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Abstract. Sprout is a new lightweight stream cipher proposed at FSE 2015. According to

its designers, Sprout can resist time-memory-data trade-off (TMDTO) attacks with small

internal state size. However, we find a weakness in the updating functions of Sprout and

propose a related-key chosen-IV distinguishing attacks on full Sprout. Under the related-key

setting, our attacks enable the adversary to detect non-randomness on full 320-round Sprout

with a practical complexity of Õ(24) and find collisions in 256 output bits of full Sprout with

a complexity of Õ(27).

Furthermore, when considering possible remedies, we find that only by modifying the up-

dating functions and output function seems unlikely to equip Sprout with better resistance

against this kind of distinguisher. Therefore, it is necessary for designers to give structural

modifications.

1 Introduction

In the modern society, the wide use of RFID tags and sensor networks has stimulated the need of

lightweight cryptographic primitives that require very limited resources (the area size on the chip,

memory, power consumption etc.) while still providing good security. During the past few years,

several lightweight block ciphers are proposed (eg. PRESENT [1], CLEFIA [2], LED [3], LBlock

[4], mCrypton [5] etc.) followed by enormous cryptanalysis results evaluating their secure margins

(such as [6,7,8,9,10] etc).

Besides block ciphers, many stream ciphers (such as Trivium [11], Grain-v1 [12], Grain-128a [13]

etc.) are also suitable for lightweight applications. Comparing with lightweight block ciphers, the

stream ciphers have advantages in providing higher throughput. However, there is a requirement

that the internal size of stream ciphers must be at least twice the security parameter in order to

resist the time-memory-data trade-off (TMDTO) attacks [14,15,16] aiming at the recovery of the

internal states. This limitation burdens the stream ciphers with a larger area size than lightweight

block ciphers and barricades the widespread of stream ciphers in lightweight applications.

However, recently at FSE 2015, Frederik and Vasily [17] proposed a new paradigm for light-

weight stream cipher design to resist TMDTO using shorter internal state which in turn breaks

the previous limitation in internal state size. To achieve this goal, the authors involves the secret

key not only in the initialization process but also in the key-stream generation phase. They also

claim that even the a internal state were to be recovered, it would not be likely for the adversary



to further retrieve the secret key bits with a complexity lower than exhaustive search. To support

their idea, they also specified an instance of this new stream cipher family called “Sprout”.

The Sprout stream cipher features a 80-bit secret key and a 80-bit internal state composed of a

40-bit NFSR and a 40-bit LFSR. As soon as its proposal, Sprout receives severe challenges. Firstly,

Maitra et al. cryptanalyzed Sprout and refuted many claims made in [17]. In their paper [18], they

proved that it is possible to recover all the secret key bits from around 850 key-stream bits, the

complete knowledge of NFSR and a partial knowledge of LFSR with a complexity of 254. Based on

their findings, they also launched a fault attack on Sprout requiring around 120 faults in random

locations. Then, Lallemand and Naya-Plasencia give a key recovery attack on full Sprout [19]. They

exploit the non-linear influence of the key bits on the updating functions and, evolving some divide-

and-conqure technique, manage to recover the whole 80-bit secret key wit a time complexity of

269.36 and very low data complexity [19]. They implement the attack on a toy version of Sprout

that conserves the main properties exploited in the attack.

The two previous cryptanalysis results on Sprout are both considering security under the single

key model aiming at recovering secret key bits. The complexities of their whole attacks are high

and beyond the reach of practical implementation. In this paper, we evaluate the secure margin

of Sprout under the related-key model. Instead of recovering secret key bits, we simply try to

detect non-randomness of key-stream bits generated by full Sprout. Comparing with those under

the single-key model, our attacks are far more practical and can verified easily using a PC within

seconds.

Our contribution. We find a weakness in the updating functions of Sprout. Based on our finding,

we manage to launch a practical related-key chosen-IV distinguishing attacks on full Sprout. Our

method can distinguish Sprout from random stream with Õ(24) key-IV pairs. We can also find

two key-IV pairs that collides at the first 256 output bits with a complexity Õ(27). Furthermore,

we prove that this kind of distinguishing attacks can still work even if the updating functions and

output function are changed. This finding suggests that the designers should revisit the structure

of Sprout rather than simply modifying small details.

Organization of the Paper. Section 2 provides the description of Sprout and some notations used

in this paper. Section 3 give our findings about Sprout. In Section 4, we describe the procedure

of our attack. We further prove the necessity of structural modification in Section 5. Finally, we

summarize our paper in Section 6.

2 Description of Sprout

The Sprout stream cipher generates keystream bits from 70 public IV bits, denoted by v0, · · · , v79,

and an 80 secret key bits, denoted by x0, · · · , x79. It consists of a 40-bit NFSR and a 40-bit LFSR,

denoted by N and L respectively. N and L are first initialized as follows:

N = (n0, · · · , n39) = (v0, · · · , v39),

L = (l0, · · · , l39) = (v40, · · · , v69, 1, · · · , 1, 0).

For t ≥ 0, the feedback function of LFSR is defined as:

lt+40 = lt + lt+5 + lt+15 + lt+20 + lt+25 + lt+34 (1)
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and that of NFSR is

nt+40 = k∗t + lt + c4t + nt + nt+13 + nt+19 + nt+35 + nt+39

+ nt+2nt+25 + nt+3nt+5 + nt+7nt+8 + nt+14nt+21 + nt+16nt+18

+ nt+22nt+24 + nt+26nt+32 + nt+33nt+36nt+37nt+38

+ nt+10nt+11nt+12 + nt+27nt+30nt+31.

(2)

where the key k∗t is assigned according to a round key function as follow:

k∗t =

{
xt 0 ≤ t ≤ 79

(xt mod 80) · (lt+9 + lt+21 + l37 + nt+9 + nt+20 + nt+29), t ≥ 80
(3)

and the counter bit c4t is the 4-th significant bit of the integer (t mod 80). The output function is

defined as

zt =
∑
j∈B

nt+j + lt+30 + h(t) (4)

where B = {1, 6, 15, 17, 23, 28, 34} and

h(t) = nt+4lt+6 + lt+8lt+10 + lt+32lt+17 + lt+19lt+23 + nt+4lt+32nt+38.

After l0, · · · , l39 and n0, · · · , n39 are settled, the Sprout state then runs 320 initialization rounds

not producing an output but feeding the output back into both LFSR and NFSR. So the actual

output bits are z320, z321, · · · We demonstrate the overall structure of Sprout in Figure 1. As can

be seen, the structure of Sprout resembles those of the Grain-x stream cipher family [20,13,12].

Figure 1. The overall structure of Sprout.

Before our descriptions, we give some notations used throughout this paper.

3



b We use small letters to represent 0-1 bits. More specifically, the 80 secret key bits are represented

by letter xi (i = 0, · · · , 79) and the 70 public IV bits are represented by letter vj (j = 0, · · · , 69).

b We denote the 0-1 vectors by bold letters such as k for the 80-bit key and v for 70-bit IV. We

also denote the internal states of NFSR and LFSR after round t as

Nt = (nt, · · · , nt+39)

Lt = (lt, · · · , lt+39).

b[i] We refer to the i-th (i starts from 0) bit of vector b as b[i]. For example, the i-th bit of secret

key k defined above, we have k[i] = xi (i = 0, · · · , 79).

Besides, for t ≥ 80, we specifically denote the value λt as

λt = lt+9 + lt+21 + l37 + nt+9 + nt+20 + nt+29.

The definition of λt is for the convenience of our interpretations in the following section.

3 The Main Observations on Sprout

Before interpreting our observations about Sprout, we further give a notation commonly used in the

remainder of this paper. the following definition. For any secret key k = (x0, · · · , x79) and public

IV v = (v0, · · · , v69), we denote corresponding k̂ and v̂ as follows:

k̂ = (x0 + 1, x1, · · · , x79) (5)

v̂ = (v0 + 1, v1, · · · , v69). (6)

We denote the intermediate state bits ni, li, zi as the bits deduced from (k,v) and denote n̂i, l̂i, ẑi
as their counterparts deduced from (k̂, v̂). Nt (Lt) and N̂t (L̂t) are defined in the same way.

Our main finding about Sprout can be summarized as Proposition 1.

Proposition 1. For any randomly chosen key-IV pair (k,v) and its corresponding (k̂, v̂), after 80t

Sprout rounds (t ≥ 1), we have

Pr{z80t = ẑ80t} = 2−1 + 2−t (7)

Proof. In the first 80 rounds, x0 only takes part in the updating of n40. We found that

n40 = (v0 + x0) + C = (v0 + x0 + 1 + 1) + C = n̂40

where C is irrelevant with v0 and x0. So we have

Pr{n40 = n̂40} = Pr{L1 = L̂1} = Pr{N1 = N̂1} = 1.

In the following 79 rounds, besides L1 and N1 only the rest 79 identical key bits are involved in

the updating process, so we have

Pr{Lj = L̂j} = Pr{Nj = N̂j} = 1.

4



for j = 1, · · · , 80 and (7) holds when t = 1.

Then, when updating n120 ( ˆn120), the bit k[0] (k̂[0]) will not be involved with probability

Pr{λ80 = λ̂80 = 0} = Pr{n120 = n̂120 = 0} = 2−1.

If we n120 = n̂120, we can also deduce that

Pr{L80+j = L̂80+j |n120 = n̂120} = Pr{N80+j = N̂80+j |n120 = n̂120} = 1.

for j = 1, · · · , 80 and (7) holds when t = 2.

More generally, for t > 1 and j = 1, · · · , 80, we have

Pr{L80(t−1)+j = L̂80(t−1)+j |
t−1∧
i=1

(n80i+40 = n̂80i+40)}

= Pr{N80(t−1)+j = N̂80(t−1)+j |
t−1∧
i=1

(n80i+40 = n̂80i+40)} = 1.

(8)

and

Pr{
t−1∧
j=1

(n80j+40 = n̂80j+40)} = Pr{
t−1∧
j=1

(λ80j = λ̂80j = 0)} = 2−(t−1). (9)

So we can deduce that

Pr{z80t = ẑ80t} = 2−1Pr{
t−1∧
j=1

(λ80j = λ̂80j = 0)}+ Pr{
t−1∧
j=1

(λ80j = λ̂80j = 0)} = 2−1 + 2−t

which is exactly (7). ut

With the proof of Proposition 1, we can deirectly deduce the following Corollary 1 which is the

basis of our known-key collision attack.

Corollary 1. For t ≥ 1, we have

Pr{
79∧
j=0

(z80t−j = ẑ80t−j)} ≥ 2−(t−1). (10)

Proof. It is obvious that (10) holds for t = 1 since Lj = L̂j and Nj = N̂j for j = 1, · · · , 80.

For t > 1, with (8), we can easily deduce that

Pr{
79∧
j=0

(z80t−j = ẑ80t−j)|
t−1∧
i=1

(n80i+40 = n̂80i+40)} = 1.

Adding the knowledge of (9), we have

Pr{
79∧
j=0

(z80t−j = ẑ80t−j)} = 2−80Pr{
t−1∧
j=1

(λ80j = λ̂80j = 0)}+ Pr{
t−1∧
j=1

(λ80j = λ̂80j = 0)}

> Pr{
t−1∧
j=1

(λ80j = λ̂80j = 0)} = 2−(t−1).
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and therefore we have proved (10). ut

4 Related-Key Chosen-IV Distinguishing Attack on Full Sprout

With Proposition 1, we can naturally conduct a related-key chosen-IV distinguishing attack on full

320-round Sprout stream cipher. With practical complexity, we can distinguish full Sprout from

random 0-1 stream. The procedure is as follows:

1. We randomly select m key-IV pairs (ki,vi) and compute their corresponding (k̂i, v̂i) (i =

1, · · · ,m) as (5)(6).

2. For all i = 1, · · · ,m, compute their first output bit of Sprout stream, denoted as zi320 and ẑi320.

Count the number of i’s satisfying zi320 = ẑi320 and denoted by ξ, which means

ξ := #{i|zi320 = ẑi320, i = 1, · · · ,m}.

According to Proposition 1, the Sprout output streams satisfy

lim
m→∞

ξ

m
=

1

2
+ (

1

2
)4 = 0.5625.

For random bit streams, the ratio ξ
m will approach 0.5 instead.

Since the bias for full 320 round Sprout is 2−4, the success probability is significant enough for

m ∼ Õ(24). For precise consideration, we set m = 220 and experimentally verified the correctness

of our attack. Some of the statistics are shown in Table 1.

Table 1. Experiment Verifications (m = 220)

Output ξ
m

z80 1

z160 0.749512

z240 0.635986

z320 0.563721

By utilizing Corollary 1, we can also detect non-randomness by launching a related-key chosen-

IV collision attack with practical complexity. For example, by testing Õ(27) key-IV pairs (k,v), we

can find one pair that collides with its corresponding (k̂, v̂) in the 256 output bits z320, · · · , z575.

We give a collision of such in Table 2.1

1 For k, the two words are represented as x63‖ · · · ‖x0, x79‖ · · · ‖x64. For v, the two words are represented as

v63‖ · · · ‖v0, v69‖ · · · ‖v64. Output bits, such as z320∼447, are represented as z383‖ · · · ‖z320, z447‖ · · · ‖z384
etc.
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Table 2. Collision at z320, · · · , z575

k 0xea6daa88c5cf3c5e, 0xf7d0

k̂ 0xea6daa88c5cf3c5f, 0xf7d0

v 0xaff0e857756369ff, 0x17

v̂ 0xaff0e857756369fe, 0x17

z320∼447 0x49e6c49522ba16e7, 0x4eb385fceb377844

z448∼575 0xa51d1fce4327928e, 0x1bf995f95e2f2a81

5 The Necessity of Structural Modifications

With the above findings, it is natural for us to consider the countermeasure to resist such a kind of

distinguisher. The simplest and most direct thought is modifying the updating functions of NFSR

and LFSR. The output function may be modified as well. However, we will illustrate in this section

that it is not likely for Sprout to resist this kind of distinguishing attacks only by modifying the

updating functions and the output function. It is necessary to consider structural modifications.

For t ≥ 0 and 0 ≤ i ≤ 39, we define vectors Nt\nt+i and Lt\lt+i as

Nt\nt+i = (nt, · · · , nt+i−1, nt+i+1, · · · , nt+39)

Lt\lt+i = (lt, · · · , lt+i−1, lt+i+1, · · · , lt+39).

According to the structure shown in Figure 1, with t < 320, we can present the output function in

a more general manner as

zt = nt · h1(Nt\nt,Lt\lt) + lt · h2(Nt\nt,Lt\lt) + ntlt · h3(Nt\nt,Lt\lt) + h4(Nt\nt,Lt\lt).

The updating functions of NFSR and LFSR can be represented respectively as follows:

nt+40 = (k∗t + nt · g1(Nt\nt) + lt + zt) + g2(Nt\nt), where g1 6≡ 0 (11)

lt+40 = (lt + zt) + f1(Lt\lt). (12)

As can be seen from the previous sections, the effectiveness of the distinguisher relies on the fact

that the differences ∆k∗0 = k[0]⊕ k̂[0] and ∆n0 = N[0]⊕ N̂[0] fail in affecting the newly generated

bits n40, l40 (∆n40 = ∆l40 = 0) which can be represented according to (11) (12) as follows

n40 = (k∗0 + n0 · g1 + l0 + z0) + g2

l40 = (l0 + z0) + f1

z0 = n0 · h1 + l0 · h2 + n0l0 · h3 + h4

where g1, g2 are functions of v1, · · · , v39, f1 is a function of v40, · · · , v69 and h1, h2, h3, h4 are

functions of v1, · · · , v69. Since g1 6= 0, we consider the updating functions and the output function

in the following conditions:

1. If h1 ≡ 0, this is the situation of Sprout. Even if h3 6≡ 0, we can set l0 = 0 by assigning

v[40] = v̂[40] = 0 and eliminate the term involving h3.
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2. If h1 6≡ 0 and h1 6≡ g1, we can select the v1, · · · , v69 to make h1 = 0 and g1 = 1 (about 267

values) and the attack can still work;

3. If h1 ≡ g1, then h1 only relies on v1, · · · , v39. We modify the v and v̂ as v[40] = v̂[40] = 0 to

enable l0 = l̂0 ≡ 0. Then we have an even more efficient distinguisher that for all secret key

k ∈ {0, 1}80, we have

z320(k,v) ≡ z320(k, v̂)

since the bit n0 has totally been eliminated from the updating functions.

Therefore, it is unlikely for Sprout to resist this kind of distinguishers only by modifying its updating

functions and output function. Structural modifications are necessary.

6 Conclusion

In this paper, we find a weakness in the design of newly proposed stream cipher Sprout. Based on

the weakness, we manage to launch a related-key chosen-IV attack on the full cipher with practical

complexity and 100% success probability. We also prove that the effectiveness of this distinguishing

attack relies more on the structural weakness of Sprout. It seems unlikely for Sprout to resist this

kind of distinguishers only by modifying its updating functions and output function. We appeal

that the designers should modify the overall structure of Sprout for its thorough resistance against

related-key chosen-IV distinguishing attacks.
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