Location-Proof System based on
Secure Multi-Party Computations

Aurélien Dupin'3, Jean-Marc Robert?, and Christophe Bidan?

! Thales Communications & Security, Gennevilliers, France
2 Ecole de Technologie Supérieure, Montréal, Canada
3 (Centrale-Supélec, Rennes, France

Abstract. Location-based services are now quite popular. The variety
of applications and their numerous users show it clearly. However, these
applications rely on the persons’ honesty to use their real location. If they
are motivated to lie about their position, they can do so. A location-proof
system allows a prover to obtain proofs from nearby witnesses, for being
at a given location at a given time. Such a proof can be used to convince
a verifier later on. Yet, provers and witnesses may want to keep their
location and their identity private. In this paper, a solution is presented
in which a malicious adversary, acting as a prover, cannot cheat on his
position and remain undetected. It relies on multi-party computations
and group-signature schemes to protect the private information of both
the prover and the witnesses against any semi-honest participant.

1 Introduction

Location-based services are now ubiquitous, mostly through our vehicles and
smartphones. These services generally rely on the persons’ honesty to transmit
their real location. Thus, they are limited to situations in which the persons do
not have any motivation to lie. However, for some services such as electronic
voting, location-based access control, and law enforcement investigation, this
is not the case. These services must be based on a location-proof system that
allows a participant, called prover, to obtain proofs from nearby participants,
called witnesses, asserting that he is at a given location at a given time. Such a
proof can be presented later on to convince a service provider, called verifier.
Any location-proof systems based on the interaction between a prover and his
neighbors have some privacy issues. The prover may not want to broadcast his
identity and his location every time he needs location-proofs. Similarly, witnesses
may want to hide their identity and their location. Hence, private information
must be kept secret from all the participants but not from an independent trusted
third-party, called judge. Indeed, the judge must be allowed to retrieve the iden-
tities of the participants, in order to detect collusions with the prover. An ideal
location-proof system must then have the following properties [4].

1. Correctness : location proofs generated honestly by a prover with the col-
laboration of honest witnesses must always be accepted by the verifier.

2. Unforgeability : a prover cannot obtain/modify valid location proofs for a
location he is not, or at a different time.

3. Non-transferability : location proofs are valid only for the prover who
generated them. They cannot be exchanged.

4. Traceability : given a proof, the judge must be able to retrieve the identity
of the witness who signed it. New property - not in [4].

5. Location and identity privacy : the location and the identity of the
witnesses and the prover must be kept secret from other participants.

6. Unlinkability : given two distinct location proofs, a participant cannot
guess whether they have been generated by the same witness, nor whether
they concern the same prover. This obviously does not stand for the judge.

7. Storage sovereignty : the prover is responsible for storing his own location
proofs. No one is able to access them without the prover’s agreement.

In this paper, we propose a privacy-aware location-proof system that fulfills
these properties. It relies on two protocols: a location-proof gathering protocol
(allowing a prover to obtain proofs from witnesses) and a location-proof verifying
protocol (allowing a verifier to validate the correctness of a proof). The first one
ensures that both the prover and the witnesses keep secret their identity and
their location. Once the location proofs have been obtained from witnesses, a
prover must keep them securely and may use them later on to convince verifiers.
For efficiency reasons, no centralized server is used during the gathering protocol.

Our scheme relies on multi-party computations and group signature schemes
to protect the identity and the location of all participants. It assumes also that
the participants have mobiles/vehicles with directional antenna to locate their
neighbors. Such a solution can complement the classical distance-bounding pro-
tocols [1].

The security of our solution is analyzed against malicious and semi-honest
adversaries. The former is a prover trying to obtain invalid location proofs,
whereas the later is any participant (prover, witness or verifier) trying to obtain
the private information on other participants. Static collusions between a prover
and some of the witnesses against other witnesses are also considered.

Several solutions that partially fulfill the objectives were proposed. Unfortu-
nately, most of them require to broadcast participants’ identity and/or location.
Using distance-bounding protocols, Singelee et al. [13] manage to obtain location
proofs from witnesses, but without addressing the privacy issue. Sastry et al. [12]
rely on impersonal local access points to locate participants in a given region.
The location and the identity of the participants are transmitted and the access
points simply grant access to nearby location-based services. Saroiu et al. [11]
have the same goal. They use short range wireless communications to obtain lo-
cation proofs and give access to location-based services. In this case, proofs can
be used later on, as needed. Similar approaches are presented in [8,10]. In a more
general setting, Zhu et al. [14] propose to use any participant as a witness instead
of impersonal devices. Identities are protected by a set of pseudonyms, but all
proofs (including pseudonyms and locations) are stored in a centralized author-
ity, raising some privacy and efficiency issues. Finally, Gambs et al. [4] propose

a solution to get rid of the central authority. Unfortunately, only identities are
protected through a group-signature scheme.

2 Problem Statement

Let us suppose the participants have devices (phone or vehicle) equipped with
directional antennas, allowing to locate a transmitting device in 90°-quadrants
with respect to their position and orientation. Depending on his location and
orientation, a witness would be able to locate a prover in only one of the four
reference orthogonal half-planes (North, East, South, West), as shown in Fig. 1.

Thus, our location problem can be stated as follows. Consider n witnesses
having located a prover P in half-planes with respect to their position. Looking
for a location proof, P wants to obtain an authenticated description of the in-
tersection of these half-planes, as shown in Fig. 2, while the witnesses want to
protect their identity and their private information. This can be reduced to find
the maximum (or minimum) of the private z— or y—coordinates of the witnesses.

W:
v MLL/ W; %
7
Wi Wy +P
Wi ;&x}gﬁ}; Wy
3

(a) (b)

Fig. 1. Half-planes from 90-quadrants Fig. 2. Intersecting half-planes

2.1 Location-Proof Generation Protocol Outline

Protocol 1 presents the outline of our approach. After sharing the ephemeral
additive homomorphic public key and the direction of each witness (Step 1),
the idea is to find the intersection of the witness-defined orthogonal half-planes
approximating the prover’s position (Steps 2-3), and generate location proofs
from it (Steps 4-5).

Our method relies on an additive homomorphic encryption scheme, such as
Paillier’s cryptosystem [9], and a unique group-signature scheme [3], that pos-
sesses the following properties : correctness, unforgeability, anonymity, traceabil-
ity, unlinkability and uniqueness. The last property assures that two signatures
on the same message by a given group member share a lot of common bits,
breaking the unlinkability property in this very particular case. The uniqueness
property prevents that an accomplice of the prover P, or P himself, simulate the
presence of multiple witnesses (Sybil attack).

In our scheme, groups can be dynamically managed and each participant U
has a signing key gsky. Let GS(gsky, m) denote the private signature function

Input: Each witness W; knows his position (z;,y;) and his signature key
gskw,. The encryption function of the verifier Ev (+) is public.
Output: P obtains an authenticated location proof from his neighbor witnesses.
Step 1 : Initialization
‘P broadcasts a request: “I’d like location proofs at time 7”.
forall accepting witness W; do
Find the direction d; of P (N, S, W or F) and generate an ephemeral
public key Nw, (used in the min/max computation protocol).
Send back (d;, Nw,) to P.
P broadcasts to all witnesses p = (7, (di, Nw,)1<i<n) and GS(gskp, u)
forall accepting witness W; do
Find the presence of his key Nw, — if not, abort.
Return the signature GS(gskw,, it).
P broadcasts {GS(gskw,, n)|1 <i<n}.
forall accepting witness W; do
‘ Find if all the signatures are valid and different. If not, abort.

Step 2 : forall accepting witness W; do

| Run a min/max computation protocol with other witnesses (Protocol 3).
Step 3 : P gets Ev (zi,,;,,)s BV (Tinmas)s Bv(¥Yi,,,.,) and Ev(yi,...) (Protocol 5).
Step 4 : P transfers these encrypted results to all witnesses.
Step 5 : All W; sign the proof, using gskw,, and send it to P (Protocol 2).

Protocol 1: Location proof generation

of the message m with gsky and GV(g,, m, o) the public verification function,
that allows anyone to verify the signature ¢ of m with the public group key g,,.

2.2 Adversary Models
The following definitions of adversary models are extracted from [6] :

Definition 1 (semi-honest adversary model). A semi-honest adversary fol-
lows the protocol specification exactly, but it may try to learn more information
than allowed by looking at the messages that it received and its internal state.
This model is also known as the passive or honest-but-curious adversary model.

Definition 2 (malicious adversary model). A malicious adversary may use
any efficient attack strategy and thus may arbitrarily deviate from the protocol
specification. This model is also known as the active adversary model.

In this paper, we stress that there are two different motivations for the prover.
First, the main motivation of a malicious prover is to obtain a valid proof that he
is at a given location at a given time, when in fact he is somewhere else. In this
case, the prover has to deviate from the protocol, while remaining undetected.
Otherwise, legitimate witnesses would abort and alert the judge.

On the other hand, a curious prover may be interested in getting information
on his neighbors (identity or precise location). Since the identity of a witness

relies on the security of the group-signature scheme used, the potential risk is
low. At best, the prover can expect to get the location of an unknown participant.

The witnesses could be interested in discovering more information on their
neighbors. However, since a witness has quite less possibilities than a prover, a
malicious witness would be better to act as a prover with his neighbors.

Similarly, the verifier does not participate in the gathering location protocol
and thus can only follow the semi-honest adversary model to try to get more
information on the witnesses and the prover.

Finally, notice that a prover can always obtain a valid but faked location
proof from accomplices. The verifier and the judge can always determine the
number of witnesses, having participated in the protocol. If they determine that
this number is too low, they may reject the valid proof anyway.

To sum up, our scheme is secure against the following adversaries :

— A malicious prover willing to obtain fake location proofs.
— A semi-honest prover, witness or verifier trying to violate other participants’
privacy.

In the rest of the paper, Section 3 presents how to build encrypted location
proofs against a malicious adversary, and how to verify them. In Section 4, a new
solution to the secure multi-party maximum computation problem is described.
It relies on a modified version of a classical two-party comparison protocol pre-
sented in Section 5.

3 Location-proof Gathering and Verifying

Let us first assume that the prover P has obtained somehow the four encrypted
optimum values Ev (x;, ..), Ev(z;,,..), Ev(yi,,,) and Ev(y;, ..) describing the
rectangle in which he lies from his neighbor witnesses (Section 4 will show how to
obtain them). Unfortunately, nothing proves that he has not chosen these values
himself and encrypted them with the verifier public key. The goal of Steps 4-5
of Protocol 1 is specifically to prevent that a prover can do so. In this section, we
design a protocol allowing each group of witnesses to certify the value of their
corresponding optimum value. In the remaining of this section, we will focus
only on Evy(z;,), defining the western side of the locating rectangle.

3.1 Location-Proof Gathering

We assume (w.l.0.g.) that the public key Ny of the verifier is 2048 bit-long and
that the witnesses are at most at one kilometre from the prover. If the scale of
the grid system is one meter, the difference z;, . —x; < 2'0 uses at most [, = 10
bits. We define I, = |Ny| — (I, + 1). Our method for generating the location
proofs is presented in Protocol 2. If a witness follows the protocol, the verifier
would be able to retrieve the value k;(z;,,,, — «;) + ;. This value is such that:

ki(ximaz — {I?Z) +7r; > 21”” iff T < Xipow (1)
72lz < ki(ximam — Z'z) +r < ol iff Ty = Tjp0n (2)
ki(l'imaw — .131) +r < —ol= iff T > T4, (3)

Input: P knows Ev(zi,,,,)- Each witness W; has his value z; and his
signature key gskw,. Each witness knows the number of participants n,
GS(gskp, 1), and the key Ny of the verifier with function Ev (-).

Output: P obtains a location proof from each witness.

Step 1 : P broadcasts the randomized version of Ev (zi,,..)-

Step 2 : forall witness W, do

Choose randomly k; €r [[2“”“; ol — 1] and r; €r [[—2“ +1;2% — 1].

Compute By (ki(Tip,.. — i) +75) = (Bv (Tipn,,) - Bv(—2:))* - Ev(r:).

Send Ev (ki(zi,,,, — i) +73) to P.

Step 3 : P broadcasts to all (Ev (ki(Ziyne, — i) + 7))1<i<n-

Step 4 : forall witness W, do

Check the presence of Ev (k;i(zi,,,, — i) + ;) — if not, abort.

Define v = ((Ev (ki(Tipae — Ti) + Ti))1<i<n, BV (Timas), 1, GS(gskp, p)).

Sign o; = GS(gskw;,v) and send it to P.

Step 5 : P stores v, GS(gskp,v) and all witness signatures o;.

Protocol 2: Location-proof gathering protocol

If all the participants follow the protocols, Case (2) must happen at least once
and Case (3) never. This can be confirmed by the verifier V. Thus, V' can detect
if a malicious prover deviates in Step 1 and uses an invalid value. On the other
hand, if a malicious prover deviates in Step 3 and drops (or alters) some values,
at least one witness can abort the protocol and alert the judge, by sending it
any value signed by the prover (such as GS(gskp,) of Protocol 1), which the
judge can trace thanks to the properties of the group-signature scheme. Finally,
the prover cannot deviate in Step 5 due to the unique group-signature scheme.

3.2 Security Properties of the Overall Process

We have now to argue that the overall process to obtain the location proofs
respects all the security properties listed in the introduction.

Since the unique group signature scheme [3] is unforgeable, the prover P
cannot forge new proofs, except with his own key. In Step 5 of Protocol 1, such
an opportunity is impossible. P would have to generate two distinct signatures
on the same message, contradicting the uniqueness property of the signature
scheme. In fact, the judge would identify any transgressing participant in this
step, due to the traceability property of the signature scheme. Thus, the unforge-
ability and traceability properties of our location-proof protocol are ensured.

In Step 1 of Protocol 1, the prover broadcasts a message p and its signature
GS(gskp,). This links the timestamp and the n ephemeral keys of the witnesses.
Since this signature is included in the final proofs signed by the witnesses, the
location proof is valid only for the participant able to produce the valid signature
GS(gskp, i), confirming the non-transferability property of the protocol.

Due to the unlinkability property of the group signature scheme, the location
proof associated to GS(gskp,) would not be linkable with another location
proof associated to a different signature GS(gskp, 1) done by the same prover.

Similarly, the signatures of the witnesses in Protocol 2 would also not be linkable.
Thus, the unlinkability property of our location-proof protocol is guaranteed.

The privacy of the identity follows from the property of group signature
scheme. Similarly, the privacy of the positions (z;,y;) relies on the semantic
property of the encryption scheme and the randomization process (see Sec-
tion 5.2). Unfortunately, the last step of Protocol 2 leaks some information
through Ev (k;(z;,,.. —x;)+r;). The verifier can guess some bits of z;. However,
we can show that the Shannon entropy H(X|Y = ki(z;,,,, — ;) + ;) is still
close to H(X|X <x;,,,.)-

The prover obtains his location proofs during Step 5. Then, he stores them
until he needs to convince the verifier, ensuring the storage sovereignty property.

3.3 Location-Proof verifying

Finally, the correctness property has to be shown. The prover P wants to con-
vince the verifier V that Ey (z;,) is indeed the maximum value. So, he sends:

— His position z, the message p and his signature GS(gskp, 1t). The message
contains the timestamp 7 and the number of witnesses n (see Protocol 1).

— The randomized value of maximum Evy (z;,) (see Protocol 5).

— The n proofs Ev (k;(z;, ,. — ;) + r;) and the witness signatures o; of v =
[(Ev (ki(@i,0n — i) +73))1<i<n, Bv (Ti,..),
n, GS(gskp, 1)) (see Protocol 2).

The verifier proceeds to several verifications. He first decrypts Ev (z;,,..)
and checks if ;. < x. Then, he checks that the n proofs are generated by n
distinct participants, different from P. This verification is based on the unique-
ness property of the group signature scheme. All the signatures of the message
v must be different. The verifier also asks the judge to check that GS(gskp, 1)
was generated using gskp, ensuring that P took place in the proof generation
protocol. The final step is to make sure that Ey (x;,,,.) is really the maximum
value of the witnesses. From the values of Ev (k;(Zmaz — ;) +7;) in v, the verifier
can check that there is an index j s.t. =2l < k;(x;,,. —x;)+7r; < 2%, and that
there is no index j s.t. kj(z;,, .. —x;) +7; < =2k,

If all these verifications succeed, the verifier should be convinced that P
was indeed at the east of x; . at the given time. If any of these steps fails,
it reveals a malicious action by either the prover or a witness. But unlike the
prover, witnesses do not have any incentive to cheat. If some proofs are missing,
the prover might have deleted them on purpose, or a witness may have aborted
because of a deviation of the prover.

4 Secure Multi-party Maximum Protocol

In this section, we introduce a new approach for secure multi-party maximum
computations. The main purpose is to enable a third party (the prover) to de-
termine the owner of the maximum value among a set of n participants (or
witnesses). The prover is the only party who gets a result from this protocol.

Input: The witnesses S; = {W1, Wa,--- ,W,}. Each W; has a private value x;.
Output: P determines imqer = arg max{z;|1 <i < n}.
for i =1 to [log(n)] do
for j=2"1to 2" —1do
Step 1 : P does the following steps :
S=10
if |S;| is odd then
Select Single €r S; s.t. Single is not marked.
Mark the witness Single and add it to S.
Pair the elements of S; \ & — pair the marked witnesses.
Step 2 : Each pair of witnesses uses Protocol 4, and P obtains the
index of the owner of the greater value.
Step 3 : P selects k €r {0, 1} and computes the following sets:
Saj+r = S U {the set of the losing witnesses}
Syj4+% = S U {the set of the winning witnesses}
Step 4 : P determines the index Set imqz Of this witness.

Protocol 3: Secure maximum computation based on binary tree

The basic idea of our protocol is to use iteratively a dedicated secure two-
party comparison protocol, that (i) enables the prover P to know which one of the
two witnesses owns the greater private value without having to know this value,
and (ii) guarantees that if one of the witnesses has already lost a comparison
against another witness, the prover would not get any further information. This
protocol (Protocol 4) is presented in Section 5.

4.1 The Protocol Description

Protocol 3 presents our approach for maximum computations. The prover re-
groups subsets of witnesses in a binary tree. In each node, the witnesses of the
associated subset are paired and run the dedicated secure two-party comparison
protocol (Protocol 4). At the end of each round, the prover gets the results of
these comparisons and can eliminate half of the remaining witnesses. If a witness
does not participate in any further comparison, he can deduce that he was far-
ther away from the prover than his latest paired witness. Similarly, if one keeps
participating in the protocol, he knows he has won every previous comparisons.
Thus, the protocol should be adapted to ensure that witnesses keep participat-
ing in the protocol even if they have been eliminated. However, the comparisons
with eliminated witnesses must be randomized and meaningless for the prover.

First assume that the number of witnesses is a power of 2. In the initial
round, the prover pairs the 2 witnesses all together. Each of these pairs runs
the two-party comparison protocol. At the end of a round, the winners and the
losers are regrouped independently. This process is then applied recursively on
each subset. Hence, two witnesses would never be paired twice together. After
i iterations, there would be 2! subsets of 2¥~% witnesses. One of these subsets

would be composed of only winners and all the other subsets would be composed
of witnesses which have lost in a previous round.

Consider now the general case of n witnesses. The prover pairs the witnesses.
If there is an odd number of witnesses in a subset, one of them (called Single in
Protocol 3) would be doubled, and considered as both a winner and a loser.

Finally, notice that the witnesses do not communicate with each other di-
rectly. Otherwise, it would be simple to find out which one is closer to the prover
due to the directional antennas. Communications must go through P.

4.2 The Protocol Security
The security of our maximum computation protocol relies on these objectives:

1. the prover cannot get any information from the two-party comparison pro-
tocol if at least one of the witnesses has been already eliminated previously,

2. the prover cannot get any information on the value of any witness, and

3. the witnesses cannot get any information from the comparison protocol.

The prover does the pairing and acts as the intermediary for the two-party
comparison protocol. He can then observe all the messages exchanged between
the witnesses. Thus, the objectives (1) and (2) rely on the security of the two-
party comparison protocol. This will be addressed in Section 5.

Objective (3) relies on the indistinguishability of the subsets S; in the round
i of Protocol 3, for 20! < j < 2¢ — 1. If the two-party comparison protocol is
secure, the only way for a semi-honest witness to get any information on the
comparisons is to find if he is in the subset of the winners. All of the subsets in
the round contain the same number of witnesses. Since the indices of the subset
are chosen randomly, any of these subsets can be the subset of the winners.

4.3 The Protocol Analysis

The secure maximum computation problem have already been studied (e.g., [2,
5]). However, as far as we know, their computational and communication com-
plexity are in O(n?). Such complexities are not suitable for portable or embedded
devices. Our method only requires approximately % [log(n)] two-party compar-
isons, at the cost of leaking n — 1 comparison results. This follows directly from
the underlying binary tree orchestrating the comparisons.

In order to show the complexity of Protocol 3, a few facts have to be proven.
Since some witnesses may have been doubled, they may have to be compared at
least twice in any given round of comparisons. We consider that the comparisons
of a marked witness are resolved consecutively. We may then wonder if a round
has to be split into more than two consecutive stages (i.e. if a witness has to be
doubled several times).

The first step is to show that in any subset of witnesses at any round, there are
at most two marked witnesses. This can be seen as an invariant of the protocol.
Let us first assume that a subset S; contains at most two marked witnesses at

the beginning of the round. If |.S;] is even, the subsets S3; and S2;4+1 may contain
at most one marked element. Otherwise, if |S;| is odd, one new witness would
be marked and the subsets Sp; and Ss;j11 may contain at most two marked
elements - the new one and one of the old ones. This implies that, for any subset
of odd cardinality in a non-final round, there are at least one unmarked witness
that can be marked and doubled if needed. Marking twice the same witness is
unnecessary. As a corollary of this analysis, we have the following fact:

Fact 1 Sets having two marked witnesses at the end of a round would contain
one previously marked witness and a newly doubled witness.

The second step is to show that any combination of comparisons can always
be split into at most two stages in any given round. Consider the hypothetical
cycle {W;,, Wi, },{Wi.,, Wi}, -+ ,{W;,, Wi, } of comparisons between marked
witnesses in a given round. Each of these pairs belongs to a different subset of
witnesses. If k is even, these comparisons can be split easily into two independent
stages. This is optimal since a marked witness may have to be compared with
two other witnesses. Now, if k is odd, consider the chain W;, —W,;, —W;, —---—
Wi, — Wi, . By Fact 1, alternate witnesses would have been just doubled in the
round. This is impossible since the length of the cycle is odd. Therefore, no cycle
of comparisons of odd length may exist. This implies that two stages per round
are enough to order the comparisons. As a result, the total number of stages is
greater than [log(n)] and lower than 2[log(n)].

5 Secure Two-party Comparison Protocol

In this section, we propose a specific two-party comparison protocol (Protocol 4)
that enables a third party (the prover P) to know which one of the two partic-
ipants (the witnesses A and B) owns the greater private value without having
to know this value explicitly. This can be used iteratively, so that if one of
the participants has already lost a comparison against another participant, he
should not give any further information to the third party. Such a protocol can
be obtained by adapting the protocol of Lin and Tzeng [7], chosen for efficiency.

Given an integer z, let us define the following sets for our comparison proto-
col: T§ = {z122..7i—11|x; = 0} and T = {z122...7;|x; = 1}. Let T;[i] denote
the it" element of T7, if it exists. Lin and Tzeng’s protocol relies on this lemma:
Lemma 1. [7] For z,y € N, x > y if and only if Tf NTY # 0.

Our comparison protocol has been developed to be used in our multi-party
maximum protocol presented in the previous section. It relies heavily on a prob-

abilistic additive encryption scheme such as Paillier’s cryptosystem [9]. As men-
tioned earlier, there should be no direct communication between the participants.

5.1 The Protocol Correctness

Let us first assume that the private values s4 and sg have been initialized to
zero by A and B, respectively. To simplify the notations, let us assume w.l.o.g.

Input: The [-bit private values a and b of A and B. Keys N4, Ng and Np with
functions Ea(-), Eg(:) and Ep(-). The private values Ep(sa) and
Ep(sp) of A and B, respectively. The public hash function h(-).

Output: P determines whether a > b or a < b.

Step 1 : A does the following steps :

Compute 71 and the l-element vector v, so that v; = h(T7[¢]) if it exists,

otherwise, ~; is simply a random value.

Pick a random ¢ €r Zny -

Return (Ea(71),--+, Ea(v)) and Eg(c) to B through P.

Step 2 : B does the following steps after decrypting Eg(c):

Compute T¢ and the l-element vector §, so that

Ea(8;) = Ba(ki(h(T{[i)) — h(Tg i) + r5)

— (Ea() - Ea(=h(T3)™ - Ears)

where ki, 7B €r Zn, s.t. (ki, Na) = 1. Otherwise, d; is a random value.

Pick randomly a permutation 75(-) and o, 8 €r Zn, s.t. (o, Np) = 1.

Return Ep(sg —re +¢), Ea(a), E4(B) and

(Ba(d1), - ,Ea(0])) = m(Ea(d1), -, Ea(d)) to A through P.

Step 3 : A does the following steps :

Decrypt the elements E4(d;) and compute the vector x homomorphically,

so that

Ep(ui) =Ep((6; =B +sB+sa+7Ta:) Tai ')
= (Bp(6) +7a:) Ep(sa) - Bp(sp — 5 +c¢) - Ep(—c))™4

where 74 €r Znp st (Tai, Np) =1

Return (Ep(ui), -, Ep(ui)) = ma(EBp(pa), -+ Ep(m)),

where m4(+) is a random permutation, to P.

Step 4 : P decrypts the cyphertexts Ep(u]).

If one of the elements of p* is equal to 1, then a > b and P sets sy = 0.

Otherwise, a < b and P sets s’y = 1. P returns Ep(sy) to A.

Step 5 : A does the following steps, once « and § have been retrieved :

Update Ep(s4) < Ep(sa+ka -sy) using Ep(sa) - Ep(s’)"4, where

kA €ER Znp-

Return Ep(ash + 8) = (Ep(1) - Ep(s4)™1)* - Ep(B) to B through P,

since sp =1 — §/4.

Step 6 : B does the following steps :

Retrieve Ep(ss) = (Ep(ash + B) - Ep(—B))*

Update Ep(sg) + Ep(sp + kg -) using Ep(sg) - Ep(s’)*5, where

kB €r Zn,.

—1

Protocol 4: Secure two-party comparison protocol determining which partic-
ipant has the greater private value.

that the permutation functions are the identity function. At the end of Step 2,
there is an index i* such that §; = rg, iff @ > b. This follows from Lemma 1
and the fact that the hash function is collision-free. Consequently, at the end
of Step 3, if s4 and sp are both still equal to 0, there would be an element
Mix =TA; Ty ,1* =1, iff a > b. Thus, P would know the result of the comparison.
On the other fland, if at least one of the participants has randomized his private

value Ep(s,), due to a previous comparison, no element of the vector y would
be equal to 1, except if §; — rg + s4 + sp =0 mod Zp. In any case, the result
would be meaningless.

5.2 The Protocol Security

To prove the security of Protocol 4 w.r.t. semi-honest polynomially-bounded
adversaries trying to get more information on other participants, we have to
show that these objectives are achieved: (1) A cannot find b, (2) B cannot find
a, (3) P cannot find neither a nor b, (4) the result of the comparison is known
only to P, (5) no one knows the first index ¢* that differentiates a and b, (6) P
eliminates A or B, (7) there is no information leaking if A or B has been already
discarded, and (8) P cannot simulate A or B and have a coherent result.

First, consider the information sent by A in Step 1. T} gives a bit-encoding
of a. Due to the semantic security of Paillier’s cryptosystem, P and B cannot
get any information on a (Objectives (2) and (3)). Notice that the exact same ~y
(including random values) must be produced by A at any iteration. Otherwise,
a collusion of P and B can set E4(5;) = Ea(vi)-Ea(y;)~! and have an encoding
of a. Either §; would be equal to 0, if a; = 1, or be a random value, if a; = 0.

Now, let us demonstrate that the vector ¢ in Step 2 does not leak any infor-
mation on b to A. Since rg €r Zn,, knowing ¢; does not give any information
on k;(h(T¢[i]) — h(T¢[i]). Besides, even if y = k;(h(T{[i]) — h(T¢[i])) could be in-
ferred, for any value x of h(T{[i]) — h(T{[i]) s.t. (z, Na) = 1, there is a unique k*
s.t. y = k*-x mod N4. In other words, the vector d follows a uniform distribution
of Z; . and independent of b (Objectives (1) and (5)).

We now show that the vector u* in Step 3 does not leak any information,
except whether a > b or not. If neither A nor B has already been discarded,
wi = (k; ~r2}j,)(h(Tf‘[j]) — h(TE[4])) + 1, for some j and j'. The value k; -Tg}j,
can be seen as a random value selected in Zy,. If a > b, one of these values is
1, and the others are random values of Zy,,. If a < b, p* is a uniformly random
vector of levp (Objective (3)). Due to the permutations, no information on the
index differentiating a and b can be inferred (Objective (5)).

The semantic security of Paillier’s cryptosystem assures that A cannot re-
trieve neither the values of rp nor p! in Step 3 as well as A and B cannot
retrieve the value of sy in Step 4 (Objective (4)).

In the last two steps, s4 and sp are updated. Since P cannot infer the values
of @ and § in Step 2, it cannot manipulate the value of s%; in Step 6 in such
a way that s’; = 0. At least one of the participants would then have his value
s« # 0, achieving Objective (6). Finally, notice that once s4 or sp is a random
number different than 0, u* follows an independent uniform distribution of Zﬁvp.
Hence, no conclusion follows from the value of p* in Step 4 (Objective (7)).

Finally, note that § and ¢ are necessary to obtain the result and that they
are encrypted respectively with A’s and B’s public keys. Assuming that these
keys have been properly exchanged and have not been tampered with by P, a
polynomially-bounded P cannot simulate A or B successfully. In such a case,
the result of the protocol would then be meaningless (Objective (8)).

Input: P knows imae. Each witness W; has his values z; and Ep(sw,). Public
keys Np and Ny with functions Ep(-) Ev(-).

Output: P obtains Ev (zi,,,,)-

Step 1 : forall witness W; do

Generate a random number o; €r ZNp.

Compute Ep(a; + sw,) = Ep(a;) - Ep(sw,) and return it to P.

Step 2 : P does the following steps:

Compute «,,,, from Ep(ai,,,, +sw;,) received from W;

Broadcast to all witnesses Ev (., .)-

max*®

Step 3 : forall witness W; receiving Ev («,,,,) do

Compute Ev (i,,p, — @i + %) = By (i) - Ev(—ai) - Ev(z;).

and return it to P, only if it is the first request for that proof generation.
Step 4 : P does the final steps:

Receive Ev(wi,,,,) from W;, . .

Randomize it By (zi,,,,) « Ev(zi,,,,) "V, for r €g Iy, -

Protocol 5: Maximum transfer protocol

Let us briefly consider the collusion between A and P against B. In such a
case, A and P accept to exchange all their private information. Due to n5(-), A
and P cannot obtain the index of the bit that differentiates a and b. Moreover,
due to the multiplication of each element of u by a distinct k;, A and P cannot
compute h(T{[i*]) — h(T{[i*]), except if the hashes are equal, which has been
discarded anyhow. Thus, P does not discover more information with the help
of A. Similarly, B and P do not gain more information neither. The index of
the bit that differentiates a and b is hidden by the permutation 7w4(+), and it is
impossible to compute 6* without knowing the values 74 ; generated by A.

5.3 The Protocol Complexity

Following the fact that communications are made through P, any message sent
between A and B is counted twice. The size of a public key NV is denoted by |N|.
Notice that ciphertexts are 2| N|-bit long in Paillier’s cryptosystem.

For any iteration, there are eight communications and (10l + 22)|N| bits
transferred. A maximum of 4/ 4+ 6 cryptographic operations are computed by A,
2[4-8 by B and only 41 by P. By cryptographic operations, we mean encryption,
decryption and modular exponentiation. If either A or B was eliminated, P does
not have to decrypt the result in Step 4: only one encryption is needed.

5.4 The Maximum Transfer

Using Protocols 3 and 4, the prover P knows the index i,,,, of the witness
that has the maximum value. However, P needs to obtain Ey(z;,, .,), which
corresponds to the maximum value encrypted with the verifier’s public key. P
does not want to inform which witness has been selected, but the discarded

Each witness Prover |Communications Bits sent

Protocol 1 negl negl 2m + 2 negl
(overall system)|+ Protocols 2, 3 and 5 + 4x Protocols 2, 3 and 5

Protocol 2 negl negl \ 2n+2 \ (4n + 2)|N|
Protocol 3 < 2[logn] ~ % [logn]| x Protocol 4

X Protocol 4
Protocol 4 <4l +6 l+1lorl <8 < (101 4 22)|N|
Protocol 5 negl negl 2n+1 (4n + 2)|N|

Table 1. Complexity of the system

witnesses do not want to provide their location uselessly. Protocol 5 manages to
reach both objectives. It relies on the fact that W; __ ends up with the internal
value Ep(sw,)= Ep(0) at the end of Protocol 4 (which correspond to s4 or
sp in Protocol 4). The other witnesses have a random sy, .

The security of Protocol 5 is easy to show. The security of all encrypted
messages relies on the semantic security of the cryptosystem. In Step 1, P
receives only random values from the witnesses. In Step 2, he picks one of
them and broadcasts it back to all witnesses encrypted with the verifier’s public
key. A witness would return a meaningful value in Step 3 only if his internal
random value «; is the additive inverse of the value sent by P. In this case,
the witness would return his encrypted position. Otherwise, he would return a
random encrypted value. Finally, Ey (x;) is randomized to conceal it from
the witness W; ... In term of complexity, if broadcasting generates only one
communication, 2n+ 1 messages of 2| N| bits are exchanged during the protocol.

6 Complexity of the overall system

We have detailed the computational and communication complexity in each
sub-protocols, but we are now interested in the the complexity of the entire of
location-proof system (Protocol 1), depending on the number of witnesses. For
simplicity, let us assume there are m = 4n witnesses and n in each directions.

Table 1 presents the number of cryptographic operations processed by the
prover and by each witness, the number of communications and the bits ex-
changed during the different protocols. We only deal with the worst case : we
consider a marked witness for the computational complexity in Protocol 3 and we
consider only witness A in Protocol 4. This can obviously be optimized by giving
role B to marked witness as most as possible. The complexity of Protocol 3 is
an approximation of the total number of comparisons. An exact formula is given
in Section 4.3. In Protocol 4, it has been shown that P runs [+ 1 operations in
n — 1 comparisons, and only 1 otherwise, then the number of operations run by
the prover in Protocol 3 and 4 is approximately (n — 1)l + Z[logn].

To summarise, the global complexity, both in terms of computations and
communication, is in O(nlogn) for the prover and O(logn) for a witness. In
comparison, most previous location-based systems have a complexity for the

prover in O(n) and O(1) for a witness. This is due to the fact that witnesses
do not need to interact with each other. However, location-privacy requires such
interactions, and thus we do not reach the same objectives.

7 Conclusion

In this paper, we have presented a privacy-aware location-proof system, allowing
a prover to generate location-proofs with the cooperation of nearby witnesses,
without having to know explicitly any participant’s identity and position. Our
scheme relies on a novel secure multi-party computation protocol, allowing a
third-party to find which participant has the maximum value and approximating
the region in which he is. The proofs are then signed with a group signature
scheme, protecting the identity of the participants and allowing to detect any
adversary trying to impersonate multiple witnesses. Finally, our scheme assumes
that participants’ devices are equipped with directional antennas. Although this
is not a technological challenge, it would be interesting to get rid of it.

References

1. X. Bultel, S. Gambs, D. Gérault, P. Lafourcade, C. Onete, and J.-M. Robert.
A prover-anonymous and terrorist-fraud resistant distance-bounding protocol. In
Proc. of WiISec. ACM, 2016.

2. R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz. Efficient multi-party computation
over rings. In Proc. of EUROCRYPT, pages 596-613. Springer, 2003.

3. M. Franklin and H. Zhang. Unique group signatures. In Proc. of ESORICS, pages
643—-660. Springer, 2012.

4. S. Gambs, M.-O. Killijian, M. Roy, and M. Traoré. Props: A privacy-preserving
location proof system. In Proc. of SRDS, pages 1-10. IEEE, 2014.

5. O. Hasan, L. Brunie, and E. Bertino. Preserving privacy of feedback providers in
decentralized reputation systems. Computers & Security, 31(7):816-826, 2012.

6. C. Hazay and Y. Lindell. Efficient Secure Two-party Protocols: Techniques and
Constructions. Springer Science & Business Media, 2010.

7. H.-Y. Lin and W.-G. Tzeng. An efficient solution to the millionaires’ problem
based on homomorphic encryption. In Proc. of ACNS, pages 456-466. Springer,
2005.

8. W. Luo and U. Hengartner. Veriplace: a privacy-aware location proof architecture.
In Proc. of SIGSPATIAL, pages 23-32. ACM, 2010.

9. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Proc. of EUROCRYPT, pages 223—-238. Springer, 1999.

10. A. Pham, K. Huguenin, I. Bilogrevic, I. Dacosta, and J.-P. Hubaux. Securerun:
Cheat-proof and private summaries for location-based activities. In Proc. of TMC,
pages 2109-2123. IEEE, 2015.

11. S. Saroiu and A. Wolman. Enabling new mobile applications with location proofs.
In Proc. of HotMobile, pages 1-6. ACM, 2009.

12. N. Sastry, U. Shankar, and D. Wagner. Secure verification of location claims. In
Proc. of WISEC, pages 1-10. ACM, 2003.

13. D. Singelee and B. Preneel. Location verification using secure distance bounding
protocols. In Proc. of MASS, pages 7-14. IEEE, 2005.

14. Z. Zhu and G. Cao. Applaus: A privacy-preserving location proof updating system
for location-based services. In Proc. of INFOCOM, pages 1889-1897. IEEE, 2011.

