modeled

as a random oracle.

To see why R′short could guarantee that all elements in w are in [0, n · β] ,
assume there exists i ∈ [n] such that | w[i] |> n · β . Let h1 and h2 be
two n -dimension binary vectors that are identical in all positions except that
h1[i] 6= h2[i] . Then we have | hᵀ

1 · w − h
ᵀ
2 · w |=| w[i] |> n · β . Thus, either

hᵀ
1 ·w or hᵀ

2 ·w must be outside the interval [0, n ·β] . Therefore, for a vector h
sampled uniformly from [0, 1]n , with a probability of at least 1/2 , hᵀ ·w > n·β .
Therefore, the probability that all elements in H ·w are in [0, n ·β] is negligible.

It remains to show how to argue the relation R′short . Our strategy is to
reduce the relation to an instance of relation R∗ and then argue the instance
via our main protocol. Looking ahead, in our main protocol, the prover also
generates a commitment of the witness in the first step and will argue that the
witness is properly committed during the proof. In addition, the commitment
scheme allows one to commit part of the witness first, and then commit the
remaining part later, where the partial commitment generated in the first stage
is also included in the complete commitment. Consequently, the commitment
and the argument for the opening of the commitment are free6. The remaining

6 In fact, we only obtain a relaxed argument for the opening of the commitment. This
is sufficient for our purpose.

10

part of relation R′short are equations with short solutions, and thus can be
straightforwardly reduced to R∗ .

In more detail, to argue R′short , the prover first generates the commitment
c = Commit(w) and computes the matrix H = H(c) and u = Hw . Then, it
commits u and appends the commitment to c . Finally, it runs the remaining
part of our main protocol, arguing that there exists a small vector u and a
vector w that satsfies u = H(c)w and v = Pw .

To summarize, we can prove equations with short solutions via our main
protocol on R∗ , where the length of the witness is n+λ · (blog (n · β)c+ 1) and
the size of M is λ · (blog (n · β)c+ 1) .

Subset Sum of Linear Equations. Let m , n and l be positive integers and q
be a large power-of-prime. The relation is given as

RSS = {({P i}i∈[1,l],v), ({w}i∈[1,l], {bi}i∈[1,l]) ∈

((Zm×nq)l × Zmq)× ((Znq)l × {0, 1}l) :

l∑
i=1

bi · P i ·wi = v}

To reduce RSS to R∗ , we first compute vi = P i ·wi and v′i = bi · vi for
i ∈ [1, l] . Then we set the new witness vector x = (b1, . . . , bl,v

′
1, . . . ,v

′
l,v1, . . . ,

vl,w1, . . . ,wl) and set

A =

(
0 0 −Iml P
0 J 0 0

)
and y =

(
0
v

)
where

P =


P 1

P 2

. . .

P l

 and J =
(
Im Im . . . Im

)
.

Here, the first part of the equation Ax = y (specified by the first “row” of A)
indicates that vi = P i ·wi for i ∈ [1, l] and its second part indicates that the
sum of all v′i are v .

Finally, we set

M = {(i, i, i)}i∈[1,l] ∪ {(l+m · (i− 1) + j, l+ml+m · (i− 1) + j, i)}i∈[1,l],j∈[1,m]

where {(i, i, i)}i∈[1,l] indicates that bi is binary and the rest indicates that
v′i = bi ·vi . This gives us an R∗ statement where the length of witness becomes
(nl + 2ml + l) and the size of M is ml + l .

Linear Equation with Hidden Matrix. Let m and n be positive integers and q
be a large power-of-prime, the relation is defined as follows:

RHM = {(v), (P ,w) ∈ (Zmq)× (Zm×nq × Znq) : P ·w = v}

To reduce RHM to R∗ , we first obtain a new witness vector x = (x0, . . . ,
x2m) as follows:

11

• x0 = w ;
• for i ∈ [1,m] , xi is the i -th row of P ;
• for i ∈ [1,m] , xm+i is the Hadamard product between the i -th row of P

and w (i.e., xm+i[j] = xi[j] ·w[j]).

Then we set A =
(
0m×n 0m×mn M

)
and y = v where M =

Im ⊗
(
1 1 . . . 1

)
∈ Zm×mnq .

Finally, we set M = {((m+i) ·n+j, i ·n+j, j)}i∈[1,m],j∈[1,n] , which indicates
that xm+i[j] = xi[j] ·w[j] . In this way, we obtain a new relation in the form of
R∗ , where the length of witness is (2m+ 1) · n and the size of M is mn .

2 Preliminaries

Notations. In this paper, we will use bold lower-case letters (e.g., v) to denote
vectors, and use bold upper-case letters (e.g., A) to denote matrices. All ele-
ments in vectors and matrices are integers unless otherwise specified. For a vector
v of length n , we use v[i] to denote the i th element of v for i ∈ [1, n] and for an
m -by-n matrix A , we use A[i, j] to denote the element on the i -th row and the
j -th columon of A for i ∈ [1,m] and j ∈ [1, n] . For a vector v , we use bin(v)

to denote the binary decomposition of v , i.e., v[i] =
∑k
j=1 2j−1 · v̄[(i−1) ·k+j] ,

where v̄ = bin(v) and k = dlog(‖v‖∞)e . We use In to denote an n -by-n iden-
tity matrix. We use ⊗ to denote the Kronecker product of two matrices.

For a string a , we use ‖a‖ to denote the length of a . For a finite set S ,

we use ‖S‖ to denote the size of S and use s
$← S to denote sampling an

element s uniformly from set S . For a distribution D , we use d← D to denote
sampling d according to D .

For integers a ≤ b , we write [a, b] to denote all integers from a to b .
We write negl(·) to denote a negligible function and write poly(·) to denote a
polynomial.

2.1 Discrete Gaussian Distribution

We recall the discrete Gaussian distribution and some results from [64].

Definition 2.1 (Discrete Gaussian Distribution). The continuous Gaus-
sian distribution over Rm centered at v ∈ Rm with standard deviation σ is

defined by the function ρmv,σ(x) = (1√
2πσ2

)me
−‖x−v‖2

2σ2 .

The discrete Gaussian distribution over Zm centered at v ∈ Zm with stan-
dard deviation σ is defined as Dm

v,σ(x) = ρmv,σ(x)/ρmσ (Zm) , where ρmσ (Zm) =∑
x∈Zm ρ

m
σ (x) .

We write Dm
σ (x) = Dm

0,σ(x) for short.

Lemma 2.1 ([64, Full Version, Lemma 4.4]).

1. For any k > 0 , Pr[‖z‖ > kσ : z ← D1
σ] ≤ 2e

−k2
2 .

2. For any z ∈ Zm , and σ ≥ 3/
√

2π , Dm
σ (z) ≤ 2−m .

3. For any k > 1 , Pr[‖z‖ > kσ
√
m : z ← Dm

σ] < kme
m
2 (1−k2) .

12

2.2 Rejection Sampling

In this work, we will also use the celebrated “rejection sampling lemma” from
[63, 64] to argue the zero-knowledge property of our protocol.

Lemma 2.2 ([64, Full Version, Theorem 4.6]). Let V be a subset of Zm in
which all elements have norms less than T . Let h be a probability distribution
over V . Let σ be a real number that σ = ω(T

√
logm) . Then there exists a

constant M such that the distribution of the following algorithm A and that of

the following algorithm F are within statistical distance 2−ω(logm)

M .
A :

1. v ← h
2. z ← Dm

v,σ

3. Output (v, z) with probabil-

ity min(1,
Dmσ (z)

MDmv,σ(z)
)

F :

1. v ← h
2. z ← Dm

σ

3. Output (v, z) with probabil-
ity 1

M

Moreover, the probability that A outputs something is at least 1−2−ω(logm)

M .

As a concrete example (suggested in [46]), if σ = αT for some positive α ,

then M = e13.3/α+1/(2α2) , the output of algorithm A is within statistical dis-

tance 2−128

M of the output of F , and the probability that A outputs something

is at least 1−2−128

M .

2.3 Hardness Assumptions

The security of our main protocol relies on the short integer solution (SIS) as-
sumption and the learning with errors (LWE) assumption. For both assumptions,
we will use the normal form (as defined in [72]).

Definition 2.2 (SIS n,m,q,β , Normal Form). Given a random matrix A ∈
Zn×(m−n)q , find a nonzero integer vector z ∈ Zm such that ‖z‖ ≤ β and [In |
A] · z = 0 .

As hardness of the SIS assumption usually depends only on n, q, β (assuming
m is large enough), in this work, we write SIS n,m,q,β as SIS n,q,β for short.

Lemma 2.3 ([2, 37, 66, 68, 72]). For any m = poly(n) , any β > 0 , and any
sufficiently large q ≥ β · Õ(

√
n) , solving (normal form) SIS n,m,q,β with non-

negligible probability is at least as hard as solving the decisional approximate
shortest vector problem GapSVP γ and the approximate shortest independent
vectors problems SIVP γ (among others) on arbitrary n -dimensional lattices

(i.e., in the worst case) with overwhelming probability, for some γ = β · Õ(
√
n) .

Definition 2.3 (Decision-LWE n,m,q,χ , Normal Form). Given a random

matrix A ∈ Z(m−n)×n
q , and a vector b ∈ Zm−nq , where b is generated according

to either of the following two cases:

13

1. b = A · s+ e , where s← χn and e← χm−n

2. b
$← Zm−nq

distinguish which is the case with non-negligible advantage.

If χ is a discrete Gaussian distribution with standard deviation σ , we write
the problem as LWEn,m,q,α where α = σ ·

√
2π/q . Also, as the hardness of the

LWE assumption usually depends only on n, q, α (assuming m is large enough),
in this work, we write LWEn,m,q,α as LWEn,q,α for short.

Lemma 2.4 ([7, 72, 74]). For any m = poly(n) , any modulus q ≤ 2poly(n) ,
and any (discrete) Gaussian error distribution χ with standard deviation σ
(i.e., χ = Dσ), where σ = αq/

√
2π ≥

√
2n/π and 0 < α < 1 , solving the

(normal form) decision-LWE n,m,q,χ problem is at least as hard as (quantumly)
solving GapSVP γ and SIVP γ on arbitrary n -dimensional lattices, for some

γ = Õ(n/α) .

To build applications on top of our proof system, we require some additional
variants of the LWE assumption. We also need to evaluate the concrete hard-
ness of those problems, in order to derive parameters for our system. They are
presented in Appendix B.

2.4 Zero-Knowledge Arguments of Knowledge

In a zero-knowledge argument of knowledge system [39], a prover proves to a
verifier that he possesses the witness for a statement without revealing any ad-
ditional information.

More formally, let R = {(x,w)} ∈ {0, 1}∗×{0, 1}∗ be a statements-witnesses
set for an NP relation. The ZKAoK for R is an interactive protocol 〈P,V〉 run
between a prover P and a verifier V that satisfies:

• Completeness. For any (x,w) ∈ R , Pr[〈P(x,w),V(x)〉 6= 1] ≤ δc .
• Proof of Knowledge. There exists an extractor E that for any x , for any

probabilistic polynomial time (PPT) cheating prover P̂ , if Pr[〈P̂,V(x)〉 =
1] > δs+ε for some non-negligible ε , then E can extract in polynomial time
a witness w such that (x,w) ∈ R via accessing P̂ in a black-box manner.

• (Honest-Verifier) Zero-Knowledge. There exists a simulator S that for
any (x,w) ∈ R , the two distributions are computationally indistinguishable:
1. The view of an honest verifier V in an interaction 〈P(x,w),V(x)〉 .
2. The output of S(x) .

where δc is the completeness error and δs is the soundness error.
In this work, we also consider non-interactive ZKAoKs (NIZKAoK). They can be

obtained by applying the Fiat-Shamir heuristic [34] to public coin ZKAoKs. One
advantage led by the Fiat-Shamir transform is that the transformed NIZKAoKs
additionally admit a message as input, thus it is also called signature proof of
knowledge (SPK), and is usually written as SPK{(x,w) : (x,w) ∈ R}[m] , where
m is the additional message.

14

2.5 Commitment with A Relaxed Opening

In our main construction, we will employ the commitment scheme presented in
[10]7, which admits a relaxed opening.

Let λ be the security parameter. Let l1 and l2 be positive integers that are
polynomials in the security parameter λ . Let σ be a small positive integer that
satisfies σ ≥

√
2l2/π . Also, let n be the length of the comitted vector. The

public parameter of the commitment scheme is a matrix B ∈ Z(l1+n)×(l1+n+l2)
q

defined as follows:

B =

 I l1 B1

0n×l1 In B2


where B1 and B2 are random matrices sampled from Zl1×(l2+n)q and Zn×l2q

respectively.

To commit to a message m ∈ {0, 1}n , the commit algorithm first samples
s ∈ Dl1+n+l2

σ . Then it outputs a commitment c = B · s + (0ᵀ‖mᵀ)ᵀ and the
opening s .

The open algorithm outputs 1 on input B,m, c, s iff c = B · s+ (0ᵀ‖mᵀ)ᵀ

and s is small. Besides, it admists a relaxed opening, where the input of the
algorithm includes B,m, c, s and a small integer f , and the algorithm outputs
1 iff f · c = B · s+ f · (0ᵀ‖mᵀ)ᵀ and s, f are small.

3 Main Construction

In this section, we present our main construction, namely, an efficient zero-
knowledge argument of knowledge for linear equations with quadratic constraints
over the witness.

More concretely, let m,n, ` be positive integers, q be a large enough integer
that is a power-of-prime, i.e., q = qe0 for some prime q0 and some positive
integer e . Also, let A be a matrix in Zm×nq , x and y be vectors in Znq and
Zmq respectively, and M be a set of ` 3-tuples, each of which consists of 3
integers in [1, n] . We will construct a ZKAoK for the following relation:

R∗ = {(A,y,M), (x) : A · x = y ∧ ∀(h, i, j) ∈M,x[h] = x[i] · x[j]} (4)

Specifically, in Sec. 3.1, we give a basic version of the ZKAoK protocol for R∗ as
defined in Eq. (4). This protocol achieves an inverse polynomial soundness error
and a constant completeness error. Then, in Sec. 3.2, we transform the basic
protocol into a NIZKAoK with negligible soundness error and completeness error.

7 In fact, we will use its variant in the standard lattice setting. For completeness, we
will restate its security in the security proof of our main construction.

15

3.1 The Basic Protocol

Let aCommit be an auxiliary bit commitment scheme with randomness space
{0, 1}κ and a suitable message space. As no additional requirement is desired
for aCommit , we can safely assume it to be a random oracle G , i.e., given an
input x and a random string ρ as randomness, the commitment is G(x‖ρ) .
Nonetheless, aCommit can be instantiated by any secure commitment scheme.

Let λ be the security parameter. Let l1 and l2 be positive integers that
are polynomials in the security parameter λ . Let B1,1 , B1,2 , B2,1 and B2,2

be random matrices sampled from Zl1×(l2+n)q , Zn×l2q , Zl1×(l2+`)q and Z`×l2q

respectively. Also let

B1 =

 I l1 B1,1

0n×l1 In B1,2

 , B2 =

 I l1 B2,1

0`×l1 I` B2,2


Here B1 and B2 are public parameters of the underlying homomorphic com-
mitment scheme, and we assume that they are honestly generated (via some
public coin) and are shared by all parties in the protocol.

Let σ1 be small positive integer that satisfies σ1 ≥
√

2l2/π . Let p be
small positive integer that is polynomial in λ . Let l = 2l1 + 2l2 + n + ` . Let
σ2 = 2p·

√
l ·log l ·σ1 . Let M = e13.3/ log l+1/(2 log2 l) . For any l -dimension vectors

v and z , let p(v, z) = min(1,
Dlσ2 (z)

MDlv,σ2
(z)

) .

The basic protocol P1 for R∗ is described in Figure 2.

Theorem 3.1. Assume the worst-case hardness of GapSVP γ (or SIVP γ) for
some polynomial γ , if q ≥ 16p ·max(

√
l1 + l2 + n,

√
l1 + l2 + `) · (σ2 + p · σ1) ·

Õ(
√
l1) , q/σ1 is a polynomial, q0 > 2p , and aCommit is a secure bit commit-

ment scheme, then the protocol P1 , which is described in Figure 2, is a secure
zero-knowledge argument of knowledge with completeness error 1 − 1/M and
soundness error 2/(2p+ 1) .

We give the detailed proof for Theorem 3.1 in Appendix C.

3.2 NIZKAoK for R∗

In this section, we show how to transform our basic protocol in Sec. 3.1 into a
non-interactive zero-knowledge arguments of knowledge with negligible sound-
ness error and completeness error. Generally, this can be done via some standard
techniques such as repetition and Fiat-Shamir transform. Nonetheless, we will
employ a few tricks (developed in previous works) to reduce the efficiency loss
in the transformations. In particular, to minimize the number of repetitions, we
will employ the tweaks in [33] when repeating the basic protocol. In a nutshell, it
applies one rejection sampling on all (repeated) instances simultaneously, which
avoids completeness error increasing caused by repetition.

16

P[A,y,M,B1,B2;x] V[A,y,M,B1,B2]

r
$← Znq ; t = A · r

s1 ← Dl2+n+l1
σ1 ; s2 ← Dl2+n+l1

σ2

s3 ← Dl2+`+l1
σ1 ; s4 ← Dl2+`+l1

σ2

c1 = B1 · s1 + (0ᵀ‖xᵀ)ᵀ

c2 = B1 · s2 + (0ᵀ‖rᵀ)ᵀ

Let a and b be two ` -dimension vectors.
For k ∈ [1, `] , let (h, i, j) be the k -th element in M :

a[k] = r[h]− r[i] · x[j]− r[j] · x[i]
b[k] = r[i] · r[j]

c3 = B2 · s3 + (0ᵀ‖aᵀ)ᵀ

c4 = B2 · s4 + (0ᵀ‖bᵀ)ᵀ

ρ
$← {0, 1}κ

Caux = aCommit(t‖c1‖c2‖c3‖c4; ρ)

Caux−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
α

$← [−p, p]

α←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
z0 = α · x+ r
z1 = α · s1 + s2
z2 = α · s3 − s4
Abort with probability 1− p((α · sᵀ1‖α · s

ᵀ
3)ᵀ, (zᵀ

1‖z
ᵀ
2)ᵀ)

t,c1,c2,c3,c4,ρ,z0,z1,z2−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Let d be an ` -dimension vector.
For k ∈ [1, `] , let (h, i, j) be the k -th
element in M :

d[k] = α · z0[h]− z0[i] · z0[j]
Accept if:
1. Caux = aCommit(t‖c1‖c2‖c3‖c4; ρ)
2. ‖z1‖ ≤ 2

√
l1 + l2 + n · (σ2 + p · σ1)

3. ‖z2‖ ≤ 2
√
l1 + l2 + ` · (σ2 + p · σ1)

4. A · z0 = α · y + t
5. B1 · z1 + (0ᵀ‖zᵀ

0)ᵀ = α · c1 + c2
6. B2 · z2 + (0ᵀ‖dᵀ)ᵀ = α · c3 − c4

Fig. 2 The Basic Protocol P1 : A Zero-Knowledge Arguments of Knowledge for R∗
with Inverse Polynomial Soundness Error and Constant Completeness Error.

The Construction. Let aCommit , λ , l1 , l2 , B1,1 , B1,2 , B2,1 and B2,2 ,
σ1 , p , l and M be identical to those of P1 . We highlight the differences.

In the new scheme, a proof is generated by repeating the basic protocol
N = λ/ log p times. Then we set σ2 = 2p ·

√
N · l · log(N · l) · σ1 , and for

any N · l -dimension vectors v and z , we set p(v, z) = min(1,
DN·lσ2

(z)

MDN·lv,σ2
(z)

) . We

17

will additionally use a hash function H with output space [−p, p]N , which is
modelled as a random oracle. Also, let AUX be some application-dependent
auxiliary information (e.g., the signed message in a group signature) that is
specified as an input to H .

The prove algorithm and the verify algorithm of the NIZKAoK P2 for R∗ is
described in Figure 3 and 4 respectively.

Prove(A,x,y,M,B1,B2,AUX) :
For  ∈ [1, λ] :
1. s1 ← Dl2+n+l1

σ1 , c1 = B1 · s1 + (0ᵀ‖xᵀ)ᵀ

2. For ı ∈ [1, N] :

(a) rı
$← Znq , tı = A · rı

(b) s2,ı ← Dl2+n+l1
σ2 , s3,ı ← Dl2+`+l1

σ1 , s4,ı ← Dl2+`+l1
σ2

(c) c2,ı = B1 · s2,ı + (0ᵀ‖rᵀı)ᵀ
(d) Let aı and bı be two ` -dimension vectors and for k ∈ [1, `] , let (h, i, j)

be the k -th element in M :
i. aı[k] = rı[h]− rı[i] · x[j]− rı[j] · x[i]

ii. bı[k] = rı[i] · rı[j]
(e) c3,ı = B2 · s3,ı + (0ᵀ‖aᵀ

ı)
ᵀ , c4,ı = B2 · s4,ı + (0ᵀ‖bᵀı)ᵀ

(f) ρı
$← {0, 1}κ

(g) Caux ,ı = aCommit(tı‖c1‖c2,ı‖c3,ı‖c4,ı; ρı)
3. {αı}ı∈[1,N] = H(A,y,M, {Caux ,ı}ı∈[1,N],AUX)
4. For ı ∈ [1, N] :

(a) z0,ı = αı · x+ rı , z1,ı = αı · s1 + s2,ı , z2,ı = αı · s3,ı − s4,ı
5. Smaple a real number τ

$← [0, 1] (Here, we use [0, 1] to denote all real numbers
between 0 and 1)

6. If τ < p((α1 · sᵀ1‖ . . . ‖αN · sᵀ1‖α1 · sᵀ3,1‖ . . . ‖αN · sᵀ3,N)ᵀ,
(zᵀ

1,1‖ . . . ‖z
ᵀ
1,N‖z

ᵀ
2,1‖ . . . ‖z

ᵀ
2,N)ᵀ) :

(a) Abort the algorithm with output π = (c1, {αı, ρı, c3,ı,z0,ı,z1,ı,
z2,ı}ı∈[1,N])

Output ⊥ if the algorithm does not abort in the loop above.

Fig. 3 The Prove Algorithm of P2 .

Theorem 3.2. Assume the worst-case hardness of GapSVP γ (or SIVP γ) for
some polynomial γ , if q ≥ 16p ·max(

√
l1 + l2 + n,

√
l1 + l2 + `) · (σ2 + p · σ1) ·

Õ(
√
l1) , q/σ1 is a polynomial, q0 > 2p , aCommit is a secure bit commitment

scheme, and H is modelled as a random oracle, then the scheme P2 is a secure
non-interactive zero-knowledge argument of knowledge with negligible complete-
ness error and soundness error.

Proof of Theorem 3.2 follows proof of Theorem 3.1 and well-known results,
we omit the details here.

Efficiency. In P2 , a proof π contains a commitment and a set of N elements,
where each element consists of a challenge, a κ -bit string, a commitment and

18

Verify(A,y,M,B1,B2,AUX , π = (c1, {αı, ρı, c3,ı,z0,ı,z1,ı,z2,ı}ı∈[1,N])) :
For ı ∈ [1, N] :
1. Let dı be an ` -dimension vector and for k ∈ [1, `] , let (h, i, j) be the k -th

element in M :
(a) dı[k] = αı · z0,ı[h]− z0,ı[i] · z0,ı[j]

2. tı = A · z0,ı − αı · y
3. c2,ı = B1 · z1,ı + (0ᵀ‖zᵀ

0,ı)
ᵀ − αı · c1

4. c4,ı = αı · c3,ı −B2 · z2,ı − (0ᵀ‖dᵀ
ı)

ᵀ

5. Caux ,ı = aCommit(tı‖c1‖c2,ı‖c3,ı‖c4,ı; ρı)
6. If ‖z1,ı‖ > 2

√
l1 + l2 + n · (σ2 + p ·σ1) ∨ ‖z2,ı‖ > 2

√
l1 + l2 + ` · (σ2 + p ·σ1) :

(a) Abort the algorithm with output “ Reject ”
Output “ Accept ” if {αı}ı∈[1,N] = H(A,y,M, {Caux ,ı}ı∈[1,N],AUX) :

Fig. 4 The Verify Algorithm of P2 .

three vectors. Thus, we have

‖π‖ = (log (2p+ 1) + κ+ (3l1 + 2l2 + 2n+ 2`) · log q) ·N + (l1 + n) · log q

4 ZKAoKs for Various Cryptographic Schemes

In this section, we build several tools that are useful for constructing privacy-
preserving primitives. This includes an argument of knowledge of committed
value, an argument of knowledge of plaintext, an argument of knowledge of
signature, an argument for cryptogrphic accumulator and an argument for pseu-
dorandom function.

4.1 ZKAoK of Committed Value

We start with an argument of knowledge of the committed value for the com-
mitment scheme in [47], which is recalled in Appendix A.1.

Let l1 , l2 , L be positive integers and q be a power-of-prime. We propose a
ZKAoK for the following relation:

Rcom = {(B1,B2, c), (r,w) ∈
(Zl1×l2q × Zl1×Lq × Zl1q)× ({0, 1}l2 × {0, 1}L) : B1 · r +B2 ·w = c}

Rcom contains linear equations with binary witness. We construct the argu-
ment via reducing Rcom to an instance of R∗ through the following steps:

1. Set the new witness x = (rᵀ‖wᵀ)ᵀ ;
2. Set A = (B1‖B2) and y = c ;
3. Set M = (i, i, i)i∈[1,l2+L] .

Note that since q is a power of prime, for any x ∈ Zq , x2 = x iff x = 0
or x = 1 . Thus, the new relation R∗ over (A,y,M), (x) is equivalent to the
original relation Rcom . Also, both ‖x‖ and ‖M‖ are l2 + L for R∗ .

19

4.2 ZKAoK of Plaintext

Next, we give an argument of knowledge of the plaintext for the encryption
scheme proposed in [57], which is recalled in Appendix A.2.

More precisely, let l1 , l2 , L and β be positive integers and q be a power-
of-prime, we propose a ZKAoK for the following relation:

Renc = {(B1,B2, c1, c2), (r, e1, e2,w) ∈
(Zl1×l2q × ZL×l2q × Zl1q × ZLq)× (Zl2q × Zl1q × ZLq × {0, 1}L) :

‖r‖∞ ≤ β ∧ ‖e1‖∞ ≤ β ∧ ‖e2‖∞ ≤ β∧

B1 · r + e1 = c1 ∧B2 · r + e2 + bq
2
e ·w = c2}

We construct the argument via reducing the relation Renc , which contains
linear equations with short solutions, to an instance of the relation R∗ .

First, we define vectors β1 = (β β . . . β)ᵀ ∈ Zl2q , β2 = (β β . . . β)ᵀ ∈ Zl1q ,

β3 = (β β . . . β)ᵀ ∈ ZLq and define r′ = r+β1 , e′1 = e1+β2 and e′2 = e2+β3 .
Then, we decompose vectors r′ , e′1 and e′2 into binary vectors r̄ , ē1

and ē2 using the decomposition technique proposed in [58]. More precisely,
let k = blog 2βc + 1 and let g = (b(2β + 1)/2c‖b(2β + 2)/4c‖ . . . ‖b(2β +
2i−1)/2ic‖ . . . ‖b(2β+2k−1)/2kc) be a row vector. It is claimed in [58] that 1) an
integer a ∈ [0, 2β] iff there exists a binary vecotr a ∈ {0, 1}k that g ·a = a ; 2)
one can decompose the integer a ∈ [0, 2β] into the k -dimension binary vector
a efficiently.

Next, we define the gadget matrix G1 = I l2⊗g , G2 = I l1⊗g , G3 = IL⊗g
and they satisfy that G1 · r̄ = r′ , G2 · ē1 = e′1 and G3 · ē2 = e′2 .

Finally, we set

A =

B1 ·G1 G2 0 0

B2 ·G1 0 G3 b q2e · IL



x = (r̄ᵀ ēᵀ1 ēᵀ2 wᵀ)
ᵀ
, y =

c1 +B1 · β1 + β2

c2 +B2 · β1 + β3


and set M = (i, i, i)i∈[1,(l1+l2+L)·k+L] . Here, both ‖x‖ and ‖M‖ are (l1 + l2 +

L) · k + L .
One common variant of the encryption scheme in [57] is to use binary secrets

and errors rather than sampling them from β bounded distributions. To generate
arguments of knowledge of plaintexts for this variant, we can use an almost
identical construction as above, except that we do not need to decompose the
vectors r , e1 and e2 . Thus, when reducing the relation to R∗ in this case,
both ‖x‖ and ‖M‖ will be l1 + l2 + 2L .

20

4.3 ZKAoK of Message-Signature Pair

Next, we give an argument of knowledge of a valid message/signature pair for
the signature scheme proposed in [55], which is recalled in Appendix A.3.

Let l1 , l2 , l3 , L , and β be positive integers and q be a power-of-prime.
Also let kq = dlog qe . We propose a ZKAoK that proves knowledge of

{
{τi}i∈[1,l3] ∈ {0, 1}

l3 ;v1 ∈ Zl2q ;v2 ∈ Zl2q ;

w ∈ {0, 1}kql1 ; s ∈ Z2l2
q ;m ∈ {0, 1}L

that satisfies


B · v1 + (B0 +

l3∑
i=1

τi ·Bi) · v2 = u+D ·w

H ·w = D0 · s+D1 ·m
‖v1‖∞ ≤ β; ‖v2‖∞ ≤ β; ‖s‖∞ ≤ β

for public {
B ∈ Zl1×l2q ; {Bi}i∈[0,l3] ∈ (Zl1×l2q)l3+1;u ∈ Zl1q
D ∈ Zl1×kql1q ;D0 ∈ Zl1×2l2q ;D1 ∈ Zl1×Lq

where H = I l1 ⊗ (1 2 4 . . . 2kq−1) .

Again, we construct the argument via reducing the relation, which contains
a subset sum of linear equations and linear equations with short solutions, to an
instance of the relation R∗ .

First, we define vectors β1 = (β β . . . β)ᵀ ∈ Zl2q , β2 = (β β . . . β)ᵀ ∈ Z2l2
q ,

and define v′1 = v1 + β1 , v′2 = v2 + β1 and s′ = s+ β2 .

Then, we decompose vectors v′1 , v′2 and s′ into binary vectors v̄1 , v̄2 , and
s̄ using the decomposition technique proposed in [58]. Let k = blog 2βc + 1 ,
then the vectors v̄1 , v̄2 and s̄ are of length kl2 , kl2 and 2kl2 respectively.

Also, let g = (b(2β+ 1)/2c‖ . . . ‖b(2β+ 2i−1)/2ic‖ . . . ‖b(2β+ 2k−1)/2kc) be
a row vector. Then, we define the gadget matrix G1 = I l2 ⊗ g , G2 = I2l2 ⊗ g ,
and they satisfy that G1 · v̄1 = v′1 , G1 · v̄2 = v′2 and G2 · s̄ = s′ .

Next, for i ∈ [1, l3] , let ui = Bi · v2 and let u′i = τi · ui . Also, we define
û = (uᵀ

1‖u
ᵀ
2‖ . . . ‖u

ᵀ
l3

)ᵀ and û′ = (u′ᵀ1 ‖u
′ᵀ
2 ‖ . . . ‖u

′ᵀ
l3

)ᵀ . Moreover, define τ =
(τ1 τ2 . . . τl3)ᵀ .

21

Finally, we set

A =


0 0 −I l1l3 B̄ ·G1 0 0 0 0

0 J 0 B0 ·G1 B ·G1 −D 0 0

0 0 0 0 0 −H D0 ·G2 D1



x =
(
τᵀ û′ᵀ ûᵀ v̄ᵀ2 v̄ᵀ1 wᵀ s̄ᵀ mᵀ

)ᵀ
, y =


B̄ · β1

u+B0 · β1 +B · β1

D0 · β2


where

B̄ =

 B1

...
Bl3

 , J = (I l1 I l1 . . . I l1)

Besides, let N = l3 + 2l1l3 + 2kl2 + kql1 + 2kl2 + L , we define
M1 = {(i, i, i)}i∈[1,l3]
M2 = {(i, i, i)}i∈[l3+2l1l3+1,N]

M3 = {(l3 + l1 · (i− 1) + j, i, l3 + l1l3 + l1 · (i− 1) + j)}i∈[1,l3],j∈[1,l1]
where M1 indicates that each τi is binary, M2 indicates that v̄2, v̄1,w, s̄,m
are binary vectors, and M3 indicates that u′i = τi · ui for i ∈ [1, l3] . Then we
set M =M1 ∪M2 ∪M3 . In the new relation, the length of the witness is N
and the size of M is N − l1l3 .

We can also use the fast mode (mentioned in Sec. 1.2) to argue that v1 , v2
and s are short. This will lead to an instance of R∗ , where the length of the
witness is l3 + 2l1l3 + 4l2 + kql1 +L+ λ · (blog (2 · 4l2 · β)c+ 1) , and the size of
M is l3 + l1l3 + kql1 + L+ λ · (blog (2 · 4l2 · β)c+ 1) .

4.4 ZKAoK of Accumulated Value

In this section, we give an argument of knowledge of an accumulated value for
the accumulator scheme presented in [54], which is recalled in Appendix A.4.

More precisely, let l1 , L be positive integers and q be a power-of-prime.
Also, let kq = dlog qe and l2 = l1kq . We propose a zero knowledge argument of
knowledge that proves knowledge of

{{τi}i∈[1,L] ∈ {0, 1}L; {vi}i∈[1,L] ∈ ([0, 1]l2)L; {wi}i∈[1,L] ∈ ([0, 1]l2)L; }

that satisfies {
B1+τ1 · v1 +B2−τ1 ·w1 = H · u
∀i ∈ [2, L],B1+τi · vi +B2−τi ·wi = H · vi−1

22

for public

{B1 ∈ Zl1×l2q ;B2 ∈ Zl1×l2q ;u ∈ [0, 1]l1kq}

where H = I l1 ⊗ (1 2 4 . . . 2kq−1) .
We construct the argument via reducing the relation to an instance of the

relation R∗ . Note that the relation contains L parts, each of which is a disjunc-
tion of two equations, namely, B1 ·vi+B2 ·wi = H ·vi−1 and B1 ·wi+B2 ·vi =
H · vi−1 (here, we define v0 = u). As shown in [54], each part can be trans-
formed into a subset sum of these two equations via setting the coefficients as
(1− τi, τi) . Next, we describe the reduction in more details.

First, for i ∈ [2, L] , we define zi,0 = B1 · vi +B2 · wi −H · vi−1 , zi,1 =
B1 ·wi +B2 · vi−H · vi−1 , z′i,0 = (1− τi) · zi,0 and z′i,1 = τi · zi,1 . Moreover,
we set z1,0 = B1 · v1 +B2 ·w1 , z1,1 = B1 ·w1 +B2 · v1 , z′1,0 = (1− τ1) · z1,0
and z′1,1 = τ1 · z1,1 .

Then, we set τ 0 = (1 − τ1 1 − τ2 . . . 1 − τL)ᵀ and τ 1 = (τ1 τ2 . . . τL)ᵀ .
Also, we define ẑ′0 = (z′ᵀ1,0‖z

′ᵀ
2,0‖ . . . ‖z

′ᵀ
L,0)ᵀ , ẑ′1 = (z′ᵀ1,1‖z

′ᵀ
2,1‖ . . . ‖z

′ᵀ
L,1)ᵀ , ẑ0 =

(zᵀ1,0‖z
ᵀ
2,0‖ . . . ‖z

ᵀ
L,0)ᵀ , ẑ1 = (zᵀ1,1‖z

ᵀ
2,1‖ . . . ‖z

ᵀ
L,1)ᵀ , v̂ = (vᵀ1‖v

ᵀ
2‖ . . . ‖v

ᵀ
L)ᵀ ,

ŵ = (wᵀ
1‖w

ᵀ
2‖ . . . ‖w

ᵀ
L)ᵀ . Besides, we define û = ((H · u)ᵀ‖01×(L−1)·l1)ᵀ .

Finally, we set

A =



IL IL 0 0 0 0 0 0

0 0 I l1L I l1L 0 0 0 0

0 0 0 0 I l1L 0 M1 N2

0 0 0 0 0 I l1L M2 N1


x =

(
τᵀ
0 τᵀ

1 ẑ′ᵀ0 ẑ′ᵀ1 ẑᵀ0 ẑᵀ1 v̄ᵀ w̄ᵀ
)ᵀ
, y =

(
1L ûᵀ 0 0

)ᵀ
where

M1 =


−B1

H −B1

. . .
. . .

H −B1

 , M2 =


−B2

H −B2

. . .
. . .

H −B2


N1 = −IL ⊗B1, N2 = −IL ⊗B2

Besides, we define
M1 = {(i, i, i)}i∈[1,L]
M2 = {(i, i, i)}i∈[2L+4l1L+1,2L+4l1L+2l2L]

M3 = {(2L+ l1 · (i− 1) + j, 2L+ 2l1L+ l1 · (i− 1) + j, i)}i∈[1,L],j∈[1,l1]
M4 = {(2L+ l1L+ l1 · (i− 1) + j, 2L+ 3l1L+ l1 · (i− 1) + j, L+ i)}i∈[1,L],j∈[1,l1]

23

where M1 indicates that τ 0 is a binary vector, M2 indicates that v̄ and w̄
are binary vectors, M3 and M4 indicate z′i,0 = (1−τi) ·zi,0 and z′i,1 = τi ·zi,1
for i ∈ [1, L] respectively. Then we set M =M1 ∪M2 ∪M3 ∪M4 . Note that
as in the linear equation A · x = y , it is proved that τ 0[i] + τ 1[i] = 1 for
i ∈ [1, L] , the fact that τ 0[i] is binary implies that τ 1[i] is also binary. In the
new relation, the length of the witness is 2L + 4l1L + 2l2L and the size of M
is L+ 2l1L+ 2l2L .

4.5 ZKAoK of PRF Preimage

In this section, we give an argument for the weak pseudorandom function con-
structed implicitly in [9], which is recalled in Appendix A.5. In paticular, the
argument claims knowledge of a key/input pair that evaluates to a public output.

More precisely, let l1, l2 be positive integers, q0 be a prime and p = qe10 ,
q = qe20 , where 1 ≤ e1 < e2 , we propose a ZKAoK for the following relation:

RPRF = {(c), (B,k) ∈ (Zl1p)× (Zl1×l2q × Zl2q) : c = bB · kcp mod p}

We construct the argument via reducing the relation RPRF to an instance of
the relation R∗ . First, we rewrite the equation c = bB · kcp mod p as follows:B · k = u mod q

bp
q
· uc = c mod p

The first equation is a linear equation with hidden matrix. The second equation,
as shown in [55, 79], holds iff each element of the vector u − q

pc is in [0, qp) ,
and thus can be transformed into a linear equation with short solution. Next, we
describe the reduction in more details. We remark that in the remaining part of
this section, all arithmetic operations are under the modulus q , so we omit the
moduli in the remaining part of this section.

First, for i ∈ [1, l1] , we define bi as the i -th row of B and define vi as the
Hadamard product between bi and k , i.e., vi[j] = bi[j] · k[j] for j ∈ [1, l2] .

Let e = u− q
pc , then we decompose the vector e into a binary vector ē using

the decomposition technique proposed in [58]. Let γ = q
p−1 and k = blog γc+1 ,

then the length of ē is k · l1 .
Also, let g = (b(γ + 1)/2c‖ . . . ‖b(γ + 2i−1)/2ic‖ . . . ‖b(γ + 2k−1)/2kc) be a

row vector. Then, we define the gadget matrix G = I l1 ⊗g , and it satisfies that
G · ē = e .

Next, we define b = (bᵀ1‖ . . . ‖b
ᵀ
l1

)ᵀ ∈ Zl1·l2q and define v = (vᵀ1‖ . . . ‖v
ᵀ
l1

)ᵀ ∈
Zl1·l2q .

Finally, we set

A =

0 0 M −I l1 0

0 0 0 I l −G


24

x = (kᵀ bᵀ vᵀ uᵀ ēᵀ)
ᵀ
, y =

(
0

q

p
· cᵀ
)ᵀ

where M = I l1 ⊗ (1 1 . . . 1) ∈ Zl1×l1·l2q .
Besides, we define{
M1 = {(i, i, i)}i∈[l2+2l1l2+l1+1,l2+2l1l2+l1+kl1]

M2 = {(l2 + l1l2 + (i− 1) · l2 + j, l2 + (i− 1) · l2 + j, j)}i∈[1,l1],j∈[1,l2]

where M1 indicates that ē is a binary vector and M2 indicates that vi is the
Hadamard product between bi and k . Then we set M = M1 ∪M2 . In the
new relation, the length of the witness is l2 + 2l1l2 + l1 +kl1 , and the size of M
is kl1 + l1l2 .

Remark 4.1. We remark that besides privacy-preserving primitives, our ZKAoK

for weak PRF also implies a lattice-based verifiable random function (VRF) with
trusted uniqueness (as formally defined in [71]).

More precisely, let λ be the security parameter. Let m,n, p, q be positive
integers that are polynomial in λ , where m ≥ n(log q+1)/(log p−1) . Let A be
a random matrix in Zm×nq and serves as a public parameter. The secret key of
the VRF is a random vector s ∈ Znq and the public key is a vector b = bA · scp
mod p . The evaluation algorithm outputs y = bH(x) · scp mod p on input a
bitstring x , where H is a hash function that maps an arbitrary-length bitstrings
onto a matrix in Zm×nq and is modeled as a random oracle. The proof for the
correct evaluation of the VRF on an input x is a ZKAoK that argues knowledge
of a secret key s s.t. b = bA · scp ∧y = bB · scp , where B = H(x) (Note that,
we do not need to hide the matrices in this argument.).

First, as proved in [79], with all but negligible probability over the choise of
A , the secret key and the public key are bijective. Then the trusted uniqueness
of the VRF follows directly from the soundness of the underlying arguments.

Acknowledgement. We appreciate the anonymous reviewers for their valuable
suggestions. Part of this work was supported by the National Natural Science
Foundation of China (Grant No. 61602396, 61572294, 61632020), Early Career
Scheme research grant (ECS Grant No. 25206317) from the Research Grant
Council of Hong Kong, the Innovation and Technology Support Programme of
Innovation and Technology Fund of Hong Kong (Grant No. ITS/356/17), and
the MonashU-PolyU-Collinstar Capital Joint Lab on Blockchain.

References

[1] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h) ibe in
the standard model. In EUROCRYPT, pages 553–572. Springer, 2010.

[2] Miklós Ajtai. Generating hard instances of lattice problems. In STOC,
pages 99–108. ACM, 1996.

25

[3] Navid Alamati, Chris Peikert, and Noah Stephens-Davidowitz. New (and
old) proof systems for lattice problems. In PKC, pages 619–643. Springer,
2018.

[4] Martin R Albrecht, Benjamin R Curtis, Amit Deo, Alex Davidson, Rachel
Player, Eamonn W Postlethwaite, Fernando Virdia, and Thomas Wunderer.
Estimate all the {LWE, NTRU} schemes! In SCN, pages 351–367. Springer,
2018.

[5] Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. Journal of Mathematical Cryptology, 9(3):169–203,
2015.

[6] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange-a new hope. In USENIX Security Symposium, vol-
ume 2016, 2016.

[7] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryp-
tographic primitives and circular-secure encryption based on hard learning
problems. In CRYPTO, pages 595–618. Springer, 2009.

[8] Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic
pseudorandom functions. In CRYPTO, pages 353–370. Springer, 2014.

[9] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom func-
tions and lattices. In EUROCRYPT, pages 719–737. Springer, 2012.

[10] Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner, and
Chris Peikert. More efficient commitments from structured lattice assump-
tions. In SCN, pages 368–385. Springer, 2018.

[11] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of
group signatures: Formal definitions, simplified requirements, and a con-
struction based on general assumptions. In EUROCRYPT, pages 614–629.
Springer, 2003.

[12] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures:
Stronger definitions, and constructions without random oracles. In TCC,
pages 60–79. Springer, 2006.

[13] Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyuba-
shevsky, and Gregory Neven. Better zero-knowledge proofs for lattice en-
cryption and their application to group signatures. In ASIACRYPT, pages
551–572. Springer, 2014.

[14] Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky, and Krzysztof
Pietrzak. Efficient zero-knowledge proofs for commitments from learning
with errors over rings. In ESORICS, pages 305–325. Springer, 2015.

[15] Nina Bindel, Sedat Akeylek, Erdem Alkim, Paulo SLM Barreto, Johannes
Buchmann, Edward Eaton, Gus Gutoski, Julaine Kramer, Patrick Longa,
Harun Polat, et al. qtesla. submission to the nist?s post-quantum cryptog-
raphy standardization process.(2018), 2018.

[16] Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghunathan.
Key homomorphic prfs and their applications. In Advances in Cryptology–
CRYPTO 2013, pages 410–428. Springer, 2013.

[17] Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic tech-
niques for short(er) exact lattice-based zero-knowledge proofs. Cryptology
ePrint Archive, Report 2019/642, 2019. To Appear at CRYPTO, 2019.

26

[18] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Vale-
ria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off
the ring! practical, quantum-secure key exchange from lwe. In CCS, pages
1006–1018. ACM, 2016.

[19] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTALS-Kyber: a cca-secure module-lattice-based kem. In EuroS&P,
pages 353–367. IEEE, 2018.

[20] Cecilia Boschini, Jan Camenisch, and Gregory Neven. Floppy-sized group
signatures from lattices. In ACNS, pages 163–182. Springer, 2018.

[21] Cecilia Boschini, Jan Camenisch, and Gregory Neven. Relaxed lattice-based
signatures with short zero-knowledge proofs. In ISC, pages 3–22. Springer,
2018.

[22] Johannes Buchmann, Florian Göpfert, Rachel Player, and Thomas Wun-
derer. On the hardness of lwe with binary error: revisiting the hybrid
lattice-reduction and meet-in-the-middle attack. In AFRICACRYPT, pages
24–43. Springer, 2016.

[23] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact E-
cash. In EUROCRYPT, pages 302–321. Springer, 2005.

[24] Jan Camenisch, Gregory Neven, and Markus Rückert. Fully anonymous
attribute tokens from lattices. In SCN, pages 57–75. Springer, 2012.

[25] David Chaum. Blind signatures for untraceable payments. In CRYPTO,
pages 199–203. Springer, 1982.

[26] David Chaum and Eugène Van Heyst. Group signatures. In EUROCRYPT,
pages 257–265. Springer, 1991.

[27] Yuanmi Chen and Phong Q Nguyen. BKZ 2.0: Better lattice security esti-
mates. In ASIACRYPT, pages 1–20. Springer, 2011.

[28] Ronald Cramer and Ivan Damg̊ard. On the amortized complexity of zero-
knowledge protocols. In CRYPTO, pages 177–191. Springer, 2009.

[29] Rafael del Pino, Vadim Lyubashevsky, and Gregor Seiler. Lattice-based
group signatures and zero-knowledge proofs of automorphism stability. In
CCS, pages 574–591. ACM, 2018.

[30] Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup.
Anonymous identification in ad hoc groups. In International Conference
on the Theory and Applications of Cryptographic Techniques, pages 609–
626. Springer, 2004.

[31] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal gaussians. In CRYPTO, pages 40–56.
Springer, 2013.

[32] Leo Ducas, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehle. CRYSTALS – Dilithium: Digital signatures
from module lattices. Cryptology ePrint Archive, Report 2017/633, 2017.
https://eprint.iacr.org/2017/633.

[33] Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, and
Dongxi Liu. Short lattice-based one-out-of-many proofs and applications to
ring signatures. Cryptology ePrint Archive, Report 2018/773, 2018. https:
//eprint.iacr.org/2018/773.

27

https://eprint.iacr.org/2017/633
https://eprint.iacr.org/2018/773
https://eprint.iacr.org/2018/773

[34] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In CRYPTO, pages 186–194.
Springer, 1986.

[35] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. Falcon: Fast-fourier lattice-based compact sig-
natures over ntru. submission to the nist?s post-quantum cryptography
standardization process.(2018), 2018.

[36] Nicolas Gama and Phong Q Nguyen. Predicting lattice reduction. In EU-
ROCRYPT, pages 31–51. Springer, 2008.

[37] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In STOC, pages 197–
206. ACM, 2008.

[38] Oded Goldreich and Shafi Goldwasser. On the limits of non-approximability
of lattice problems. In STOC, pages 1–9. ACM, 1998.

[39] S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of inter-
active proof-systems. In STOC, pages 291–304. ACM, 1985.

[40] Shafi Goldwasser and Dmitriy Kharchenko. Proof of plaintext knowledge
for the ajtai-dwork cryptosystem. In TCC, pages 529–555. Springer, 2005.

[41] S Dov Gordon, Jonathan Katz, and Vinod Vaikuntanathan. A group sig-
nature scheme from lattice assumptions. In ASIACRYPT, pages 395–412.
Springer, 2010.

[42] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to
leak a secret and spend a coin. In EUROCRYPT, pages 253–280. Springer,
2015.

[43] Venkatesan Guruswami, Daniele Micciancio, and Oded Regev. The
complexity of the covering radius problem. Computational Complexity,
14(2):90–121, 2005.

[44] Jeff Hoffstein, Jill Pipher, John M Schanck, Joseph H Silverman, William
Whyte, and Zhenfei Zhang. Choosing parameters for ntruencrypt. In CT-
RSA, pages 3–18. Springer, 2017.

[45] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based
public key cryptosystem. In International Algorithmic Number Theory Sym-
posium, pages 267–288. Springer, 1998.

[46] Jeffrey Hoffstein, Jill Pipher, William Whyte, and Zhenfei Zhang. A sig-
nature scheme from learning with truncation. Cryptology ePrint Archive,
Report 2017/995, 2017. https://eprint.iacr.org/2017/995.

[47] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently secure
identification schemes based on the worst-case hardness of lattice problems.
In ASIACRYPT, pages 372–389. Springer, 2008.

[48] Ahmed Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, Hubert Chan, Char-
alampos Papamanthou, Rafael Pass, abhi shelat, and Elaine Shi. C ∅ c ∅ :
A framework for building composable zero-knowledge proofs. Cryptol-
ogy ePrint Archive, Report 2015/1093, 2015. https://eprint.iacr.org/
2015/1093.

28

https://eprint.iacr.org/2017/995
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2015/1093

[49] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. In CRYPTO, pages 3–22. Springer, 2015.

[50] Fabien Laguillaumie, Adeline Langlois, Benôıt Libert, and Damien Stehlé.
Lattice-based group signatures with logarithmic signature size. In ASI-
ACRYPT, pages 41–61. Springer, 2013.

[51] Adeline Langlois, San Ling, Khoa Nguyen, and Huaxiong Wang. Lattice-
based group signature scheme with verifier-local revocation. In PKC, pages
345–361. Springer, 2014.

[52] Benôıt Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong
Wang. Signature schemes with efficient protocols and dynamic group signa-
tures from lattice assumptions. In ASIACRYPT, pages 373–403. Springer,
2016.

[53] Benôıt Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong
Wang. Zero-knowledge arguments for matrix-vector relations and lattice-
based group encryption. In ASIACRYPT, pages 101–131. Springer, 2016.

[54] Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-
knowledge arguments for lattice-based accumulators: logarithmic-size ring
signatures and group signatures without trapdoors. In EUCRYPT, pages
1–31. Springer, 2016.

[55] Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-
knowledge arguments for lattice-based PRFs and applications to E-cash.
In ASIACRYPT, pages 304–335. Springer, 2017.

[56] Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Lattice-based
zero-knowledge arguments for integer relations. In CRYPTO, pages 700–
732. Springer, 2018.

[57] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for lwe-
based encryption. In CT-RSA, pages 319–339. Springer, 2011.

[58] San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang. Improved
zero-knowledge proofs of knowledge for the isis problem, and applications.
In PKC, pages 107–124. Springer, 2013.

[59] San Ling, Khoa Nguyen, and Huaxiong Wang. Group signatures from lat-
tices: simpler, tighter, shorter, ring-based. In PKC, pages 427–449. Springer,
2015.

[60] San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. Lattice-based
group signatures: Achieving full dynamicity with ease. In ACNS, pages
293–312. Springer, 2017.

[61] San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. Constant-size
group signatures from lattices. In PKC, pages 58–88. Springer, 2018.

[62] Vadim Lyubashevsky. Lattice-based identification schemes secure under
active attacks. In PKC, pages 162–179. Springer, 2008.

[63] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures. In ASIACRYPT, pages 598–616. Springer, 2009.

[64] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EURO-
CRYPT, pages 738–755. Springer, 2012.

[65] Vadim Lyubashevsky and Gregory Neven. One-shot verifiable encryption
from lattices. In EUROCRYPT, pages 293–323. Springer, 2017.

29

[66] D Micciancio and O Regev. Worst-case to average-case reductions based on
gaussian measures. In FOCS, pages 372–381. IEEE, 2004.

[67] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In EUROCRYPT, pages 700–718. Springer, 2012.

[68] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small
parameters. In CRYPTO, pages 21–39. Springer, 2013.

[69] Daniele Micciancio and Salil P Vadhan. Statistical zero-knowledge proofs
with efficient provers: Lattice problems and more. In CRYPTO, pages 282–
298. Springer, 2003.

[70] Phong Q Nguyen, Jiang Zhang, and Zhenfeng Zhang. Simpler efficient group
signatures from lattices. In PKC, pages 401–426. Springer, 2015.

[71] Dimitrios Papadopoulos, Duane Wessels, Shumon Huque, Moni Naor, Jan
Včelák, Leonid Reyzin, and Sharon Goldberg. Making NSEC5 practical
for DNSSEC. Cryptology ePrint Archive, Report 2017/099, 2017. https:

//eprint.iacr.org/2017/099.
[72] Chris Peikert. A decade of lattice cryptography. Foundations and Trends R©

in Theoretical Computer Science, 10(4):283–424, 2016.
[73] Chris Peikert and Vinod Vaikuntanathan. Noninteractive statistical zero-

knowledge proofs for lattice problems. In CRYPTO, pages 536–553.
Springer, 2008.

[74] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In STOC, pages 84–93. ACM, 2005.

[75] Ronald L Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In
ASIACRYPT, pages 552–565. Springer, 2001.

[76] John Schanck. Estimator. https://github.com/jschanck/estimator.
[77] Jacques Stern. A new identification scheme based on syndrome decoding.

In CRYPTO, pages 13–21. Springer, 1993.
[78] Gene Tsudik and Shouhuai Xu. Accumulating composites and improved

group signing. In ASIACRYPT, pages 269–286. Springer, 2003.
[79] Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu.

Lattice-based techniques for accountable anonymity: Composition of ab-
stract sterns protocols and weak PRF with efficient protocols from LWR.
Cryptology ePrint Archive, Report 2017/781, 2017. http://eprint.iacr.
org/2017/781.

A Cryptographic Primitives

In this section, we recall cryptographic primitives employed in our applications.

A.1 Commitment

In this work, we will use the commitment scheme from [47]. Let λ be the security
parameter. Let n, q, L be postive integers that are polynomial in λ , and let
k = dlog qe , m = n(k + 3) . The public parameter of the commitment scheme

30

https://eprint.iacr.org/2017/099
https://eprint.iacr.org/2017/099
https://github.com/jschanck/estimator
http://eprint.iacr.org/2017/781
http://eprint.iacr.org/2017/781

is two random matrices B1 ∈ Zn×mq and B2 ∈ Zn×Lq . To commit a message

m ∈ {0, 1}L , the commit algorithm first samples r ∈ {0, 1}m . Then it outputs
the commitment c = B1 · r +B2 ·m and the opening r . The open algorithm
outputs 1 on input B1,B2,m, c, r iff c = B1 · r +B2 ·m .

A.2 Public Key Encryption

In this work, we will use the CPA secure public key encryption scheme from [57].
Let λ be the security parameter. Let n1, n2, q, L, σ be postive integers that are
polynomial in λ . The PKE scheme works as follows:

• KeyGen. On input the security parameter, the key generation algorithm

first samples D0
$← Zn1×n2

q , S ← DL×n1
σ , and E ← DL×n2

σ . Then it
computes D1 = S ·D0 +E . The public key is (D0,D1) and the secret key
is S .

• Enc. On input the public key (D0,D1) and a message m ∈ {0, 1}L , the
encryption algorithm first samples r ← Dn2

σ , e1 ← Dn1
σ , e2 ← DL

σ . Then
it computes c1 = D0 · r + e1 , c2 = D1 · r + e2 + b q2e ·m and outputs the
ciphertext (c1, c2) .

• Dec. On input the secret key S and a ciphertext (c1, c2) , the decryption
algorithm first computes m′ = c2 − S · c1 . Then for j ∈ [1, L] , it sets
mj = 0 if ‖m′[j]‖ < bq/4e and mj = 1 otherwise. Finally, it outputs
(m1, . . . ,mL)ᵀ .

We will also use a variant of this scheme for our applications. In particu-
lar, in this variant, all elements in S,E, r, e are sampled from {0, 1} instead
of the Gaussian distribution Dσ . Security of the variant relies on the BLWE
assumption ranther than the standard LWE assumption.

A.3 Signature

In this work, we will use the signature scheme from [55]. Let λ be the security
parameter. Let m1,m2,m3, σ, q, L be positive integers that are polynomial in
λ . Let k = dlog qe . The signautre scheme works as follows:

• KeyGen. On input the security parameter, the key generation algorithm
first samples a random matrix B ∈ Zm1×m2

q together with its trapdoor T .

Then it samples Bi
$← Zm1×m2

q for i ∈ [0,m3] and samples B̃
$← Zm1×km1

q ,

B̃0
$← Zm1×2m2

q , B̃1
$← Zm1×L

q and u
$← Zm1

q . Finally, it outputs sk = T

and pk = (B, {Bi}i∈[0,m3],u, B̃, B̃0, B̃1) .
• Sign. On input the secret key T and a message m ∈ {0, 1}L , the sign

algorithm first samples τ
$← {0, 1}m3 . Then it computes the matrix Bτ =

(B‖B0 +
∑m3

i=1(τ [i] ·Bi)) . Next, it samples r ← D2m2
σ and computes c =

B̃0 ·r+B̃1 ·m . Then it uses the secret key T to samples a vector v ∈ D2m2
σ

that satisfies Bτ · v = u+ B̃ · bin(c) . The signature is (τ , r,v) .

31

• Verify. On input the public key (B, {Bi}i∈[0,m3],u, B̃, B̃0, B̃1) , a message
m and a signature (τ , r,v) ∈ {0, 1}m3 × Z2m2 × Z2m2 , the verification
algorithm first computes Bτ = (B‖B0 +

∑m3

i=1(τ [i] ·Bi)) . Then it checks if

Bτ · v = u+ B̃ · bin(B̃0 · r + B̃1 ·m)

and v, r are short vectors (here, we say the vector is small if its infinity
norm does not exceed 12σ).

One feature of this signature scheme is that it allows one to sign on the committed
value in a commitment if the commitment is generated under public parameter
(B̃0, B̃1) .

Security of the signature scheme relies on the SISm1,q,β assumption, where

β ≈ σ2 · m3/2
2 · m3 . Also, when applying the trapdoor generation algorithm

presented in [67], we can set m2 = 2km1 and σ = 1.6k · √m1 .

A.4 Cryptographic Accumulator

In this work, we will use the accumulator scheme presented in [54]. Let λ be
the security parameter. Let n, q be a postive integer that is polynomial in λ .
Let L be a constant. Let N = 2L , k = dlog qe and m = nk . The accumulator
scheme works as follows:

• Setup. The setup algorithm samples matrices B1,B2
$← Zn×mq and outputs

the public parameter para = (B1,B2) .
• Acc. On input a set R = {di}i∈[0,N−1] ∈ ({0, 1}m)N , the accumulate al-

gorithm sets uL,i = di for i ∈ [0, N − 1] . Then for j ∈ [0, L − 1] , it sets
uj,i = bin(B1 ·uj+1,2i+B2 ·uj+1,2i+1) for i ∈ [0, 2j−1] . Finally, it outputs
the accumulator u0,0 .

• Witness. On input a set R = {di}i∈[0,N−1] ∈ ({0, 1}m)N and an element
d = di∗ , the witness algorithm first generates uj,i as in the accumulate
algorithm. Then it outputs (bin(i∗), {uj,f(j)}j∈[1,L], {uj,g(j)}j∈[1,L]) , where
f(j) = bi∗/(2L−j)c and g(j) = 4bi∗/(2L−j−1)c − bi∗/(2L−j)c+ 1

• Verify. On input an accumulator u , an element d and a witness (m,
{vj}j∈[1,L], {wj}j∈[1,L]) , the verification algorithm outputs 1 iff{

bin(B1+m[1] · v1 +B2−m[1] ·w1) = u

∀i ∈ [2, L], bin(B1+m[i] · vi +B2−m[i] ·wi) = vi−1

A.5 (Weak) Pseudorandom Function

In this work, we will use the weak PRF constructed implicitly in [9]. Let λ be
the security parameter. Let n1, n2, p, q be postive integers that are polynomial
in λ . The weak PRF works as follows:

• KeyGen. The key generation algorithm samples s
$← Zn2

q and outputs the
key s .

• Eval. On input an input A
$← Zn1×n2

q , the evaluation algorithm outputs
y = bA · scp mod p .

32

B Additional Assumptions and Concrete Hardness

We will also use variants of the LWE assumption when constructing our ap-
plications. Employed variants include the LWE assumption with binary secrets
and errors (BLWE) and the learning with rounding (LWR) assumption. Both
assumptions are proved as hard as the standard LWE assumption for specific
parameters [9, 68].

Definition B.1 (Decision-BLWE n,m,q). Given a random matrix A ∈ Zm×nq ,
and a vector b ∈ Zmq , where b is generated according to either of the following
two cases:
1. b = A · s+ e , where s

$← {0, 1}n and e← {0, 1}m

2. b
$← Zmq

distinguish which is the case with non-negligible advantage.

As the hardness of the BLWE assumption usually depends only on n, q (as-
suming m is large enough), in this work, we write BLWEn,m,q as BLWEn,q
for short.

Definition B.2 (Decision-LWR n,m,q,p). Given a random matrix A ∈ Zm×nq ,
and a vector b ∈ Zmp , where b is generated according to either of the following
two cases:
1. b = bA · scp , where s

$← Znq .

2. b
$← bZmq cp

distinguish which is the case with non-negligible advantage. Here, for any x ∈
Zmq , we define bxcp = bp/q · xc ∈ Zmp .

As the hardness of the LWR assumption usually depends only on n, q, p
(assuming m is large enough), in this work, we write LWRn,m,q,p as LWRn,q,p
for short.

B.1 Concrete Hardness of Assumptions

In lattice-based cryptography, a hardness theorem is often used to demonstrate
that the overall protocol comes from a provable secure design. Nonetheless, pa-
rameters stem from those theorems are usually impractical and it is more desir-
able to set parameters that are robust against best known cryptanalysis. This
approach has been adopted in most practical lattice-based schemes, such as
[4, 6, 32, 44].

We adopt the same approach to estimate the security and derive parameters
for applications in this paper. Concretely, we examine the root Hermite factor
(RHF) [36] for each lattice problem and summarize the required RHF for each
problem in Table 3.

Then we use the estimator from [76] to estimate the cost of BKZ [27] algo-
rithm with quantum-core-sieving [4, 6, 49] to arrive those root Hermite factors.
In general, to achieve a 80 / 100 / 128-bit security, the corresponding RHF are
1.0048 / 1.0042 / 1.0035, respectively.

33

Problem RHF Reference

SISn,m,q,β 2
log2 β
4n log q [48]

LWEn,m,q,α 2
log2 α

5.31
4n log q [5]

BLWEn,m,q 2
log2 (q·4.24)

4n log q [22]

LWRn,m,q,p 2
log2 (

√
π/6

5.31p
)

4n log q [4]

Table 3: The required RHF to solve lattice problems. Note that LWRn,m,q,p is

treated as an LWEn,m,q,α instance with α =

√
(q/p)2−1

12
·
√

2π/q .

C Proof of Theorem 3.1

Proof. We prove Theorem 3.1 by proving the completeness, the proof of knowl-
edge property and the honest-verifier zero-knowledge property of P1 .

Completeness. Let A,y,M be the valid statement to be proved, let x be
the witness, let B1,B2 be the public parameter, let r, t, s1, s2, s3, s4, c1, c2, c3,
c4,a, b, ρ, Caux , α, z0, z1, z2,d be the variables used in an honest executation of
the protocol.

First, let v = (α ·sᵀ1‖α ·s
ᵀ
3)ᵀ , then by Lemma 2.1, we have ‖v‖ ≤ 2p ·

√
l ·σ1

with all but negligible probability. That is, the norm of the masked vector v
is bounded by T = 2p ·

√
l · σ1 . Since σ2 = 2p ·

√
l · log l · σ1 = log l · T and

M = e12/ log l+1/(2 log2 l) , by Lemma 2.2, the prover will response in the third

move with a probability of at least 1−2−100

M .
Now, assume the prover response in the third move. It is easy to see that

Condition 1, Condition 4 and Condition 5 (in the verifier’s checklist) are satisfied.
Next, by Lemma 2.1, we have ‖α · s1‖ ≤ 2p ·

√
l1 + l2 + n · σ1 with all but

negligible probability and ‖s2‖ ≤ 2 ·
√
l1 + l2 + n · σ2 with all but negligible

probability. Then by the triangle inequality, Condition 2 is satisfied with all but
negligible probability. Similar, we can argue that Condition 3 is satisfied with
all but negligible probability.

Finally, we argue that the last condition is also satisfied. First, for any k ∈ [1,
`] , let (h, i, j) be the k -th element in M , we have

d[k] =α · z0[h]− z0[i] · z0[j]

=α2 · x[h] + α · r[h]− α2 · x[i] · x[j]−
α · x[i] · r[j]− α · x[j] · r[i]− r[i] · r[j]

=α · (r[h]− x[i] · r[j]− x[j] · r[i])− r[i] · r[j]

where the last equation holds since the witness x satisfies x[h] = x[i] · x[j] .
This implies that d = α · a− b and Condition 6 follows.

34

In summary, for an honest prover and an honest verifier, the prover will
response in the third move with a probability that is negligibly close to 1/M
and once the prover responses, the verifier will accept with all but negligible
probability, thus, the protocol is complete with a completeness error of 1−1/M .

Proof of Knowledge. Let A,y,M be a statement, let B1,B2 be the pub-
lic parameter. Suppose a cheating prover P̂ can convince the verifier that he
possesses a valid witness for A,y,M with probability 2

2p+1 + ε for some non-
negligible ε , then we construct a knowledge extractor that can extract a valid
witness for A,y,M via invoking P̂ .

First, note that the output of P̂ is determined by its inner randomness and
the challenge α , which is sampled from 2p + 1 possible values. Since P̂ can
convince the verifier with a probability that is non-negligibly larger than 2

2p+1 ,

with a non-negligible probability over the choise of P̂ ’s inner randomness, P̂
can answer at least 3 challenges correctly. Thus, via invoking the cheating prover
P̂ polynomial times, the extractor could extract three valid proofs with different
challenges and the same first-move response. Moreover, by the binding property
of the auxiliary commitment, the extractor is able to obtain

(α, t, c1, c2, c3, c4, z0, z1, z2)

(α′, t, c1, c2, c3, c4, z
′
0, z
′
1, z
′
2)

(α′′, t, c1, c2, c3, c4, z
′′
0 , z
′′
1 , z
′′
2)

for distinct α , α′ and α′′ that satisfies

‖z1‖ ≤ 2
√
l1 + l2 + n · (σ2 + p · σ1)

‖z2‖ ≤ 2
√
l1 + l2 + ` · (σ2 + p · σ1)

A · z0 = α · y + t

B1 · z1 + (0ᵀ‖zᵀ0)ᵀ = α · c1 + c2

B2 · z2 + (0ᵀ‖dᵀ)ᵀ = α · c3 − c4

‖z′1‖ ≤ 2
√
l1 + l2 + n · (σ2 + p · σ1)

‖z′2‖ ≤ 2
√
l1 + l2 + ` · (σ2 + p · σ1)

A · z′0 = α′ · y + t

B1 · z′1 + (0ᵀ‖z′ᵀ0)ᵀ = α′ · c1 + c2

B2 · z′2 + (0ᵀ‖d′ᵀ)ᵀ = α′ · c3 − c4

‖z′′1‖ ≤ 2
√
l1 + l2 + n · (σ2 + p · σ1)

‖z′′2‖ ≤ 2
√
l1 + l2 + ` · (σ2 + p · σ1)

A · z′′0 = α′′ · y + t

B1 · z′′1 + (0ᵀ‖z′′ᵀ0)ᵀ = α′′ · c1 + c2

B2 · z′′2 + (0ᵀ‖d′′ᵀ)ᵀ = α′′ · c3 − c4

35

where for k ∈ [1, `] , let (h, i, j) be the k -th element in M ,

d[k] = α · z0[h]− z0[i] · z0[j]

d′[k] = α′ · z′0[h]− z′0[i] · z′0[j]

d′′[k] = α′′ · z′′0 [h]− z′′0 [i] · z′′0 [j]

Now, let ∆1 = α′−α and ∆2 = α′′−α . The output of the extractor is the vector
x̄ = ∆−11 · (z′0 − z0) . 8 Next, we argue that with all but negligible probability
((A,y,M), (x̄)) ∈ R∗ via proving the following lemmas.

Lemma C.1. A · x̄ = y .

Proof. This is because

A · x̄ = A ·∆−11 · (z′0 − z0)

= ∆−11 · (A · z′0 −A · z0)

= ∆−11 · (α · y + t− α′ · y − t)
= y

Claim 1. Under the SIS assumption, x̄ = ∆−12 ·(z′′0−z0) with all but negligible
probability.

Proof. Let e′ = z′1 − z1 , e′′ = z′′1 − z1 , f ′ = z′0 − z0 , f ′′ = z′′0 − z0 . Then we
have {

B1 · e′ + (0ᵀ‖f ′ᵀ)ᵀ = ∆1 · c1
B1 · e′′ + (0ᵀ‖f ′′ᵀ)ᵀ = ∆2 · c1

which implies {
∆2 ·B1 · e′ + (0ᵀ‖(∆2 · f ′)ᵀ)ᵀ = ∆1 ·∆2 · c1
∆1 ·B1 · e′′ + (0ᵀ‖(∆1 · f ′′)ᵀ)ᵀ = ∆1 ·∆2 · c1

Thus we have

B1 · (∆2 · e′ −∆1 · e′′) + (0ᵀ‖(∆2 · f ′ −∆1 · f ′′)ᵀ)ᵀ = 0

i.e.,
[I l1 ‖ B1,1] · (∆2 · e′ −∆1 · e′′) = 0

Since z1 , z′1 and z′′1 are all bounded by ≤ 2
√
l1 + l2 + n · (σ2 + p · σ1) , it is

easy to show that ‖∆2 ·e′−∆1 ·e′′‖ ≤ 16p ·
√
l1 + l2 + n · (σ2 + p ·σ1) . Then by

the (normal form) SIS assumption, we have ∆2 · e′ −∆1 · e′′ = 0 with all but
negligible probability. This implies ∆2 · f ′ = ∆1 · f ′′ and Claim 1 follows.

8 As α , α′ and α′′ are distinct integers in [−p, p] and q0 > 2p , both ∆1 and ∆2

are invertible in Zq .

36

Claim 2. Let r̄ = z0−α · x̄ , then we have z′0− r̄ = α′ · x̄ and z′′0 − r̄ = α′′ · x̄
with all but negligible probability.

Proof. This is because with all but negligible probability, we have

z′0 − r̄ = z′0 − z0 + α · x̄
= ∆1 · x̄+ α · x̄
= α′ · x̄

and

z′′0 − r̄ = z′′0 − z0 + α · x̄
= ∆2 · x̄+ α · x̄
= α′′ · x̄

where the second equation comes from Claim 1.

Claim 3. Under the SIS assumption, ∆−11 · (d
′ − d) = ∆−12 · (d

′′ − d) with all
but negligible probability.

Proof. Proof of Claim 3 is similar to the proof of Claim 1, and we omit the
details.

Lemma C.2. With all but negligible probability, we have x̄[h] = x̄[i] · x̄[j] for
all (h, i, j) in M .

Proof. For any k ∈ [1, `] , let (h, i, j) be the k -th element in M , then from
Definition of r̄ (in Claim 2), we have

d[k] = α · z0[h]− z0[i] · z0[j]

= α · (α · x̄[h] + r̄[h])− (α · x̄[i] + r̄[i]) · (α · x̄[j] + r̄[j])

= α2 · (x̄[h]− x̄[i] · x̄[j]) + α · (r̄[h]− x̄[i] · r̄[j]− x̄[j] · r̄[i])− r̄[i] · r̄[j]

Similar, from Claim 2, we have

d′[k] =α′2 · (x̄[h]− x̄[i] · x̄[j])+

α′ · (r̄[h]− x̄[i] · r̄[j]− x̄[j] · r̄[i])− r̄[i] · r̄[j]

and

d′′[k] =α′′2 · (x̄[h]− x̄[i] · x̄[j])+

α′′ · (r̄[h]− x̄[i] · r̄[j]− x̄[j] · r̄[i])− r̄[i] · r̄[j]

with all but negligible probability. This implies that

d′[k]− d[k] =(α′2 − α2) · (x̄[h]− x̄[i] · x̄[j])+

(α′ − α) · (r̄[h]− x̄[i] · r̄[j]− x̄[j] · r̄[i])

37

and

d′′[k]− d[k] =(α′′2 − α2) · (x̄[h]− x̄[i] · x̄[j])+

(α′′ − α) · (r̄[h]− x̄[i] · r̄[j]− x̄[j] · r̄[i])

Also, from Claim 3, with all but negligible probability, we have ∆−11 · (d
′[k] −

d[k]) = ∆−12 · (d
′′[k]− d[k]) . Thus we have

(α′ + α) · (x̄[h]− x̄[i] · x̄[j]) + (r̄[h]− x̄[i] · r̄[j]− x̄[j] · r̄[i])

=(α′′ + α) · (x̄[h]− x̄[i] · x̄[j]) + (r̄[h]− x̄[i] · r̄[j]− x̄[j] · r̄[i])

which implies
(α′′ − α′) · (x̄[h]− x̄[i] · x̄[j]) = 0

Since α′′ 6= α′ and |α′′ − α′| ≤ 2p < q0 , we have x̄[h]− x̄[i] · x̄[j] = 0 and that
completes the proof of Lemma C.2.

Now, combining Lemma C.1 and Lemma C.2, proof of knowledge property
of P1 follows.

Honest-Verifier Zero-Knowledge. Let A,y,M be a statement, let B1,B2

be the public parameter. We construct a simulator that can simulate the view
of an honest verifier V̂ in an interaction with an honest prover, given A,y,M,
B1,B2 and black-box access to V̂ .

The simulator first retrieves the challenge α from V̂ via feeding it with a
commitment of 0 under the auxiliary commitment scheme. Then it:

1. Sample z0
$← Znq and compute t = A · z0 − α · y .

2. Sample z1 ← Dl2+n+l1
σ2

and z2 ← Dl2+`+l1
σ2

.

3. Sample c1
$← Zl1+nq and c3

$← Zl1+`q .
4. Compute a ` -dimension vector d that for k ∈ [1, `] , let (h, i, j) be the k -th

element in M , d[k] = α · z0[h]− z0[i] · z0[j] .
5. Compute c2 = B1 ·z1+(0ᵀ‖zᵀ0)ᵀ−α·c1 and c4 = α·c3−B2 ·z2−(0ᵀ‖dᵀ)ᵀ .

6. Sample ρ
$← {0, 1}κ and computes Caux = aCommit(t‖c1‖c2‖c3‖c4; ρ) and

C ′aux = aCommit(0; ρ) .
7. Finally, with probability 1/M , output (Caux , α, t, c1, c2, c3, c4, ρ,z0, z1, z2)

and with probability 1− 1/M , output (C ′aux , α,⊥) .

Next, we argue that the output of the simulator is computationally indistin-
guishable from V̂ ’s view in an interaction with an honest prover with a valid
witness x for A,y,M . We first define the following auxiliary games.

• Game 0: In this game, a prover runs P1 honestly with V̂ .
• Game 1: In this game, the prover retrieves a challenge α from V̂ via feeding

it with a commitment of 0 under the auxiliary commitment scheme. Then it
rewinds V̂ to the initial state while fixing its inner randomness and proceeds
as follows:

38

1. Sample r
$← Znq and compute t = A · r .

2. Sample s1 ← Dl2+n+l1
σ1

, s2 ← Dl2+n+l1
σ2

, s3 ← Dl2+`+l1
σ1

, and s4 ←
Dl2+`+l1
σ2

.
3. Compute c1 = B1 · s1 + (0ᵀ‖xᵀ)ᵀ and c2 = B1 · s2 + (0ᵀ‖rᵀ)ᵀ .
4. Compute two ` -dimension vectors a and b , where for k ∈ [1, `] , let

(h, i, j) be the k -th element in M , a[k] = r[h]− r[i] · x[j]− r[j] · x[i]
and b[k] = r[i] · r[j] .

5. Compute c3 = B2 · s3 + (0ᵀ‖aᵀ)ᵀ and c4 = B2 · s4 + (0ᵀ‖bᵀ)ᵀ .
6. Compute z0 = α · x+ r , z1 = α · s1 + s2 , and z2 = α · s3 − s4 .
7. Set the binary variable abort to be 1 with probability 1−p((α·sᵀ1‖α·s

ᵀ
3)ᵀ,

(zᵀ1‖z
ᵀ
2)ᵀ) .

8. Sample ρ
$← {0, 1}κ and compute Caux = aCommit(t‖c1‖c2‖c3‖c4; ρ) .

9. Send Caux to V̂ .
10. On receiving a new challenge α′ , abort if abort = 1 and send (t, c1, c2,

c3, c4, ρ,z0, z1, z2) otherwise.
• Game 2: This is identical to Game 1 except that the prover changes the way

to generate c2 , c4 and t . In particular, it first computes a ` -dimension
vector d that for k ∈ [1, `] , let (h, i, j) be the k -th element in M , d[k] =
α · z0[h]− z0[i] · z0[j] . Then it computes c2 = B1 · z1 + (0ᵀ‖zᵀ0)ᵀ − α · c1 ,
c4 = α · c3 −B2 · z2 − (0ᵀ‖dᵀ)ᵀ and t = A · z0 − α · y .

• Game 3: This is identical to Game 2 except that the prover changes the way
to compute the auxiliary commitment. In particular, Caux = aCommit(0; ρ)
if abort = 1 and Caux = aCommit(t‖c1‖c2‖c3‖c4; ρ) (i.e., remains identical
to Game 1) otherwise.

• Game 4: This is identical to Game 3 except that the prover changes the way
to computes z1 , z2 and abort . In particular, it samples z1 ← Dl2+n+l1

σ2

and z2 ← Dl2+`+l1
σ2

, and sets abort to be 1 with probability 1− 1/M .

• Game 5: This is identical to Game 4 except that the prover samples c1
$←

Zl1+nq .

• Game 6: This is identical to Game 5 except that the prover samples c3
$←

Zl1+`q .

• Game 7: This is identical to Game 6 except that the prover samples z0
$←

Znq .

Next, we prove the indistinguishability of each consecutive pair of games.

Lemma C.3. V̂ ’s view in Game 0 and Game 1 are identical.

Proof. As V̂ is an honest verifier, the challenge it outputs is determined by
its inner randomness. Thus, we always have α = α′ . Therefore, all variables,
including V̂ ’s views, are identically computed in Game 0 and Game 1.

Lemma C.4. V̂ ’s view in Game 1 and Game 2 are identical.

Proof. Vectors c2 , c4 and t are identically computed in Game 1 and Game
2 (as shown in the proof of completeness for P1), thus, the two games are
identical.

39

Lemma C.5. V̂ ’s view in Game 2 and Game 3 are indistinguishable.

Proof. Lemma C.5 comes from the hiding property of the auxiliary commitment
via a direct reduction, and we just omit the details here.

Lemma C.6. V̂ ’s view in Game 3 and Game 4 are statistically indistinguish-
able.

Proof. Lemma C.6 follows the rejection sampling lemma (Lemma 2.2) directly,
and we just omit the details here.

Lemma C.7. Under the LWE assumption, V̂ ’s view in Game 4 and Game 5
are computationally indistinguishable.

Proof. This comes from the hiding property of the homomorphic commitment,
which has been proved in [10]. Here we include the detailed proof for complete-
ness. We prove Lemma C.7 by showing that if there exists a distinguisher A
that can distinguish V̂ ′s view in Game 4 and Game 5, we can construct an
algorithm B solving the (normal form) LWE problem, which works as follows.

On input an instance (Ā, b̄) ∈ Z(l1+n)×l2
q × Zl1+nq , where Ā is a random

matrix in Z(l1+n)×l2
q , and b̄ is either a random vector in Zl1+nq or b̄ = Ā · s̄+ ē

for s̄ ← Dl2
σ1

and ē ← Dl1+n
σ1

, the algorithm B first samples a random matrix

R
$← Zl1×nq . Then it proceeds identically to the prover in Game 4 (or Game 5)

except that it does not sample s1 and sets

B1 =

 I l1 R

0n×l1 In

 ·
 I l1 0l1×n ĀU

0n×l1 In ĀL

 =

 I l1 R ĀU +R · ĀL

0n×l1 In ĀL


and

c1 =

 I l1 R

0n×l1 In

 ·
 b̄U
b̄L

+

 0

x

 =

 b̄U +R · b̄L

b̄L

+

 0

x


where

Ā =

 ĀU
ĀL

 , b̄ =

 b̄U
b̄L


Finally, B feeds A with V̂ ’s view in its simulated interaction and outputs what
A outputs.

It is easy to see that this B1 is identically distributed as that in Game 4 and
Game 5. Also, if b̄ is a random vector, c1 is also a random vector in Zl1+nq .

Thus B perfectly simulates Game 5 if b̄ is a random vector.

40

In contrast, if b̄ = Ā · s̄+ ē for s̄← Dl2
σ1

and ē← Dl1+n
σ1

, we have

c1 =

 I l1 R

0n×l1 In

 · b̄+

 0

x


=

 I l1 R

0n×l1 In

 · (I l1+n Ā) ·
 ē
s̄

+

 0

x


= B1 ·

 ē
s̄

+

 0

x


That is, c1 is a valid commitment of x with randomness (ēᵀ‖s̄ᵀ)ᵀ . Thus, B
can perfectly simulate Game 4 via implicitly setting s1 = (ēᵀ‖s̄ᵀ)ᵀ in this case.

In summary, if A could distinguish Game 4 and Game 5, B can distinguish
if the instance is a LWE instance or a random one. That completes the proof.

Lemma C.8. Under the LWE assumption, V̂ ’s view in Game 5 and Game 6
are computationally indistinguishable.

Proof. Lemma C.8 also comes from the binding property of the underlying ho-
momorphic commitment and we omit the details here.

Lemma C.9. V̂ ’s view in Game 6 and Game 7 are identical.

Proof. In Game 6, z0 = α · x + r , where r is sampled uniformly at random
from Znq and is not used anywhere else. Thus, in V̂ ′s view, z0 is also a uniform
vecotr in Znq and that completes the proof.

It can be easily verified that V̂ ’s view in Game 7 is identical to the output
of the simulator and that completes the proof of honest-verifier zero-knowledge
for P1 .

D Ring Signature

D.1 The Definition

In this section, we recall the standard syntax and security requirement of a ring
signature scheme, which is defined in [12].

A ring signature scheme consists of four algorithms:

• Setup. On input a security parameter 1λ , the setup algorithm outputs the
public parameter param for the scheme.

• KeyGen. The key generation algorithm outputs a secret key/public key
pair (sk, pk) .

• Sign. On input a message m , a polynomial-size set R of public keys and
a valid public key/secret pair (pk, sk) that pk ∈ R , the signing algorithm
outputs a signature σ .

41

• Verify. On input a message m , a polynomial-size set R of public keys and
a signature σ , the verification algorithm outputs a bit indicating whether
the signature is acceptable.

Next, we describe security requirements for ring signature schemes. We only
give an informal description for each security requirement and refer the readers
to previous works, e.g., [12, 54], for the formal definitions.

• Correctness. The correctness requires that an honest user who has a valid
key pair (pk, sk) is able to generate an acceptable signature on behalf of a
set R if pk ∈ R .

• Unforgeability. The unforgeability requires that no user can sign on behalf
of a set he does not belong to.

• Anonymity. The anonymity requires that no one could locate the real signer
given a signature that is signed on behalf of a set of users.

D.2 The Construction

Overview. We construct the ring signature scheme following the generic frame-
work presented in [30]. More precisely, the secret key/public key pair of a user is
an input/output pair of a one-way function. To sign on behalf of a set of users,
the signer first generates an accumulator that accumulates all public keys of
users in this set using a cryptographic accumulator scheme, then he generates
an NIZK argument proving that he has a valid secret key/public key pair where
the public key is properly accumulated in the accumulator. The signature is the
proof (here, the message is embedded in the proof). To verify the signature, the
verifier first generates the accumulator for the claimed user set, then she checks
if the proof is valid.

Next, we give a detailed description of our ring signature scheme, which is
exactly the ring signature scheme constructed in [54], except that we replace the
underlying zero-knowledge arguments with the one we constructed in Sec. 4.4.

The Construction. Let λ be the security parameter. Let n be a postive
integer that is polynomial in λ . Let q be a large enough prime number and
let k = dlog qe , m = nk . Let N = 2L be the size of supported user set.
Let Acc = (Acc . Acc,Acc . Witness,Acc . Verify) be the accumulator scheme
recalled in Sec. A.4. The ring signature scheme RS works as follows:

• Setup. The setup algorithm samples matrices B1,B2
$← Zn×mq and outputs

the public parameter pp = (B1,B2) .

• KeyGen. The key generation algorithm samples s
$← {0, 1}2m and com-

putes t = bin((B1‖B2) · s) . Then it outputs sk = s and pk = t .
• Sign. On input a set R of at most N public keys, a secret key/public

key pair (s, t) that t ∈ R and a message m , the sign algorithm first com-
putes u← Acc . AccB1,B2

(R) . Then it generates the witness (m, {vi}i∈[1,L],
{wi}i∈[1,L])← Acc . WitnessB1,B2

(R, t) . Next, the sign algorithm generates

42

the proof:

π = SPK{(B1,B2,u), (m, {vi}i∈[1,L], {wi}i∈[1,L], s, t) :

Acc . VerifyB1,B2
(u, t, (m, {vi}i∈[1,L], {wi}i∈[1,L])) = 1∧

H · t = (B1‖B2) · s}[m]

, where H = In ⊗ (1 2 4 . . . 2k−1) . The signature is just the proof π .

• Verify. On input a set R and a proof π , the verifier first computes u ←
Acc . AccB1,B2

(R) . Then it outputs 1 if π is valid and 0 otherwise.

Theorem D.1. Assuming the worst-case hardness of GapSVP γ (or SIVP γ)
for some polynomial γ , RS is a secure ring signature scheme in the random
oracle model.

Proof of Theorem D.1 follows directly from the security proof for the ring
signature scheme proposed in [54], and we omit its details in this work.

D.3 The Efficiency

We focus on the communication cost, namely, the signature size, of the ring
signature scheme. As the signature is just a NIZK proof generated by our main
protocol, we estimate the signature size via analyzing the size of the proof.

The proved statement includes two parts. The main part argues knowledge
of an element in an accumulator. As analyzed in Sec. 4.4, this part can be
reduced to an instance of the relation R∗ , where the length of its witness is
2L+ 4nL+ 2nkL and the size of M is L+ 2nL+ 2nkL . The scond part argues
a linear euqation with binary solution. After reducing it to an instance of R∗ ,
the length of the witness is 3nk and the size of M is also 3nk . So, after combing
these two statements, the length of the witness will be

n = 2L+ 4nL+ 2nkL+ 2nk

and the size of M will be

l = L+ 2nL+ 2nkL+ 2nk

(the overlapped part, namely, t , should be counted only once).

Now, let l̂1, l̂2 , σ̂1 , σ̂2 , p̂ , κ̂ , N̂ be parameters used in the main protocol.
Then the proof contains

‖π‖ = (log (2p̂+ 1) + κ̂+ (3l̂1 + 2l̂2 + 2n + 2l) · k) · N̂ + (l̂1 + n) · k (5)

bits.

43

Choosing the Parameters. Next, we estimate the concrete size of the signature
via setting concrete values of parameters involved in Equation (5). Note that
security of the ring signature scheme relies on the following 4 assumptions:

SISl̂1,q,β1

SISl̂1,q,β2

LWEl̂2,q,α

SISn,q,β3

where β1 = 16p̂ ·
√
l̂1 + l̂2 + n · (σ̂2 + p̂ · σ̂1) , β2 = 16p̂ ·

√
l̂1 + l̂2 + l · (σ̂2 + p̂ ·

σ̂1) , β3 =
√

2nk and α =
√
2π·σ̂1

q . Thus, we should guaratee that the above
assumptions are valid while picking parameters. As discussed in Sec. B.1, this
can be achieved by setting the parameters in a way that a small root-Hermite
factor is required to break the assumptions.

More concretely, we set these parameters as per Table 4. Our parameters are
set to achieve 80-bit security, 100-bit security and 128-bit security respectively
in a setting that we fix L = 10 (i.e., our ring signature allows the user to sign on
behalf of 210 users) and κ̂ = 128 . Besides, to better compare the efficiency of
our ring signature scheme and that in [33], we also set the parameters according
to their criterion in the last column.

Table 4: Concrete Parameters for Our Ring Signature.

Soundness Error 2−80 2−100 2−128 2−100

δ0 1.0048 1.0042 1.0035 1.007

p̂ 240 250 264 250

l̂1 3700 5100 7400 3000

l̂2 4000 5400 7900 3300

N̂ 2 2 2 2

dlog qe 120 140 170 140

n 10 10 11 5

Signature Size 4.24MB 5.9MB 9.7MB 3.05MB

E Group Signature

E.1 The Definition

In this section, we recall the standard syntax and security requirement of a
(static) group signature scheme, which is defined in [11].

A group signature scheme consists of four algorithms:

44

• Setup. On input (1λ, 1N) , where λ is the security parameter and N is
the number of group users, the setup algorithm outputs a tuple (gpk, gmsk,
gsk) , where gpk is the group public key, gmsk is the group manager’s
secret key, and gsk = (gsk[0], . . . , gsk[N − 1]) is an N -dimension vector,
where for i ∈ [0, N − 1] , gsk[i] is the secret key for user i .

• Sign. On input a message m , a group public key gpk and a user secret key
gsk[i] , the signing algorithm outputs a signature σ .

• Verify. On input a message m , a group public key gpk and a signature σ ,
the verification algorithm outputs a bit indicating whether the signature is
acceptable.

• Open. On input a group public key gpk , a group manager’s secret key
gmsk , a message m and a signature σ , the open algorithm outputs an
identity i ∈ [0, N − 1] or ⊥ if the algorithm fails.

Next, we describe security requirements for group signature schemes. We only
give an informal description for each security requirement and refer the readers
to previous works, e.g., [11, 54], for the formal definitions.

• Correctness. The correctness requires that 1) a valid user i is able to sign
an acceptable signature and 2) the group manager can open an honestly
signed signature correctly.

• Traceability. The traceability requires that for any signature that is ac-
ceptable by the verification algorithm, the group manager is able to find the
real signer. This property holds even when the signatrue is generated by a
set of colluded users and in this case the group manager is able to find a
member of the coalition.

• Anonymity. The anonymity requires that no one except the group manager
could locate the real signer given a signature.

E.2 The Construction

Overview. In an accumulator-based group signature [78], a group of users is
fiexed in the beginning and the group manager generates an accumulator of
public keys of all users in this group. Then the accumulator is used in all sign
and verifiaction procedures during the life time of the scheme. To sign on behalf
of the group, one needs to generate an NIZK argument proving that he has a valid
secret key/public key pair where the public key is properly accumulated in the
accumulator. Besides, he also encrypts his identity (under the group manager’s
public key) using a CCA-2 secure encryption scheme and proves that his identity
is properly encrypted. The signature includes the ciphertext and the proofs (here,
the message is embedded in the proof). To verify the signature, the verifier just
checks the validity of the proofs. When the group manager would like to open
a signature, it decrypts the ciphertext attached in the signature and can obtain
the identity of the signer.

Next, we give a detailed description of our group signature scheme, which is
exactly the group signature scheme constructed in [54], except that we replace
the underlying zero-knowledge arguments with the one we constructed in Sec.
4.2 and that in Sec. 4.4.

45

The Construction. Let λ be the security parameter. Let n, n1, n2 be postive
integers that are polynomial in λ . Let q be a large enough prime number and
let k = dlog qe , m = nk . Let N = 2L be the size of supported user set.
Let Acc = (Acc . Acc,Acc . Witness,Acc . Verify) be the accumulator scheme
recalled in Sec. A.4. Let PKE = (PKE . KeyGen,PKE . Enc,PKE . Dec) be the
encryption scheme recalled in Sec. A.2 (here, we use the variants with binary
secrets and errors). The group signature scheme GS works as follows:

• Setup. The setup algorithm first samples matrices B1,B2
$← Zn×mq , which

serve as the public key of the underlying accumulator scheme. Then it gen-
erates the global accumulator and secret keys for users as follows:

1. For i ∈ [0, N−1] , sample si
$← {0, 1}2m and compute ti = bin((B1‖B2)·

si) .

2. Compute the global accumulator u ← Acc . AccB1,B2(R) , where R =
{ti}i∈[0,N−1] .

3. For i ∈ [0, N−1] , compute the witness (mi, {vi,j}j∈[1,L], {wi,j}j∈[1,L])←
Acc . WitnessB1,B2(R, ti) and set the user key for the i -th user as gsk[i] =
(si, ti,mi, {vi,j}j∈[1,L], {wi,j}j∈[1,L]) .

Next, the algorithm generates the public keys of the used encryption schemes.

More precisely, it first samples D0
$← Zn1×n2

q , S1
$← {0, 1}L×n1 , S2

$← {0,
1}L×n1 , E1

$← {0, 1}L×n2 , E2
$← {0, 1}L×n2 . Then it computes

D1 = S1 ·D0 +E1

D2 = S2 ·D0 +E2

Finally, the setup algorithm outputs the group public key gpk = (B1,B2,
u,D0,D1,D2) , the group manager’s secret key gmsk = S1 , and the users’
secret keys gsk = (gsk[0], . . . , gsk[N − 1]) .

• Sign. The input of the sign algorithm includes the group public key gpk =
(B1,B2,u,D0,D1,D2) , a user secret key gsk[i] = (si, ti,mi, {vi,j}j∈[1,L],
{wi,j}j∈[1,L]) and a message m .

First, the algorithm encrypts the user’s identity mi (recall that mi =

bin(i)) using D0,D1 and D0,D2 . More precisely, it first samples r1
$← {0,

1}n2 , e1,1
$← {0, 1}n1 , e1,2

$← {0, 1}L and r2
$← {0, 1}n2 , e2,1

$← {0, 1}n1 ,

e2,2
$← {0, 1}L . Then it computes

c1,1 = D0 · r1 + e1,1

c1,2 = D1 · r1 + e1,2 + bq
2
e ·mi

c2,1 = D0 · r2 + e2,1

c2,2 = D1 · r2 + e2,2 + bq
2
e ·mi

46

Next, the sign algorithm generates the proof:

π = SPK{(B1,B2,u,D0,D1,D2, c1,1, c1,2, c2,1, c2,2),

({vi,j}j∈[1,L], {wi,j}j∈[1,L],mi, si, ti, r1, r2, e1,1, e1,2, e2,1, e2,2) :

Acc . VerifyB1,B2
(u, t, (mi, {vi}i∈[1,L], {wi}i∈[1,L])) = 1∧

(c1,1, c1,2) = PKE . Enc((D0,D1),mi; (r1, e1,1, e1,2))∧
(c2,1, c2,2) = PKE . Enc((D0,D2),mi; (r2, e2,1, e2,2))∧

H · t = (B1‖B2) · s}[m]

, where H = In ⊗ (1 2 4 . . . 2k−1) . The signature σ = (π, c1,1, c1,2, c2,1,
c2,2) .

• Verify. On input the group public key gpk = (B1,B2,u,D0,D1,D2) ,
a signature σ = (π, c1,1, c1,2, c2,1, c2,2) and a message m , the verifiaction
algorithm checks the proof π and outputs 1 iff π is valid.

• Open. On input the group public key gpk = (B1,B2,u,D0,D1,D2) , the
group manager’s secret key gmsk = S1 , a signature σ = (π, c1,1, c1,2, c2,1,
c2,2) and a message m , the open algorithm decrypts m = PKE . Dec(S1,

(c1,1, c1,2)) . Then, it outputs the identity i =
∑L
j=1 2j−1 ·m[j] .

Theorem E.1. Assuming the worst-case hardness of GapSVP γ (or SIVP γ)
for some polynomial γ and the hardness of LWE assumption with binary secrets
and binary errors for some specific parameters, GS is a secure group signature
scheme in the random oracle model.

Proof of Theorem E.1 follows directly from the security proof for the group
signature scheme proposed in [54], and we omit its details in this work.

E.3 The Efficiency

We focus on the communication cost, namely, the signature size, of the group
signature scheme. The signature consists of a NIZK proof generated by our main
protocol and two ciphertexts.

We first analyze the size of the proof. The proved statement includes three
parts. The first part argues knowledge of an element in an accumulator. As
analyzed in Sec. 4.4, this part can be reduced to an instance of the relation
R∗ , where the length of its witness is 2L + 4nL + 2nkL and the size of M
is L+ 2nL+ 2nkL . The second part argues knowledge of the (same) plaintext
encrypted in the two ciphertexts. As analyzed in Sec. 4.2, this part can be
reduced to an instance of the relation R∗ , where the length of its witness and
the size of M are both 2n1+2n2+3L . The last part argues a linear equation with
binary solution. After reducing it to an instance of R∗ , the length of the witness
is 3nk and the size of M is also 3nk . So, after combing these statements, the
length of the witness will be

n = 4L+ 4nL+ 2nkL+ 2n1 + 2n2 + 2nk

47

and the size of M will be

l = 3L+ 2nL+ 2nkL+ 2n1 + 2n2 + 2nk

(the overlapped part, namely, ti and mi , should be counted only once).

Now, let l̂1, l̂2 , σ̂1 , σ̂2 , p̂ , κ̂ , N̂ be parameters used in the main protocol.
Then the proof contains

‖π‖ = (log (2p̂+ 1) + κ̂+ (3l̂1 + 2l̂2 + 2n + 2l) · k) · N̂ + (l̂1 + n) · k

bits.
Next, we analyze the size of the ciphertexts. Each ciphertext contains two

vectors, one of which is of length n1 and the other is of length L . So, the two
ciphertexts contain 2(n1 + L) · k bits.

In summary, each signature in our gorup siganture scheme contains:

‖σ‖ = (log (2p̂+ 1) + κ̂+ (3l̂1 + 2l̂2 + 2n + 2l) · k) · N̂

+ (l̂1 + n) · k + 2(n1 + L) · k (6)

bits.

Choosing the Parameters. Next, we estimate the concrete size of the signature
via setting concrete values of parameters involved in Equation (6). Note that
security of the group signature scheme relies on the following 6 assumptions:

SISl̂1,q,β1

SISl̂1,q,β2

LWEl̂2,q,α

SISn,q,β3

BLWEn2,q

BLWEn1,q

where β1 = 16p̂ ·
√
l̂1 + l̂2 + n · (σ̂2 + p̂ · σ̂1) , β2 = 16p̂ ·

√
l̂1 + l̂2 + l · (σ̂2 + p̂ · σ̂1) ,

β3 =
√

2nk , α =
√
2π·σ̂1

q . Thus, we should guaratee that the above assumptions
are valid while picking parameters. As discussed in Sec. B.1, this can be achieved
by setting the parameters in a way that a small root-Hermite factor is required
to break the assumptions.

More concretely, we set these parameters as per Table 5. Our parameters are
set to achieve 80-bit security, 100-bit security and 128-bit security respectively
in a setting that we fix L = 10 (i.e., our group signature supports a group of
210 users) and κ̂ = 128 .

48

Table 5: Concrete Parameters for Our Group Signature.

Soundness Error 2−80 2−100 2−128

δ0 1.0048 1.0042 1.0035

p̂ 220 225 232

l̂1 2300 3100 4400

l̂2 2600 3400 4700

N̂ 4 4 4

dlog qe 80 90 105

n 14 15 16

n1 3100 3900 5400

n2 3100 3900 5400

Signature Size 6.94MB 9.61MB 14.57MB

F Electronic Cash

F.1 The Definition

In this section, we recall the standard syntax and security requirement of a
(compact) electronic cash system, which is defined in [23].

An electronic cash system consists of the following algorithms and protocols:

• Setup. On input a security parameter 1λ , the setup algorithm outputs the
public parameter param for the system.

• BKGen. The bank key generation algorithm outputs a secret key/public
key pair (skB , pkB) for the bank.

• UKGen. The user key generation algorithm outputs a secret key/public key
pair (skB , pkB) for a user.

• Withdraw. This is an interactive protocol run between a user and the bank,
where the user withdraws N coins from the bank. In this protocol, the user’s
input is his secret key, his public key and the bank’s public key, while the
bank’s input is its secret key, its public key, its internal state and the user’s
public key. After executing the protocol, the user’s output is either a wallet
W of N coins or an error message, and the bank’s output is either an
updated state, which allows it to trace users that double-spends some coin,
or an error message.

• Spend. This is an interactive protocol run between a user and a merchant,
where the user spends a coin from his wallet to the merchant. In this protocol,
the user’s input is his wallet W , his public key, some auxiliary information
info ∈ {0, 1}∗ containing transaction information from the merchant to the
user, and the bank’s public key, while the merchant’s input is the bank’s
public key. After executing the protocol, the user’s output is an updated

49

wallet W ′ , and the merchant’s output is a coin, which contains a serial
number and a proof of validity.

• Deposit. This is an interactive protocol run between a merchant and the
bank, where the merchant deposits a coin received from a user into her
account at the bank. In this protocol, the merchant’s input is a coin and the
bank’s public key while the bank’s input is its secret key. After executing
the protocol, the merchant outputs either an error message or nothing. The
bank updates the merchant’s account and its state if the coin is valid and
no double-spending is detected. Otherwise, it outputs an error message.

• Identify. The identify algorithm takes as input two coins with the same
serial number, and outputs the double-spender’s public key together with a
proof of guilt for the detected user.

• VerifyGuilt. The guilt verification algorithm takes as input a user public
key pk and a proof of guilt, and outputs a bit indicting if the user with
public key pk is a double-spender.

Next, we describe security requirements for E-cash systems. We only give
an informal description for each security requirement and refer the readers to
previous works, e.g., [23, 55], for the formal definitions.

• Correctness. The correctness requires that the withdraw protocol, the de-
posit protocol and the spend protocol will output the correct results when
executed by honest parties. In particular, an honest user is able to obtain a
wallet from the withdraw protocol and is able to spend a coin in the spend
protocol if his wallet is not empty. Also, an honest merchant is able to deposit
the coin if she sends a coin received from an honest user to the bank.

• Compactness. Assume each new wallet in the system has N coins. The
compactness requires that the communication costs in both the withdraw
protocol and the spend protocol are proportional to logN . Also, it requires
that the size of the wallet is proportional to logN .

• Balance. The balance property requires that no collection of users and
merchants can produce more serial numbers than they have withdrawn.

• Identification of double spender. This property requires that once a
user outputs two coins with the same serial number, he will be caught by
the identify algorithm.

• Anonymity of users. The anonymity property requires that no one can
locate the spender of a coin if the spender does not double-spend.

• Exculpability. The exculpability property requires that no honest user will
be falsely identified as a double-spender.

F.2 The Construction

Overview. We construct the compact electronic cash system following the
blueprint presented in [23]. More precisely, the secret key of the bank is a secret
key of a signature scheme and the secret key/public key pair of a user is an
input/output pair of a one-way function.

50

To withdraw money (N coins) from the bank, the user first generates two
independent secret keys for the underlying PRF. Then he sends the two PRF
keys as well as his own secret key to the bank and gets a signature on them
(actually, he will send a commitment of the keys and thus needs the signature
scheme to be able to sign on the commited value given a commitment).

To spend one coin to a merchant, who sends a “challenge” c in the beginning,
the user first chooses a fresh input from [1, N] . Then he computes the PRF
function with certificated keys on this input and gets two outputs z1 and z2 .
Next, he uses z1 as the serial number of the coin and generates a security tag
for the coin via masking his public key with c · z2 . Finally, he generates a proof
proving that both the serial number and the security tag are properly generated
and sends the serial number, the security tag and the proof to the merchant.
The merchant accepts the coin if the proof sent is valid.

Double-spending can be detected once there exist repeated serial numbers
and it is easy to recover the double-spender’s public key from the security tags
in the two transcripts containing the same serial number.

Building Blocks. We will use the signature scheme presented in [52], which
can sign on a commitment. We will use a full-rank difference function HFRD

[1, 28] to map the challenge in a way that for any different challenges c1 and
c2 , HRFD(c1)−HRFD(c2) is a full rank matrix.

We will use the weak pseudorandom function F in Appendix A.5 and upgrade
it to a standard one in the randome oralce model. More precisely, let H be a
hash function, which is modeled as a random oracle. The new PRF function
F′(k, x) = F(k,H(x)) . However, we do not know how to efficiently argue the
correct evaluation of F while hiding the input x directly.

To solve this problem, we use a cryptographic accumulator scheme Acc =
(Acc . Acc,Acc . Witness,Acc . Verify) . In more detail, to aruge knowledge of k,
x satisfying y = F(k,H(x)) for a public y , the prover first accumulates all
H(i) for i ∈ [1, N] (recall that we only allows the prover to compute the PRF
on inputs from [0, N −1] in the system). Then he proves knowledge of z, k that
y = F(k, z) and z is properly accumulated.

Note that, the main reason we do not use current lattice-based pseudorandom
functions (e.g., [8, 9, 16]) in our construction is that they have an extremely low
concrete efficiency.

The Construction. Next, we give a detailed description of our E-cash system.
Our system is similar to the one presented in [55], but we replace the underly-
ing zero-knowledge arguments with the ones developped in this work. We also
introduce several tricks to improve the efficiency of the system.

Let λ be the security parameter. Let e1, e2 be postive integers that 1 ≤ e1 <
e2 . Let q0 be a prime number and let p = qe10 , q = qe20 . Let k = dlog qe . Let
m1,m2,m3, σ, β be positive integers that m2 = 2km1 , m3 = λ , σ = 1.6k ·√m1

and β = 12σ . Let n1, n2 be positive integers. Let l1, l2 be positive integers that
l2 = kl1 . Let n3 be positive integers that n3 = n1 · (dlog pe+ 1) . Let l3, l4, l5, ι

51

be positive integers and k′ = k/ι . Let N = 2L be the number of coins in a
wallet.

Let Sig = (Sig . KeyGen,Sig . Sign,Sig . Verify) be the signature scheme re-
called in Sec. A.3. Let F be the weak PRF recalled in Sec. A.5. Let Acc =
(Acc . Acc,Acc . Witness,Acc . Verify) be the accumulator scheme recalled in
Sec. A.4. Let HFRD : Zn1

p → Zn1×n1
p be a full-rank difference function. Let

H : [0, N − 1] → Zn1×n2
q be hash function that is modeled as a random oracle.

Let H ′ : {0, 1}∗ → Zn1
p be a hash function that is modeled as a random oracle.

The electronic cash system EC works as follows:

• Setup. The setup algorithm first samples D1,D2
$← Zl1×l2q , which are the

public parameter for the accumulator scheme. Then it samples E
$← Zn1×n3

p ,

which maps a user secret key to a user public key. It also samples F 1
$←

Z2l1×kl3
q , F 2

$← Zl3×k′n1n2
q , F 3

$← Zl4×2k′n2
q , and F 4

$← Zl5×k′n2
q , which is

used to connect different ingredients in the system.

Finally, the setup algorithm outputs the public parameter param = (D1,
D2,E,F 1,F 2,F 3) .

• BKGen. The bank generates a secret key/public key pair for Sig . More
precisely, it runs

(T , (B, {Bi}i∈[0,m3],u, B̃, B̃0, B̃1))← Sig . KeyGen(1λ)

where B ∈ Zm1×m2
q , ∀i ∈ [0,m3] , Bi ∈ Zm1×m2

q , u ∈ Zm1
q , B̃ ∈

Zm1×km1
q , B̃0 ∈ Zm1×2m2

q , B̃1 ∈ Zm1×(kl4+kl5+n3)
q , and T is the trapdoor

for B .

Here, let B̃0 = (B̃
′
0‖B̃

′′
0) ∈ Zm1×m2

q × Zm1×m2
q and B̃1 = (B̃

′
1‖B̃

′′
1) ∈

Zm1×(kl4+n3)
q × Zm1×kl5

q , then B̃
′
0 and B̃

′
1 also serve as the public key of

the commitment scheme used in the withdraw protocol

Finally, the setup algorithm outputs the bank’s public key pkB = (B,
{Bi}i∈[0,m3],u, B̃, B̃0, B̃1) and its secret key skB = T .

• UKGen. The user key generation algorithm samples s
$← {0, 1}n3 and

computes t = E · s) ∈ Zn1
p mod p . Then it outputs sk = s and pk = t .

• Withdraw. The withdraw protocol is run between a user and the bank.
Here, the user’s input is his secret key s , his public key t and the bank’s
public key pkB = (B, {Bi}i∈[0,m3],u, B̃, B̃0, B̃1) . The bank’s input is its

secret key T , its public key pkB = (B, {Bi}i∈[0,m3],u, B̃, B̃0, B̃1) and the
user’s public key t . The protocol proceeds as follows:

1. To withdraw N coins from the bank, the user first samples k0
$← Zn2

q

and k1
$← Zn2

q , which serve as PRF keys.

Then he generates a commitment of the two PRF keys as well as his
secret key. More precisely, the user first decomposes the two vectors k0
and k1 into vectors k̄0 and k̄1 respectively, whose elements are ι -bits

52

integers, i.e.,

∀b ∈ [0, 1], i ∈ [1, n2], kb[i] =

k′∑
j=1

((2ι)j−1 · k̄b[(i− 1) · k′ + j])

Then he generates d0 = bin(F 3 · (k̄
ᵀ
0‖k̄

ᵀ
1)ᵀ) , which is a digest of k0

and k1 Finally, it samples r0 ∈ Dm2
σ and computes the commitment

c0 = B̃
′
0 · r0 + B̃

′
1 · (d

ᵀ
0‖sᵀ)ᵀ .

Next, the user generates a proof proving that the commitment is properly
generated. More concretely, it computes:

πw = SPK{(B̃
′
0, B̃

′
1,F 3,E,D1,D2, c0, t), (k̄0, k̄1, s, r0,d0) :

c0 = B̃
′
0 · r0 + B̃

′
1 · (d

ᵀ
0‖sᵀ)ᵀ ∧ ‖r0‖∞ ≤ β ∧

d0 ∈ {0, 1}kl4 ∧ s ∈ {0, 1}n3 ∧
q

p
· t =

q

p
·E · s ∧ H1 · d0 = F 3 · (k̄

ᵀ
0‖k̄

ᵀ
1)ᵀ ∧

k̄0 ∈ [0, 2ι − 1]k
′n2 ∧ k̄1 ∈ [0, 2ι − 1]k

′n2}

where H1 = I l4 ⊗ (1 2 4 . . . 2k−1) . Note that for any a, b ∈ Zp , a = b
mod p iff q

p · a = q
p · b mod q , so we can lift an equation in Zp to an

equation in Zq via multiplying q/p in both side of the equation.
Finally, the user sends the commitment c0 and the proof πw to the
bank.

2. On receiving the user’s commitment c0 and a proof πw , the bank first
verifies if the proof is valid, it aborts if the proof is invalid.

Then, it samples k2
$← Zn2

q and decomposes it into a vector k̄2 , whose

elements are ι -bits integers, i.e., for i ∈ [1, n2] , k2[i] =
∑k′

j=1((2ι)j−1 ·
k̄2[(i− 1) · k′ + j]) . It also generates a digest d1 = bin(F 4 · k̄2) for k2 .
Next, the bank samples r1 ∈ Dm2

σ and re-randomize the commitment

c = c0 + B̃
′′
0 · r1 + B̃

′′
1 · d1

Then, the bank signs on the commitment c as follows. First, it samples

τ
$← {0, 1}m3 and computes the matrix

Bτ = (B‖B0 +

m3∑
i=1

(τ [i] ·Bi))

Then it use the secret T to samples a vector v ∈ D2m2
σ that satisfies

Bτ · v = u+ B̃ · bin(c) .
Finally, the bank sends k1, τ , r1,v back to the user.

3. On receiving vectors k1, τ , r1,v , the user first checks if (τ , r,v) is a
valid signature for (dᵀ0‖sᵀ‖d

ᵀ
1)ᵀ , where r = (rᵀ0‖r

ᵀ
1)ᵀ , d1 = bin(F 4·k̄2)

and k̄2 decomposes each element k2 into ι -bits integers. If so, the user
sets his wallet as

W = (s,k0,k1,k2, τ , r,v, 0)

53

4. After that, the bank records a debit of N for the account with public
key pk = t .

• Spend. The spend protocol is run between a user and a merchant. Here,
the user’s input is his wallet W = (s,k0,k1,k2, τ , r,v, J) , his public key t ,
some auxiliary information info ∈ {0, 1}∗ containing transaction informa-
tion from the merchant to the user, and the bank’s public key pkB = (B,
{Bi}i∈[0,m3],u, B̃, B̃0, B̃1) . The merchant’s input is the bank’s public key

pkB = (B, {Bi}i∈[0,m3],u, B̃, B̃0, B̃1) . The protocol proceeds as follows.

To spend a coin to the merchant, the user first checks if his wallet is empty. He
aborts if J = N and otherwise, he generates matrices R = HFRD(H ′(info))
and C = H(J) . Then he computes k = k1 + k2 and generates the security
tag and the serial number for the coin:

z0 = R · F(k0,C) + t mod p

z1 = F(k,C)

Then, the user generates an accumulator for all valid inputs.9 More precisely,
for i ∈ [0, N − 1] , let Ci = H(i) and let ci be the concatenation of row
vectors of Ci , i.e., ci[(ı − 1) · n2 + ] = Ci[ı, ] for ı ∈ [1, n1] ,  ∈ [1, n2] .
The user first decompose the vector ci into a vector c̄i whose elements are
ι -bits integers, i.e.,

∀i ∈ [1, n1n2], c[i] =

k′∑
j=1

((2ι)j−1 · c̄[(i− 1) · k′ + j])

Then, he generates a digest ei for each matrix, that is, ei = bin(F 2 · c̄i) .
He also maps the intput and the digest to the input space of the accu-
mulator and generates ēi = bin(F 1 · ei) and ẽi = bin((D1‖D2) · ē) .
Next, the user accumulates all ẽi via the accumulator scheme and gets ũ =
Acc . AccD1,D2

({ẽi}i∈[0,N−1]) . Let c = cJ , c̄ = c̄J , e = eJ , ē = ēJ and
ẽ = ẽJ . Then the user generates the witness w← Acc . WitnessD1,D2

({ẽi}i∈[0,N−1],
ẽ) .
Next, the user generates a proof πs as in Figure 5, where G1 = In2

⊗ g ,
G2 = In1n2

⊗g , H1 = I l4⊗h , H2 = I l5⊗h , H3 = I l3⊗h , H4 = I2l1⊗h ,
H5 = I l1 ⊗ h , and g = (1 2ι 22ι . . . 2(k

′−1)ι) , h = (1 2 4 . . . 2k−1) .

The coin sent to the merchant is coin = (R, z0, z1, πs) , and the merchant
accepts it iff the proof πs is valid.

Then the user update his wallet via increasing the counter J by 1.

9 In practice, to reduce the computational cost of the user and the merchant, we can
generate the accumulator and witnesses for all inputs in the setup phase and put it
into the public parameter.

54

πw = SPK



(k0,k1,k2,k,z
′
0,C, t, k̄0, k̄1, k̄2,d0,d1, τ , r,v, s, c, c̄, e, ē, ẽ,w) :

z′0 = F(k0,C) ∧ q

p
· z0 =

q

p
·R · z′0 +

q

p
· t ∧

z1 = F(k,C) ∧ k = k1 + k2 ∧

k0 = G1 · k̄0 ∧ k1 = G1 · k̄1 ∧ k2 = G1 · k̄2 ∧
H1 · d0 = F 3 · (k̄

ᵀ
0‖k̄

ᵀ
1)ᵀ ∧ H2 · d1 = F 4 · k̄2 ∧

k̄0 ∈ [0, 2ι − 1]k
′n2 ∧ k̄1 ∈ [0, 2ι − 1]k

′n2 ∧

k̄2 ∈ [0, 2ι − 1]k
′n2 ∧

d0 ∈ {0, 1}kl4 ∧ d1 ∈ {0, 1}kl5 ∧

Sig . Verify((τ , r,v), (dᵀ
0‖s

ᵀ‖dᵀ
1)ᵀ) = 1 ∧

q

p
· t =

q

p
·E · s ∧ s ∈ {0, 1}n3 ∧

c = G2 · c̄ ∧ H3 · e = F 2 · c̄ ∧
H4 · ē = F 1 · e ∧ H5 · ẽ = (D1‖D2) · ē ∧

c̄ ∈ [0, 2ι − 1]k
′n1n2 ∧ e ∈ {0, 1}kl3 ∧

ē ∈ {0, 1}2kl1 ∧ ẽ ∈ {0, 1}kl1 ∧

Acc . Verify(ũ, ẽ,w) = 1


Fig. 5 The generation of the proof πs used in the Spend protocol. Here, we omit the

public part of the proved statement for simplicity of description.

• Deposit. The deposit protocol is run between a merchant and the bank.
The merchant sends a coin coin = (R, z0, z1, πs) to the bank.
Then the bank checks if πs is a valid proof and if the serial number z1 has
not been appeared in the list L of all previous coins. The bank accepts the
coin, adds coin to the list L and credits the merchant’s account if both
checks are passed. Otherwise, it returns an error message.

• Identify. The input of the identification algorithm is two coins coin(1) =

(R(1), z
(1)
0 , z

(1)
1 , π

(1)
s) and coin(2) = (R(2), z

(2)
0 , z

(2)
1 , π

(2)
s) that R(1) 6= R(2)

and z
(1)
0 6= z

(2)
0 . First, the algorithm computs z = (R(1)−R(2))−1 · (z(1)0 −

z
(2)
0) mod p and t = z

(1)
0 −R · z mod p . Then it outputs the identity t

and a proof of guilt πG = (coin(1), coin(2)) .
• VerifyGuilt. The input of the guilt verification algorithm includes a user

public key t and a proof of guilt πG = (coin(1), coin(2)) , where coin(1) =

55

(R(1), z
(1)
0 , z

(1)
1 , π

(1)
s) and coin(2) = (R(2), z

(2)
0 , z

(2)
1 , π

(2)
s) . The algorithm

first gets a user public key t′ via running the identification algorithm on

(coin(1), coin(2)) . Then it outputs “accept” iff t = t′ and both π
(1)
s and

π
(2)
s are valid.

Theorem F.1. Assuming the worst-case hardness of GapSVP γ (or SIVP γ)
for some polynomial γ , EC is a secure compact electronic cash system in the
random oracle model.

Proof of Theorem F.1 is similar to the security proof for the LLNW E-cash
system proposed in [55], and we omit its details in this work.

Note that we use the “random oracle+weak PRF” to replace the PRF used in
the LLNW system. This will not affect the security since the random oracle can
map any input into a random one. Also, the use of accumulator allows the user
to prove to the merchant that the “random” input is valid. Another difference
between our system and the LLNW system is that instead of signing on the PRF
keys directly, we first generates digests for the PRF keys and signs on the digest.
This will also not compromise the security due to the SIS assumption.

F.3 The Efficiency

We focus on the communication cost of the system. In particular, we will consider
the communication cost in the withdraw protocol and that in the spend protocol.
Here, we use l̂1, l̂2 , σ̂1 , σ̂2 , p̂ , κ̂ , N̂ to denote parameters used in the main
protocol.

Communication Cost for the Withdraw Protocol. In the withdraw protocol, the
user will first send a commitment and a proof to the bank. Then the bank sends
a (partial) signature and a PRF key back to the user.

The size of the commitment is km1 bits, the size of the PRF key is kn2 bits,
and the size of the partial signature is m3 + 3m2 · dlog βe bits.

Next, we analyze the size of the proof. The proved statement includes several
linear equations with short/binary solutions and can be reduced to an instance
of the relation R∗ . Here, we use the fast mode to argue that r0 is a short vector
10, and this will lead to an argument for an instance of R∗ , where the length of
the witness is

n1 = m2+b1·λ·(blog(2m2·β/b1)c+1)+kl4+n3+2k′n2+b2·λ·(blog(2k′n2·(2ι−1)/b2)c+1)

and the size of M is

l1 = b1λ · (blog(2m2 ·β/b1)c+ 1) +kl4 +n3 + b2 ·λ · (blog(2k′n2 · (2ι−1)/b2)c+ 1)

10 To balance the size of the witness/M and the hardness of the underlying SIS prob-
lem, we divide the “short” witness into several, say b1 , blocks and use the fast mode
on each block.

56

Therefore, the proof contains

‖π‖ = (log (2p̂+ 1) + κ̂+ (3l̂1 + 2l̂2 + 2n1 + 2l1) · k) · N̂ + (l̂1 + n1) · k

bits.
In summary, in each executation of the withdraw protocol, the communica-

tion cost is

CW = (log (2p̂+ 1) + κ̂+ (3l̂1 + 2l̂2 + 2n1 + 2l1) · k) · N̂ + (l̂1 + n1) · k
+ km1 + kn2 +m3 + 3m2 · dlog βe (7)

bits.

Communication Cost for the Spend Protocol. In the spend protocol, the user
will send a coin, which contains a matrix R , two PRF outputs and a proof.

The size of R is n21dlog pe bits. The size of a PRF output is n1dlog pe bits.
Next, we analyze the size of the proof. The proved statement includes six

parts. The first part contains two arguments for the correctness of weak PRF
evaluation, and two linear equations. It can be reduced to an instance of R∗ ,
where the length of the witness is 4n2 + 3n1n2 + 4n1 + 2(blog (qp − 1)c+ 1) · n1
and the size of M is 2(blog (qp − 1)c+ 1) · n1 + 2n1n2 .

The second part includes several linear equations with short/binary solutions
and can be reduced to an instance of the relation R∗ . Here, we use the fast mode
to argue that k̄0 , k̄1 and k̄2 are short vectors, and this will lead to an argument
for an instance of R∗ , where the length of the witness is

3n2 + 3k′n2 + kl4 + kl5 + b2 · λ · (blog(2k′n2 · (2ι − 1)/b2)c+ 1)+

b3 · λ · (blog(k′n2 · (2ι − 1)/b3)c+ 1)

and the size of M is

kl4+kl5+b2 ·λ ·(blog(2k′n2 ·(2ι−1)/b2)c+1)+b3 ·λ ·(blog(k′n2 ·(2ι−1)/b3)c+1)

The third part argues knowledge of a valid message/signature pair. As an-
alyzed in Sec. 4.3, this part can be reduced to an instance of the relation R∗ ,
where the length of its witness is

m3 + 2m1m3 + 4m2 + km1 + (kl4 + kl5 + n3) + b4 · λ · (blog(8m2 · β/b4)c+ 1)

and the size of M is

m3 +m1m3 + km1 + (kl4 + kl5 + n3) + b4 · λ · (blog(8m2 · β/b4)c+ 1)

where b4 = 4b1 .
The fourth part is a linear equation with binary solution. After reducing it

to an instance of R∗ , the length of the witness is n1 +n3 and the size of M is
n3 .

57

The fifth part includes several linear equations with short/binary solutions
and can be reduced to an instance of the relation R∗ . Here, we use the fast
mode to argue that c̄ is a short vector, and this will lead to an argument for an
instance of R∗ , where the length of the witness is

n1n2 + k′n1n2 + kl3 + 2kl1 + kl1 + b5 · λ · (blog(k′n1n2 · (2ι − 1)/b5)c+ 1)

and the size of M is

kl3 + 2kl1 + kl1 + b5 · λ · (blog(k′n1n2 · (2ι − 1)/b5)c+ 1)

The last part argues knowledge of an accumulated value. As analyzed in Sec.
4.4, this part can be reduced to an instance of the relation R∗ , where the length
of its witness is 2L+ 4l1L+ 2l2L and the size of M is L+ 2l1L+ 2l2L .

So, after combing all these statements, the length of the witness will be

n2 =4n2 + 3n1n2 + 4n1 + 2(blog (
q

p
− 1)c+ 1) · n1+

3k′n2 + kl4 + kl5 + b2 · λ · (blog(2k′n2 · (2ι − 1)/b2)c+ 1)

+ b3 · λ · (blog(k′n2 · (2ι − 1)/b3)c+ 1)+

m3 + 2m1m3 + 4m2 + km1 + n3 + b4 · λ · (blog(8m2 · β/b4)c+ 1)+

k′n1n2 + kl3 + 2kl1 + b5 · λ · (blog(k′n1n2 · (2ι − 1)/b5)c+ 1)+

2L+ 4l1L+ 2l2L

and the size of M will be

l2 =2(blog (
q

p
− 1)c+ 1) · n1 + 2n1n2+

kl4 + kl5 + b2 · λ · (blog(2k′n2 · (2ι − 1)/b2)c+ 1)

+ b3 · λ · (blog(k′n2 · (2ι − 1)/b3)c+ 1)+

m3 +m1m3 + km1 + n3 + b4 · λ · (blog(8m2 · β/b4)c+ 1)+

kl3 + 2kl1 + b5 · λ · (blog(k′n1n2 · (2ι − 1)/b5)c+ 1)+

L+ 2l1L+ 2l2L

Then the proof contains

‖π‖ = (log (2p̂+ 1) + κ̂+ (3l̂1 + 2l̂2 + 2n2 + 2l2) · log q) · N̂ + (l̂1 + n2) · log q

bits.

In summary, in each executation of the spend protocol, the communication
cost is

CS = (log (2p̂+ 1) + κ̂+ (3l̂1 + 2l̂2 + 2n2 + 2l2) · log q) · N̂ + (l̂1 + n2) · log q+

n21dlog pe+ 2n1dlog pe (8)

58

Choosing the Parameters. Now, we are ready to estimate the concrete communi-
cation cost of our electronic cash system via setting concrete values of parameters
involved in Equation (7) and these involved in Equation (8). Note that security
of the E-cash system relies on the following 11 assumptions:

SISl̂1,q,β1
;SISl̂1,q,β2

LWEl̂2,q,α

SISm1,q,β3

SISn1,p,β4

LWRn2,q,p

SISl1,q,β5

SIS2l1,q,β6 ;SISl3,q,β7

SISl4,q,β8 ;SISl5,q,β9

where β1 = 16p̂ ·
√
l̂1 + l̂2 + n2 · (σ̂2 + p̂ · σ̂1) , β2 = 16p̂ ·

√
l̂1 + l̂2 + l2 · (σ̂2 +

p̂ · σ̂1) , β3 ≈ σ2 ·m2 ·
√
m2 ·m3 · (4m2/b4) ,β4 =

√
n3 , β5 =

√
l2 , β6 =

√
kl3 ,

β7 =
√
k′n1n2 · k′n1n2 · (2ι − 1)/b5 , β8 =

√
2k′n2 · 2k′n2 · (2ι − 1)/b2 , β9 =√

k′n2 · k′n2 · (2ι− 1)/b3 , α =
√
2π·σ̂1

q . Thus, we should guaratee that the above
assumptions are valid while picking parameters. As discussed in Sec. B.1, this
can be achieved by setting the parameters in a way that a small root-Hermite
factor is required to break the assumptions.

More concretely, we set these parameters as per Table 6. Our parameters are
set to achieve 80-bit security, 100-bit security and 128-bit security respectively in
a setting that we fix L = 10 (i.e., each new wallet in our E-cash system contains
210 coins) and κ̂ = 128 .

Communication Cost of [55]. Here, we give a rough estimation of the con-
crete communication cost for the spend protocol of the E-cash system con-
structed in [55]. We omit several less significant parts in the estimation and
thus the real communication cost will be larger than we have estimated here.

Let n1, n2, p, q, qs be positive integers. Let kq = dlog qe , ks = dlog qse ,
σ = 1.6ks ·

√
n1 and kσ = dlog (12σ)e . Then the communication cost of their

spend protocol is

CS ≈ (960 · n1 · k2s · kσ + 128 · n2 · k3q) · 137

bits and security of their system relies on the following two assumputions:{
SISn1,qs,β ;

LWEn2,q,α

59

Table 6: Concrete Parameters for Our Electronic Cash.

Soundness Error 2−80 2−100 2−128

δ0 1.0048 1.0042 1.0035

p̂ 280 2100 2128

l̂1 6700 9300 13700

l̂2 7200 9900 14900

N̂ 1 1 1

dlog pe 105 125 155

dlog qe 210 250 310

m1 1050 1050 1050

n1 9 9 9

n2 2000 2700 4000

l1 6 6 6

l3 240 240 250

l4 200 200 210

l5 180 180 200

ι 10 10 10

(b1, b2, b3, b4, b5,) (4, 2, 2, 16, 2) (4, 2, 2, 16, 2) (4, 2, 2, 16, 2)

CW 53MB 78MB 130MB

CS 262MB 394MB 671MB

where β = σ2 · (2 · ks · n1)1.5 · 80 and α = 1/(280 · p · (n2 · kq)10) .
To achieve a 80-bits security level, we can set n1 = 2000 , n2 = 11000 ,

p = 28 , q = 2310 , qs = 260 , and the communication cost CS ≈ 720 TB .
Even removing the PRF parts in their arguments 11, the communication cost

for their spend protocol can still reach 1.85 TB, which is more than 1000 times
larger than the communication cost for the spend protocol of our E-cash system.
Here, the efficiency improvement comes from two parts: 1) our ZKAoK is one-shot;
and 2) our reduction from high-level lattice-based relations to the basic relation
R∗ is tighter.

G Range Proof

The Goal. In a range proof, the prover aims to prove to the verifier that 1)
he knows the committed value of a given commitment; and 2) the committed

11 Recall that in our construction, we use a weak PRF and an accumulator to replace
the PRF.

60

value is in a given range. More precisely, let Com be the commitment scheme,
the prover aruges the following relation:

R = {(A,B, c), (W, r) : A ≤W ≤ B ∧ c = Com(W ; r)}

Overview. For a public range [A,B] , we prove a number W ∈ [A,B] by
showing that there exists non-negative numbers U and V satisfying W−U = A
and W + V = B . This is exactly the strategy employed in the range proof
proposed in [56], however, we design the ZKAoK for large integer additions in a
different manner. In particular, for our setting that q is large, we use a more
simple and efficient approach to argue the correctness of carriers generated in
the addition.

The Underlying ZKAoK for Large Integer Additions. Let L be a large
positive integer. Our goal is to prove knowledge of two L -bits integers W and
U satisfying

W + U = A (9)

for a public integer A ∈ [0, 2L − 1] . Here, the integers W , U and A are
represented by L -dimension binary vectors w , u and a respectively, i.e.,

A =

L∑
i=1

2i−1a[i], W =

L∑
i=1

2i−1 ·w[i], U =

L∑
i=1

2i−1u[i]

We prove this via reducing the relation to

R∗ = {(A,y,M), (x) : A·x = y mod q ∧∀(h, i, j) ∈M,x[h] = x[i]·x[j]}

First, let k′ be a postive integer that 2k
′+1 ≤ q and let l = dL/k′e . Then

we define āi =
∑k′

j=1 2j−1a[(i − 1) · k′ + j] for i ∈ [1, l] (a[h] is regarded as
0 if h > L) and ā = (ā1‖ā2‖ . . . ‖āl)ᵀ . We also define w̄i = (w[(i − 1) · k′ +
1]‖w[(i− 1) · k′+ 2]‖ . . . ‖w[(i− 1) · k′+ k′])ᵀ and ūi = (u[(i− 1) · k′+ 1]‖u[(i−
1) · k′ + 2]‖ . . . ‖u[(i− 1) · k′ + k′])ᵀ for i ∈ [1, l] .

Next, we transform Equation (9) into the following equations:
g · w̄1 + g · ū1 − 2k

′
· c1 = ā1

∀i ∈ [2, l − 1], g · w̄i + g · ūi + ci−1 − 2k
′
· ci = āi

g · w̄l + g · ūl + cl−1 = āl

(10)

where g = (1 2 4 . . . 2k
′−1) is a row vector and for i ∈ [1, l] , ci is the carrier

for the i -th addition.
Equation (10) is just a set of linear equations with binary solutions and we

can reduce it to R∗ via setting:

A =
(
G G M

)
, x =

wu
c

 , y = ā

61

where G = I l ⊗ g , c = (c1‖c2‖ . . . ‖cl−1)ᵀ , and

M =


−2k

′

1 −2k
′

. . .
. . .

1 −2k
′

1


Finally, we define M = {(i, i, i)}i∈[2L+l] . In the new relation, both the length
of the witness and the size of M are 2L+ l .

Note that the argument of knowledge of integers W,U that W − U = A
for a public A is identical to the above argument except that we set A =
(G‖ −G‖M ′) where

M =


2k
′

−1 2k
′

. . .
. . .

−1 2k
′

−1


The Construction of Range Proof. Let λ be the security parameter. Let
n,L be postive integers that are polynomial in λ . Let q be a large enough prime
number, and let k = dlog qe , m = n(k + 3) , k′ = blog qc − 1 , l = dL/k′e . Let
Com = (Com . Commit,Com . Open) be the commitment scheme recalled in Sec.
A.1. Let B1 ∈ Zn×mq and B2 ∈ Zn×Lq be the public parameter for Com .

The range proof works as follows:

• Prove. The prover’s inputs include three L -bits integers W,A,B , a vec-
tor r ∈ [0, 1]n and a commitment c = B1 · r + B2 · w , where w =
(w1‖ w2‖ . . . ‖wL−1)ᵀ ∈ {0, 1}L is the bit decomposition of W (i.e., W =∑L
i=1 2i−1 · wi). First, the prover computes U = W − A and V = B −W .

Then he generates the proof:

π = SPK{(B1,B2, c, A,B), (U, V,W,w, r)

W − U = A ∧ W + V = B ∧ c = B1 · r +B2 ·w}

Note that here all L -bits strings are represented as binary vectors, thus the
two witnesses W and w are the same.

The output of the Prove algorithm is π .

• Verify. On input a commitment c , two L -bits integers A and B and a
proof π , the verifier outputs 1 iff the proof π is valid.

It is easy to verify that the range proof above is a secure one if the underlying
arguments are secure.

62

The Efficiency of Range Proof. We focus on the communication cost,
namely, the proof size, of the range proof.

The proved statement includes three parts. The first two parts argues the
integers addition relation. As analyzed above, each part can be reduced to an
instance of the relation R∗ , where the length of its witness and the size of M
are both 2L + l . The last part argues knowledge of the committed value. As
analyzed in Sec. 4.1, this part can be reduced to an instance of the relation R∗ ,
where the length of its witness and the size of M are both m + L . So, after
combing these three statements, the length of the witness will be

n = 3L+ 2l +m

and the size of M will also be

l = 3L+ 2l +m

(the overlapped part, namely, w , should be counted only once).

Now, let l̂1, l̂2 , σ̂1 , σ̂2 , p̂ , κ̂ , N̂ be parameters used in the main protocol.
Then the proof contains

‖π‖ = (log (2p̂+ 1) + κ̂ + (3l̂1 + 2l̂2 + 2n + 2l) · k) · N̂ + (l̂1 + n) · k (11)

bits.
Next, we estimate the concrete size of the proof via setting concrete values

of parameters involved in Equation (11). Note that security of the range proof
relies on the following 4 assumptions:

SISl̂1,q,β1

SISl̂1,q,β2

LWEl̂2,q,α

SISn,q,β3

where β1 = 16p̂ ·
√
l̂1 + l̂2 + n · (σ̂2 + p̂ · σ̂1) , β2 = 16p̂ ·

√
l̂1 + l̂2 + l · (σ̂2 +

p̂ · σ̂1) , β3 =
√
m+ L , α =

√
2π·σ̂1

q . Thus, we should guaratee that the above
assumptions are valid while picking parameters. As discussed in Sec. B.1, this
can be achieved by setting the parameters in a way that a small root-Hermite
factor is required to break the assumptions.

More concretely, we set these parameters as per Table 7. Our parameters are
set to achieve 80-bit security, 100-bit security and 128-bit security respectively
in a setting that we fix L = 1000 (i.e., we will deal with 1000 bits integers in
the argument) and κ̂ = 128 .

63

Table 7: Concrete Parameters for Our Range Proof.

Soundness Error 2−80 2−100 2−128

δ0 1.0048 1.0042 1.0035

p̂ 220 220 232

l̂1 2200 2500 4200

l̂2 2600 3000 4800

N̂ 4 5 4

dlog qe 80 80 105

n 14 16 16

Proof Size 1.21MB 1.61MB 2.28MB

64

	 Efficient Lattice-Based Zero-Knowledge Arguments with Standard Soundness: Construction and Applications
	Introduction
	Our Results
	Comparisons.

	Technical Overview
	Building ZKAoK for R*.
	Building ZKAoK for More Relations.

	Preliminaries
	Discrete Gaussian Distribution
	Rejection Sampling
	Hardness Assumptions
	Zero-Knowledge Arguments of Knowledge
	Commitment with A Relaxed Opening

	Main Construction
	The Basic Protocol
	NIZKAoK for R*

	ZKAoKs for Various Cryptographic Schemes
	ZKAoK of Committed Value
	ZKAoK of Plaintext
	ZKAoK of Message-Signature Pair
	ZKAoK of Accumulated Value
	ZKAoK of PRF Preimage

	Cryptographic Primitives
	Commitment
	Public Key Encryption
	Signature
	Cryptographic Accumulator
	(Weak) Pseudorandom Function

	Additional Assumptions and Concrete Hardness
	Concrete Hardness of Assumptions

	Proof of Theorem 3.1
	Ring Signature
	The Definition
	The Construction
	The Efficiency

	Group Signature
	The Definition
	The Construction
	The Efficiency

	Electronic Cash
	The Definition
	The Construction
	The Efficiency

	Range Proof

