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Abstract

A two-input function is a dual PRF if it is a PRF when keyed by either of its inputs. Dual
PRFs are assumed in the design and analysis of numerous primitives and protocols including
HMAC, AMAC, TLS 1.3 and MLS. But, not only do we not know whether particular functions
on which the assumption is made really are dual PRFs; we do not know if dual PRFs even
exist. What if the goal is impossible? This paper addresses this with a foundational treatment
of dual PRFs, giving constructions based on standard assumptions. This provides what we call
a generic validation of the dual PRF assumption. Our approach is to introduce and construct
symmetric PRFs, which imply dual PRFs and may be of independent interest. We give a
general construction of a symmetric PRF based on a function having a weak form of collision
resistance coupled with a leakage hardcore function, a strengthening of the usual notion of
hardcore functions we introduce. We instantiate this general construction in two ways to obtain
two specific symmetric and dual PRFs, the first assuming any collision-resistant hash function,
and the second assuming any one-way permutation. A construction based on any one-way
function evades us and is left as an intriguing open problem.
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1 Introduction

A function family is a dual PRF [6] if it is a PRF and also remains so when its key and input
are switched. This property was used as an assumption on the compression function in order to
prove security of two hash-function based PRFs, namely the widely-used HMAC [8] and the newer
AMAC [7]. Dual PRFs are also now being assumed in TLS 1.3 [22, 19] and other Internet security
protocols [15, 32, 28, 1, 18].

We have, however, no constructions of dual PRFs under standard assumptions, and thus little
idea how strong is the assumption, or if it is even valid. We address this with a foundational
treatment of dual PRFs, giving constructions based on standard assumptions. This is the first
theoretical evidence that dual PRFs exist, and provides what we call a generic validation of the dual
PRF assumption. Tools that we introduce and use for our construction include leakage hardcore
functions and symmetric PRFs.

PRFs. Let F : F.Keys× F.Inp→ F.Out be a function family taking a key fk ∈ F.Keys and an input
x ∈ F.Inp to (deterministically) return the output y = F(fk, x) ∈ F.Out. We recall that F is a
PRF [24] if an efficient adversary has negligible advantage in distinguishing whether its oracle is
F(fk, ·) or a random function, where fk is chosen at random from F.Keys. This well-known notion
has seen an enormous number of applications in both theoretical and applied cryptography.

Dual PRFs. Let S : S0×S1 → S.Out be a function family. Let Sswap : S1×S0 → S.Out be defined
by Sswap(a0, a1) = S(a1, a0). That is, the key for Sswap is the input for S and the input for Sswap is
the key for S. Both S and Sswap are legitimate function families and we can ask if they are PRFs.
We say that S is a dual PRF [6] if both S and Sswap are PRFs. That is (1) an oracle for S(a0, ·) is
indistinguishable from an oracle for a random function when a0 is chosen at random and, separately
but also, (2) an oracle for S(·, a1) is indistinguishable from an oracle for a random function when
a1 is chosen at random. The question we consider in this paper is, do dual PRFs exist, and, if so,
under what assumptions?

Context. Dual PRFs were introduced by Bellare [6] in the context of HMAC. Recall that HMAC [8]
is a cryptographic-hash-function-based PRF implemented in TLS and many other places. From the
proof perspective, the underlying primitive is the compression function h of the hash function, and
this is assumed in [6] to be a dual PRF in order to conclude PRF-security of HMAC. (In a little
more detail, one starts with a related and simpler design, NMAC [8], that is PRF-secure assuming
h is a PRF [6, 23, 3]. The dual PRF assumption on h arises in stepping from NMAC to HMAC [6].)

AMAC is a hash-function based PRF used in the widely deployed Ed25519 signature scheme [13],
and its analysis also assumes the compression function is a dual PRF [7]. And since then, the use of
dual PRFs has widened even further. Dual PRFs are now invoked in the design and analysis of many
Internet security protocols, including TLS 1.3 [22, 19], hybrid key-exchange [15, 32], post-quantum
versions of WireGuard [28] and Noise [1], and Message Layer Security (MLS) [18].

Generic validation. The assumption that a function h is a dual PRF could fail for two reasons.
One is generic, namely that nothing can be a dual PRF. Dual PRFs may simply not exist. The
second reason is specific, namely that, although some functions may be dual PRFs, the particular
h used in some particular application isn’t.

Generic failure can be ruled out by showing that the security goal is achievable under standard
assumptions. We call this generic validation. It has value because generic failure is not an idle fear.
It has happened for several (attractive) goals, for example virtual blackbox obfuscation [26, 5] and
commitment secure against selective opening [10] to name just a few.

Generic validation won’t show that a particular candidate practical construct satisfies the as-
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sumption. This needs dedicated validation, meaning either a dedicated proof or cryptanalysis. But
generic validation is the first step. In its absence, the goal may be just wishful thinking, and the
candidate construct doomed. In its presence, the candidate is at least in principle plausible, and
successful dedicated validation is a possibility. Generic validation is thus desirable for the security
goal underlying any new assumption.

For (standard) PRFs, we have strong generic validation: classical foundational results say that
PRFs exist assuming only that one-way functions exist. (OWFs imply PRGs [27] which imply
PRFs [24].) We also have constructions from many particular assumptions [30, 29, 4]. Dual PRFs,
in contrast, have at this point no generic validation. Despite their having been introduced ten
years ago [6], and despite their use as an assumption in supporting the security of the widely-used
HMAC [6], there has been no construction under any (standard or not) assumption. This is the
gap we fill.

Negative results. One’s first thought may be that every PRF S is also a dual PRF. It is easy
to see that this is not true. For example suppose S : {0, 1}k × {0, 1}k → {0, 1}k is a PRF with the
property that S(0k, a) = a for all a. This will not contradict PRF security of S because 0k has
negligible probability of being chosen as the key in the PRF game. However Sswap is clearly not a
PRF because Sswap(a, 0k) = S(0k, a) = a so an adversary can query its oracle at 0k and it will get
back the key a, using which it can easily violate PRF security.

Thus we need special constructions. The next natural question is whether known constructions
of PRFs are dual PRFs. But they are not. For example, take the classic GGM construction [24]
of a PRF from a PRG. We show in Section 3 that there is a choice of the PRG under which the
constructed PRF is not a dual PRF. Or take the Naor-Reingold PRF. We give in Section 3 a
direct attack violating dual PRF security. The Dodis-Yampolskiy PRF [21] is promising because
the formula adds the key and input, thereby seeming to give them symmetric roles, but security
requires that the input comes from a much smaller space than the key, and this precludes being a
symmetric PRF as per our definition. See Section 3 for more information.

Symmetric PRFs. Our approach to construct dual PRFs is based on the notion we introduce of
a symmetric PRF. Let S : S × S → S.Out be a function family whose keyspace and input space are
the same set, call it S. We say that S is symmetric if S(a0, a1) = S(a1, a0) for all a0, a1 ∈ S. That
is, S is unchanged if the order of its inputs is swapped. Then we make the following observation.
Suppose S is (1) A PRF, and (2) is symmetric. Then it is a dual PRF. This is easy to see because
the symmetry implies that Sswap = S, namely Sswap is in fact identical to S. So its PRF security
follows directly from the fact that S is a PRF. We will construct symmetric PRFs.

SPRF. In Section 5 we give a general construction of a symmetric (hence dual) PRF S : D×D →
{0, 1}k. It is defined in terms of three other functions E,H,R as follows:

Function family S(a0, a1)

r0 ← E(a0) ; r1 ← E(a1)
z0 ← H(a0) ; z1 ← H(a1)
y0 ← R(r0, z1) ; y1 ← R(r1, z0)
y ← y0⊕y1 ; Return y

Here R is a PRF with range {0, 1}k and D is some appropriate domain. The functions E,H can
be thought of roughly as “extract” and “hash,” and they will be instantiated in different ways.
The idea is that r0, z0 depend on the input a0 while r1, z1 depend on the input a1, and only in the
application of R are the inputs “mixed.” Two applications of R are used, the key being an r-value
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and the input the opposing z-value. Note that the use of this high-level structure with the xor
already guarantees that S is symmetric, regardless of the choices of R, E,H.

Now we need to find choices of E,H under which S is a PRF. Intuitively, a difficulty in using
the PRF security of R is that the construction does not use a key for R in a blackbox way. If we
think of r0 as the key, then z0 is related information that is needed to simulate an attacker against
S.

Very roughly, we want E to extract hardcore bits, and we want H to provide some kind of
collision resistance (CR). In the proof that S is a PRF we would first use the security of E to move
to a game in which r0 is random. Then we would use the PRF security of R to replace R(r0, ·) with
a random function R. Finally we would use the CR-security of H to say that the z1 values do not
repeat, which means in each xor the first component, and hence the whole, is random.

However getting this to work requires some care. We strive to make the conditions on E,H as
weak and general as possible so as to allow the maximum flexibility in instantiation and the ability
to instantiate under assumptions as weak as possible. In this spirit one choice we make is to allow
both E and H to be keyed. Both the key and the input would be derived from the single input
ai above. Now the main difficulty is that no standard notion of hardcore function security suffices
for E. Instead we introduce the notion of E being a leakage hardcore function for H. Roughly
—the formal definition is in Section 4— this means that E with a target key applied to a hidden
x0 continues to look random even given an oracle that can get the results of H at x0 under other,
different keys of its choice. For H, we ask that it be computationally almost universal (CAU) [6].
This is a weak form of collision resistance in which the adversary must produce its collision without
knowing the key. See Section 5 for the full construction and Theorem 5.2 for the formal claim and
proof of PRF security.

Instantiations. To obtain constructions of symmetric (and hence dual) PRFs under specific,
standard assumptions, we instantiate the primitives in our general SPRF construction under the
assumption in question. In Section 6 we give two corresponding results, one under one-way per-
mutations (OWPs) and the other under collision-resistant (CR) hash functions, meaning either of
these assumptions now yield symmetric and dual PRFs. The OWP instantiation uses the Blum-
Micali-Yao (BMY) PRG [16, 33] to instantiate the leakage hardcore function E and an iterated
OWP to instantiate H. The CR hash function instantiation uses CR hash to instantiate H and
uses a strong randomness extractor to instantiate E.

Discussion and open questions. The main open question that evades us is a construction of
a symmetric and dual PRF from any one-way function (OWF). The first question is whether one
can instantiate our SPRF construction under a OWF. If not, the next question is whether there is
some other, different construction.

We note that while our result about SPRF has striven to make as general and weak-as-possible
assumptions on the component E,H functions, we have not, in our instantiations, found a way to
take full advantage of this. The only way we have found to get a leakage hardcore function E for
H is to make H a keyless CR function, in which case Lemma 4.1 says that E being a standard
hardcore function for H suffices. But there may, potentially, exist choices of keyed, CAU functions
H for which a leakage hardcore function E exists, and this may then be a direction towards a
OWF-based dual PRF.

Subsequent work. The motivation for our new constructions of dual PRFs was primarily the-
oretical, namely to give a generic validation for the dual PRF assumption on the compression
function used in the proof of PRF security of HMAC [6]. Following the posting of our paper on the
Cryptology ePrint Archive [11], however, Aviram, Dowling, Komargodski, Paterson, Ronen and
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Yogev (ADKPRY) [2] revisit the problem of constructing dual PRFs with a more practical moti-
vation, namely the use of dual PRFs as key combiners in the TLS 1.3 key schedule. They extend
our general construction above to apply, at the end, an output function G, meaning their dual
PRF returns G(S(a0, a1)) where S(a0, a1) is defined via R, E,H as above. They then instantiate
R, E,H,G via HMAC to obtain an efficient dual PRF.

The assumption made in TLS 1.3 [22, 19] and the other above-mentioned Internet security
protocols [15, 32, 28, 1, 18] is that HMAC itself is a dual PRF. This assumption has been validated
by Backendal, Bellare, Günther and Scarlata (BBGS) [3] via a proof of dual PRF security of
HMAC based on certain assumptions on the underlying compression function h. We note that
these assumptions include that h is itself a dual PRF.

2 Basic definitions

Our treatment is concrete rather than asymptotic. For any security goal for a primitive, for example
PRF security of a function family, we define an advantage metric, in this case the PRF advantage
of an adversary against the function family, which is a number. There is no explicit security param-
eter; one way of thinking about it is to consider that the security parameter has been fixed. For a
function family to be a PRF typically means, informally, that “efficient” adversaries have “negligi-
ble” PRF advantage; in the absence of a security parameter, this is defined in quantitative, rather
than asymptotic, terms. Theorems are made formal by giving the concrete security of reductions.
Discussion surrounding theorems will clarify what they mean qualitatively. The concrete treatment
makes notation somewhat simpler, allows us to see the quantitative security of reductions, and is
more in keeping with the motivating setting of HMAC, where there are no asymptotics.

Notation and conventions. We let ε denote the empty string. If y is a string then |y| denotes
its length and y[i] denotes its i-th coordinate for 1 ≤ i ≤ |y|. If X is a finite set, we let x←$ X
denote picking an element of X uniformly at random and assigning it to x. Algorithms may be
randomized unless otherwise indicated. Running time is worst case. If A is an algorithm, we let
y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . . and assigning the output
to y. We let y←$ A(x1, . . .) be the result of picking r at random and letting y ← A(x1, . . . ; r). We
let [A(x1, . . .)] denote the set of all possible outputs of A when invoked with inputs x1, . . ..

We use the code based game playing framework of [12]. (See Fig. 1 for an example.) By Pr[G]
we denote the event that the execution of game G results in the game returning true. We adopt
the convention that the running time of an adversary refers to the worst-case execution time of
the game with the adversary, so that the time for the execution of oracles to compute replies to
oracle queries is included. This means that usually in reductions, adversary running time is roughly
maintained. In writing a game, we assume boolean variables (e.g. bad) are automatically initialized
to false.

Function families. A function family F : F.Keys×F.Inp→ F.Out is a 2-argument function taking
a key fk in the keyspace F.Keys and an input x in the input space F.Inp to return an output F(fk, x)
in the output space F.Out. For fk ∈ F.Keys we let Ffk : F.Inp→ F.Out be defined by Ffk(x) = F(fk, x)
for all x ∈ F.Inp. We say that F is a permutation family if F.Inp = F.Out and Ffk is a permutation
for every fk ∈ F.Keys. We say that F is keyless if F.Keys = {ε} consists only of the empty string. (It
is tempting in this case to just drop the key in the notation but it makes it harder to pattern-match
with the definitions and so, somewhat pedantically, we tend to explicitly write ε as the key when
dealing with keyless families.) The reason to consider such families is that some notions of security,
such as one-wayness, hold just as well for them. (For others, like PRF-security, keying is crucial.)
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Game Gprf
F (A)

fk←$ F.Keys

c←$ {0, 1}; c′←$AFn

Return (c = c′)

Fn(x)

If T [x] = ⊥ then

If (c = 1) then

T [x]← F(fk, x)

Else T [x]←$ F.Out

Return T [x]

Game Gow
F (A)

fk←$ F.Keys

x←$ F.Inp ; y ← F(fk, x)

x′←$A(fk, y)

Return (F(fk, x′) = y)

Game Gcau
H (A)

(x0, x1)←$A
hk←$ H.Keys

If (x0 = x1) then return false

Return (H(hk, x0) = H(hk, x1))

Game Gcr
H (A)

hk←$ H.Keys

(x0, x1)←$A(hk)

If (x0 = x1) then return false

Return (H(hk, x0) = H(hk, x1))

Figure 1: Games for defining PRF and OWF security of a function family F, CAU-
security of a function family H and HC being a hardcore function family for H.

Pseudo-random functions. The security of function family F as a PRF is defined via game
Gprf

F (A) of Fig. 1 associated to F and adversary A. Table T is assumed initially ⊥ everywhere.
The PRF advantage of A is

Advprf
F (A) = 2 Pr[Gprf

F (A)]− 1

= Pr[ Gprf
F (A) | c = 1 ]−

(
1− Pr[ Gprf

F (A) | c = 0 ]
)

. (1)

The first equation is the definition, while the second is an alternative representation known to be
equal by a standard conditioning argument.

One-way functions. The security of function family F as a OWF is defined via game Gow
F (A) of

Fig. 1 associated to F and adversary A. The point x′ returned by the latter is required to be in
F.Inp. The owf advantage of A is defined as Advow

F (A) = Pr[Gprf
F (A)]. In this case, F may or may

not be keyed. A one-way permutation (OWP) is simply a family of permutations that is a OWF.

Universal and CAU functions. Consider game Gcau
H (A) of Fig. 1 associated to H and adversary

A. The points x0, x1 returned by the latter are required to be in H.Inp. The CAU-advantage of A
is defined as Advcau

H (A) = Pr[Gcau
H (A)]. We say that H is universal if Advcau

H (A) = 1/|H.Out| for
all adversaries A, regardless of their computing time. Computational almost universal functions,
introduced by Bellare [6], are a relaxation of universal functions in which the advantage is treated
as a computational metric in the usual way and adversaries may be computationally bounded.

CR functions. The security of function family H as a collision-resistant (CR) function is defined
via game Gcr

H (A) of Fig. 1 associated to H and adversary A. The points x0, x1 returned by the
latter are required to be in H.Inp. The cr advantage of A is defined as Advcr

H (A) = Pr[Gcr
H (A)].
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Practical CR hash functions such as SHA-256 are keyless. A CR function family is CAU, giving an
easy way to get the latter.

Extractors. Let X,Y be random variables. We define SD(X,Y ), the statistical distance between
X and Y ; H∞(X), the min-entropy of X; and H∞(X|Y ), the min-entropy of X given Y , via:

SD(X,Y ) =
1

2

∑
z

|Pr[X = z]− Pr[Y = z]|

2−H∞(X) = max
x

Pr[X = x]

2−H∞(X|Y ) =
∑
y

Pr[Y = y] ·max
x

Pr[X = x |Y = y ] .

Recall, paraphrasing the definition above, that a function family Ext : {0, 1}s × {0, 1}n → {0, 1}m
is universal if for every distinct x1, x2 ∈ {0, 1}n we have Pr[Ext(sk, x1) = Ext(sk, x2)] = 2−m where
the probability is over sk←$ {0, 1}s. The following is a generalized version of the Leftover Hash
Lemma (LHL) [27, 20].

Lemma 2.1 Let Ext : {0, 1}s × {0, 1}n → {0, 1}m be a function family that is universal. Let X be
a random variable over {0, 1}n. Let Us, Um be random variables distributed uniformly over {0, 1}s
and {0, 1}m, respectively, and let Y be a random variable. Assume the three random variables
(X,Y ), Us, Um are independent. Then

SD((Us,Ext(Us, X), Y ), (Us, Um, Y )) ≤ 1

2

√
2m−H∞(X|Y ) . (2)

Symmetric PRFs. Let S : S0 × S1 → S.Out be a function family. Let Sswap : S1 × S0 → S.Out be
defined by Sswap(a0, a1) = S(a1, a0). We say that S is a dual PRF if both S and Sswap are PRFs.
We say that S is symmetric if S0 = S1 and S(a0, a1) = S(a1, a0) for every a0, a1 ∈ S1. If S is
symmetric then Sswap = S. Thus if S is symmetric and a PRF, it is automatically a dual PRF.
We will accordingly target the stronger notion of a symmetric PRF and obtain a dual PRF as a
consequence.

3 Dual PRF security of existing PRF constructions

If we seek dual PRFs, the first and natural question is whether existing constructions of PRFs
might happen to already be dual. Here we look at a few popular ones and show this is not the case.

GGM. Let F1 : {0, 1}k × {0, 1} → {0, 1}k be a PRF with input space {0, 1}. The GGM construc-
tion [24] builds from it the PRF GGM : {0, 1}k × {0, 1}k → {0, 1}k defined as follows.

Function family GGM(x, y)

For i = 1, . . . , k do x← F1(x, y[i])
Return x

Suppose F1 has the property that F1(0
k, 0) = F1(0

k, 1) = 0k. It could still be a PRF and in
particular if PRFs exist we can easily build a PRF F1 with this property. But then GGMswap(y, 0k) =
GGM(0k, y) = 0k so GGMswap is certainly not a PRF. Thus GGM is not a dual PRF. This shows
that the GGM construction does not in general yield a dual PRF.

Naor Reingold. Let G be prime-order group in which the DDH problem is hard, and let g ∈ G
be a generator of G. Let q = |G|. The Naor-Reingold PRF [30] NR : Zn+1

q ×{0, 1}n → G is defined
by
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Function family NR(a, x)

b← a[0] ·
∏n

i=1 a[i]x[i] mod q
y ← gb

Return y

Here the key a is a (n + 1)-vector over G and its i-th component is denoted a[i] ∈ G, with the
components indexed from 0 to n. Let 1G denote the identity element of G and let 0 = (0, . . . , 0) ∈
Gn+1 denote the (n + 1)-vector all of whose components equal 0. Then NRswap(x,0) = NR(0, x) =
g0 = 1G for all x ∈ {0, 1}n. Thus NRswap cannot be a PRF and NR is not a dual PRF. This is true
for all choices of G, g.

Some variants of NR [9] restrict the keyspace to (Z∗q)n+1, which would preclude the above attack
on NRswap. However, NRswap is still subject to attack by setting a to all 1s.

Dodis Yampolskiy. Let e : G×G→ GT be a non-degenerate bilinear map, where groups G,GT

have prime order p. Let g be a generator of G and S ⊆ Zp a set of size N . Then the Dodis
Yampolskiy PRF [21] DY : Zp × S → GT is defined by

Function family DY(a, x)

If (a + x) mod p = 0 then b← 1 else b← (a + x)−1 mod p
y ← e(g, g)b

Return y

This construction is promising because the roles of a and x are symmetric, so we may think we
can swap them and have a symmetric PRF. The difficulty is that for security the input x must
come from a much smaller space than the key, meaning N = |S| is much less than p. This is
because security is based on the q-BDHI assumption, and as per [21, Theorem 2], security of the
PRF requires q = N and security of q-BDHI for adversaries with running time more than N . In
particular, the construction is not shown secure when S = Zp. But to meet our definition of a
symmetric PRF from Section 2, the key-space and domain must be the same set. This asymmetry
in the key and input for DY, and how it precludes some applications, has been pointed out before
in several contexts, including in BC [9] for security against related-key attack.

Finally we note that if S = Zp then DY is symmetric. Hence, if it is a PRF then it is also a
dual PRF. So is it a PRF when S = Zp? To the best of our knowledge, this is an open question;
we are aware of neither a proof nor an attack.

Discussion. Although this should be obvious, we should nonetheless clarify that the above attacks
do not represent any bugs or critiques. These constructions were not designed or claimed to be dual
PRFs. But the first question one should ask in seeking dual PRFs is whether existing constructions
of PRFs happen to be dual PRFs. The above indicates that this is not the case and one must seek
new constructions.

4 Leakage hardcore functions

For our construction we will introduce an extension of the standard notion of a hardcore function.
We call it a leakage hardcore function. To understand it, it is useful to begin by recalling the usual
notion.

Hardcore functions. Suppose H is a function family. A hardcore function for H is a function
family HC : HC.Keys× (H.Keys× H.Inp)→ HC.Out, so that an input is a pair (hk, x) consisting of
a key for H and an input for H. We say that HC is a hardcore predicate for H if HC.Out = {0, 1}.
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Game Ghc
H,HC(A)

hk0←$ H.Keys

hck0←$ HC.Keys

x0←$ H.Inp

w0 ← H(hk0, x0)

s1 ← HC(hck0, (hk0, x0))

s0←$ HC.Out

c←$ {0, 1}
c′←$A(hk0,hck0, w0, sc)

Return (c = c′)

Game Glhc
H,HC(A)

hk0←$ H.Keys

hck0←$ HC.Keys

x0←$ H.Inp

s1 ← HC(hck0, (hk0, x0))

s0←$ HC.Out

c←$ {0, 1}
c′←$ALk(hk0,hck0, sc)

Return (c = c′)

Lk(hk)

w0 ← H(hk, x0)

Return w0

Figure 2: Games for defining security of HC as a standard and leakage hardcore function
for H.

(Some hardcore functions are unkeyed; in fact both the RSA and the DL function families have
unkeyed hardcore functions. On the other hand, the Goldreich-Levin hardcore predicate has a key
that is a randomly chosen string.) Recall that security considers an adversary given a key hk0

defining the function H(hk0, ·), a key hck0 for the hardcore function, and the result w ← H(hk0, x0)
of evaluating the function at x0←$ H.Inp. Now the adversary gets sc for a challenge bit c where
s1 = HC(hck0, (hk0, x0)) is the output of the hardcore function on x0 and s0 is a random string of
the same length. The adversary should have a hard time figuring out c. Formally the security of
HC as a hardcore function for H is defined via game Ghc

H,HC(A) of Fig. 2 associated to H,HC and

adversary A. The hcf advantage of A is defined as Advhc
H,HC(A) = 2 Pr[Ghc

H (A)]− 1.

Leakage hardcore functions. A leakage hardcore (LHC) function for H is again a function
family HC : HC.Keys × (H.Keys × H.Inp) → HC.Out, so that an input is a pair (hk, x) consisting
of a key for H and an input for H. Again we say that HC is a leakage hardcore predicate for H
if HC.Out = {0, 1}. The new element in a leakage hardcore function is that the adversary has an
oracle Lk via which it can obtain “leakage” about x0. This leakage has a very particular form
(although one could define LHC functions more generally, allowing other leakage as well), namely
the adversary can obtain the value of the same function family H on x0 under any key hk ∈ H.Keys
of its choice. Thus Lk takes input hk and returns H(hk, x0), the result of evaluating H on the given
key under the hidden input x0. The requirement is that figuring out the challenge bit remains
hard. The formalization uses game Glhc

H,HC(A) of Fig. 2 associated to H,HC and adversary A. The

lhc advantage of A is defined as Advlhc
H,HC(A) = 2 Pr[Glhc

H (A)]− 1. Since A could in particular call
its oracle on hk0, we omit giving it H(hk0, x0) as input as in the standard game.

Building leakage hardcore functions. Towards getting a leakage hardcore function for a
given function family H, one simple observation is that if H is keyless then a standard hardcore
function is leakage hardcore. This is captured by the following lemma.

Lemma 4.1 Suppose H is a keyless function family and HC : HC.Inp× ({ε}×H.Inp)→ HC.Out is a
function family. Let A be a lhc-adversary. Then the proof constructs a hc-adversary A0 such that

Advlhc
H,HC(A) ≤ Advhc

H,HC(A) .

10



Function family S(a0, a1)

(x0,hk0,hck0)← a0; (x1,hk1,hck1)← a1

r0 ← HC(hck0, (hk0, x0)) ; r1 ← HC(hck1, (hk1, x1))

w0 ← H(hk1, x0) ; w1 ← H(hk0, x1)

z0 ← (w0,hk0,hck0) ; z1 ← (w1,hk1,hck1)

y0 ← R(r0, z1) ; y1 ← R(r1, z0)

y ← y0 ∗ y1
Return y

Figure 3: Our SPRF construction.

Adversary A0 has about the same running time as adversary A.

Proof of of Lemma 4.1: Adversary A0 gets inputs hk0,hck0, w0, sc and runs A on inputs
hk0, hck0, sc. Since H.Keys = {ε}, the Lk oracle is intuitively useless to A. Formally, if a query hk
is made by A to Lk then it must be that hk = ε, and thus A1 can simulate the oracle, returning
w0 as the response. Eventually A outputs a bit c′, and A1 outputs the same bit.

Our construction of a symmetric PRF will need a CAU function family that has a leakage hardcore
function which outputs lots of bits. In Section 5 we will assume it. Later we will give various
constructions from various assumptions.

5 The SPRF construction

We provide our general SPRF construction of a symmetric, and hence dual, PRF.

Ingredients. Our construction of a symmetric PRF has the following ingredients:

• A CAU function family H : H.Keys× H.Inp→ H.Out

• A leakage hardcore function family HC : HC.Keys× (H.Keys× H.Inp)→ HC.Out for H.

• A PRF R : HC.Out×R.Inp→ R.Out such that H.Out×H.Keys×HC.Keys ⊆ R.Inp and the range
R.Out is a commutative group whose operation we denote ∗. Thus a key for R is an output of
HC while a triple consisting of an output of H, a key for H and a key for HC is a valid input for
R.

We refer to a triple (H,HC,R) of function families satisfying the above conditions as a suite. The
simplest case for the group is that R.Out = {0, 1}R.ol is the set of all strings of some length R.ol,
and y1 ∗ y2 = y1⊕y2, but the existence of efficient PRFs with algebraic ranges [30] motivates being
more general.

SPRF construction. Our construction associates to any suite (H,HC,R) as above the function
family S = SPRF[H,HC,R] defined as follows. It has S.Keys = S.Inp = H.Inp× H.Keys× HC.Keys,
meaning a key or input is a triple a = (x, hk, hck) consisting of a point x ∈ H.Inp, a key hk for
the CAU family H and a key hck for the hardcore function family HC. It has range the group
S.Out = R.Out. The function family is then defined as shown in Fig. 3.

Proposition 5.1 Let (H,HC,R) be a suite of function families. Let S = SPRF[H,HC,R] be the
function family associated to them as above. Then S is symmetric.

11



Games G0, G1

hk0←$ H.Keys

hck0←$ HC.Keys

x0←$ H.Inp

r0 ← HC(hck0, (hk0, x0)) // G0

r0←$ HC.Out // G1

c′←$AFn

Return (c′ = 1)

Fn((x1,hk1,hck1))

r1 ← HC(hck1, (hk1, x1))

w0 ← H(hk1, x0)

w1 ← H(hk0, x1)

z0 ← (w0,hk0,hck0)

z1 ← (w1,hk1,hck1)

y0 ← R(r0, z1)

y1 ← R(r1, z0)

y ← y0 ∗ y1
Return y

Games G2 , G3

hk0←$ H.Keys

hck0←$ HC.Keys

x0←$ H.Inp

c′←$AFn

Return (c′ = 1)

Fn((x1,hk1,hck1))

r1 ← HC(hck1, (hk1, x1))

w0 ← H(hk1, x0)

w1 ← H(hk0, x1)

z0 ← (w0,hk0,hck0)

z1 ← (w1,hk1,hck1)

y0←$ R.Out

If (R[z1] 6= ⊥) then

bad← true; y0 ← R[z1]

R[z1]← y0
y1 ← R(r1, z0)

y ← y0 ∗ y1

Game G4

c′←$AFn

Return (c′ = 1)

Fn((x1,hk1,hck1))

y←$ R.Out

Return y

Figure 4: Games for proof of Theorem 5.2.

Proof of Proposition 5.1: The first condition, that the keyspace and input space of S are
the same set, is met by definition. For a0, a1 in this common set we now need to show that
S(a0, a1) = S(a1, a0). This follows from the symmetry in the description of S and the assumption
that the group R.Out is commutative.

PRF security of SPRF. To show S is a dual PRF, it suffices by Proposition 5.1 to show that S
is a PRF. This is the claim of the following theorem.

Theorem 5.2 Let (H,HC,R) be a suite of function families. Let S = SPRF[H,HC,R] be the
(symmetric) function family associated to them as above. Let A be an adversary making at most q
queries to its Fn oracle. Then the proof constructs adversaries AH,AHC,AR such that

Advprf
S (A) ≤ Advlhc

H,HC(AHC) + Advprf
R (AR) +

q(q − 1)

2
·Advcau

H (AH) . (3)

The running times of the constructed adversaries are about the same as that of the original.

Proof of Theorem 5.2: Consider games G0–G4 of Fig. 4. In the code for games G0,G1, if a line
is followed by the name of a game, then that line is included only in the named game. Unmarked
lines are included in both games. Game G2 includes the boxed code while game G3 does not.

We assume wlog that the oracle queries of A are always all distinct. This means the “If T [x] = ⊥”

test in game Gprf
S (A) of Fig. 1 will always return true and so we can drop it. The c = 1 case of

Gprf
S (A) is thus captured by game G0. On the other hand, game G4 captures the c = 0 case of

game Gprf
S (A) except that it returns true iff the latter returns false. From Equation (1) we thus

have

Advprf
S (A) = Pr[ Gprf

S (A) | c = 1 ]−
(

1− Pr[ Gprf
S (A) | c = 0 ]

)
12



= Pr[G0]− Pr[G4]

= p0 + p1 + p2 + p3 , (4)

where for i ∈ {0, 1, 2, 3} we have let

pi = Pr[Gi]− Pr[Gi+1] .

We will build adversaries AH,AHC,AR such that

p0 ≤ Advlhc
H,HC(AHC) (5)

p1 ≤ Advprf
R (AR) (6)

p2 ≤
q(q − 1)

2
·Advcau

H (AH) . (7)

We will also observe that

p3 = 0 . (8)

Putting together Equations (4), (5), (6), (7) and (8) we get Equation (3). We now justify the above
claims.

In game G1, the key r0 for the first application of R is chosen at random rather than obtained as
HC(hck0, (hk0, x0)). Consider adversary AHC shown in Fig. 5. It is playing game Glhc

H,HC(AHC), so
it has input hk0,hck0, s. It runs A, simulating the latter’s Fn oracle via a procedure FnSim that
is shown in the code. The key point is that AHC invokes its Lk oracle to compute w0. Letting c be
the challenge bit in game Glhc

H,HC(AHC) we have

Advlhc
H,HC(AHC)

= Pr[ Advlhc
H,HC(AHC) | c = 1 ]−

(
1− Pr[ Advlhc

H,HC(AHC) | c = 0 ]
)

= Pr[G0]− Pr[G1] = p0

which establishes Equation (5).

Game G2 maintains a table R[·] that is initially everywhere ⊥. It optimistically picks y0 at random
and sets R[z1] to this value. However, in between these two steps, it first checks whether R[z1]
was already defined, and if so, sets the flag bad to true. This means that the setting of R[z1] to
the newly-chosen y0 was wrong. Accordingly (via the boxed code which is included in game G2) a
correction is made, resetting y0 back to R[z1], so that in this game, R[z1] is the result of a random
function on z1. Now consider adversary AR shown in Fig. 5. It has an Fn oracle, and runs A.
In the simulation of A’s oracle, it applies Fn to z1 to get y0. With c the challenge bit in game
Gprf

R (AR), we have

Advprf
R (AR) = Pr[ Gprf

R (AR) | c = 1 ]−
(

1− Pr[ Gprf
R (AR) | c = 0 ]

)
= Pr[G1]− Pr[G2] = p1

which establishes Equation (6).

In game G3, we may set bad, but, since the boxed code is absent, y0 is always a fresh, random
value. Games G2,G3 are identical until bad (differ only in code following the setting of bad to true)
so by the Fundamental Lemma of Game Playing [12],

p2 = Pr[G2]− Pr[G3] ≤ Pr[G3 sets bad] . (9)

13



Adversary ALk
HC(hk0,hck0, s)

r0 ← s

c′←$AFnSim

Return c′

FnSim((x1,hk1,hck1))

r1 ← HC(hck1, (hk1, x1))

w0 ← Lk(hk1)

w1 ← H(hk0, x1)

z0 ← (w0,hk0,hck0)

z1 ← (w1,hk1,hck1)

y0 ← R(r0, z1)

y1 ← R(r1, z0)

y ← y0 ∗ y1
Return y

Adversary AFn
R

hk0←$ H.Keys

hck0←$ HC.Keys

x0←$ H.Inp

c′←$AFnSim

Return c′

FnSim((x1,hk1,hck1))

r1 ← HC(hck1, (hk1, x1))

w0 ← H(hk1, x0)

w1 ← H(hk0, x1)

z0 ← (w0,hk0,hck0)

z1 ← (w1,hk1,hck1)

y0 ← Fn(z1)

y1 ← R(r1, z0)

y ← y0 ∗ y1
Return y

Adversary AH

i← 0

c′←$AFnSim

u1, u2←$ H.Inp

If (i ≤ 1) then

Return (u1, u2)

j1←$ {2, . . . , i}
j2←$ {1, . . . , j1 − 1}
Return (vj1 , vj2)

FnSim((x1,hk1,hck1))

i← i + 1

vi ← x1

y←$ R.Out

Return y

Figure 5: Adversaries for proof of Theorem 5.2.

We now design AH so that

Pr[G3 sets bad] ≤ q(q − 1)

2
·Advcau

H (AH) . (10)

Adversary AH is shown in Fig. 5. The integer i is the number of Fn queries made by A, and
we consider two cases. The first is if i ≤ 1. Then the probability that bad is set in G3 is zero,
so Equation (10) is true no matter what AH returns. So, as a default, we just have AH return a
pair (u1, u2) of random inputs. Now assume i ≥ 2. This permits the choices of j1, j2 as shown.
Now we note that for game G3 to set bad, a z1 value must repeat across queries. By assumption
the queries are distinct, so the only way this could happen is if there were queries j1 < j2 such
that the w1, hk1, hck1 values in these queries were the same but the x1 values were different. This
would be a collision for H(hk0, ·). Now we have to argue that such a collision can be found by a
CAU-adversary AH. This adversary does not know hk0, so how can it simulate A? In game G3,
the point y0 is always random. Since R.Out is a group, y is also random. So AH can simulate A’s
oracle by just returning random values. It does this, collecting all the x1 values in the queries.
In the end it picks at random two of these values and returns them. This justifies Equation (10),
which, combined with Equation (9), justifies Equation (7).

As we have just said, in game G3, the point y0 is always random and independent of anything else.
Since R.Out is a group, y is also random. This justifies Equation (8) and completes the proof.

6 Instantiations

We instantiate our SPRF construction to get symmetric and dual PRFs under specific assumptions.
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6.1 Construction from (keyless) CR hash functions

We give a construction from any keyless collision-resistant hash function. It itself will play the role
of H. The following lemma says that for suitable choices of parameters, an extractor (see Section 2
for background) will provide a leakage hardcore function.

Lemma 6.1 Let H : {ε} × {0, 1}n → {0, 1}r be a keyless function family. Let Ext : {0, 1}s ×
{0, 1}n → {0, 1}m be a function family that is universal. Let HC : {0, 1}s×({ε}×{0, 1}n)→ {0, 1}m
be defined by HC(hck, (ε, x)) = Ext(hck, x). Let A be a LHC-adversary. Then

Advlhc
H,HC(A) ≤ 2−(n+2−m−r)/2 . (11)

The result is information-theoretic, meaning it is true regardless of the running time of A.

Proof of of Lemma 6.1: Let random variable X be uniformly distributed over {0, 1}n. Let
Us, Um be random variables distributed uniformly over {0, 1}s and {0, 1}m, respectively, and let
Y = H(ε,X). The following chain of inequalities, which establishes the lemma, is justified below:

Advlhc
H,HC(A) ≤ SD((Us,Ext(Us, X), Y ), (Us, Um, Y )) (12)

≤ 1

2

√
2m−H∞(X|Y ) (13)

≤ 2−(n+2−m−r)/2 . (14)

Let X and Us represent, respectively, the randomly chosen x0 and hck in game Glhc
H,HC(A) of Fig. 2.

Then Ext(Us, X) represents s1 while Um represents s0. Since H is keyless, the only information
A can get from its Lk oracle is Y = H(ε,X). The statistical distance of Equation (12) then
represents the maximum possible advantage that A can obtain. The three random variables (X,Y ),
Us, Um are independent so we can apply Lemma 2.1 to get Equation (13). Since |Y | = r we have
H∞(X|Y ) ≥ n− r, which, together with some simplification, yields Equation (14).

Our symmetric and dual PRF Sm,r is parameterized by integers m, r. Given these, we proceed as
follows:

• We select n so that 2−(n+2−m−r)/2 is negligible. Specifically, set n = 3(m + r), so that
2−(n+2−m−r)/2 = 2−(m+r+1).

• Then we select a function family Ext : {0, 1}s × {0, 1}n → {0, 1}m that is universal.

• Next we select a keyless, collision-resistant function family H : {ε} × {0, 1}n → {0, 1}r. Since it
is collision resistant, it is certainly CAU.

• We let HC : {0, 1}s × ({ε} × {0, 1}n) → {0, 1}m be defined as in Lemma 6.1 based on H,Ext,
namely HC(hck, (ε, x)) = Ext(hck, x).

• Finally we select a PRF R : {0, 1}m × R.Inp → R.Out such that {0, 1}r × {ε} × {0, 1}s ⊆ R.Inp,
and also R.Out is a commutative group, for simplicity {0, 1}l for some l with the group operation
being bitwise xor. As we explain below, this can ultimately be built from a CR hash function,
making the latter the only assumption.

We now have a suite (H,HC,R) and can apply our SPRF transform. The resulting symmetric and
dual PRF is Sm,r : ({0, 1}n × {ε} × {0, 1}s)× ({0, 1}n × {ε} × {0, 1}s)→ {0, 1}l, defined as follows:
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Function family Sm,r(((x0, ε, sk0), (x1, ε, sk1))

r0 ← Ext(sk0, x0) ; r1 ← Ext(sk1, x1)
w0 ← H(ε, x0) ; w1 ← H(ε, x1)
z0 ← (w0, ε, sk0) ; z1 ← (w1, ε, sk1)
y0 ← R(r0, z1) ; y1 ← R(r1, z0)
y ← y0⊕y1
Return y

The following shows that Sm,r is a PRF. Since it is symmetric, it is thus also a dual PRF.

Theorem 6.2 Let m, r ≥ 1 be integers, and select n,Ext,H,HC,R as above to define the (sym-
metric) function family Sm,r also as above. Let A be an adversary. Then the proof constructs
adversaries A′H,AR such that

Advprf
Sm,r

(A) ≤ 2−(m+r+1) + Advprf
R (AR) + Advcr

H (A′H) . (15)

The running times of the constructed adversaries are about the same as that of the original.

The above Theorem assumes that H is CR and R is a a PRF. Our ultimate claim is to rely only on
the CR assumption. This is possible because (compressing) CR functions imply OWFs, which in
turn imply PRGs [27] which in turn imply PRFs [24]. (A direct construction of a PRG from a CR
function is also possible [17] but assumes regularity and exponential hardness of the CR function,
which we do not want to assume.) We do not give a formal result encompassing the final claim of
a dual PRF from just a CR function because, in our concrete-security framework, the statement
would need concrete bounds, and we do not know these bounds for the chain of just-mentioned
reductions from prior work. Instead we leave this final theoretical result (CR hash functions imply
dual PRFs) as understood asymptotically.

Proof of Theorem 6.2: Theorem 5.2 yields adversaries AH,AHC,AR such that

Advprf
Sm,r

(A) ≤ Advlhc
H,HC(AHC) + Advprf

R (AR) +
q(q − 1)

2
·Advcau

H (AH) ,

where q is the number of queries A makes to its Fn oracle. Lemma 6.1 together with the choice of
n made above imply that

Advlhc
H,HC(AHC) ≤ 2−(n+2−m−r)/2 = 2−(m+r+1) ,

explaining the first term in Equation (15). Now we perform a small optimization. Cau-Adversary
AH in the proof of Theorem 5.2 guessed a colliding pair of inputs for H, but our H is keyless and we
assume CR. A CR-adversary A′H can instead try all candidate pairs and return one (if any) that
works. So we can replace q(q− 1)/2 ·Advcau

H (AH) by Advcr
H (A′H). This justifies Equation (15).

Remark 6.3 While unkeyed hash functions assumed to be CR are a practical reality (SHA-256
is an example), their formal treatment involves some subtleties. In the asymptotic setting, they
cannot exist if we allow non-uniform adversaries. (Such an adversary could hardwire a collision for
each choice of the security parameter.) If adversaries are assumed uniform, however, this anomaly
goes away, and the assumption of the existence of such a family is meaningful. The concrete setting
is inherently non uniform [14] but results (like ours) are still meaningful because they give explicit
reductions (adversary constructions). Further elaboration can be found in [31].

16



6.2 Construction from any OWP

We show that the existence of one-way permutations (OWPs) implies the existence of dual PRFs.
We do this by instantiating our SPRF construction using an iterated OWP for H and a leakage
hardcore function obtained via the BMY PRG [16, 33].

Let F : {ε}×X → X be a keyless one-way family of permutations with domain and range a set
X. (The standard definition of a OWP is indeed keyless.) For i ≥ 1 let F(i) : {ε} ×X → X be the
i-th iterate of F, defined inductively by

F(0)(ε, x) = x and F(i)(ε, x) = F(ε,F(i−1)(ε, x)) for i ≥ 1 .

Our symmetric and dual PRF Sm is parameterized by an integer m. Let R : {0, 1}m×R.Inp→ R.Out
be a PRF such that X × {ε} × {ε} ⊆ R.Inp, and also R.Out is a commutative group, for simplicity
{0, 1}l for some l with the group operation being bitwise xor. This is not an extra assumption
because OWPs imply PRGs [16, 33, 25] which in turn imply PRFs [24]. Let H = F(m) be the
m-fold iterate of F. We assume a hardcore predicate HC1 : {ε}× ({ε}×H.Inp)→ {0, 1} for F. (Any
OWP can be modified to one that has a keyless hardcore predicate, making this assumption wlog.)
Let HC : {ε} × ({ε} × H.Inp)→ {0, 1}m be defined by

Function family HC(ε, (ε, x))

For i = 0, . . . ,m do
bi ← HC1(ε, (ε, x)); x← F(ε, x)

Return b1b2 . . . bm

Then HC is a hardcore function for H = F(m) assuming only one-wayness of F. Now we have two
observations. First, since F, and hence H, is keyless, and we know that HC is a hardcore function
for H, Lemma 4.1 implies that it is also a leakage hardcore function for H. Second, H is trivially
CAU, because it is a permutation family, so there simply do not exist collisions. We can thus
apply our SPRF transform to the suite (H,HC,R) to get a symmetric function family Sm that, by
Theorem 5.2, is a PRF.

The following says that Sm is a PRF. Since it is symmetric, it is also a dual PRF.

Theorem 6.4 Let m ≥ 1 be an integer, and select F,H,HC,R as above to define the (symmetric)
function family Sm also as above. Let A be an adversary. Then the proof constructs adversaries
AHC,AR such that

Advprf
Sm

(A) ≤ Advhc
H,HC(AHC) + Advprf

R (AR) . (16)

The running times of the constructed adversaries are about the same as that of the original.

As with Theorem 6.2, we stop short of a formal statement encompassing the final theoretical claim
that OWPs alone imply dual PRFs, due to the challenges of casting this in a concrete framework.
We have however already discussed above how it is obtained asymptotically. Briefly, OWPs imply
PRFs and, if OWPs exist, so do OWPs with keyless hardcore predicates as assumed above.

Proof of Theorem 6.4: Theorem 5.2 yields adversaries AH,AHC,AR such that

Advprf
Sm,r

(A) ≤ Advlhc
H,HC(AHC) + Advprf

R (AR) +
q(q − 1)

2
·Advcau

H (AH) ,

where q is the number of queries A makes to its Fn oracle. However Advcau
H (AH) = 0 since H is a

permutation, so this term disappears. Also since H is keyless, the lhc-advantage is the same as the
hc-advantage. This justifies Equation (16).
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6.3 Ending remarks

A construction of a dual PRF from any OWF eludes us, and we see this as an interesting open
question. Since PRFs are known to exist given a OWF [27, 24], Theorem 5.2 reduces the task of
building a dual PRF from a OWF to the task of building, from a OWF, a CAU function family H
with a leakage hardcore function HC with long-enough output. However at present we do not know
a way to do this.

One may ask what is the conclusion for HMAC. As discussed in Section 1, our intent was to
give a generic validation of the dual PRF assumption made in various places including on HMAC’s
compression function h in [6]. We have successfully done this through constructions of dual PRFs
under standard assumptions. We could, in principle, plug one of our dual PRFs in as the choice of h
for HMAC. Then the results of [6] combined with ours would imply PRF security of this alternative
HMAC, the assumptions being (only) the ones in our results. However, we are not aware of any
practical utility, or value, of this alternative HMAC.

Acknowledgments

We thank Stefano Tessaro for helpful comments on a previous draft. We thank the reviewers of the
Journal of Cryptology for their careful reading and their constructive comments and corrections.
We thank Kirthivaasan Puniamurthy for a typo correction.

References

[1] Y. Angel, B. Dowling, A. Hülsing, P. Schwabe, and F. J. Weber. Post quantum noise. In H. Yin,
A. Stavrou, C. Cremers, and E. Shi, editors, ACM CCS 2022, pages 97–109. ACM Press, Nov. 2022. 3,
6

[2] N. Aviram, B. Dowling, I. Komargodski, K. G. Paterson, E. Ronen, and E. Yogev. Practical (post-
quantum) key combiners from one-wayness and applications to TLS. Cryptology ePrint Archive, Report
2022/065, 2022. https://eprint.iacr.org/2022/065. 6

[3] M. Backendal, M. Bellare, F. Günther, and M. Scarlata. When messages are keys: Is HMAC a dual-
PRF? In H. Handschuh and A. Lysyanskaya, editors, CRYPTO 2023, Part III, volume 14083 of LNCS,
pages 661–693. Springer, Heidelberg, Aug. 2023. 3, 6

[4] A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In D. Pointcheval and
T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 719–737. Springer, Heidelberg,
Apr. 2012. 4

[5] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang. On the
(im)possibility of obfuscating programs. In J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 1–18. Springer, Heidelberg, Aug. 2001. 3

[6] M. Bellare. New proofs for NMAC and HMAC: Security without collision resistance. Journal of
Cryptology, 28(4):844–878, Oct. 2015. Preliminary version in C. Dwork, editor, CRYPTO 2006, volume
4117 of LNCS, pages 602–619, Springer, Heidelberg, Aug. 2006. 3, 4, 5, 7, 18

[7] M. Bellare, D. J. Bernstein, and S. Tessaro. Hash-function based PRFs: AMAC and its multi-user
security. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS,
pages 566–595. Springer, Heidelberg, May 2016. 3

[8] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication. In
N. Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 1–15. Springer, Heidelberg, Aug. 1996. 3

18

https://eprint.iacr.org/2022/065


[9] M. Bellare and D. Cash. Pseudorandom functions and permutations provably secure against related-
key attacks. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 666–684. Springer,
Heidelberg, Aug. 2010. 9

[10] M. Bellare, R. Dowsley, B. Waters, and S. Yilek. Standard security does not imply security against
selective-opening. In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 645–662. Springer, Heidelberg, Apr. 2012. 3

[11] M. Bellare and A. Lysyanskaya. Symmetric and dual PRFs from standard assumptions: A generic
validation of an HMAC assumption. Cryptology ePrint Archive, Report 2015/1198, 2015. https:

//eprint.iacr.org/2015/1198. 5

[12] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426.
Springer, Heidelberg, May / June 2006. 6, 13

[13] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-security signatures.
In B. Preneel and T. Takagi, editors, CHES 2011, volume 6917 of LNCS, pages 124–142. Springer,
Heidelberg, Sept. / Oct. 2011. 3

[14] D. J. Bernstein and T. Lange. Non-uniform cracks in the concrete: The power of free precomputation.
In K. Sako and P. Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 321–340.
Springer, Heidelberg, Dec. 2013. 16

[15] N. Bindel, J. Brendel, M. Fischlin, B. Goncalves, and D. Stebila. Hybrid key encapsulation mechanisms
and authenticated key exchange. In J. Ding and R. Steinwandt, editors, Post-Quantum Cryptography -
10th International Conference, PQCrypto 2019, pages 206–226. Springer, Heidelberg, 2019. 3, 6

[16] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudorandom bits.
SIAM Journal on Computing, 13(4):850–864, 1984. 5, 17

[17] A. Boldyreva and V. Kumar. A new pseudorandom generator from collision-resistant hash functions.
In O. Dunkelman, editor, CT-RSA 2012, volume 7178 of LNCS, pages 187–202. Springer, Heidelberg,
Feb. / Mar. 2012. 16

[18] C. Brzuska, E. Cornelissen, and K. Kohbrok. Security analysis of the MLS key derivation. In 2022
IEEE Symposium on Security and Privacy, pages 2535–2553. IEEE Computer Society Press, May 2022.
3, 6

[19] C. Brzuska, A. Delignat-Lavaud, C. Egger, C. Fournet, K. Kohbrok, and M. Kohlweiss. Key-schedule
security for the TLS 1.3 standard. In S. Agrawal and D. Lin, editors, ASIACRYPT 2022, Part I, volume
13791 of LNCS, pages 621–650. Springer, Heidelberg, Dec. 2022. 3, 6

[20] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. Cryptology ePrint Archive, Report 2003/235, 2003. https:

//eprint.iacr.org/2003/235. 8

[21] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys. In S. Vaudenay,
editor, PKC 2005, volume 3386 of LNCS, pages 416–431. Springer, Heidelberg, Jan. 2005. 4, 9

[22] B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis of the TLS 1.3 handshake
protocol. Journal of Cryptology, 34(4):37, Oct. 2021. 3, 6
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