
Public Key Encryption Supporting Equality Test and Flexible

Authorization without Bilinear Pairings

Xi-Jun Lin ∗, Haipeng Qu †and Xiaoshuai Zhang ‡

March 11, 2016

Abstract: In recent years, public key encryption with equality test (PKEET) has be-
come a hot research topic in the cryptography community due to the advancement of cloud
computing. Recently, Ma et al. proposed a new related primitive, called public key encryp-
tion with equality test supporting flexible authorization (PKEET-FA), and constructed a
concrete scheme. In their proposal, four types of authorization were presented to support
different authorization policies. However, their proposal is based on bilinear pairings which
are time costing operations compared with modular exponentiations. In this paper, we
present a new PKEET-FA scheme without bilinear pairings. Compared with the existing
work, our proposal is more efficient.

Key words: searchable encryption; public key encryption with equality test; flexible
authorization

1 Introduction

In 2010, the notion of public key encryption with equality test (PKEET) was first pro-
posed by Yang et al. [21]. In their proposal, anyone has the ability to check whether or
not two ciphertexts contain the same message. However, the adversary is able to check
the equality of ciphertexts without any authorization. To protect data owners’ privacy,
an authorization mechanism has to be used. For this reason, a fine-grained authoriza-
tion policy enforcement mechanism was integrated into PKEET by Tang [20], and then an
enhanced notion, called PKEET with fine-grained authorization (FG-PKEET), was intro-
duced. Tang [18] also presented a new scheme, which was extended from FG-PKEET, by
using two collaborating proxies to perform the equality tests. Moreover, an all-or-nothing
PKEET (AoN-PKEET) was presented by Tang [19], where a coarse-grained authorization
mechanism was proposed to specify who is able to perform the equality tests.

On the other hand, all above schemes are one-way against chosen-ciphertext attack (OW-
CCA) in the random oracle model. However, for some special scenarios, such as database
applications, OW-CCA security may not be strong enough. Motivated by this, the security
models of PKEET were revisited by Lu et al. [12], who proposed several new and stronger

∗X.J.Lin is with the Department of Computer Science and Technology, Ocean University of China. Qing-
dao 266100, P.R.China. email: linxj77@163.com

†H.Qu is with the Department of Computer Science and Technology, Ocean University of China. Qingdao
266100, P.R.China.

‡X.Zhang is with the Department of Computer Science and Technology, Ocean University of China.
Qingdao 266100, P.R.China.

1

security definitions. A new notion, called public key encryption with delegated equality test
(PKE-DET), was introduced by Ma et al. [15], where the delegated party is only allowed
to deal with the work in a multi-user setting.

There are also several related notions. Bellare et al. [2] presented the notion of determin-
istic encryption (DE). Bellare et al. [3] improved DE by using general assumptions, which
was followed by an efficient construction without random oracles by Boldyreva et al. [4]
and a framework for the security of DE by Brakerski et al. [6]. The equality test could
be trivially achieved by DE on ciphertexts encrypted under the same public key. However,
DE is a deterministic algorithm, while PKEET is a probabilistic algorithm. Moreover, the
equality test is not performed on ciphertexts with respect to same public keys in PKEET,
but different public keys. Public key encryption with keyword search (PEKS) is another
related notion presented by Boneh et al. [5], which supports keyword searching over cipher-
texts without retrieving messages by using corresponding trapdoors. Since then, plenty
of proposals with additional functionalities were presented [1, 7–10, 16, 17, 22]. In fact,
PKEET, which trivially supports the traditional functionality of PEKS, is an extension of
PEKS.

Recently, Ma et al. [14] proposed a new primitive, called public key encryption with equal-
ity test supporting flexible authorization (PKEET-FA), to strengthen the privacy protection
in four scenarios with different authorization granularity levels. An efficient construction
of PKEET-FA was also presented in [14], where the following four different authorization
policies are introduced.

• Type-1. User level authorization: Alice’s all ciphertexts could be compared with all
ciphertexts of any other receiver.

• Type-2. Ciphertext level authorization: An Alice’s specific ciphertext could be com-
pared with a specific ciphertext of any other receiver.

• Type-3. User-specific ciphertext level authorization: An Alice’s specific ciphertext
could be only compared with a specific ciphertext of a specific receiver for example,
Bob, but could not be compared with any ciphertext of any receiver other than Bob.

• Type-4. Ciphertext-to-user (or User-to-ciphertext) level authorization: An Alice’s
specific ciphertext could be compared with all ciphertexts of any other receiver, vice
versa.

In fact, Type-4 authorization is a combination of Type-1 authorization and Type-2 au-
thorization, which is for comparing a single ciphertext of Alice with all ciphertexts of any
other receiver.

1.1 Our Contribution

The main technique for equality test in most existing work is based on bilinear pairings.
However, compared with modular exponentiations, bilinear pairings are still time costing
operations although some efforts have been made to improve the efficiency. Note that a
bilinear pairing costs about five times than a modular exponentiation in a conventional
desktop computer [11, 13, 23]. To the best of our knowledge, the only PKEET without
bilinear pairings was proposed in [19]. However, compared with PKEET-FA, the scheme

2

has less flexibility. Hence, we believe that a PKEET-FA without bilinear pairings would
enjoy both efficiency and flexibility, which is more suitable for practice.

Motivated by this, we present in this paper a new PKEET-FA without bilinear pairings.
The main approach in our proposal for improving the efficiency of the equality tests is based
on the property of Shamir’s secret shairing. Compared with the state-of-the-art scheme [14],
our proposal is more efficient, especially in terms of the equality test. And compared with
the other existing work [18–21], our proposal enjoys both efficiency and flexibility. More
details can be referred to Section 6 for efficiency comparisons.

1.2 Organization

The rest of the paper is organized as follows: In Section 2, we recall some definitions,
such as Decision Diffie-Hellman problem and Shamir’s secret sharing scheme. The system
model, the definition and the security models of PKEET-FA are recalled in Section 3. The
proposed new scheme is shown in Section 4. Then, the security proofs of our proposal are
given in Section 5. The efficiency comparisons are shown in Section 6, which is followed by
the last section to conclude our work.

2 Preliminaries

2.1 Decision Diffie-Hellman (DDH) Problem

Decision Diffie-Hellman (DDH) Problem: Let G be a group of prime order q. The DDH
problem is ϵ-hard in G, if given (g, ga, gb, h) ∈ G4 as input for random generator g ∈R G,
a, b ∈R Zq and h ∈R G, any probabilistic polynomial-time algorithm A decides whether or
not h = gab holds with advantage

AdvDDH
A,G = |Pr[A(g, ga, gb, gab) = 1]− Pr[A(g, ga, gb, h) = 1]| ≤ ϵ.

We say that DDH assumption holds if for any probabilistic polynomial-time algorithm A,
its advantage AdvDDH

A,G is negligible.

2.2 Shamir’s Secret Sharing Scheme

In a secret sharing scheme, a secret y is divided into n shares and shared among n
shareholders in such a way that, with any t or more than t shares, it is able to reconstruct
this secret; but, with fewer than t shares, it cannot reconstruct the secret.

Shamir’s secret sharing scheme is based on Lagrange interpolating polynomial, and there
are n shareholders U = {U1, · · · , Un}. The scheme consists of the following algorithms:

• SSharing.Setup(λ): This algorithm takes as input the security parameter λ, and out-
puts the public parameter pp = q, where q is a large random prime.

• SSharing.Generation(pp, y): This algorithm takes as inputs the public parameter pp =
q and the secret y ∈ Zq, and does the following:

1. Pick a polynomial f(x) of degree t−1 randomly: f(x) = a0+a1x+ · · ·+at−1x
t−1

(mod p), where the secret y = a0 = f(0) and all coefficients a0, a1, · · · , at−1 are
in Zq.

3

2. Compute all shares: yi = f(xi) (mod q) for i = 1, · · · , n, where xi ∈ Zq are
picked randomly.

3. Output a list of n points {(x1, y1), (x2, y2), · · · , (xn, yn)}.

Each share yi is distributed to corresponding shareholder Ui privately. Note that xi
need not be kept secretly.

• SSharing.Reconstruction(pp, (xi1 , yi1), · · · , (xit , yit)): This algorithm takes the public
parameter pp = q and any t points {(xi1 , yi1), · · · , (xit , yit)} as inputs, it reconstructs
and outputs the secret y as

y = f(0) =
∑
i∈A

∆iyi (mod q),

where ∆i =
∏

j∈A/{i}

xj

xj−xi
(mod q) are the Lagrange interpolation coefficients and

A = {i1, · · · , it} ⊆ {1, · · · , n}.

2.3 Notation

Let [x]ba denote the substring taken from the a-th bit to the b-th bit of x, where x is a
bit-string.

3 System Model and Definition

In this section, we recall the system model and definition for PKEET-FA presented
in [14].

3.1 System Model

In a PKEET-FA system, there are four entities: a cloud server, two receivers (for exam-
ple, Alice and Bob) and a trusted third party (denoted by TTP). TTP’s task is to setup the
system and generate the system public parameters for receivers and the cloud server. Any-
one can encrypt message MA (resp. MB) to Alice (resp. Bob) by using the corresponding
public key. The ciphertexts CA (resp. CB) is outsourced to the could server. Alice and Bob
have the ability to authorize the cloud server to test the equality on MA and MB without
decrypting CA and CB.

3.2 Definition

Definition 1 A PKEET-FA scheme consists of the following algorithms:

• Setup(λ): This algorithm takes as input the security parameter λ and outputs the
public parameter pp.

• KeyGen(pp): This algorithm takes as input the public parameter pp, and outputs a
public/private key pair (pk, sk).

4

• Encrypt(M,pk): This algorithm takes as input a message M and the receiver’s public
key pk, and outputs a ciphertext C.

• Decrypt(C, sk): This algorithm takes as input a ciphertext C and the receiver’s private
key sk, and outputs a message M (or an error symbol ⊥).

Suppose that the receiver Ui (resp. Uj) has a public/private key pair (pk, sk) (resp.
(pk′, sk′)), whose ciphertext is C (resp. C ′). To realize Type-π (π = 1, 2, 3, 4) authorization
for Ui and Uj , algorithm Autπ (π = 1, 2, 3, 4) is defined to generate trapdoor for C which is
required to be compared with C ′, and algorithm Testπ (π = 1, 2, 3, 4) is defined to determine
whether or not C and C ′ contain the same message.

• Type-1 Authorization:

– Aut1(sk): This algorithm takes as input Ui’s private key sk, and outputs a
trapdoor td1 for Ui.

– Test1(C, td1, C
′, td′1): This algorithm takes as inputs ciphertext C, the trapdoor

td1, ciphertext C
′ and the trapdoor td′1, and outputs 1 if C and C ′ contain the

same message and 0 otherwise.

• Type-2 Authorization:

– Aut2(sk, C): This algorithm takes as inputs Ui’s private key sk and ciphertext
C, and outputs a trapdoor td2 for (Ui, C).

– Test2(C, td2, C
′, td′2): This algorithm takes as inputs ciphertext C, the trapdoor

td2, ciphertext C
′ and the trapdoor td′2, and outputs 1 if C and C ′ contain the

same message and 0 otherwise.

• Type-3 Authorization:

– Aut3(sk, C,C
′): This algorithm takes as inputs Ui’s private key sk, ciphertext C

and ciphertext C ′, and outputs a trapdoor td3 for (Ui, C, C
′).

– Test3(C, td3, C
′, td′3): This algorithm takes as inputs ciphertext C, the trapdoor

td3, ciphertext C
′ and the trapdoor td′3, and outputs 1 if C and C ′ contain the

same message and 0 otherwise.

• Type-4 Authorization:

– Aut4(sk, C): This algorithm takes as inputs Ui’s private key sk and ciphertext
C, and outputs a trapdoor td4 = Aut2(sk, C) for (Ui, C).

– Aut′4(sk
′): This algorithm takes as input Uj ’s private key sk′, and outputs a

trapdoor td′4 = Aut1(sk
′) for Uj .

– Test4(C, td4, C
′, td′4): This algorithm takes as inputs ciphertext C, the trapdoor

td4, ciphertext C
′ and the trapdoor td′4, and outputs 1 if C and C ′ contain the

same message and 0 otherwise.

Definition 2 (Correctness) A PKEET-FA scheme is correct if for any pp ← Setup(λ),
(pk, sk) ← KeyGen(pp) and (pk′, sk′) ← KeyGen(pp), the following conditions are satis-
fied.

5

1. For any M , Decrypt(Encrypt(M,pk), sk) = M always holds.

2. For any ciphertexts C and C ′, if Decrypt(C, sk) = Decrypt(C ′, sk′) ̸= ⊥:

• Type-1 Authorization: Given Aut1(sk) = td1 and Aut1(sk
′) = td′1, it holds that

Test1(C, td1, C
′, td′1) = 1.

• Type-2 Authorization: Given Aut2(sk, C) = td2 and Aut2(sk
′, C ′) = td′2, it holds

that
Test2(C, td2, C

′, td′2) = 1.

• Type-3 Authorization: Given Aut3(sk, C,C
′) = td3 and Aut3(sk

′, C ′, C) = td′3,
it holds that

Test3(C, td3, C
′, td′3) = 1.

• Type-4 Authorization: Given Aut4(sk, C) = td4 and Aut′4(sk
′) = td′4, it holds

that
Test4(C, td4, C

′, td′4) = 1.

3. For any ciphertexts C and C ′, if Decrypt(C, sk) ̸= Decrypt(C ′, sk′):

• Type-1 Authorization: Given Aut1(sk) = td1 and Aut1(sk
′) = td′1, it holds that

Pr[Test1(C, td1, C
′, td′1) = 1] is negligible.

• Type-2 Authorization: Given Aut2(sk, C) = td2 and Aut2(sk
′, C ′) = td′2, it holds

that Pr[Test2(C, td2, C
′, td′2) = 1] is negligible.

• Type-3 Authorization: Given Aut3(sk, C,C
′) = td3 and Aut3(sk

′, C ′, C) = td′3,
it holds that Pr[Test3(C, td3, C

′, td′3) = 1] is negligible.

• Type-4 Authorization: Given Aut4(sk, C) = td4 and Aut′4(sk
′) = td′4, it holds

that Pr[Test4(C, td4, C
′, td′4) = 1] is negligible.

3.3 Security Models

Here, we recall the security models for PKEET-FA defined in [14]. Note that only
Type-π (π = 1, 2, 3) authorization queries are provided to the adversary for simplicity
(Type-4 authorization queries are omitted here), since the trapdoor algorithm for Type-4
authorization in fact is a combination of those for Type-1 and Type-2 authorizations.

Formally, there are two types of adversaries defined for the security of PKEET-FA:

• Type-I adversary: For Type-π (π = 1, 2, 3) authorization, the adversary with the
Type-π trapdoor cannot retrieve the message from the challenge ciphertext.

• Type-II adversary: For Type-π (π = 1, 2, 3) authorization, the adversary without the
Type-π trapdoor cannot decide the challenge ciphertext is the encryption of which
message.

The formal definition of OW-CCA security for Type-π (π = 1, 2, 3) authorization against
Type-I adversary is recalled below.

Game 1 Let A1 be a Type-I adversary. The target receiver has index t (1 ≤ t ≤ n). The
game between A1 and the challenger C is as follows:

6

1. Setup: C takes a security parameter λ and runs the algorithm Setup to generate the
public parameter pp which is given to A1. Then C runs algorithm KeyGen to generate
n public/private key pairs (pki, ski) (1 ≤ i ≤ n) and gives all pki to A1.

2. Phase 1: A1 is allowed to issue the following queries for polynomially many times.
The constraint is that (t) does not appear in the key retrieve queries.

• Key retrieve queries (i): C sends ski to A1.

• Decryption queries (i, C): C runs Decrypt(C, ski) to decrypt C with ski, and
sends the output to A1.

• Authorization queries: For Type-π (π = 1, 2, 3) authorization,

– on input (i), C returns td1;

– on input (i, C), C returns td2;

– on input (i, C, C ′), C returns td3.

3. Challenge: C picks a message Mt randomly, computes the challenge ciphertext C∗
t =

Encrypt(Mt, pkt) and sends C∗
t to A1.

4. Phase 2: A1 issues as in Phase 1. The constraints are that

(a) (t) does not appear in the key retrieve queries;

(b) (t, C∗
t) does not appear in the decryption queries.

5. Guess: A1 outputs M ′
t , and wins the game if Mt = M ′

t .

The advantage of A1 in the game above is defined as

AdvOW−CCA,Type−π
PKEET−FA,A1

(λ) = Pr[Mt = M ′
t] (π = 1, 2, 3).

Definition 3 A PKEET-FA scheme is OW-CCA secure for Type-π (π = 1, 2, 3) authoriza-
tion if for any probabilistic polynomial-time adversary A1, its advantage AdvOW−CCA,Type−π

PKEET−FA,A1
(λ)

is negligible on λ.

The formal definition of IND-CCA security for Type-π (π = 1, 2, 3) authorization against
Type-II adversary is recalled below.

Game 2 Let A2 be a Type-II adversary. The target receiver has index t (1 ≤ t ≤ n). The
game between A2 and the challenger C is as follows:

1. Setup: C takes a security parameter λ and runs the algorithm Setup to generate the
public parameter pp which is given to A2. Then C runs algorithm KeyGen to generate
n public/private key pairs (pki, ski) (1 ≤ i ≤ n) and gives all pki to A2.

2. Phase 1: A2 issues queries as in Game 1.

3. Challenge: A2 submits two equal-length messages M0,M1. C picks a random bit
ρ ∈ {0, 1}, computes the challenge ciphertext C∗

t = Encrypt(Mρ, pkt) and sends C∗
t

to A2.

4. Phase 2: A2 continues issuing queries as in Phase 1. The constraints are that

7

• (t) does not appear in the key retrieve queries;

• (t, C∗
t) does not appear in the decryption queries;

• For Type-π (π = 1, 2, 3) authorization queries,

– π = 1: (t) does not appear in the authorization queries;

– π = 2: (t, C∗
t) does not appear in the authorization queries;

– π = 3: (t, C∗
t , ·) does not appear in the authorization queries.

5. Guess: A2 outputs a guess ρ′ ∈ {0, 1}, and wins the game if ρ = ρ′.

The advantage of A2 in the game above is defined as

AdvIND−CCA,Type−π
PKEET−FA,A2

(λ) = |Pr[ρ = ρ′]− 1

2
| (π = 1, 2, 3).

Definition 4 A PKEET-FA scheme is IND-CCA secure for Type-π (π = 1, 2, 3) authoriza-
tion if for any probabilistic polynomial-time adversary A2, its advantage AdvIND−CCA,Type−π

PKEET−FA,A2
(λ)

is negligible on λ.

4 Our Proposed PKEET-FA Scheme

In this section, we propose our new and efficient PKEET-FA scheme.

4.1 The Proposed Scheme

• Setup(λ): This algorithm takes as input security parameter λ, and outputs public
parameters pp as follows.

1. Generate a group G of prime order q.

2. Pick a random generator g ∈ G.

3. Select cryptographic secure hash functions: H : G → {0, 1}λ+l′ , H1 : G3 ×
{0, 1}λ+l′ → {0, 1}2l+2l′ , and H2,H3, H4,H5,H6,H7 : {0, 1}λ → Zq, where
{0, 1}l ⊂ Zq and l′ is representation length of elements in Zq.

• KeyGen(pp): This algorithm takes as input public parameter pp, then picks α, β ∈ Zq

randomly and outputs the receiver’s key pair:

(pk, sk) = ((X = gα, Y = gβ), (α, β)).

• Encrypt(M,pk): This algorithm takes as inputs a message M ∈ {0, 1}λ and the
receiver’s public key pk, then generates a ciphertext C = (C1, C2, C3, C4) as follows:

1. Compute three points P1 = (H2(M),H3(M)), P2 = (H4(M),H5(M)) and P3 =
(H6(M), H7(M)).

2. Construct an interpolating polynomial f(x) with degree 2 to pass through three
points: P1, P2 and P3.

3. Compute two additional random points (x1, y1) and (x2, y2) on f(x), where
x1, x2 ∈ {0, 1}l.

8

4. Pick two random numbers r1, r2 ∈ Zq and then compute

C1 = gr1

C2 = gr2

C3 = (M∥r2)⊕H(Y r1)
C4 = (x1∥x2∥y1∥y2)⊕H1(X

r2 , C1, C2, C3)

• Decrypt(C, sk): This algorithm takes as inputs a ciphertext C = (C1, C2, C3, C4) and
receiver’s private key sk, then performs the following steps:

1. Recover M∥r2 by computing C3 ⊕H(Cβ
1).

2. Recover x1∥x2∥y1∥y2 by computing C4 ⊕H1(C
α
2 , C1, C2, C3).

3. Compute P1, P2 and P3 as done in algorithm Encrypt.

4. Construct f(x) with P1, P2 and P3 as done in algorithm Encrypt.

If C2 = gr2 , f(x1) = y1 and f(x2) = y2 all hold, this algorithm outputs M ; otherwise,
it outputs ⊥.

Let Alice (whose public/private key pair is (pk, sk)) and Bob (whose public/private
key pair is (pk′, sk′)) be two receivers in the system. Let C = (C1, C2, C3, C4) (resp.
C ′ = (C ′

1, C
′
2, C

′
3, C

′
4)) be a ciphertext of Alice (resp. Bob). Correspondingly, let r1, r2

(resp. r′1, r
′
2) be the randomness used for generating C (resp. C ′).

• Type-1 Authorization:

– Aut1(sk): This algorithm outputs a trapdoor td1 = α.

– Test1(C, td1, C
′, td′1): This algorithm computes

C4 ⊕H1(C
td1
2 , C1, C2, C3) = x1∥x2∥y1∥y2,

C ′
4 ⊕H1(C

′td′1
2 , C ′

1, C
′
2, C

′
3) = x′1∥x′2∥y′1∥y′2.

Then, it computes

φ← SSharing.Reconstruction(q, (x1, y1), (x2, y2), (x
′
1, y

′
1)),

φ′ ← SSharing.Reconstruction(q, (x′1, y
′
1), (x

′
2, y

′
2), (x1, y1)).

Finally, it checks whether or not φ = φ′ holds. If it is the case, it returns 1, and
0 otherwise.

• Type-2 Authorization:

– Aut2(sk, C): This algorithm outputs a trapdoor td2 = H1(C
α
2 , C1, C2, C3).

– Test2(C, td2, C
′, td′2): This algorithm computes

C4 ⊕ td2 = x1∥x2∥y1∥y2,
C ′
4 ⊕ td′2 = x′1∥x′2∥y′1∥y′2.

Then, it computes

φ← SSharing.Reconstruction(q, (x1, y1), (x2, y2), (x
′
1, y

′
1)),

φ′ ← SSharing.Reconstruction(q, (x′1, y
′
1), (x

′
2, y

′
2), (x1, y1)).

9

Finally, it checks whether or not φ = φ′ holds. If it is the case, it returns 1, and
0 otherwise.

• Type-3 Authorization:

– Aut3(sk, C,C
′): This algorithm first recovers r2, y1, y2 with sk, and then outputs

a trapdoor

td3 = (z, V1, V2) = ([H1(C
α
2 , C1, C2, C3)]

2l−1
0 ,W y1 ,W y2),

where W = C
′r2
2 .

– Test3(C, td3, C
′, td′3): This algorithm computes

[C4]
2l−1
0 ⊕ z = x1∥x2,

[C ′
4]
2l−1
0 ⊕ z′ = x′1∥x′2.

Then, it computes the Lagrange interpolation coefficients ∆i =
∏

j∈A/{i}

xj

xj−xi

(mod q) (resp. ∆′
i =

∏
j∈A/{i}

x′
j

x′
j−x′

i
(mod q)) with respect to x1, x2, x3 = x′1 (resp.

x′1, x
′
2, x

′
3 = x1), where A = {1, 2, 3}, i ∈ A.

Finally, it checks whether or not
3∏

i=1
V ∆i
i =

3∏
j=1

V
′∆′

j

j holds, where V3 = V ′
1 and

V ′
3 = V1. If it is the case, it returns 1, and 0 otherwise.

• Type-4 Authorization:

– Aut4(sk, C): This algorithm outputs a trapdoor td4 = Aut2(sk, C) = H1(C
α
2 , C1,

C2, C3).

– Aut′4(sk
′): This algorithm outputs a trapdoor td′4 = Aut1(sk

′) = α′.

– Test4(C, td4, C
′, td′4): This algorithm computes

C4 ⊕ td4 = x1∥x2∥y1∥y2,
C ′
4 ⊕H1(C

′td′4
2 , C ′

1, C
′
2, C

′
3) = x′1∥x′2∥y′1∥y′2.

Then, it computes

φ← SSharing.Reconstruction(q, (x1, y1), (x2, y2), (x
′
1, y

′
1)),

φ′ ← SSharing.Reconstruction(q, (x′1, y
′
1), (x

′
2, y

′
2), (x1, y1)).

Finally, it checks whether or not φ = φ′ holds. If it is the case, it returns 1, and
0 otherwise.

4.2 Correctness

Theorem 1 The above PKEET-FA scheme is correct according to Definition 2.

Proof : we show that the three conditions are all satisfied.

10

1. The first condition holds naturally.

2. As for the second condition, we have the following fact:

For any message M (resp. M ′), the interpolating polynomial f(x) (resp. f ′(x))
with degree 2 is constructed by passing through three points P1 = (H2(M),H3(M)),
P2 = (H4(M),H5(M)) and P3 = (H6(M), H7(M)) (resp. P ′

1 = (H2(M
′),H3(M

′)),
P ′
2 = (H4(M

′), H5(M
′)) and P ′

3 = (H6(M
′), H7(M

′))).

Clearly, f(x) = f ′(x) if M = M ′. Hence, for any points (x1, y1) and (x2, y2) on f(x),
and (x′1, y

′
1) and (x′2, y

′
2) on f ′(x), we can claim that (x1, y1), (x2, y2), (x

′
1, y

′
1), (x

′
2, y

′
2)

are all valid points on both f(x) and f ′(x) if M = M ′.

From above and the property of Shamir’s secret sharing, if M = M ′, then we have
the following facts: Given (x1, y1), (x2, y2) and (x′1, y

′
1), the value f(0) could be recon-

structed, and given (x′1, y
′
1), (x

′
2, y

′
2) and (x1, y1), the value f

′(0) could be reconstructed
as well. Moreover, f(0) = f ′(0) in this case.

Hence, for any two public/private key pairs (pk, sk) and (pk′, sk′), and ciphertexts
C = Encrypt(M,pk) and C ′ = Encrypt(M ′, pk′), the followings hold.

• Type-1 Authorization: Given td1 = α and td′1 = α′, we have

C4 ⊕H1(C
td1
2 , C1, C2, C3) = x1∥x2∥y1∥y2,

C ′
4 ⊕H1(C

′td′1
2 , C ′

1, C
′
2, C

′
3) = x′1∥x′2∥y′1∥y′2.

From above, we have that if M = M ′, then φ = f(0) and φ′ = f ′(0). Hence, we
have that φ = φ′ holds if M = M ′.

• Type-2 Authorization: Given td2 = H1(C
α
2 , C1, C2, C3) and td′2 = H1(C

′α′
2 , C ′

1, C
′
2, C

′
3),

we have
C4 ⊕ td2 = x1∥x2∥y1∥y2,
C ′
4 ⊕ td′2 = x′1∥x′2∥y′1∥y′2.

From above, we have that if M = M ′, then φ = f(0) and φ′ = f ′(0). Hence, we
have that φ = φ′ holds if M = M ′.

• Type-3 Authorization: Note that

td3 = (z, V1, V2) = ([H1(C
α
2 , C1, C2, C3)]

2l−1
0 ,W y1 ,W y2)

and
td′3 = (z′, V ′

1 , V
′
2) = ([H1(C

′α′
2 , C ′

1, C
′
2, C

′
3)]

2l−1
0 ,W

′y′1 ,W
′y′2),

where W = C
′r2
2 and W ′ = C

r′2
2 .

Clearly, W = W ′ = gr
′
2r2 . Therefore,

td′3 = (z′, V ′
1 , V

′
2) = ([H1(C

′α′
2 , C ′

1, C
′
2, C

′
3)]

2l−1
0 ,W y′1 ,W y′2).

Given td3 and td′3, we have

[C4]
2l−1
0 ⊕ z = x1∥x2,

[C ′
4]
2l−1
0 ⊕ z′ = x′1∥x′2.

11

Moreover, we have that (x3, V3) = (x′1,W
′y′1) = (x′1,W

y′1) and (x′3, V
′
3) = (x1,W

y1).
Then,

3∏
i=1

V ∆i
i = V ∆1

1 V ∆2
2 V ∆3

3

= W∆1y1W∆2y2W∆3y′1

= W∆1y1+∆2y2+∆3y′1

3∏
j=1

V
′∆′

j

j = V
′∆′

1
1 V

′∆′
2

2 V
′∆′

3
3

= W∆′
1y

′
1W∆′

2y
′
2W∆′

3y1

= W∆′
1y

′
1+∆′

2y
′
2+∆′

3y1

From above and the property of Shamir’s secret sharing, we can conclude that if
M = M ′ (note that f(0) = f ′(0) in this case), then we have

f(0) = ∆1y1 +∆2y2 +∆3y
′
1

and
f ′(0) = ∆′

1y
′
1 +∆′

2y
′
2 +∆′

3y1,

that is, we have
3∏

i=1
U∆i
i = W f(0) and

3∏
j=1

U
′∆′

j

j = W f ′(0). Therefore, we have

that
3∏

i=1
U∆i
i =

3∏
j=1

U
′∆′

j

j holds if M = M ′.

• Type-4 Authorization: Given td4 = H1(C
α
2 , C1, C2, C3) and td′4 = α′, we have:

C4 ⊕ td4 = x1∥x2∥y1∥y2,
C ′
4 ⊕H1(C

′td′4
2 , C ′

1, C
′
2, C

′
3) = x′1∥x′2∥y′1∥y′2.

From above, we have that if M = M ′, then φ = f(0) and φ′ = f ′(0). Hence, we
have that φ = φ′ holds if M = M ′.

3. As for the third condition, we have the following fact:

If M ̸= M ′, then Pr[f(x) = f ′(x)] is negligible. So Pr[f ′(x1) = y1] (resp. Pr[f(x
′
1) =

y′1]) is negligible, that is, the probability of point (x1, y1) (resp. (x′1, y
′
1)) being on

f ′(x) (resp. f(x)) is negligible. In this case, the probability of f(0) (resp. f ′(0)) being
reconstructed with (x1, y1), (x2, y2) and (x′1, y

′
1) (resp. (x′1, y

′
1), (x

′
2, y

′
2) and (x1, y1))

correctly is negligible. That is, Pr[φ = f(0)] (resp. Pr[φ′ = f ′(0)]) is negligible if
M ̸= M ′.

From above, the followings hold.

• Type-1 Authorization: If Test1(C, td1, C
′, td′1) = 1, it means that φ = φ′ holds.

From above, since Pr[φ = f(0)] and Pr[φ′ = f ′(0)] are both negligible if M ̸= M ′,
we have that Pr[Test1(C, td1, C

′, td′1) = 1] is negligible.

• Type-2 Authorization: If Test2(C, td2, C
′, td′2) = 1, it means that φ = φ′ holds.

From above, since Pr[φ = f(0)] and Pr[φ′ = f ′(0)] are both negligible if M ̸= M ′,
we have that Pr[Test2(C, td2, C

′, td′2) = 1] is negligible.

12

• Type-3 Authorization: If Test3(C, td3, C
′, td′3) = 1, it means that

3∏
i=1

V ∆i
i =

3∏
j=1

V
′∆′

j

j holds. From above, since Pr[φ = f(0)] and Pr[φ′ = f ′(0)] are both

negligible if M ̸= M ′, where φ = ∆1y1 +∆2y2 +∆3y
′
1 and φ′ = ∆′

1y
′
1 +∆′

2y
′
2 +

∆3y1, we have that Pr[Test3(C, td3, C
′, td′3) = 1] is negligible.

• Type-4 Authorization: If Test4(C, td4, C
′, td′4) = 1, it means that φ = φ′ holds.

From above, since Pr[φ = f(0)] and Pr[φ′ = f ′(0)] are both negligible if M ̸= M ′,
we have that Pr[Test4(C, td4, C

′, td′4) = 1] is negligible. 2

5 Security

Theorem 2 The proposed PKEET-FA scheme is OW-CCA secure for Type-π (π = 1, 2, 3)
authorization against Type-I adversary (c.f. Definition 3) based on DDH assumption in the
random oracle model.

Proof: Suppose that there is a Type-I adversary A1 which can break the proposed
PKEET-FA scheme, then we can construct a probabilistic polynomial-time algorithm B
which can solve the DDH problem. Let (g, ga, gb, h) ∈ G4 be an instance of the DDH
problem and the target receiver has index t (1 ≤ t ≤ n), B’s task is to check whether or not
gab = h holds. Given the instance, B and A1 play the following game.

1. Setup: B runs the algorithm Setup to create the system parameters pp, where q, g,G ∈
pp, and then sends pp to A1. Then, B runs the algorithm KeyGen to generate n
public/private key pairs (pki, ski) (1 ≤ i ≤ n, i ̸= t). We set pkt = (Xt, Yt), where
Xt = gαt , Yt = ga and αt ∈ Zq is picked randomly. All pki are given to A1. Moreover,
lists H-list, H1-list, · · · , H7-list, which are initial empty, are maintained by B to
answer the random oracle queries. If the same input is asked multiple times, the same
answer will be returned.

2. Phase 1: B responds to the queries made by A1 in the following ways:

• H-query(γ): B picks θ ∈ {0, 1}λ+l′ randomly, stores a new item [γ, θ] into H-list
and returns θ as the answer.

• H1-query(γ1, C1, C2, C3): B picks θ1 ∈ {0, 1}2l+2l′ randomly, stores a new item
[γ1, C1, C2, C3, θ1] into H1-list and returns θ1 as the answer.

• Hi-query(M) (i = {2, 4, 6}): B picks hi ∈ {0, 1}l randomly, stores a new item
[M,hi] into Hi-list and returns hi as the answer.

• Hj-query(M) (j = {3, 5, 7}): B picks hj ∈ Zq randomly, stores a new item [M,hj]
into Hj-list and returns hj as the answer.

• Key retrieve queries(i): B sends ski = (αi, βi) to A1.

• Decryption queries(i, C): Let C = (C1, C2, C3, C4).

– If i = t, then for each item [γ, θ] in H-list, B performs as follows.

(a) Compute M∥r2 = C3 ⊕ θ and x1∥x2∥y1∥y2 = C4 ⊕H1(C
αt
2 , C1, C2, C3).

(b) Compute P1, P2 and P3 as done in the algorithm Encrypt.

(c) Reconstruct f(x) with three points P1, P2 and P3.

13

(d) If C2 = gr2 , f(x1) = y1 and f(x2) = y2 all hold, it returns M to A1 as
the answer. If no such item in H-list, it returns ⊥ to A1.

– Else, B runs algorithm Decrypt with C and ski as input, and then sends the
output of the algorithm to A1 as the answer.

3. Authorization queries: For Type-π (π = 1, 2, 3) authorization,

• on input (i), B returns td1 = αi;

• on input (i, C), B returns td2 = H1(C
αi
2 , C1, C2, C3), where C = (C1, C2, C3, C4);

• on input (i, C, C ′), B returns td3 = ([H1(C
αi
2 , C1, C2, C3)]

2l−1
0 ,W y1 ,W y2), where

W = C
′r2
2 , C = (C1, C2, C3, C4) and C ′ = (C ′

1, C
′
2, C

′
3, C

′
4).

4. Challenge: B picks a random number r2 ∈ Zq and a random message Mt ∈ {0, 1}λ,
and then computes Ct = (C1, C2, C3, C4) as follows.

C1 = gb

C2 = gr2

C3 = (Mt∥r2)⊕H(h)
C4 = (x1∥x2∥y1∥y2)⊕H1(g

αtr2 , C1, C2, C3),

where the points (x1, y1) and (x2, y2) are generated randomly on an interpolating
polynomial f(x) with degree 2 which is created by passing through three points:
P1 = (H2(Mt), H3(Mt)), P2 = (H4(Mt),H5(Mt)) and P3 = (H6(Mt),H7(Mt)).

Finally, it sends Ct to A1 as the challenge ciphertext.

5. Phase 2: A1 issues as in Phase 1. The constraints are that

(a) (t) does not appear in the key retrieve queries;

(b) (t, Ct) does not appear in the decryption queries.

6. Guess: A1 outputs M ′
t . If Mt = M ′

t , B outputs 1 for the challenge instance of the
DDH problem, and 0 otherwise. 2

Theorem 3 The proposed PKEET-FA scheme is IND-CCA secure for the Type-π (π =
1, 2, 3) authorization against Type-II adversary (c.f. Definition 4) based on DDH assumption
in the random oracle model.

Proof: Suppose that there is a Type-II A2 which can break the proposed PKEET-FA
scheme, then we can construct a probabilistic polynomial-time algorithm B which can solve
the DDH problem. Let (g, ga, gb, h) ∈ G4 be an instance of the DDH problem and the target
receiver has index t (1 ≤ t ≤ n), B’s task is to check whether or not gab = h holds. Given
the instance, B and A2 play the following game.

1. Setup: B runs the algorithm Setup to create the system parameters pp, and then sends
pp to A2. Then, B runs the algorithm KeyGen to generate n public/private key pairs
(pki, ski) (1 ≤ i ≤ n, i ̸= t). We set pkt = (Xt, Yt), where Xt = gαt , Yt = ga and
αt ∈ Zq is picked randomly. All pki are given to A2. Moreover, lists H-list, H1-list,
· · · , H7-list, which are initial empty, are maintained by B to answer the random oracle
queries. If the same input is asked multiple times, the same answer will be returned.

14

2. Phase 1: B responds to the queries made by A2 in the following ways:

• H-query(γ): B picks θ ∈ {0, 1}λ+l′ randomly and stores a new item [γ, θ] into
H-list.

• H1-query(γ1, C1, C2, C3): B picks θ1 ∈ {0, 1}2l+2l′ randomly and stores a new
item [γ1, C1, C2, C3, θ1] into H1-list.

• Hi-query(M) (i = {2, 4, 6}): B picks hi ∈ {0, 1}l randomly and stores a new item
[M,hi] into Hi-list.

• Hj-query(M) (j = {3, 5, 7}): B picks hj ∈ Zq randomly and stores a new item
[M,hj] into Hj-list.

• Key retrieve queries(i): B sends ski = (αi, βi) to A2.

• Decryption queries(i, C): Let C = (C1, C2, C3, C4).

– If i = t, then for each item [γ, θ] in H-list, B performs as follows.

(a) Compute M∥r2 = C3 ⊕ θ and x1∥x2∥y1∥y2 = C4 ⊕H1(C
αt
2 , C1, C2, C3).

(b) Compute P1, P2 and P3 as done in the algorithm Encrypt.

(c) Reconstruct f(x) with three points P1, P2 and P3.

(d) If C2 = gr2 , f(x1) = y1 and f(x2) = y2 all hold, it returns M to A1 as
the answer. If no such item in H-list, it returns ⊥ to A1.

– Else, B runs algorithm Decrypt with C and ski as input, and then sends the
output of the algorithm to A1 as the answer.

3. Authorization queries: For Type-π (π = 1, 2, 3) authorization,

• on input (i), B returns td1 = αi;

• on input (i, C), B returns td2 = H1(C
αi
2 , C1, C2, C3);

• on input (i, C, C ′), B returns td3 = ([H1(C
αi
2 , C1, C2, C3)]

2l−1
0 ,W y1 ,W y2), where

W = C
′r2
2 , C = (C1, C2, C3, C4) and C ′ = (C ′

1, C
′
2, C

′
3, C

′
4).

4. Challenge: A2 submits two equal-length messages M0,M1 ∈ {0, 1}λ, B picks a random
bit ρ ∈ {0, 1} and a random number r2 ∈ Zq, then computes C∗

t = (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4)

as follows.
C∗
1 = gb

C∗
2 = gr2

C∗
3 = (Mρ∥r2)⊕H(h)

C∗
4 = (x1∥x2∥y1∥y2)⊕H1(g

αtr2 , C∗
1 , C

∗
2 , C

∗
3),

where the points (x1, y1) and (x2, y2) are generated on an interpolating polynomial
f(x) with degree 2 which is created by passing through three points: P1 = (H2(Mρ),
H3(Mρ)), P2 = (H4(Mρ),H5(Mρ)) and P3 = (H6(Mρ),H7(Mρ)).

Finally, it sends C∗
t to A2 as the challenge ciphertext.

5. Phase 2: A2 issues as in Phase 1. The constraints are that

(a) (t) does not appear in the key retrieve queries;

(b) (t, C∗
t) does not appear in the decryption queries.

(c) For Type-π (π = 1, 2, 3) authorization queries,

15

• π = 1: (t) does not appear in the authorization queries;

• π = 2: (t, C∗
t) does not appear in the authorization queries;

• π = 3: (t, C∗
t , ·) does not appear in the authorization queries.

6. Guess: A2 outputs a bit ρ′ ∈ {0, 1}. If ρ = ρ′, B outputs 1 for the challenge instance
of the DDH problem, and 0 otherwise. 2

6 Efficiency

In this section, we compare the proposed scheme with the state-of-the-art scheme [14].
The efficiency comparison of encryption and decryption is shown in Tab. 1, the efficiency
comparison of TYPE-1, TYPE-2, TYPE-3 and TYPE-4 authorizations is shown in Tab. 2.
Moreover, we show the efficiency comparison between our proposal and the other existing
work [18–21] in Tab. 3.

Let Enc, Dec, Aut, Test denote the computational costs of algorithms for encryption,
decryption, authorization and equality test, respectively. Let Exp be a modular exponenti-
ation, Pairing denote a pairing evaluation and Inv denote a modular inverse.

Table 1: Efficiency Comparison of Encryption and Decryption
Enc Dec

[14] 6Exp 5Exp
Ours 4Exp+6Inv 3Exp+6Inv

Table 2: Efficiency Comparison of Authorizations
Aut Test

TYPE-1 [14] 0 2Pairing+2Exp
Ours 0 2Exp+6Inv

TYPE-2 [14] 2Exp 2Pairing+2Exp
Ours 1Exp 6Inv

TYPE-3 [14] 2Pairing+2Exp 2Pairing+2Exp+2Inv
Ours 4Exp 6Exp+6Inv

TYPE-4 [14] 1Exp 2Pairing+2Exp
Ours 1Exp 1Exp+6Inv

Table 3: Efficiency Comparison with The Other Existing Work
Enc Dec Aut Test

[21] 3Exp 3Exp - 2Pairing
[18, 20] 4Exp 2Exp 3Exp 4Pairing+2Inv
[19] 5Exp 2Exp 0 4Exp
Ours(TYPE-1) 4Exp+6Inv 3Exp+6Inv 0 2Exp+6Inv
Ours(TYPE-2) 4Exp+6Inv 3Exp+6Inv 1Exp 6Inv
Ours(TYPE-3) 4Exp+6Inv 3Exp+6Inv 4Exp 6Exp+6Inv
Ours(TYPE-4) 4Exp+6Inv 3Exp+6Inv 1Exp 1Exp+6Inv

16

We stress here again that a bilinear pairing costs about five times than a modular ex-
ponentiation in a conventional desktop computer [11, 13, 23]. Hence, it is clear that our
scheme is (surprisingly) more efficient than the state-of-the-art scheme [14].

Compared with [18, 20, 21], our proposal is more efficient in terms of equality test.
Compared with [19], TYPE-1, TYPE-2 and TYPE-4 authorizations in our proposal are
more efficient in terms of equality test and encryption, while TYPE-3 requires a bit more
in terms of equality test.

As for the security, our proposal achieves OW-CCA security with authorization and IND-
CCA security without authorization. Moreover, all the schemes in comparison are proven
secure in random oracle model based on standard and widely accepted assumptions.

In conclusion, our scheme supports much more flexible authorization compared with the
other existing work [18–21] without sacrificing efficiency. In fact, our scheme enjoys both
efficiency and flexibility. Compared with the state-of-the-art scheme [14], our scheme is also
more efficient, especially the equality test process. As the basic operation, millions of the
equality test process may be performed by the cloud server every day. Thus, our proposal
can save huge of computational resources. Hence, compared with all existing work, we
believe that our proposal is more practical.

7 Conclusion

In this paper, we present a new PKEET-FA scheme without bilinear pairings by following
the definition and security models proposed in [14]. Compared with the state-of-the-art
scheme [14], our proposal is more efficient. And compared with the other existing work [18–
21], our proposal enjoys both efficiency and flexibility.

Acknowledgment

This work was supported by Shandong Special Project of Education Enrollment Exam-
ination (No.ZK1437B005), Chinese Ministry of Education, Humanities and Social Sciences
Research Project (No. 14YJCZH136), Shandong “Twelfth Five Year” Language Applica-
tion Research Project (No.3032), The First Characteristic of Elite Schools Construction
Project of Qingdao University (No.05091304), Innovative Teaching Laboratory Research
Project in 2014 of Qingdao University (No.10).

References

[1] M. Abdalla et al., “Searchable encryption revisited: Consistency properties, relation to
anonymous IBE, and extensions,” J. Cryptol., vol. 21, no. 3, pp. 350-391, Mar. 2008.

[2] M. Bellare, A. Boldyreva, and A. ONeill, “Deterministic and efficiently searchable en-
cryption,” in Advances in Cryptology. Santa Barbara, CA, USA: Springer-Verlag, 2007,
pp. 535-552.

[3] M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart, “Deterministic encryption: Def-
initional equivalences and constructions without random oracles,” in Advances in Cryp-

17

tology (Lecture Notes in Computer Science), vol. 5157. Berlin, Germany: Springer-
Verlag, Aug. 2008, pp. 360-378.

[4] A. Boldyreva, S. Fehr, and A. O’Neill, “On notions of security for deterministic encryp-
tion, and efficient constructions without random oracles,” in Advances in Cryptology.
Santa Barbara, CA, USA: Springer-Verlag, 2008, pp. 335-359.

[5] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public key encryption with
keyword search,” in Advances in Cryptology (Lecture Notes in Computer Science), vol.
3027. Berlin, Germany: Springer-Verlag, May 2004, pp. 506-522.

[6] Z. Brakerski and G. Segev, “Better security for deterministic publickey encryption: The
auxiliary-input setting,” J. Cryptol., vol. 27, no. 2, pp. 210-247, Apr. 2014.

[7] J. W. Byun, H. S. Rhee, H.-A. Park, and D. H. Lee, “Off-line keyword guessing attacks
on recent keyword search schemes over encrypted data,” in Secure Data Management
(Lecture Notes in Computer Science), vol. 4165. Berlin, Germany: Springer-Verlag, Sep.
2006, pp. 75-83.

[8] T. Fuhr and P. Paillier, “Decryptable searchable encryption,” in Provable Security (Lec-
ture Notes in Computer Science), vol. 4784. Berlin, Germany: Springer-Verlag, Nov.
2007, pp. 228-236.

[9] L. Ibraimi, S. Nikova, P. Hartel, and W. Jonker, “Public-key encryption with delegated
search,” in Applied Cryptography and Network Security. Berlin, Germany: Springer-
Verlag, Jun. 2011, pp. 532-549.

[10] I. R. Jeong, J. O. Kwon, D. Hong, and D. H. Lee, “Constructing PEKS schemes secure
against keyword guessing attacks is possible?” Comput. Commun., vol. 32, no. 2, pp.
394-396, Feb. 2009.

[11] K. Lauter, “The advantages of elliptic curve cryptography for wireless security,” IEEE
Trans. Wireless Commun., vol. 11, no. 1, pp. 62-67, Feb. 2004.

[12] Y. Lu, R. Zhang, and D. Lin, “Stronger security model for public-key encryption
with equality test,” in Pairing-Based Cryptography-Pairing (Lecture Notes in Computer
Science), vol. 7708. Berlin, Germany: Springer-Verlag, May 2012, pp. 65-82.

[13] B. Lynn. Pairing Based Cryptography-Benchmarks. [Online]. Available:
http://crypto.stanford.edu/pbc/times.html, Aug. 2014.

[14] S. Ma, Q. Huang, M. Zhang, and B. Yang, “Efficient Public Key Encryption With E-
quality Test Supporting Flexible Authorization,” IEEE Trans. on Information Forensics
and Security, vol. 10, no. 3, pp.458-470, 2015.

[15] S. Ma, M. Zhang, Q. Huang, and B. Yang, “Public key encryption with delegated
equality test in a multi-user setting,” Comput. J., 2015.

[16] M. Nishioka, “Perfect keyword privacy in PEKS systems,” in Provable Security. Berlin,
Germany: Springer-Verlag, Sep. 2012, pp. 175-192.

[17] H. S. Rhee, W. Susilo, and H.-J. Kim, “Secure searchable public key encryption scheme
against keyword guessing attacks,” IEICE Electron. Exp., vol. 6, no. 5, pp. 237-243,
2009.

18

[18] Q. Tang, “Public key encryption schemes supporting equality test with authorisation
of different granularity,” Int. J. Appl. Cryptography, vol. 2, no. 4, pp. 304-321, Jul. 2012.

[19] Q. Tang, “Public key encryption supporting plaintext equality test and user-specified
authorization,” Secur. Commun. Netw., vol. 5, no. 12, pp. 1351-1362, Dec. 2012.

[20] Q. Tang, “Towards public key encryption scheme supporting equality test with fine-
grained authorization,” in Proc. 16th Austral. Conf. Inf. Secur. Privacy, vol. 6812. Mel-
bourne, Australia, Jul. 2011, pp. 389-406.

[21] G. Yang, C. H. Tan, Q. Huang, and D. S.Wong, “Probabilistic public key encryption
with equality test,” in Topics in Cryptology, vol. 5985. Berlin, Germany: Springer-
Verlag, Mar. 2010, pp. 119-131.

[22] W.-C. Yau, S.-H. Heng, and B.-M. Goi, “Off-line keyword guessing attacks on re-
cent public key encryption with keyword search schemes,” in Autonomic and Trusted
Computing (Lecture Notes in Computer Science), vol. 5060. Berlin, Germany: Springer-
Verlag, Jun. 2008, pp. 100-105.

[23] M. Yoshitomi, T. Takagi, S. Kiyomoto, and T. Tanaka, “Efficient implementation of
the pairing on mobile phones using BREW,” IEICE Trans. Inf. Syst., vol. E91-D, no. 5,
pp.1330-1337, May 2008.

Xi-Jun Lin, corresponding author, is lecturer at the Department of Computer Science
and Technology, Ocean University of China. He has M.Sc. in Ocean University of China
and a Ph.D. in Chinese Academy of Sciences. His research interests include cryptography
and information security. email:linxj77@163.com.

Haipeng Qu is associate professor at the Department of Computer Science and Tech-
nology, Ocean University of China. He has M.Sc. in Ocean University of China and a
Ph.D. in Chinese Academy of Sciences. His research interests include information security
and sensor network.

Xiaoshuai Zhang is a Master Degree candidate at the Department of Computer Science
and Technology, Ocean University of China. His research interests include cryptography
and cyber security.

19

