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Abstract

The dual-execution protocol of Mohassel & Franklin (PKC 2006) is a highly efficient (each party
garbling only one circuit) 2PC protocol that achieves malicious security apart from leaking an arbitrary,
adversarially-chosen predicate about the honest party’s input. We present two practical and orthogonal
approaches to improve the security of the dual-execution technique.

First, we show how to greatly restrict the predicate that an adversary can learn in the protocol, to a
natural notion of “only computation leaks”-style leakage. Along the way, we identify a natural security
property of garbled circuits called property-enforcing that may be of independent interest.

Second, we address a complementary direction of reducing the probability that the leakage occurs.
We propose a new dual-execution protocol — with a very light cheating-detection phase and each party
garbling s+ 1 circuits — in which a cheating party learns a bit with probability only 2−s. Our concrete
measurements show approximately 35% reduction in communication for the AES circuit, compared to
the best combination of state of the art techniques for achieving the same security notion.

Combining the two results, we achieve a rich continuum of practical trade-offs between efficiency &
security, connecting the covert, dual-execution and full-malicious guarantees.

1 Introduction

Garbled circuits were initially conceived as a technique for secure computation protocols [Yao86]. Now they
are recognized as fundamental and useful to a wide range of cryptographic applications (see the survey in
[BHR12]). By themselves, garbled circuits are generally only useful for achieving semi-honest security. For
example, in the setting of two-party secure computation, malicious security costs approximately 40 times
more than semi-honest security using current techniques. The majority of this extra overhead is to mitigate
the effects of adversarially crafted garbled circuits.

In many circumstances, because of the high cost of achieving full malicious security, a slight security
relaxation may be acceptable, in return for performance improvements. This was the motivation for the
k-leaked model of Mohassel and Franklin [MF06], covert security of Aumann and Lindell [AL07], and others.
This work falls into the line of research aiming to get as much security as possible, while bringing the required
resources down to, ideally, that of the semi-honest model.

Dual execution. The dual-execution 2PC protocol of Mohassel & Franklin [MF06] is a natural starting
point in this line; it works as follows. The parties run two separate instances of Yao’s semi-honest protocol,
so that each party is the “sender” in one instance and “receiver” in the other. Each party evaluates a garbled
circuit to obtain their garbled output. Then the two parties run a (much simpler and smaller) fully-secure
“equality test” protocol to check whether their outputs match; each party inputs the garbled output they
computed along with output wire labels of the garbled circuit they generated. If the outputs don’t match,
then the parties abort.
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The protocol is not secure against malicious adversaries. An honest party executes an adversarially
crafted garbled circuit and then uses the garbled output in the equality-test sub-protocol. However, since
the equality test has only one bit of output, it can be shown that the dual-execution protocol leaks at most
one (adversarially chosen) bit about the honest party’s input.

1.1 Our Results

In this section we summarize our results. In Section 2, we present at the high level the main motivation,
intuition and insights of our constructions, as well as put all the pieces in the unifying perspective. In the sub-
sequent corresponding sections, we present formalizations, complete constructions, proofs and performance
analysis of each individual contribution.

Our theme is to explore and reduce the leakage allowed by the dual-execution protocol. We develop new
techniques for restricting the kinds of predicates that the adversary can learn, as well as for reducing the
probability that the adversary succeeds in his attack. Combining the two approaches results in a more efficient
continuum of cost-security trade-offs, connecting the covert, dual-execution and full-malicious guarantees.

Limiting Leakage Functions in Dual-Execution. The original security notion introduced in the dual-
execution paper [MF06], and the follow-up [HKE12] allows the adversary to learn an arbitrary predicate of
the player’s input. We show how to significanly limit this leakage to a conjunction of what we call “gate-
local” queries, i.e., boolean queries that only operate on the input wires to a single gate of the original circuit.
In our formalization, we follow the framework of [BHR12] and introduce the notion of Property-Enforcing
Garbling Schemes (PEGS), which may be of independent interest.

Reducing Leakage Probability in Dual-Execution. In a complementary research direction, using the
ε-CovIDA security notion of [MR13], we develop new techniques for reducing the probability of leakage in the
Dual-Execution framework. We improve on their construction by achieving 2−s security with only s circuits
for each party, similar to state-of-the-art results of Lindell [Lin13] and Huang, Katz and Evans [HKE13] from
the malicious setting. However, we replace the “cheating-recovery” computation of [Lin13] and repeated dual-
execution mechanism of [HKE13] with a much more lightweight procedure based on Private Set Intersection
(PSI) that provides significant gains in computation and bandwidth. We note that the protocol of [HKE13]
has a similar high-level idea to ours: each party sends (approximately) s circuits, then the parties run a
fully-secure processing phase. However, their protocol does not achieve ε-CovIDA security. In particular,
their protocol performs separate equality checks of wire labels for each output bit of the circuit. Hence, in
the event that an adversary successfully passes the circuit-check phase (with probability 2−s), she can learn
more than one bit.1

Our concrete measurements (see Figure 7) show that our techniques yield 35% reduction in overall com-
munication for the AES circuit (compared to protocol of [MR13] augmented with Lindell’s circuit reduction
techniques).

Putting it Together: A Richer and Cheaper Security/Efficiency Trade-offs. Restricting the
leakage functions a successful adversary may evaluate, and further limiting the probability of his success,
allows for a fine-grained practical trade-offs between security guarantees and efficiency of 2PC. This work can
be viewed as interpolating between the guarantees of covert, dual execution (i.e. the k-leaked model [MF06])
and fully-malicious models. Indeed, setting s = 2, our protocols correspond to an improved hybrid of covert
and k-leaked models and protocols. We guarantee probability of 1/2 of catching the cheating adversary, and
at the same time limit the leakage to an “only computation leaks” one-bit functions. On the opposite end
of the spectrum, setting s = 40 gives fully-secure 2PC, which, while having better latency (since parties
can work in parallel and due to a cheaper cheating recovery) than [Lin13], should be seen as less efficient
than [Lin13] as it sends 2s total circuits. However, in the extremely important (in practice) set of security
parameters/associated costs of s ∈ {1, . . . , 20}, our protocols provide the best “value”. Indeed, the guarantee
of covert 2PC can be unacceptable in such scenarios as a successful adversary may learn the entire input

1Concretely, suppose Alice passes the circuit-check phase with malicious circuits that compute an arbitrary (multi-bit)
function g(x, y). Then Alice will learn the length of the longest common prefix of g(x, y) and the correct output f(x, y).
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of the honest party with a non-negligible probability (e.g., the set of long-term keys) making [Lin13] less
suitable, while our protocols remain attractive. Further, as noted in Section 6, the parameter s may differ
between the two players to reflect different risk/trust assumptions.

1.2 Related Work

To the best of our knowledge, only a handful of prior work consider trading off security for better efficiency in
the context of fully-malicious 2PC. Mohassel and Franklin [MF06] introduced the notion of k-leaked model
and showed through their dual-execution protocol, that leaking a single bit of information can yield major
improvement in efficiency. The follow-up work of [HKE12] implemented/enhanced their protocol, confirming
the efficiency gains. The work of [IKO+11] also considers leakage of information with the goal of designing
more efficient non-interactive secure computation protocols. In fact, they also propose a construction where
the leakage function is restricted to disjunction of intermediate wire values in the computation. However,
what mainly separates our construction from theirs is that we focus on concrete efficiency and small constant
factors for fast implementation, while their work is focused on optimal asymptotic complexity, and results
in a construction with noticeably larger constant factors (to the best of our knowledge the exact constants
have not been worked out).

In a complementary direction, Aumann and Lindell [AL07] introduced the notion of covert security where
one trades the probability of deterring malicious behavior (i.e., making the probability non-negligible) for
more efficient 2PC. The recent work of [MR13] introduces the notion of ε-CovIDA security which can be seen
as a strengthening of both the covert and the k-leaked models for 2PC. We adopt their security definition
for reducing probability of leakage in dual execution.

Application specifics and hard performance requirements sometimes drive the trade-offs. In recent works
on practical private DB [JJK+13, PKV+14] some of the execution patterns are revealed to the adversary
as a trade-off for efficient sublinear execution time. Similarly, in the setting of searchable encryption (e.g.,
[CGKO06]), access patterns can often be leaked, yielding significant improvements in performance.

Besides allowing a bit of leakage, other methods have been suggested for relaxing standard security
guarantees: input-indistinguishable MPC [MPR06] that allows for better composability, one-sided/two-sided
non-simulatability (e.g. see [AIR01]), superpolynomial-time simulation [Pas03, PS04, CLP10], and security
against uniform adversaries [LPV09].

2 Overview of Our Approach and Constructions

Following our focus — reducing leakage power and probability in dual-execution, — we now go a little deeper
into each of our results and present their intuition and insights.

2.1 Limiting Leakage Functions in Dual-Execution

Garbled circuits & property-enforcement. It is clear that an adversary can learn an arbitrary predicate
in the dual-execution protocol, as long as the honest party evaluates any garbled circuit given by the other
party. To limit leakage in any way therefore requires two things:

1. The parties must perform some check of the garbled circuit they receive in the protocol. In the
extreme, parties could demand a zero-knowledge proof of correctness of the garbled circuit, but in that
case dual-execution is not even needed — the protocol would already be fully-secure in the malicious
setting. In our setting it makes sense to consider only lightweight checks on the garbled circuits. In
their treatment of the dual-execution protocol, Huang, Katz and Evans [HKE12] mention briefly that a
party could perform a “sanity check” of the garbled circuit it received. At the same time, most simple
checks, such as verifying the circuit topology and XOR gates placement, seem helpful, but bring little
guarantees and can exclude few leakage functions due to a simple attack we describe below.

2. Since the checks on the garbled circuit cannot guarantee complete correctness, we are still in a setting
involving possibly malicious garbled circuits. Hence, we need some way of reasoning about what
information is leaked when a honest party evaluates a malicious garbled circuit. This natural problem
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has not been investigated before, to the best of our knowledge. Previous work considered all-or-nothing
security from a garbled circuit (i.e., either it is correct or not).

We suspect that our conceptual approach regarding malicious garbled circuits may be useful in many
other settings, given how ubiquitous and powerful the garbled circuit technique has become throughout
cryptography.

To address these needs, we introduce a new security notion for garbled circuits called property-enforcing
garbling schemes (PEGS). Roughly speaking, in a property-enfocring garbling scheme an honest user can
locally verify that a garbled circuit F indeed computes a function with a certain property.

More formally, let prop be some property of (plain) circuits: size, topology, the circuit itself, etc. A
property-enforcing garbling scheme has additional procedures Prop and Extract. We require that, for all
possibly malicious garbled circuits F , if Extract(F ) → f (where f is a plain circuit) then (1) Prop(F ) =
prop(f) and (2) F produces garbled outputs in direct correspondence with the output of f . That is, the logic
of F is “explained by” a plain circuit f with prop(f) = Prop(F ). See Section 3.2 for the formal definitions.
In our actual definition, Extract requires extra information typically only available to the simulator, whereas
Prop can be computed publicly.

Suppose we use a property-enforcing garbling scheme in the dual-execution protocol. Both parties would
ensure that Prop(F ) = prop(f) for the garbled circuit F they receive and the objective function f that is
being computed. We show that with this modification, the adversary cannot learn arbitrary predicates of

the honest party’s input, but rather only predicates (roughly) of the form f̃(x)
?
= c where prop(f̃) = prop(f).

Achieving topology-enforcement. Intuitively, it seems that classical/standard garbling schemes already
give the receiver some guarantees along the lines of property-enforcement. An honest party seems to enforce
the circuit’s topology in how it evaluates the garbled circuit; hence, standard garbling schemes should be
topology-enforcing at the least. Interestingly, this is not quite the case.

Imagine a classical garbled circuit for a single gate. This garbled circuit consists of four ciphertexts:

EncA0,B0(C1) EncA0,B1(C2) EncA1,B0(C3) EncA1,B1(C4)

Here A0, A1, B0, B1 are wire labels of input wires. The garbler is supposed to choose C1, . . . , C4 from among
two possiblities (i.e., the two wire labels of the output wire). Yet there is no way for the evaluator to check
that these four ciphertexts encode only two values. It is trivial to let C1, . . . , C4 be distinct. In that case,
the garbled output of this circuit reveals the entire input. The behavior of this garbled circuit cannot be
“explained” by a single-gate circuit, so the scheme is not topology-enforcing.

Our intuition about standard/classical garbling schemes is thus not quite right, but it is not far off either.
These schemes do enforce topology in some sense, but they do not enforce the “information bandwidth” on
each wire. In an extreme example, one can make a garbled circuit with just one output wire, but whose
garbled output reveals the entire input (in the sense that all distinct inputs give different garbled outputs).

To achieve topology-enforcement in a more reasonable sense (i.e., the behavior of a malicious garbled
circuit can always be described by a boolean circuit of the advertised topology), it suffices to simply limit
the wire bandwidth to 2.2 In our construction, the sender includes a hash of the two wire labels on each
wire. When evaluating a garbled circuit, the receiver checks its wire labels at each step against these hashes.
We prove that this construction enforces the topology of the circuit, when the hash function is modeled as
a random oracle. Furthermore, the construction remains very practical.

Only computation leaks. “Only computation leaks” (OCL) [MR04] refers to a paradigm for defining
information leakage. In short, OCL means that an adversary cannot leak jointly on two internal values x and
y unless they are both computed on simultaneously at some point. Armed with topology-enforcing garbling
schemes, we are able to restrict leakage in the dual-execution protocol to OCL-style leakage at the level of
gates in the circuit.

More precisely, say that a query is gate-local if the query can be expressed as a function of the two input
wires to some single gate in the circuit. We are able to restrict the dual-execution adversary to learn only a
conjunction of gate-local queries (with respect to the function f being computed).

2Actually, we can only limit the wires to contain 0, 1, or an error, where all errors are guaranteed to propogate forward.
This turns out to be sufficient for the dual-execution protocol.
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The main idea in our construction is as follows. Dual-execution allows parties to (roughly) check the
equality of outputs of their garbled circuits. To keep a malicious circuit from “building up” a complicated
leakage expression (i.e., more complicated than a gate-local query), we try to apply dual execution to check
equality of all intermediate values in the computation. Hence, we modify the original circuit so that every
intermediate wire is secret shared, with each party receiving one of the shares. The parties then use the
dual-execution mechanism to ensure that their shares (hence, the intermediate values of the computation)
all agree.

Formalizing and proving this intuition requires some care, and we also need to extend the dual-execution
paradigm to cope with outputs known to only one of the parties.

Overall, our modifications to the dual-execution protocol — adding topology-enforcement to the garbling
scheme, and adding secret-sharing gadgets to the ciruict — remain quite practical. The resulting protocol
has very limited 1-bit leakage but is still much less expensive than fully malicious-secure 2PC. Exploring the
continuum of trade-offs between plain dual-execution and full security is an interesting direction, which we
address in combination with our next contribution.

2.2 Reducing Leakage Probability in Dual-Execution

As discussed earlier, an alternative to restricting the leakage function is to restrict the probability of oc-
currence of leakage. This is indeed the notion of ε-CovIDA Security recently introduced in [MR13] which
augments the notion of Covert Security of [AL07]. Essentially, this notion requires that if a player is trying
to cheat, the other players can catch him with probability 1− ε, but even if he is not caught (i.e., with prob-
ability ε) the cheater can only learn a single bit of extra information about the other players’ inputs, and the
correctness of the output is still guaranteed. In other words, the leakage of the single bit of information only
occurs with probability ε. The 2−s-CovIDA security is particularly attractive for low and medium values of
s (e.g. 1 ≤ s ≤ 20) since it provides a much stronger guarantee than covert 2PC, and is at the same time
more efficient than fully-malicious 2PC where s ≥ 40.

[MR13] presents two protocols that are secure in this model, requiring about 3s garbled circuits from
each player (a total of 6s) to obtain 2−s-CovIDA security. We observe that it is possible to combine their
dual-execution approach with the underlying ideas of Lindell [Lin13], in order to obtain a 2−s-CovIDA 2PC
protocol using only 2s garbled circuits, as opposed to 6s of [MR13]. The main observation that makes this
possible is that the garbler’s input consistency check of [SS13] can be extended to enforce equality of a
party’s input not only in the circuits he garbles but also in those garbled by his counterparts. However,
simply running [Lin13] as a dual execution still results in high overhead as it requires each party to execute
a relatively expensive ”cheating recovery” phase. We note that we are not aware of the above observation
having been published elsewhere, but we consider it a natural combination of ideas in [Lin13] and [MR13],
and the input-consistency check technique of [SS13].

Protocol Overview. We propose a new approach for designing a 2−s-CovIDA 2PC, wherein we replace
the cheating recovery phase with a private set intersection protocol on the outputs. The high level idea of
the protocol is as follows. We follow the insight of Lindell [Lin13] for achieving 2−s security with s circuits,
namely that cheater only can cheat if all of the evaluated circuits are incorrect, and not just the majority.
At the same time we avoid the expensive cheating-punishment setup and execution. So, our Alice and Bob
perform a simplified version of the protocol of Lindell [Lin13], where they skip all the steps associated with
the cheating recovery. Instead, Alice and Bob then switch roles (i.e. Bob becomes the garbler) and perform
the same steps à la dual execution. All the circuits generated by each party have the same output labels,
and we use the universal hashing circuit of [SS13] in both sets of circuits in order to enforce equality of a
player’s inputs not only in the circuits he generated but also those generated by his counterpart. There are
two points to consider when using the universal hashing approach in the two executions. First, we need to
use the same hash function in both sets of executions, and second, we need to commit both the garbler and
the evaluator to their inputs before generating the hash function (in standard 2PC, only the garbler needed
to commit to his input). To achieve the latter, the garbler commits to his garbled inputs, and parties execute
the oblivious transfer for the evaluator’s input before choosing the hash function at random.

Let’s denote the output labels for the s circuits created by Alice (resp. by Bob) by (out1A,0, out
1
A,1), . . . ,

(outmA,0, out
m
A,1) (resp. (out1B,0, out

1
B,1), . . . , (outmB,0, out

m
B,1)), where m is the number of output wires in the
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circuit. At the end of the two executions up to the opening phase, Alice and Bob each create initially
empty sets TA and TB . For every circuit evaluated by Alice, if the output is valid and equal to, say,
zA = (zA1 , . . . , z

A
m), Alice computes q = out1

A,zA1
⊕ out1

B,zA1
⊕ · · · ⊕ outmA,zAm

⊕ outmB,zAm
, and lets TA = TA ∪{q}.

Bob does a symmetric computation. Each party then adds enough dummy random values to its set until its
size is the same as the number of evaluated circuits (note that the expected size of TA will be s/2, the size
of the evaluation set).

The idea is to have the parties run a fully secure two-party private set intersection (PSI) protocol
computing TA ∩ TB . If the intersection is empty each party aborts, and otherwise, it uses the translation
table to compute the final output from the labels in the intersection (note that the intersection can at most
be of size one, since the circuits created by the honest party all evaluate to the same correct output). The
intuition is that as long as the malicious party did not cheat for just one of the garbled circuits he created,
the correct output of that circuit will be the unique value in TA ∩ TB .

There are several issues to resolve for this approach to work: if we perform the PSI before the open-
ing/checking phase, then the output of the PSI can leak extra information to a malicious party. For example,
this leakage can happen with probability one in case of a malicious party that garbles the same bad circuit
s times, while we want to reduce the probability of leakage to 2−s. If we perform the PSI after the opening
phase, on the other hand, we fix the above. But we encounter a different problem, that at the end of the
opening, the output labels are revealed, and this allows a malicious party to modify his input to the PSI and
hence trick the honest party to learn an incorrect output. We address this dilemma by using a two-stage
PSI (see Section 6.2) where in the first stage parties commit their input sets but learn nothing while in the
second stage, one of the parties learn the intersection. We then perform the first stage of the PSI before the
opening phase, while postponing the second stage until after the openings.

This almost works except that all existing PSI protocol with security against malicious adversaries only
let one of the parties learn the intersection. Simply sending the result to the other party is not secure since
a malicious party can lie and provide a wrong answer (note that since this step takes place after the opening
lying about the output is not hard). We solve this problem by having each party randomly permute its set
and commit to each element in the permuted set, before the two-stage PSI is invoked. Then, in the final stage
of exchanging the output, in order to prove to the other party that the output is correct (i.e. the output of
one of the evaluated circuits), each party also opens the commitment to the PSI input corresponding to the
intersection (note that these commitments where issued before the opening phase when it was not possible
to forge any output value not returned by the evaluated circuits).

The intuition behind 2−s-CovIDA security of the protocol is that with probability 1−2−s, at least one of
the outputs evaluated by the honest party is “the correct output” and hence included in his set. On the other
hand, before the opening phase, the malicious party only learns the output labels for the correct output and
hence can only commit to the correct output in the first stage of the PSI. Hence, with probability 1− 2−s,
either the honest party aborts, or the computed intersection of the two sets will be the correct output and
among those inputs that parties committed to, before the opening phase.

With probability 2−s, however, a malicious party can cheat in all the evaluated circuits and not get
caught. In this scenario, whether the output of the intersection is empty or not leaks one bit of additional
information to the malicious player. In either case, the correctness is guaranteed since the honest party
cannot be tricked into accepting an incorrect output.

3 Property-Enforcing Garbling Schemes

3.1 Garbling Schemes

Bellare, Hoang, and Rogaway [BHR12] introduce the notion of a garbling scheme as a cryptographic primitive.
We refer the reader to their work for a complete treatment and give a brief summary here.3 A garbling
scheme consists of the following algorithms: Garble takes a circuit f as input and outputs (F, e, d) where F
is a garbled circuit, e is encoding information, and d is decoding information. Encode takes an input x and
encoding information e and outputs a garbled input X. Eval takes a garbled circuit F and garbled input X

3Their definitions apply to any kind of garbling, but we specify the notation for circuit garbling.
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and outputs a garbled output Y . Finally, Decode takes a garbled output Y and decoding information d and
outputs a plain circuit-output (or an error ⊥).

3.2 Property Enforcing

We extend the definition of garbling schemes as follows. Let prop be a property of circuits; e.g., prop(f)
might output the topology of a circuit f .

A garbling scheme is prop-enforcing if it meets the following additional requirements:

• The property prop is extended to garbled circuits. That is, when F is a garbled circuit, anyone can
publicly compute a value Prop(F ).

• There is a deterministic procedure Extract that can “explain” any (possibly adversarially generated)
garbled circuit F as a plain circuit f ′ satisfying prop(f ′) = Prop(F ).

More formally, Extract(F, e) either outputs ⊥ or a pair (f ′, d′) where d′ is a simple mapping of values to
wire labels. We define the following security game:

Initialize:
b← {0, 1}

Finalize(b′):

return b
?
= b′

Query(F, e, x):

(f ′, d′)← Extract(F, e)
if b = 0 then

Y := Eval(F,Encode(e, x))
else ỹ := f ′(x)

Y := d′1,ỹ1‖ · · · ‖d
′
m,ỹm

return Y

Hence, the garbled output Y contains no more information about x than f ′(x), a circuit satisfying
property Prop(F ).

3.3 Construction: Enforcing Topology

Definition 3.1. A circuit-with-abort is a standard circuit with ternary values {0, 1,⊥} on the wires,
where ⊥ values cascade. That is, for every gate G in the circuit, G(⊥, ·) = G(·,⊥) = ⊥.

Throughout this section, we use the term “circuit” to refer to circuits with abort.

Construction For simplicity we make minimal additions to the “Garble2” construction of [BHR12]. Our
modification to achieve property-enforcement is rather simple. In Garble2, each wire i is associated with
two wire labels X0

i and X1
i . The garbled circuit then simply contains the values C[i, lsb(X0

i )] = H(X0
i )

and C[i, lsb(X1
i )] = H(X1

i ), where H is a random oracle. It is straightforward that these new values do not
compromise the standard security properties.

When evaluating a gate g, the evaluator obtains a visible wire label Xg, and now checks whether it is
valid. By valid, we mean that H(Xg) = C[g, b], where b is the select bit of wire label Xg. If this is not the
case, then the evaluator aborts.

The Extract procedure maintains the invariant that there exist at most two valid wire labels for each
wire. This is true for the input wires by definition. Provided that the invariant is true for the input wires of
a gate, there are at most 4 wire label combinations that Extract needs to try to extract the logic of this gate.
If there are more than 2 valid output wire labels for this gate, then we have obtained an explicit collision
under H: an event that happens only with negligible probability. Otherwise, the invariant holds at this gate
as well.

Note that in the unmodified Garble2 scheme, the number of possible wire labels can be made to grow
exponentially at each level of the circuit. Hence, the garbled values can encode more than 1 bit of information
on a wire. The key idea here is to limit the “bandwidth” of each wire to a single bit.

The full details of our construction are provided in Figure 1.

Theorem 3.2. The construction in Figure 1 is a secure garbling scheme (in random oracle model) satisfying
privacy, authenticity, obliviousness, and prop-enforcement, when prop denotes the topology of the circuit.

7



Garble(1k, f):

(n,m, q,A′, B′, G)← f
for i ∈ {1, . . . , n + q} do

t
$← {0, 1}; X0

i
$← {0, 1}k−1t; X1

i
$← {0, 1}k−1t

? C[i, t]← H(X0
i ); C[i, t]← H(X1

i )
for (g, i, j) ∈ {n + 1, . . . , n + q} × {0, 1} × {0, 1} do

a← A′(g); b← B′(g)

A← Xi
a; a← lsb(A); B ← Xj

b ; b← lsb(B)

T ← g‖a‖b; P [g, a, b]← ET
A,B(X

Gg(i,j)
g )

? F ← (n,m, q,A′, B′, P, C)
e← (X0

1 , X
1
1 , . . . , X

0
n, X

1
n)

d← (X0
n+q−m+1, X

1
n+q−m+1, . . . , X

0
n+q , X

1
n+q)

return (F, e, d)

Extract(F, e):

(n,m, q,A′, B′, P, C)← F
(X0

1 , X
1
1 , . . . , X

0
n, X

1
n)← e

for (g, i, j) ∈ {n + 1, . . . , n + q} × {0, 1} × {0, 1} do
a← A′(g); b← B′(g)

skip loop iteration if Xi
a or Xj

b undefined

A← Xi
a; a← lsb(A); B ← Xj

b ; b← lsb(B)

X̃ ← DT
A,B(P [g, a, b]); x← lsb(X̃)

if C[g, x] = H(X̃) then:
if Xx

g already defined then return ⊥
Xx

g ← X̃; Gg(a, b)← x
else Gg(a, b)← ⊥

d′ ← (X0
n+q−m+1, X

1
n+q−m+1, . . . , X

0
n+q , X

1
n+q)

f ′ ← (n,m, q,A′, B′, G)
return (f ′, d′)

Encode(e, x):

(X0
1 , X

1
1 , . . . , X

0
n, X

1
n)← e

x1 · · ·xn ← x
X ← (Xx1

1 , . . . , Xxn
n )

Decode(d, Y ):

(Y1, . . . , Ym)← Y
(Y 0

1 , Y 1
1 , . . . , Y 0

m, Y 1
m)← d

for i ∈ {1, . . . ,m} do:
if Yi = Y 0

i then yi ← 0
else if Yi = Y 1

i then yi ← 1
else return ⊥

return y ← y1 · · · ym

Eval(F,X):

? (n,m, q,A′, B′, P, C)← F
(X1, . . . , Xn)← X
for g ← n + 1 to n + q do:

a← A′(g), b← B′(g)
A← Xa; a← lsb(A)
B ← Xb; b← lsb(B)
T ← g‖a‖b
Xg ← DT

A,B(P [g, a, b])

? if H(Xg) 6= C[g, lsb(Xg)]:
? return ⊥

return (Xn+q−m+1, . . . , Xn+q)

Figure 1: Topology-enforcing garbling scheme construction. H denotes a random oracle, and E denotes a
dual-key cipher, following [BHR12]. “?” denotes differences from the Garble2 construction of [BHR12] (the
entire Extract procedure is new).

Proof. We focus on the proof of prop-enforcement. First, observe that Extract can output ⊥ with only
negligible probability, since it only outputs ⊥ when it explicitly finds a collision under the random oracle
H. But, as we will argue, the two branches of the security game are identical except for the possibility of
Extract outputting ⊥.

Extract works by identifying at most 2 “valid” wire labels X0
g , X

1
g for each wire g. For input wires, these

valid wire labels are given as the encoding information e. For a gate g with input wires i & j, Extract
produces a gate with logic Gg such that evaluating the corresponding gate in F with wire labels Xa

g , X
b
g

yields X
Gg(a,b)
g (or ⊥ if Gg(a, b) = ⊥). Hence it follows by induction that the output of Eval(F,Encode(e, x))

is exactly characterized by the choice of wire labels f ′(x).

4 Applications to Dual Execution

In this section, we write a functionality as f(xA, xB) = (yA, yB , yAB) where yA, yB , yAB denote outputs for
Alice only, Bob only, and both parties, respectively. We must augment the existing dual-execution protocol
and proofs of [MF06, HKE12] to account for functionalities that give different inputs to the two parties.

L-leaked model. In the L-leaked model for computing function f , where L = (LA,LB), Alice provides
input xA and Bob provides input xB to the functionality. The functionality then computes (yA, yB , yAB)←
f(xA, xB). Let (yA, yAB) denote Alice’s potential output and let (yB , yAB) denote Bob’s potential output..

The functionality delivers the corrupt party’s potential output. If Alice is corrupt, then the adversary
supplies a leakage function L ∈ LA to the functionality. If Bob is corrupt, the adversary supplies a leakage
function L ∈ LB . The functionality evaluates ` = L(xA, xB). If ` = 0 then the functionality delivers ⊥
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to the honest party; otherwise waits for instruction from the adversary before delivering the honest party’s
potential output.

Dual execution protocol. Given a functionality f , we let f(·, x) and f(x, ·) denote residual circuits with
one input hard-coded. We assume that for all possible inputs x we have prop(f(x, ·)) = prop(f(0n, ·)), and
prop(f(·, x)) = prop(f(·, 0n)).

Given a functionality f a garbling scheme G we define the dual execution protocol DualExf [G] as follows:

1. Alice has input xA and Bob has input xB . Alice does (FA, eA, dA) ← Garble(f(xA, ·)). Bob similarly
does (FB , eB , dB)← Garble(f(·, xB)).

2. Alice commits to FA, Bob commits to FB (if the garbling scheme is adaptively secure then the garbled
circuits can be sent in the clear here).

3. Using instances of OT, Alice acts as sender with inputs eA and Bob acts as receiver with input xB .
Bob receives garbled input XB . Likewise, the parties use OT for Alice to obtain XA.

4. The parties open their commitments to the garbled circuits. Alice aborts if Prop(FB) 6= prop(f(·, 0n)).
Similarly Bob aborts if Prop(FA) 6= prop(f(0n, ·)).

5. Alice does (YA, YB , YAB) = Eval(FB , XA). Bob also computes values (YA, YB , YAB). If either party
obtains ⊥ from executing Eval, then it continues below using randomly chosen values for these garbled
outputs (YA, YB , YAB).

6. Alice can decode YA and YAB to obtain plain outputs yA and yAB . She can use dA to compute ỸA, ỸAB ,
which are garbled output encodings of yA and yAB according to dA. She sends C = ỸA‖YB‖YAB‖ỸAB
to the equality test functionality.

7. Similarly, Bob can decode YB and YAB to obtain plain outputs yB and yAB . He computes ỸB and
ỸAB , garbled output encodings of these values according to dB . He sends C = YA‖ỸB‖ỸAB‖YAB to
the equality test functionality.

8. If the equality test returns false, then the parties abort; otherwise Alice outputs (yA, yAB) and Bob
outputs (yB , yAB).

Leakage functions. Let f(xA, xB) = (yA, yB , yAB) be a 2-party functionality as above. Define:

LAf,f ′,ỹ(xA, xB) =

{
1 if f ′(xB) = (ỹ, yB , yAB), where (yA, yB , yAB)← f(xA, xB)

0 otherwise

LBf,f ′,ỹ(xA, xB) =

{
1 if f ′(xA) = (yA, ỹ, yAB), where (yA, yB , yAB)← f(xA, xB)

0 otherwise

Then define Lfprop = ((Lfprop)
A, (Lfprop)

B), where:

(Lfprop)
A = {LAf,f ′,ỹ | prop(f ′) = prop(f(0n, ·)) and ỹ ∈ {0, 1}∗}

(Lfprop)
B = {LBf,f ′,ỹ | prop(f ′) = prop(f(·, 0n)) and ỹ ∈ {0, 1}∗}

Intuitively, the Lfprop-leaked model allows the adversary to choose a circuit f ′ such that prop(f ′) has the
“expected value” and learn whether f ′, when evaluated on the honest party’s input, equals f(xA, xB). In
addition, for the output of f ′ that is not revealed to the honest party, the adversary can check that this
output of f ′ is any fixed value of the adversary’s choice.

Recall that f ′ may be a circuit with abort. In the case that f ′ aborts, these leakage functions will always
return 0 (since the main equality condition will not hold).
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Security. In Appendix A we prove the following:

Theorem 4.1. The dual-execution protocol DualExf [G] is secure in the Lfprop-leaked model when Gsatisfies
prop-enforcing, authenticity, and privacy/obliviousness.

We point out that our simulator chooses f ′ before seeing the output of the functionality, and can choose
only ỹ after seeing the output. Hence, one could slightly strengthen the definition of the Lfprop-leaked model.
For simplicity, we choose not to.

5 Achieving “Only Computation Leaks” with Dual Execution

Micali & Reyzin [MR04] proposed a model of leakage, one of whose axioms was that “computation, and
only computation, leaks information” (“only computation leaks”, or OCL, for short). One can think of
decomposing a large computation into smaller “atomic” steps. Each step does not use all of the information
in the system. The OCL axiom restricts us to leakage that is a function of the information used in a single
atomic step. If two values are never used in the same step, then OCL leakage precludes (directly) leaking a
joint function of those two values.

In a circuit model, the smallest “atomic” steps are gates. Hence, we consider leakage on the information
available to a single gate (i.e., its two input wire values). By extension, it is natural to consider leaking
on the information available to several gates, but only separately and not jointly. Only when two wires are
inputs to a common gate can the leakage be a joint function of those two wires’ values.

We formalize this kind of leakage as follows:

Gate-local queries. Let f be a circuit. We say that a leakage query L(xA, xB) is gate-local if there exists
a gate g in f such that L(xA, xB) can be expressed as a function of the input wires of g in the computation

of f(xA, xB). We define L
f
ocl to be the set of conjunctions of gate-local queries; that is:

L
f
ocl = {L = L1 ∧ · · · ∧ Lk | each of L1, . . . , Lk is gate-local for f}

Circuit transformation. Let f be a circuit and define f̂ as follows: For each gate g in f , we add input
bits rg,A for Alice and rg,B for Bob. We add output bits sg,A for Alice only and sg,B for Bob only. We then
perform the following transformation for each gate:

gα

β
γ

becomes gα

β

rg,B

rg,A
sg,A

sg,B

⊕⊕
⊕

γ

Intuitively, we additively secret share the output of g into shares sg,A and sg,B , so that each party learns
one share. Then the shares are re-assembled to again form the output of g that is used elsewhere in the
circuit.

In Appendix B we prove the following:

Theorem 5.1. Let prop be a property that includes the circuit topology and let f , f̂ be as above. We define

Π to be a protocol for f in the f̂ -hybrid, Lf̂prop-leaked model. In Π, parties simply send their inputs along with

random values for {rg,A, rg,B}g to the ideal f̂ . Then Π is a secure realization of f in the L
f
ocl-leaked model.

More concretely, if we would like to compute f restricting adversaries to L
f
ocl leakage, then we need to

simply run the dual execution protocol on f̂ with a topology-enforcing garbling scheme.
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Generalizations. One can also define “only computation leaks” at a higher level than individual gates.
Indeed, this is more in line with most work on OCL, which does not consider circuit computations. Also,
doing so leads to efficiency improvements in our protocols and transformations.

Consider partitioning a circuit into well-defined components. Then a component-level leakage query is
one that can be written as a function of the inputs to a single component. Finally, let L denote the set of
all conjunctions of component-level functions.

Then our results of the previous section can be easily applied to yield a protocol that is secure in the
L-leaked model.

We sketch the important differences:

• One would need a garbling scheme which enforces only the topology connecting of components, but
need not enforce anything about the internals of each component. Our (gate-)topology-enforcing
construction of Section 3.3 adds two hashes to each wire. To preserve topology of components, one
need only add these hashes to the wires connecting different components. Concretely, this may result
in a significantly smaller overhead than gate-topology-enforcement.

• Recall our transformation from a circuit f to a circuit f̂ . It replaces each gate g with some gadget of
4 gates. However, the construction and proof go through verbatim with respect to components, if one
interprets our diagram to let g be a larger component, each line to represent a bundle of wires, and the
XOR gates to be string-XOR gates.

Concretely, instead of adding 3 XOR gates for each gate, we add 3 XOR gates for each wire connecting
different components. Similarly, the number of additional inputs/outputs is related to the number of
“component-connecting wires”, not the total size of the circuit.

6 Reducing the Probability of Leakage in Dual Execution

In Section 2.2 we gave a high level overview of our ε-CovIDA protocol. Here, we describe the protocol in
detail, and evaluate its asymptotic and concrete efficiency. We start with a brief review of the two sub-
protocols we use, i.e., committing-OTs and two-stage PSI. (For completeness, we provide a formal definition
of CovIDA security in Appendix C.)

6.1 Committing-OTs

Oblivious Transfer (OT) protocol implements securely the following functionality; A sender inputs two
tuples [K0

1 ,K
0
2 , . . . ,K

0
s ], [K1

1 ,K
1
2 , . . . ,K

1
s ] and a receiver inputs a bit b. Then, the receiver learns the tuple

[Kb
1,K

b
2, . . . ,K

b
s ].

A stronger variant of OT, called committing-OT, is one in which the sender is also committed to his
inputs, meaning, the sender cannot claim in retrospect that his inputs were different than the ones he
entered to the OT in the beginning. In other words, if the sender is asked to show what was his inputs
[K0

1 ,K
0
2 , . . . ,K

0
s ], [K1

1 ,K
1
2 , . . . ,K

1
s ], he cannot answer with different inputs without being caught.

For simplicity, from now on we abstract out the details of the committing-OT and just work with the
following notation: We denote by COT1(b) the message sent by the receiver to the sender (where b is the
receiver’s input bit) and similarly use COT2([K0

1 ,K
0
2 , . . . ,K

0
s ] , [K1

1 ,K
1
2 , . . . ,K

1
s ], COT1(b)) to denote the

message sent by the sender to the receiver. When we say that the sender decommits his input, we refer to
the operation in which he reveals [K0

1 ,K
0
2 , . . . ,K

0
s ], [K1

1 ,K
1
2 , . . . ,K

1
s ] and proves that these are the correct

inputs he had used in the protocol.
Committing-OTs can be realized in several ways, and even be efficiently extended for specific imple-

mentations (see [MR13]). Throughout this work we will assume that the cost of committing-OT is Ø(s)
exponentiations. (The exact constant can be computed as done in [Lin13], but we prefer stating our effi-
ciency claims for general committing-OT constructions.)

6.2 Two-Stage Private Set Intersection

In standard two-party private set intersection (PSI), player Pi holds his input set Si and the goal is for one
or both parties to learn the intersection S1 ∩ S2.
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The two-stage variant of PSI, which we denote by the functionality F2PSI , is split the protocol to two
stages in order to emulate a commitment on the inputs before revealing the result (we will use this property
in our constructions). I.e., in the first stage, players submit their input sets and learn nothing, and in the
second stage, one of the parties ask for the output and obtains the result. The reason we formalize the
functionality with only one party receiving the output is that all of the realizations we are aware of are this
form. In our constructions we need both parties to learn the intersection, thus we address this issue directly
as part of our 2PC constructions. We define the functionality F2PSI in Figure 6.2.

First Stage

Inputs: P1 inputs S1 and P2 inputs S2 (both of size l).

Outputs: Both players receive Inputs Accepted.

Second Stage

Inputs: P2 inputs Reveal.

Outputs: P1 obtains (S1 ∩ S2).

Figure 2: F2PSI .

Realizing two-stage PSI. There are several two-round, fully-simulatable PSI with security against ma-
licious adversaries in the literature (e.g. see [JL10, DKT10], both in the random oracle model). These
protocols do not automatically realize F2PSI but can be modified at little cost to do so. In particular, two
properties that are shared by these constructions are that (1) only one party learns the intersection (denoted
by P1), and (2) P1 does not learn any information before receiving the second (and last) message of the
protocol from P2.

Given a fully-simulatable PSI that has these two properties, all we need in order to realize the F2PSI is to
execute the protocol until the step in which P2 is supposed to send his last message. Instead of sending the
last message, we modify the protocol so that P2 only sends a commitment on that message. The commitment
in use should be equivocal and extractable. (Such a commitment can be constructed in the random oracle
model, using H(m, r), or in the standard model, e.g., [Lin11].) This completes the first stage. When P2

wants to reveal the intersection (i.e. the second stage), he decommits his last message and P1 completes
the protocol. The intuition is that the simulation for the two-stage PSI is done by calling the original PSI
simulators and replacing the last message with a commitment to it. Note that after the commitment to the
last message is sent, both players cannot change their inputs (obviously, P2 cannot decommit to a different
message, and P1 cannot change his inputs since otherwise the original PSI would be insecure). We defer a
more formal treatment to the full version of the paper.

Using the above transformation on the protocol of [DKT10], for instance, yields an efficient two-stage
PSI that requires only a linear number (in the number of sets) of public key operations by each party.

6.3 The Protocol

A detailed description of the protocol is in Figures 3 and 4. In Appendix D we prove the following theorem:

Theorem 6.1. Assume that the committing-OT, the PSI protocol, the commitment, and the garbling scheme
are secure. Then, the protocol from Figures 3 and 4 is a 2−s+1-CovIDA secure realization of f .

Input-consistency check. The consistency of the players’ inputs is handled using the technique of [SS13],
where a universal hash function (UH) is evaluated on the input of each player, and the players verify that
the outputs of this function are the same in all circuits. A player’s input is padded with a short random
string r in order to increase its entropy and by that, reduce the amount of information that can be learnt
about the input from the output of the UH. Let l be the input length and s be a security parameter. [SS13]
shows a matrix of dimensions s× (l+ 2s+ log s) that can be used as a UH, where the evaluation consists of
multiplying this matrix with the input vector (and getting a vector of length s).
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In our protocol we require an additional property from this matrix: Given a matrix M and an output
vector v, we require that for any input vector vi, it is easy to find a vector vr such that M × (vi‖vr)T = vT .
Interestingly, we propose a solution meeting this property that is simpler and more efficient than the solution
of [SS13]. In particular, we generate a random matrix in {0, 1}s×l and concatenate it with the identity matrix
of size s, resulting in matrix of dimensions s × (l + s). Evaluation consists of multiplying this matrix with
the input vector which is the l bits of real input and s random bits. The construction is a UH for reasons
identical to the construction of [SS13], and knowing the output of UH reveals nothing about the real input
since the output vector will be uniformly random (give the s random bits).

Alice’s input: xA ∈ {0, 1}`. Bob’s input: xB ∈ {0, 1}`.
Common input: Alice and Bob agree on the description of a circuit C, where C(xA, xB) = f(xA, xB), and a
collision resistance hash function H : {0, 1}∗ → {0, 1}`. Let Commit(·) be an extractable and equivocal commitment.
s is a statistical security parameter that represents the bound on the cheating probability. L is a computational
security parameter, so, for example, each key label is L-bits long. s′ is a statistical security parameter associated
with the input-consistency matrix.. Let `′ = `+m, and m′ = m+ 2s′.
Output: Both players learn an m-bit string f(xA, xB).

Below, we describe the protocol for the case where Alice is the garbler and Bob is the evaluator. But the protocol
is symmetric and each step is performed simultaneously in the other direction as well (where Bob is the garbler and
Alice is the evaluator) before moving to the next step. In what follows, we slightly abuse the notations we introduced
for a garbling scheme. In particular, we feed input/output labels as inputs to the Garble algorithm while in previous
section, they were the output of Garble. This is compatible with all existing instantiations.

Garbler’s input preparation.

1. Alice chooses s PRF seeds sdA1 , . . . , sd
A
s , and commits on them using Commit(sdA1 ), . . . ,Commit(sdAs ). All the

randomness Alice will use for generating the ith garbled circuit and its input labels will be derived from sdAi .

2. Alice chooses rA ∈R {0, 1}t, r′A ∈R {0, 1}m and sets x′A = xA‖rA‖r′A. She will be using x′A as her input to the
circuits instead of xA. We denote the jth bit of x′A by x′A,j .

3. Alice chooses inA,i,j
b , inB,i,j

b ∈R {0, 1}L for b ∈ {0, 1}, 1 ≤ i ≤ s and 1 ≤ j ≤ `′. inA,i,j
b would be the b-key for

Alice’s jth input wire in the ith garbled circuit. (inB,i,j
b is defined similarly with respect to Bob.) Using the

garbling schemes notation we have eiA = (inA,i,1
0 , inA,i,1

1 , . . . , inA,i,`′

0 , inA,i,`′

1 , inB,i,1
0 , inB,i,1

1 , . . . , inB,i,`′

0 , inB,i,`′

1 ).

4. Alice sends Commit(H(inA,i,1

x′
A,1
‖ · · · ‖inA,i,l′

x′
A,l′

)) for 1 ≤ i ≤ s, i.e. commitments to encoding of her inputs.

Oblivious transfer for evaluator’s input.

1. Alice and Bob engage in `′ OTs, where in the jth OT, Bob sends qj = COT1(x′B,j) and Alice answers with

COT2([inB,1,j
0 , . . . , inB,s,j

0 ], [inB,1,j
1 , . . . , inB,s,j

1 ], qj)

Circuit Preparation.

1. Alice and Bob jointly choose matrices MA,MB ∈R {0, 1}s
′×`′ , and concatenate each with a s′ × s′ identity

matrix to obtain M ′A,M
′
B respectively. Let C′(x′A, x

′
B) = (C(xA, xB)⊕ r′A ⊕ r′B ,M ′A · x′A,M ′B · x′B).

2. Alice chooses m′ random label pairs and sets dA = (outA,1
0 , outA,1

1 ) . . . (outA,m′

0 , outA,m′

1 ).

3. For 1 ≤ i ≤ s, Alice computes GCA
i ← Garble(C′, eiA, dA). Note that unlike standard garbling, here the input

and output labels are fixed and fed as input to the garbling algorithm, and note that the same output label is
used for all s circuits.

4. Alice computes the output decoding table GDecA =
{

[i,H(outA,i
0 ), H(outA,i

1 )]
}m′

i=1
. (Note that this is different

from dA and the same table is used for all garbled circuits.)

5. Alice sends garbled circuits GCA
1 , . . . ,GC

A
s and the output decoding table GDecA.

(Protocol description continues in Figure 4.)

Figure 3: 2−s-CovIDA 2PC via PSI
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Continued

Challenge Generation.

1. Alice chooses α
(A)
1 , α

(A)
2 ∈R {0, 1}s. Similarly, Bob chooses α

(B)
1 , α

(B)
2 ∈R {0, 1}s

2. Alice sends Commit(α
(A)
1 ) and Bob sends Commit(α

(B)
2 ).

3. Alice sends α
(A)
2 and Bob sends α

(B)
1 .

4. Both players decommit their commitments and set α1 = α
(A)
1 ⊕ α(B)

1 and α2 = α
(A)
2 ⊕ α(B)

2 . If one of those
values is all zeros, or all one, they go back to step 1.

5. We define the evaluation set EA such that i ∈ EA if and only if ith bit of α1 is one (Similarly, EB would be
generated using α2).

Garbled Circuit Evaluation.

1. Alice sends inA,i,j

x′
A,j

for i ∈ EA and 1 ≤ j ≤ `′, and decommits Commit(H(inA,i,1

x′
A,1
‖ · · · ‖inA,i,l′

x′
A,l′

)).

2. For i ∈ EA, Bob evaluates GCA
i and gets the garbled output ZA

i . Let zAi be the actual output resulted from
decoding ZA

i using GDecA. If any of the decoded bits is ⊥, Bob sets zAi to ⊥m′ .

Committing to PSI input sets.

1. For all i ∈ EA, if zAi 6= ⊥m′ , Bob parses zAi = zAi,1 · · · zAi,m′ . He then computes qi =
(
(outA,1

zAi,1
⊕ outB,1

zAi,1
)⊕ · · · ⊕

(outA,m′

zA
i,m′
⊕ outB,m′

zA
i,m′

)
)
. If zAi = ⊥m′ , on the other hand, Bob sets qi to be a random (L+m′)-bit value.

If qi ∈ TB , he modifies qi to be a random (L+m′)-bit value. He adds qi to TB .

2. Alice and Bob call the first stage of F2PSI with their inputs TA and TB .

3. For all i ∈ EA, Alice commits to qi using Commit(·) and sends these commitments in a random order. (Bob
does not need to follow this step.)

Opening.

1. Alice decommits sdAi for all i /∈ EA. She also reveals her OT inputs corresponding to the opened circuits (the
OTs for Bob to learn his input labels).

2. Bob aborts if any of the following occurs:

• ∃i ∈ EA such that Alice’s garbled inputs are invalid.

• ∃i /∈ EA in which GCA
i 6= Garble(CA, sd

A
i , dA), or, the OTs are not consistent with GCA

i . (Note that once
some sdAi is revealed, Bob can compute dA by himself.)

• Some of the output labels (out1A,0, out
1
A,1) . . . (outm

′
A,0, out

m′
A,1) are not properly constructed or not consistent

with GDecA.

Output generation.

1. Alice and Bob perform the second stage of F2PSI in order for Alice to learn I = TA ∩ TB .

2. Alice aborts if I = ∅. Else, she decommits Commit(qi) corresponding to the single element in I (note that
the intersection is guaranteed to be of size at most one). Bob aborts if the decommitment is invalid or if the
decommitted value is not in set TB .

3. Recall that the computation output is masked by r′A and r′B . Alice sends r′A and the labels that correspond
to r′A in GCB

i for i = min(EA). (These labels are used for authenticating r′A.) If the labels are invalid, Bob
aborts.

4. Both players unmask the output from qi and output the result.

Figure 4: 2−s-CovIDA 2PC via PSI
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Efficiency comparison. We briefly discuss efficiency of our protocol compared to the best alternative
using existing techniques. As discussed earlier, the best alternative (referred to as Best Previous in the
Figures), is to use the construction of [MR13] augmented with the technique of [Lin13] in order to reduce the
number of garbled circuits. In particular, in this potential solution (not published elsewhere) we run the 2PC
once in each direction (with careful incorporation of the input consistency checks), run the cheating-recovery
computation at the end of each, and perform a maliciously secure equality-check to compare the two outputs.

We initially focus on the overhead in computation and communication beyond what is required to garble
s circuits by each party and the associated input-consistency checks, since those are part of any know
solution for ε-CovIDA secure 2PC. Ignoring the cost of the equality-check, the overhead here consists of the
two cheating-recovery executions. This is included in Figure 5 based on the numbers given in [Lin13] (see
Section 3.1).

The overhead of our protocol is simply to run a two-stage PSI with malicious security where both parties
learn the output, and where each set is of expected size s/2. This requires s commitments and a standard
maliciously secure PSI for which we use the concrete numbers given in [DKT10]. As can be seen in the table,
the overhead in our construction is significantly smaller, i.e. a factor of 10 or more in communication, and
a factor of 200 or more in computation even for input size of 1. This improvement further increases as the
input size grows since the overhead in our construction is independent of the input while the cost of cheating
recovery linearly grows with it.

While this improvement is only in the “overhead” cost, we stress that the overhead can be a significant
portion of the overall cost in small circuits. In Figure 6 we compare the overall costs for the two approaches
where to estimate the cost of garbling and the input-consistency checks needed for dual-execution, we use
the numbers given in [Lin13] (multiplied by two) both for our solution and the “Best Previous” (with the
exception that we assume the use of 2-row reduction techniques when measuring communication for both,
but this only effects the bandwidth column). We note that this comparison is on the conservative side, and
should be seen as the minimum improvement since more optimized options are available in the RO model
(specially for input-consistency checks), and those would highlight our improvements in the overhead even
further.

Finally, for concreteness, in Figure 7 we look at the overall cost of the two protocols for the AES circuit
with 6800 non-XOR gates, input size ` = 128, the symmetric ciphertext size n = 128 and group element size
220 bits. We have combined the communication cost into one column named bandwidth which is in bits.
We express all costs in terms of parameter s. For instance, our new protocol reduces overall bandwidth by
35% and the number of exponentiations by more than 50%.

Different deterrence value for each player. Besides its better efficiency, an additional advantage of
our new protocol is that each party has a separate challenge generation and uses a different challenge set Ei,
to determine which circuits to check and which ones to evaluate. This allows us to use a different number
of garbled circuits for each party and as a result achieve different deterrence factors for each. This variant
can be quite useful in practice where different participants in a protocol may have different reputations (to
protect) or different levels of tolerance for risk. One can take these real-world factors into account when
adjusting the deterrence factor for each party.
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A Proof of Theorem 4.1

Proof. We sketch only the proof for corrupt Alice: the other case is symmetric.
In the real execution, Alice provides FA as input to the commitment scheme, eA as input to the OTs

(as sender), and xA as input to the OTs (as receiver). Finally, Alice sends a string to the equality test
functionality. An honest Bob provides honest FB and causes Alice to receive honest garbled input XB .
An honest Bob further calculates his input to the equality test as a direct result of the garbled output
Eval(FB ,Encode(eA, xB)).

We consider a sequence of hybrid interactions, taking hybrid H0 to be the real execution of the protocol:
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H1: The simulator extracts (f ′, d′) ← Extract(FA, eA), and Bob’s effective garbled output is instead com-
puted as Encode(d′, f ′(xB)).4 This hybrid is indistinguishable by the prop-enforcing guarantee of G.
Provided that Bob does not abort in step 4, we also have prop(f ′) = prop(f(0n, ·)).

H2: We focus on the values YB and YAB that Alice provides to the equality test. These values are compared
to values that Bob computes by encoding ỹB and ỹAB under encoding dB , where (ỹA, ỹB , ỹAB) =
f ′(xB). Importantly, Bob provides valid garbled outputs (under encoding dB). By the authenticity
guarantee of G, Alice cannot guess any valid garbled outputs besides the ones she is prescribed via
Eval(FB , XA).5 By the correctness of the garbling scheme, these prescribed garbled outputs encode
the “correct” values yB and yAB computed from f(xA, xB). Thus the simulator in this hybrid returns
false for the equality test if f ′(xB) and f(xA, xB) disagree in their yB or yAB components, or if Alice
provides YB or YAB different from those prescribed via Eval(FB , XA). This change is indistinguishable
by the authenticity property of G.

H3: The simulator uses Alice’s prescribed output (yA, yAB) to generate a simulated garbled circuit FA and
garbled input XA. This hybrid is indistinguishable by the privacy/obliviousness guarantee of G.6

H4: We focus on the other values ỸA and ỸAB that Alice provides to the equality test. These are compared
to Bob’s value that is determined from Encode(d′, f ′(xB)). The simulator can easily check whether
ỸA, ỸAB are valid encodings under d′ (i.e., possible outputs of Encode(d′, ·)). If not, then the equality
test will always return false and the simulator can also do so. Otherwise, the simulator can easily
determine ỹA and ỹAB such that ỸA‖ · · · ‖ỸAB = Encode(d′, ỹA‖ · ‖ỹAB). Then the equality check

involving these ỸA, ỸAB values is logically equivalent to (ỹA, ·, ỹAB)
?
= f ′(xB).

We see that in the hybrid labeled H4, the equality test outcome is determined by the following logic:

f ′(xB) = (ỹA, ỹB , ỹAB) and f(xA, xB) = (yA, yB , yAB) and ỹB = yB and ỹAB = yAB

Indeed, the outcome of the equality test is precisely Lf,f ′,ỹA(xA, xB) where ỹA is the value that the simulator
extracts as described above. Overall, we have described a simulator that is indistinguishable from the real
execution; it needs to know only Alice’s prescribed output (yA, yAB), and the answer to a Lfprop-leakage query
described above.

B Proof of Theorem 5.1

Proof. For simplicity, suppose f gives all of its output to both parties (there is no output given to just one

of the parties). Then f̂ has syntax f̂((xa, {rg,A}g), (xB , {rg,B}g)) = ({sg,A}g, {sg,B}g, y = f(xA, xB)).
First, consider the case where a corrupt Alice attacks the Π protocol. She provides input (xA, {rg,A}g)

to f̂ , then receives output ({sg,A}g, y) from f̂ . She then chooses a legal leakage function LA
f̂,h,ỹ

∈ Lf̂prop and

learns the result. Bob aborts if the leakage function evaluates to zero.
In the simulation, the simulator picks outputs {sg,A}g uniformly at random. It remains to show how the

simulator simulates the outcome of the leakage function given only L
f
ocl leakage to an ideal f .

Alice chooses a leakage function LA
f̂,h,ỹ

where prop(h) = prop(f̂(0n, ·)). Since prop includes the circuit

topology, we can naturally talk about a correspondence between the topology of h and f̂ .
The analysis proceeds one gate a time, in a topological order. Suppose we are considering some gate g

in f , which corresponds to the larger gadget in f̂ , described above. Then h has a similar gadget, in which
some of the gate logic may be changed:

4For simplicity, we are glossing over the case where f ′ outputs ⊥ (corresponding to the event that Bob’s execution of Eval
results in ⊥). In this event, Bob will run the equality test on random inputs, and the equality test will result in false. Looking
ahead, this matches the semantics of Lf,f ′,ỹA that will be chosen as the leakage function in the ideal world. For the rest of the
proof we can therefore condition on f ′ not outputing ⊥.

5Since FB and XA are designated by Bob, this execution of Eval will not abort.
6We use obliviousness since the simulated garbled circuit contains no information about yB .
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sB

⊕⊕
⊕

γ

gadget in f̂

g1α

β

rB s
(h)
A

s
(h)
B

g2

g3

g4

γ(h)

corresponding gadget in h

By our inductive hypothesis, we’ll assume that the values of α and β agree with the corresponding values in
f̂ (and hence in f). By construction, the same rB value is used as input for both circuits. Hence we use the
same variable names for these values in the above diagram.

The leakage function LA
f̂,h,ỹ

simply performs a string equality related to the outputs of f̂ and h. It is

helpful to think of this string comparison as a conjunction of single-bit comparisons (taken in the same order
as our gate-by-gate analysis), which will “short circuit” to return 0 as soon as a mismatch is encountered.

The current gadget in f̂ and h includes outputs which the leakage function checks in the following way.
The string ỹ (a parameter of the leakage function, chosen by Alice) includes a single position whose value

we call s̃. The leakage function checks the two bit-comparisons s
(h)
A = s̃ and s

(h)
B = sB .

We rewrite these two conditions as follows:

(s
(h)
A = s̃) ∧ (s

(h)
B = sB)

⇐⇒ (s
(h)
A = s̃) ∧ (g3(s

(h)
A , g1(α, β)) = sB)

⇐⇒ (s
(h)
A = s̃) ∧ (g3(s̃, g1(α, β)) = sB)

⇐⇒ (s
(h)
A = s̃) ∧ (g3(s̃, g1(α, β)) = g(α, β)⊕ sA)

⇐⇒ (g2(rB) = s̃) ∧ (g3(s̃, g1(α, β)) = g(α, β)⊕ sA)

⇐⇒ (g2(rA ⊕ sA) = s̃) ∧ (g3(s̃, g1(α, β)) = g(α, β)⊕ sA)

Observe that the gates g, g1, . . . , g3 and values sA, rA, s̃ are known to the simulator. Hence, this condition
is a function of α, β alone — it is a gate-local constraint in f ! A simulator only needs to know the result of
this gate-local function to simulate the corresponding bit-comparisons in the leakage function LA

f̂,h,ỹ
.

Conditioned on the constraint being true, we examine the output γ(h) of the gadget in h. We have:

γ(h) = g4(s
(h)
A , s

(h)
B ) = g4(s̃, sA ⊕ g(α, β)) = g4(s̃, sA ⊕ γ)

Let π(·) = g4(s̃, sA ⊕ ·). Clearly the simulator can extract the unary function π. All gates downstream

of γ(h) will receive the value of π(γ), where γ is the “correct” value that leaves this gadget in f̂ . But
this is equivalent to sending γ along this wire and modifying a downstream gate g′ to have logic g′(π(·), ·)
instead. This modified circuit has the same topology as h, so our analysis is not affected. Furthemore,
this transformation preserves the invariant that the inputs to all gadgets in h match their counterparts in f̂
(conditioned on the event that the leakage function has not yet short-circuited).

Overall, the simulator will only need to know the conjunction of many gate-local constraints, one for each
gate g in f . Hence, the simulator can succeed by asking only a L

f
ocl query.

The case where Bob is corrupt is similar, but slightly different due to the asymmetry between Alice &
Bob in the gadgets. In this case, the gadget is only slightly different (now it is Alice’s input rA which goes
to gate g2):

gα

β
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sA

sB
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⊕

γ
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g1α
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(h)
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corresponding gadget in h
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Also, the leakage function now checks the complementary condition (s
(h)
A = sA) ∧ (s

(h)
B = s̃). The key to

manipulating this expression is the observation that sA = g(α, β)⊕ sB .
We obtain:

(s
(h)
A = sA) ∧ (s

(h)
B = s̃)

⇐⇒ (s
(h)
A = sA) ∧ (g3(s

(h)
A , g1(α, β)) = s̃)

⇐⇒ (s
(h)
A = sA) ∧ (g3(sA, g1(α, β)) = s̃)

⇐⇒ (s
(h)
A = sA) ∧ (g3(g(α, β)⊕ sB , g1(α, β)) = s̃)

⇐⇒ (s
(h)
A = g(α, β)⊕ sB) ∧ (g3(g(α, β)⊕ sB , g1(α, β)) = s̃)

⇐⇒ (g2(rA) = g(α, β)⊕ sB) ∧ (g3(g(α, β)⊕ sB , g1(α, β)) = s̃)

⇐⇒ (g2(g(α, β)⊕ sB ⊕ rB) = g(α, β)⊕ sB) ∧ (g3(g(α, β)⊕ sB , g1(α, β)) = s̃)

As before, all gates g, g1, . . . , g3 and values sB , rB , s̃ are known to the simulator, making this expression a
gate-local function of α, β alone.

Conditioned on the above expression being true, we also have:

γ(h) = g4(s
(h)
A , s

(h)
B ) = g4(sA, s̃) = g4(γ ⊕ sB , s̃)

As before, γ(h) is a fixed unary function of the “correct” value γ, and the rest of the argument goes through
analogously.

C CovIDA Security Definition

The following definitions for ε-CovIDA security are taken from [MR13].
Real-model execution. The real-model execution of protocol Π takes place between players (P1, P2), at
most one of whom is corrupted by a non-uniform probabilistic polynomial-time machine adversary A. At
the beginning of the execution, each party Pi receives its input xi. The adversary A receives an auxiliary
information aux and an index that indicates which party it corrupts. For that party, A receives its input
and sends messages on its behalf. Honest parties follow the protocol.

Let realΠ,A(aux)(x1, x2) be the output vector of the honest party and the adversary A from the real
execution of Π, where aux is an auxiliary information and xi is player Pi’s input.
Ideal-model execution. Let f : ({0, 1}∗)2 → {0, 1}∗ be a two-party functionality. In the ideal-model
execution, all the parties interact with a trusted party that evaluates f . As in the real-model execution, the
ideal execution begins with each party Pi receiving its input xi, and A receives the auxiliary information
aux. The ideal execution proceeds as follows:

Send inputs to trusted party: Each party P1, P2 sends x′i to the trusted party, where x′i = xi if Pi is
honest and x′i is an arbitrary value if Pi is controlled by A.

Abort option: If any x′i = abort, then the trusted party returns abort to all parties and halts.

Attempted cheat option: If Pi sends cheati(ε
′), then:

• If ε′ > ε, the trusted party sends corruptedi to all parties and the adversary A, and halts.

• Else, with probability 1− ε′ the trusted party sends corruptedi to all parties and the adversary A
and halts.

• With probability ε′,

– The trusted party sends undetected and f(x′1, x
′
2) to the adversary A.

– A responds with an arbitrary boolean (polynomial) function g.

– The trusted party computes g(x′1, x
′
2). If the result is 0 then the trusted party sends abort to

all parties and the adversary A and halts. (i.e. A can learn g(x′1, x
′
2) by observing whether

the trusted party aborts or not.)
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Otherwise, the trusted party sends f(x′1, x
′
2) to the adversary.

Second abort option: The adversary sends either abort or continue. In the first case, the trusted party
sends abort to all parties. Else, it sends f(x′1, x

′
2).

Outputs: The honest parties output whatever they are sent by the trusted party. A outputs an arbitrary
function of its view.

Let idealεf,A(aux)(x1, x2) be the output vector of the honest party and the adversary A from the execution
in the ideal model.

Definition C.1. A two-party protocol Π is secure with input-dependent abort in the presence of covert
adversaries with ε-deterrent (ε-CovIDA) if for any non-uniform probabilistic polynomial-time adversary A
in the real model, there exists a non-uniform probabilistic polynomial time adversary S in the ideal model
such that {

realΠ,A(aux)(x1, x2)

}
x1,x2,aux∈{0,1}∗

c
≈
{
idealεf,S(aux)(x1, x2)

}
x1,x2,aux∈{0,1}∗

for all |x1| = |x2| and aux.

D Proof Sketch of Theorem 6.1

We only present the proof for the case when Alice is corrupted. The case of corrupted Bob is symmetric.
The probability that at least one of the evaluated garbled gates that were generated by Alice was constructed
properly (and consistently with the COT) is 1− 2−s (because of the cut-and-choose and the fact that Bob
checks both the garbled circuits and their corresponding COT inputs). On the other hand, Alice is forced
(because of the OTs) to use only one input for the garbled circuits generated by Bob. If that input is different
than the one she has used for the garbled circuits that Bob evaluates, then with good probability the outputs
of the input-consistency check will be different, causing the PSI to return an empty set (since in order to
know one element in Bob’s set, Alice has to guess output wire labels which were not revealed to her in her
evaluations). Therefore, if the PSI returns at least one element, that element is indeed the result of correct
evaluations of valid garbled circuits done by both players, and since Bob is honest, this is the right output.
Furthermore, since Bob is honest, Alice will get only a single output from all her evaluations, and will have
to use random elements for the rest of her PSI inputs. Since Bob’s inputs to the PSI include information
that must be learned from the output wire labels chosen by Bob, the only element in the intersection could
be the right output.

More formally, let A be an adversary controlling Alice in the execution of the protocol. We describe a
simulator S that runs A internally and interacts with the trusted third party (TTP) that computes f . S
does the following:

1. Emulates a honest Bob with input 0 until the end of ”Circuit Preparation” Stage.

2. During the emulation, S extracts the seeds Alice committed on, and learns all her inputs to the OTs
(including her input xA in the OTs for her to learn her input labels for Bob’s circuits). We say that
a seed, a garbled circuit and its COT inputs constitute a good set if they are consistent and properly
generated, and a bad set otherwise. For each of Alice’s circuits, S determines if it is a good or a bad
set. Note that unless all Alice’s circuits are bad, at this stage S can compute the output labels of
Alice’s circuits.

Let rB , r
′
B be the values chosen by the emulated Bob and let rA, r

′
A be the values chosen by Alice in the

OTs. Alice receives only the output f(xA, 0) ⊕ r′A ⊕ r′B from her evaluated circuits and can compute
only a single valid value qi. (She can also guess other valid values with a negligible in L probability.)
S can also compute this value at this stage. Denote this valid qi by Q.

If all sets are good, S sends xA to the TTP, receives the output z, and continues the emulation of Bob.
If Alice enters Q to the PSI, she receives the same value as the intersection, but otherwise she receives
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an empty set. Next, if Alice decommits to a value different than Q in the “Output generation” stage,
S aborts. Else, it sends R′B = r′B ⊕ z ⊕ f(xA, 0) to Alice and outputs whatever she does. (This causes
the output of Alice to be z since she received f(xA, 0) ⊕ r′A ⊕ r′B from the evaluations.) Note that S
knows the corresponding valid labels for R′B from the OTs.

If some of the sets are bad, let c ∈ {0, 1}s be a bitstring such that ci = 1 if set i is good, and ci = 0
otherwise. Also, let eb be the number of bad sets.

If eb = s, S simulates Bob aborting and outputs whatever Alice does. This is due to the fact that we
generate the challenge set such that at least one circuit is always checked.

If 0 < eb < s, then

• Let p = 2s−eb−1
2s−2 − 1

2s−2 . With probability p, S extracts α
(A)
1 and chooses a random α

(B)
1 such

that all bad sets are in EA, but also at least one good set is also in it. It calls the TTP with
xA and receives the output z and proceeds with the emulation until the output unmasking. As
before, if Alice does not send Q to the PSI, it receives an empty set, and if she does not decommit
Q afterwards, S aborts. Last, S sends r′A so that the unmasked output would be z, and outputs
whatever Alice outputs.

• With probability 1−p, S calls the TTP with xA and then sends the message cheat(1/(2s−2)/(1−
p)). (Note that (1/2s − 2)/(1− p) ≤ 2−s+1 when eb ≥ 1.)

If the TTP returns a corrupted message, S chooses a random α
(B)
1 such that some bad circuits

will be checked, and continues the emulation until Bob aborts once the bad circuits are checked.
Otherwise, i.e., in case the TTP returns undetected and the output z, S causes EA to be the set of
all bad garbled circuits, and sends to the TTP the function that has hardcoded the bad garbled
circuits, their COT inputs, all output labels (chosen by both players), the values rB , r

′
B and

R′B = r′B ⊕ z⊕ f(xA, 0), and the value Q. (This part is similar to [HKE12, MR13].) The function
takes Bob’s real input xB , finds RB such that MB · (0l‖RB‖R′B) = MB · (0l‖rB‖r′B), emulates
a honest Bob with inputs xB , RB , R

′
B that receives its input labels from the OTs, evaluates the

garbled circuits, and checks if any of the outputs would give qi = Q. In high level, the function
emulates what a honest Bob would get from the evaluation using Bob’s real and output mask
R′B that makes sure both players receive the same output. If the TTP responds with abort, S
emulates Bob aborting after Alice decommits the output of the intersection (or before in case the
emulated Bob aborts). If the TTP does not respond with abort, as before, if Alice inputs Q to
the PSI she receives it back, or empty set otherwise, and if she decommits to a different value
than Q, then S emulates Bob Aborting. In case no abort happens until the end of the protocol,
S sends R′B as Bob’s mask. (Note that the COT for the bits of R′B must be fine since otherwise
the function that emulated Bob by the TTP would have failed producing the value Q.)

We now analyse the probabilities of the different cases: (1) If all sets are good, then S simply retrieves
the output and unmask the output accordingly. The simulation looks the same as the real execution except
for Bob’s inputs which are hidden because of the security of the COT and the garbling scheme; (2) if all sets
are bad, then S will emulate Bob aborting and outputs what Alice does. This is identical to the real world
since at least once circuit is always checked and hence Alice caught. (3) If some sets (but not all) are bad
then there are three possibilities:

• Alice is caught cheating - Happens with probability (1−p)×(1− 1/(2s−2
1−p ) = 1−p−1/(2s−2) = 2s−eb−1

2s−2 .

• The protocol ends without accusing Alice of cheating - Happens with probability p = 2s−eb−1
2s−2 − 1

2s−2 .

• Alice successfully cheats - Happens with probability (1− p)× 1/(2s−2)
1−p = 1/(2s − 2).

Note that the soundness of the protocol is 2−s+1 since we call the TTP with the message cheat 1
2s−1/(1−

p)) ≤ 2−s+1 for the p we have. We stress that the actual cheating probability is only 1/(2s−1). (This “gap”
is a because the adversary is not always accused of cheating, even if it gets caught.)

We remark that the adversary can guess one of Bob’s output labels with a negligible in L probability.
Since it can guess several values and enter them as inputs to the PSI, the probability that at least one of
them would be valid is |EA| · neg(L). (This affects only the parameter L, and not s.)
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