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Abstract. Most lattice-based cryptographic schemes with a security proof suffer from large key
sizes and heavy computations. This is also true for the simpler case of authentication protocols
which are used on smart cards, as a very-constrained computing environment. Recent progress on
ideal lattices has significantly improved the efficiency, and made it possible to implement practi-
cal lattice-based cryptography on constrained devices. However, to the best of our knowledge, no
previous attempts were made to implement lattice-based schemes on smart cards. In this paper,
we provide the results of our implementation of several state-of-the-art lattice-based authentica-
tion protocols on smart cards and a microcontroller widely used in smart cards. Our results show
that only a few of the proposed lattice-based authentication protocols can be implemented using
limited resources of such constrained devices, however, cutting-edge ones are suitably efficient
to be used practically on smart cards. Moreover, we have implemented fast Fourier transform
(FFT) and discrete Gaussian sampling with different typical parameter sets, as well as versatile
lattice-based public-key encryptions. These results have noticeable points which help to design
or optimize lattice-based schemes for constrained devices.

Keywords: Authentication protocol, constrained device, constrained implementation, lattice-based
cryptography, post-quantum cryptography

1 Introduction

Since the seminal work of Ajtai [Ajt96], lattice-based cryptography has attracted much attention
from the cryptography community. Provably-secure lattice-based schemes have a remarkable feature
that their securities are proved assuming a basic lattice problem is hard in the worst-case. This type
of assumption is more reliable than average-case hardness assumptions in number-theoretic schemes
supported by a security proof. Moreover, lattice-based cryptography is one of the main candidates
for post-quantum cryptography. No efficient quantum algorithm has been found yet to break lattice-
based schemes. In contrast, widely used schemes in practice, such as RSA or elliptic curve (EC) based
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Fig. 1. Operations per second for lattice-based (NTRU and LP-LWE) and non-lattice-based (ECDSA and
RSA) schemes, implemented on the ARM7TDMI smart card.

constructions which are based on the hardness of factoring or discrete logarithm, will be broken upon
appearance of large-scale quantum computers [Sho94].

Early proposed lattice-based schemes with a heuristic security analysis [GGH97, HPS98] were more
efficient than RSA and EC-based ones. However, initial provably-secure lattice-based schemes were
suffering from heavy computation and large key sizes. A major event in the development of lattice-
based cryptography is the introduction of ideal lattices. An ideal lattice has extra algebraic structure
which reduces the key size and computation time to a sub-quadratic order. Moreover, cryptographic
schemes based on ideal lattices enjoy a security proof assuming worst-case hardness of basic problems
on ideal lattices. It is in contrast to the NTRU encryption [HPS98], which is a well-known and efficient
lattice-based scheme. The security of NTRU is not proven and is preserved heuristically. Furthermore,
NTRU is patented by its designers till 2020 [HS06].

Recent noticeable improvements on the efficiency of provably-secure lattice-based constructions
have made it possible to port these schemes to constrained devices such as smart cards and micro-
controllers. In this paper, we have implemented a number of important lattice-based cryptographic
primitives, as well as a number of most efficient lattice-based encryptions and authentication protocols
on a typical smart card and a microcontroller widely used in other smart cards. This smart card is a
proprietary product which contains a plain 32-bit ARM7TDMI processor, and the microcontroller is
from the 8-bit AVR MEGA family. Other than smart cards, AVR MEGA microcontrollers have also
been used in various low-cost electronic devices. Due to the development of the Internet of Things,
these devices are now more likely to require cryptographic schemes. Our results give a measure for the
efficiency of lattice-based schemes in such environments.

To the best of our knowledge, it is the first time that a lattice-based cryptographic scheme is
implemented on a smart card, and its efficiency and practicality is measured. From lattice-based
cryptographic primitives, we have implemented fast Fourier transform (FFT) with different degrees and
typical parameter sets, as well as two of the best discrete Gaussian sampling algorithms. Both FFT and
discrete Gaussian sampling are of main ingredients in provably-secure lattice-based cryptography. In the
case of implementing lattice-based encryptions, we have chosen NTRU and a state-of-the-art provably-
secure encryption by Lindner and Peikert [LP11] (referred to as LP-LWE); both parameterized for
128 bits of security. We have also implemented 3072-bit RSA and 256-bit ECDSA (using NIST elliptic
curve P-256) on the same hardware, in order to compare against traditional encryption schemes. Figure
1 shows the number of encryptions/decryptions per second (correspondingly, verifications/signings per
second for ECDSA), performed on the smart card. Note that RSA and ECDSA are executed without
the help of the smart card’s cryptographic coprocessor.

Our performance results on the smart card show that the decryption of LP-LWE, as a provably-
secure and patent-free lattice-based encryption, is 4.4 times faster than the NTRU decryption, and
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its encryption performance is comparable to NTRU. Moreover, the key generation of NTRU is much
slower. Results in Section 5.3 indicate that the LP-LWE decryption is also 1.8 times faster than a
simplified CPA-secure version of NTRU. This shows that recent progress on improving efficiency of
provably-secure lattice-based cryptography has made it comparable to and even better than the famous
NTRU cryptosystem.

We have also implemented four lattice-based authentication protocols on our smart card and micro-
controller. Authentication protocols do not include secure key-exchange. Thus, their main application
is in physical authentication, e.g., on a personal identification card. We have focused on efficient zero-
knowledge-like protocols (technically including zero-knowledge proofs, witness-hiding protocols, and
those which transfer messages that are statistically independent of the secret key). To this end, we have
converted two lattice-based signature schemes by Güneysu et al. [GLP12] and Ducas et al. [DDLL13] to
authentication protocols. These transformations are more efficient than previous original lattice-based
authentications. One drawback of these constructions is that the resulting authentication protocols
will have a proof of security only against a passive attacker (to be more accurate, no security proof is
known against an active attacker). However, due to a technique used in both protocols, called rejection
sampling [Lyu09], an active attacker cannot learn anything about the secret key. In addition to the
protocols derived from lattice-based signature schemes, we have chosen a recently proposed authenti-
cation protocol from Dousti and Jalili [DJ13] which utilizes a commitment scheme and an encryption
algorithm as building blocks. By instantiating this protocol with efficient lattice-based constructions,
and performing some optimizations after the integration, we have reached two authentication protocols
with competitive efficiency.

1.1 Related Work

Regarding implementation of provably-secure lattice-based schemes on constrained devices, Yao et al.
[YHK+11] first proposed a power efficient and compact authentication protocol based on integer LWE
problem (not based on ideal lattices) that was designed for an RFID tag. Their protocol consists of only
one round and invokes one LWE-based encryption inside the tag. Sinha Roy et al. [SRVV13] proposed
an algorithm for high-precision discrete Gaussian sampling and a compact-area FPGA implementation.
Very recently, Oder et al. [OPG14] have implemented the signature scheme of [DDLL13] and a few
proposed Gaussian sampling algorithms (the Bernoulli sampler [DDLL13], Knuth-Yao [SRVV13], and
Ziggurat [BCG+13]) on an ARM Cortex-M4F microcontroller. Their implementations are not directly
comparable to ours because ARM Cortex-M4F is a relatively powerful microcontroller with a clock
of 168 MHz, and 192 KB of RAM. Moreover, Cortex-M4F has instructions for signed and unsigned
division which is missing in our target devices. Additionally, computing reminders occurs too many
times in lattice-based implementations, and this can influence the performance significantly.

For NTRU encryption, there are more experimental results on constrained devices. The first work
was [BCE+01] which implemented NTRU encryption on some hand-held devices containing Motorola
and ARM processors. Moreover, they provided an implementation on an FPGA from Xilinx Virtex
1000 family. Kaps [Kap06] introduced NTRU implementation for ultra-low power devices such as
RFIDs and wireless sensor networks. Atici et al. [ABGV08] also implemented NTRU on RFIDs and
performed power analysis attack on it. Atici et al. [ABF+08] proposed more compact encryption-
only and encryption/decryption NTRU implementations for RFID tags and sensor networks. Finally,
Monteverde [Mon08] implemented NTRU on two microcontrollers from AVR MEGA family, and Lee
et al. [LSCH10] provided the result of NTRU implementation on Tmote Sky hardware, which is widely
used in practical wireless sensor networks.

There are many lattice-based authentication protocols consisting of a base zero-knowledge proof
with significant soundness error. This soundness error can become negligible by several sequential
repetitions [MV03, XT09, SCJD11]. This repetition makes the overall protocol inefficient in terms
of computation, communication, and round complexities. Various protocols are also secure when the
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Table 1. Overview of lattice-based authentication protocols; Check marks X indicate implemented protocols
in this paper. ZK and WH are zero-knowledge and witness hiding protocols, respectively.

Scheme Rounds Security ZK/WH Orig. Scheme

[MV03] 3×N Active ZK Authentication

[Lyu08] 3 Concurrent WH Authentication

[KTX08] 3 Concurrent WH Authentication

[XT09] 3×N Active ZK Authentication

[Lyu09] 3 Concurrent WH Authentication

[CLRS10] 5 Concurrent WH Authentication

[SCJD11]

〈 3×N Active ZK Authentication

5×N Active ZK Authentication

[SCL11] 5 Concurrent WH Authentication

[Lyu12]

〈 3 Concurrent WH Signature

3 Passive – Signature

X [GLP12] 3 Passive – Signature

X [DDLL13] 3 Passive – Signature

X [DJ13] 5 Active ZK Authentication

repetition is done in parallel [KTX08, CLRS10, SCL11], leading to fewer number of rounds, but still
suffer from large messages and heavy computations. Lyubashevsky [Lyu08] proposed a more efficient
authentication protocol based on ideal lattices. In a subsequent work [Lyu09], he proposed another
protocol with a breakthrough in the efficiency of lattice-based authentication protocols. This scheme
has 0.63 completeness error due to a technique called rejection sampling, where the prover may reject
to answer verifier’s challenges to prevent secret-key leakage.

Lyubashevsky [Lyu09] used the Fiat-Shamir transformation to convert the proposed authentication
scheme to an efficient lattice-based signature. Briefly, Fiat-Shamir transformation [FS87] is a provably-
secure technique which replaces verifier in an authentication protocol with a random oracle (practically,
a hash function). This oracle (hash function) gets the message to be signed and produces random
(pseudo-random) challenges on behalf of the verifier. The transcript of this simulated protocol can
be published as a signature. Therefore, everyone who gets the message and its signature can verify
the correctness of the challenge in the transcript, and then accept the signature if and only if the
authentication is verified successfully. Later, Lyubashevsky [Lyu12], Güneysu et al. [GLP12], and Ducas
et al. [DDLL13] improved the running time and signature size of [Lyu09]. However, instead of [Lyu09],
these schemes have only one secret key corresponding to each public key and this prevents adopting the
security proof of [Lyu09] against active adversaries. There are other lattice-based signature schemes
which are not obtained by the Fiat-Shamir transformation (e.g., [LM08, GPV08, CHKP12, BB14]),
and cannot be converted to an authentication protocol by the inverse conversion.

Recently, in [DJ13], a 5-round zero-knowledge authentication protocol has been proposed which
does not need any repetition. Their protocol makes use of a commitment scheme and a trapdoor
function as black-boxes. Unfortunately, the most efficient lattice-based trapdoor function [MP12] does
not fit into the smart card and microcontroller which we have used in our experiments (both in terms of
computation time and the size of keys). However, as noted by the authors, this protocol can be modified
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slightly to use an encryption instead of trapdoor function. In this protocol, the verifier asks the prover
to decrypt a challenge ciphertext, but first convinces her that he already knows the plain-text.

1.2 Organization

Notation and a brief mathematical background are provided in Section 2. Implementation details of
fast Fourier transform and discrete Gaussian sampling, as well as a simplified CPA-secure version of
NTRU are described in Section 3. Section 4 investigates the implemented authentication protocols
and specific optimization notes. Section 5 presents the results of the measurements on time, memory,
and communication complexity of implemented lattice-based schemes. Finally, Section 6 concludes our
results.

2 Preliminaries

2.1 Notation

We define Zq to be the set of integers in the interval [−q/2, q/2). Zq[x] denotes the set of polynomials
with coefficients in Zq. The polynomial ring Zq[x]/〈xn + 1〉 is specified by Rq, where n is a power of 2
and q ≡ 1 (mod 2n). Rq contains all polynomials of degree less than n with coefficients in Zq, and its
ring operations are polynomial addition and multiplication modulo q and xn+1. Polynomials inRq and
vectors in Znq are directly mapped to each other, thus, they are used interchangeably through the text.

Euclidean norm and infinity norm of a vector x are denoted by ‖x‖ =
√∑

x2i and ‖x‖∞ = max {xi},
respectively, where xi is the i-th component of x. Operators� and� are bit-wise left and right shifts.

2.2 Lattices

A lattice Λ is defined as linear combinations of vectors v1, ...,vn ∈ Zm with integer coefficients. These
vectors are linearly independent and called lattice basis vectors. Putting the basis vectors as columns in
a matrix B ∈ Zm×n, the lattice generated by B is denoted by L(B) = {Bx | x ∈ Zn}. A fundamental
hard lattice problem is the shortest vector problem (SVP). In SVP, given a basis matrix B, it is required
to find the shortest non-zero u ∈ L(B). It is believed that there is no polynomial-time algorithm even
to approximate SVP to within a polynomial factor of n.

Using general lattices to construct cryptographic functions usually ends to inefficient schemes with
high computation and storage complexities. This is because operations on lattices deal with quadratic-
size matrices. To overcome this issue, special lattices with extra algebraic structure are developed.
Consider the polynomial ring Rq = Zq[x]/〈xn + 1〉. Each polynomial in Rq has n coefficients in Zq,
meaning that there is a bijection between Rq and Znq . It can be shown that an ideal in Rq is mapped
to a lattice in Znq , which is called an ideal lattice.

Ring-based short integer solution (Ring-SIS) and ring-based learning with errors (Ring-LWE) are
two problems based on ideal lattices, which are frequently used as the underlying problem in building
efficient cryptographic constructions. When configured with suitable parameters, it is proved that
these problems are hard-on-average, assuming that approximate SVP is hard in the worst-case on
ideal lattices [LPR13].

Problem 1 ( Ring-SISD,m,n,q,β). Given m random polynomials a1, ...,am ∈ Rq from the distribution
D, and a threshold β ∈ Q: find x1, ...,xm ∈ Rq in such a way that

∑m
i=1 ai · xi = 0 (in Rq) and

0 <‖x‖ ≤ β, where x = (x1, ...,xm)T is a vector of length mn.

Problem 2 ( Ring-LWEn,q). Given polynomially many pairs (ai, bi) ∈ Rq × Rq, where ai’s are uni-
formly random: decide either bi’s are also uniformly random, or there exist an s ∈ Rq such that
∀i bi = ai · s+ ei and ei’s are short polynomials from a discrete Gaussian distribution.
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Algorithm 1: FFT (x ∈ Znq )

1 for i← 1 to n do
2 x[i]← ψi · x[i] mod q
3 x← BitReverse(x)
4 for s← 1 to log2(n) do
5 for j ← 1 to 2s−1 do
6 for k ← j + 1 to n step 2s do
7 u← x[k]

8 t← ωjn/2s · x[k + 2s−1] mod q
9 x[k]← u+ t mod q

10 x[k + 2s−1]← u− t mod q

11 return x

2.3 Fast Fourier Transform

Almost all efficient lattice-based schemes with a security proof are based on ideal lattices. In these
schemes, one of the most time-consuming operations is multiplying two polynomials in the polynomial
ring Rq = Zq[x]/〈xn+ 1〉. School-book multiplication, which runs in O(n2), is too slow for constrained
devices. Another approach is to apply fast Fourier transform (FFT) to both polynomials, multiply
them coordinate-wise, and then compute FFT inverse on the result. This method needs only O(n log n)
operations. FFT can be generalized to the finite ring Rq1, where there is no need to any floating-point
arithmetic, and all operations are additions and multiplications modulo q.

Algorithm 1 shows the iterated FFT algorithm. In order to multiply two polynomials a, b in Rq,
one should compute FFT−1(FFT(a) � FFT(b)), where � is entry-wise multiplication. The procedure
BitReverse is a simple routine which permutes an array by reversing the bit-string of each index. ψ is
the primitive 2n-th root of unity in Zq. In other words, ψ is the smallest integer for which ψ2n ≡ 1
(mod q). Thus, ω = ψ2 mod q is the primitive n-th root of unity.

3 Implemented Building Blocks

In this section, we explain implementation notes of FFT and discrete Gaussian sampling as two primi-
tives of lattice-based cryptography. Then, we describe a simplified CPA-secure form of NTRU encryp-
tion which is later used in an instantiation of the Dousti-Jalili protocol (see Section 4.4). The complete
form of NTRU encryption and the ring-LWE based encryption of Linder and Peikert (LP-LWE) are
implemented without any changes. The reader is referred to the IEEE P1363.1 standard and [LP11],
respectively, for the description of these schemes.

3.1 Primitives of Lattice-based Cryptography

FFT and the Optimizations FFT pseudo-code is shown in Algorithm 1. By storing relatively small
lookup-tables, the BitReverse routine and the powers of ω and ψ can be evaluated quickly. In our FFT
implementations, the majority of the processor’s clock cycles are spent on computing mod operations.
The direct method of evaluating mod is to perform an integer division. However, constrained devices
often do not have any dedicated hardware to divide. Thus, compilers generate a bulk of code containing
loops, multiplications, and additions. A simple technique to reduce the number of mod operations is

1 This conversion is usually called the Number Theoretic Transform (NTT). However, we continue to use FFT
as an umbrella term for both types of transformation.
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Algorithm 2: mod (a, q)

1 if q = 7681 then
2 a← a− q ∗

[
(a� 13) + (a� 17) + (a� 21)

]
3 else if q = 12289 then
4 a← a− q ∗

[
(a� 14) + (a� 16) + (a� 18) + (a� 20) + (a� 22) + (a� 24)

]
5 else if q = 8383489 then
6 a← a− q ∗

[
(a� 23) + (a� 34) + (a� 36) + (a� 45) + (a� 49)

]
7 else
8 return NotSupported

9 while a ≥ q do
10 a← a− q

11 return a

to remove them for some intermediate values. Therefore, a modular reduction is applied once after a
few consecutive arithmetic operations. However, caution must be taken to avoid any variable overflow.

There are a few proposed methods to speedup mod operation in the implementation of FFT.
Güneysu et al. [GLP12] considered the smallest power of two, say 2p, larger than the divisor q. Thus, k =
2p mod q is relatively small. Then, a mod q is equal to (a(1)×2p+a(0)) mod q = (a(1)×k+a(0)) mod q,
where a(0) is formed of p least significant bits of a, and a(1) consists of other most significant bits.
Ducas et al. [DDLL13] used the method introduced in [Bar87] to efficiently compute divisions with a
constant divisor. The main idea is to compute a/q by multiplying a with the integer part of 2w × 1/q,
and then, shifting the result by w bits to right (to cancel the effect of 2w). Here, w is usually set to
the bit-size of the input. This method requires double-size multiplication. For example, to perform a
32-bit mod operation, one needs to multiply two 32-bit integers, a and 2w × 1/q, thus, requires 64-bit
multiplication.

We have modified the method of double-size multiplication to achieve more efficient implementation
of mod operation. We avoid using double-size operation by the expense of approximating the result.
This leads to a significant improvement in the running time of FFT on constrained devices, because
their processors have short word sizes (8-bit to 32-bit). The idea is that if the position of 1’s in (2w×1/q)

are p1, ..., p`, we have ba/qc = (
∑`
i=1 a� pi)� w. By combining the two opposite shifts we have the

approximation ba/qc ∼=
∑`
i=1(a � (w − pi)) which requires same-size additions. However, its result

may be a few numbers less than the real ba/qc and the result which is a mod q = a − q × ba/qc may
become larger than q. This can be fixed by subtracting the result by q for a few times. A further
optimization is to remove (a � (w − pi)) terms with large (w − pi) from the sum. This way we only
drop small amounts from the sum. Therefore, with an acceptable approximation, we omit nearly half of
the terms in the sum. Algorithm 2 shows the implementation of mod in FFT implementations, using
parameters of Section 5.2.

Lyubashevsky et al. [LMPR08] introduced a special parameter set for the lattice-based hash func-
tion SWIFFT, where computing mod can be done without any multiplications or loops. In order to
reduce a signed 16-bit value x modulo 257, it is sufficient to compute (x ∧ 255) − (x � 8), and the
result will be in {−127, ..., 383}. Finally, one can subtract the result by 257 if it is larger than 128,
however, this is not needed for intermediate values during FFT computation. Additionally, by keep-
ing all values in the range [−128, 128] (modulo 257) multiplications can be done on 16-bit words and
no 32-bit arithmetic is needed. Our implementation of the commitment in the instantiations of the
Dousti-Jalili protocol (Sections 4.3 and 4.4) enjoys such optimization.
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Discrete Gaussian Sampling The problem of discrete Gaussian sampling is to sample an integer
x ∈ Zq with probability proportional to exp(−x2/2σ2), where σ is the standard deviation. Available
methods to sample from discrete Gaussian distribution require relatively large computation. Moreover,
lattice-based schemes usually require a lot of such samples. As a result, efficient implementation of
this primitive is a crucial and challenging task for constrained devices. An optimally fast method to
this end is to use a cumulative distribution table. Consider a lookup-table T which is indexed by
−τσ, ..., τσ. Here, τ is the tail-cut factor which determines where we drop the negligible probability
of far samples. The value of i-th cell is the scaled probability that a sample is chosen from the range
[−τσ, i]. By choosing a suitable scale factor, all values in the lookup-table can be stored as integers.
Finally, to obtain a discrete Gaussian sample, one can generate a uniformly random integer y, and
perform a binary-search on the lookup-table to find the index x such that T [x] ≤ y < T [x + 1], and
then output x.

Although discrete Gaussian sampling via a cumulative lookup table is the fastest method, the table
size is huge for wide distributions (i.e., large standard deviations). Another fast method, called the
Bernoulli sampler, is introduced recently by Ducas et al. [DDLL13]. In this algorithm, the size of the
lookup-table is reduced significantly but some of the samples are rejected with Bernoulli distributions.
The rejection introduces an overhead in computation time, and a fraction of generated random bits are
not being used and wasted. The running time and table size of the cumulative lookup-table method and
Bernouli sampler are compared in Section 5.2. Other proposed algorithms, such as original rejection
sampling [GPV08], Knuth-Yao [SRVV13], and Ziggurat [BCG+13] algorithms are shown to be less
efficient than the above methods [OPG14].

3.2 CPA-Secure NTRU Encryption

In this section, we explain a simplified CPA-secure variant of NTRU encryption which lacks some
features of the latest NTRU scheme, standardized in IEEE P1363.1. The provably-secure padding
of NTRU (called NAEP) is omitted. This padding is designed to obtain CCA security, as well as
adding randomness to ensure that the message polynomial has secure number of different coefficients.
This simplified encryption can be used securely in the Dousti-Jalili protocol, intuitively because the
protocol is zero-knowledge. Furthermore, the encrypted messages are random challenge strings, where
the message polynomial has required safe situations with high probability. Even if it is not the case,
the simplified NTRU encryption may reject to encrypt this challenge, and another random challenge
needs to be generated. The security proof of the Dousti-Jalili protocol integrated with this encryption
is provided in Section 4.4.

Polynomial operations in NTRU encryption are done in the ring Rq = Zq[x]/〈xN − 1〉. Let L(i,j)

be the subset of Rq in which i coefficients are 1, j coefficients are −1, and all others are zero. Li is
defined as L(i,i). R[1] is the subset of Rq with coefficients in {−1, 0, 1}.

– KeyGen: Generate a random polynomial g ← L(N/3,N/3−1) invertible inRq. Choose three random
sparse polynomials f1 ← Ld1 ,f2 ← Ld2 ,f3 ← Ld3 . Now form F = f1 · f2 + f3 and f = 1 + 3F .
Check that f is invertible in Rq, otherwise, generate another f . Now there is an fq such that
f · fq = 1. Finally, the public key is pk = 3g · fq, and the secret key is sk = (F ,f ,fq).

– Encrypt (pk, x): Encode x ∈ {0, 1}` arbitrarily to a ternary polynomial x̄ ∈ R[1], but leave its
constant coefficient as zero in the encoding. It is required that the sum of coefficients be smaller than
or equal to Ts, while each coefficient (0’s, 1’s, and −1’s) is repeated at least Tc times. Otherwise, fail
to encrypt x (see the above discussion). Finally generate random r1 ← Ld1 , r2 ← Ld2 , r3 ← Ld3
to form a blinding polynomial r = r1 · r2 + r3. Now the ciphertext is c = r · pk + x̄.

– Decrypt (sk, c): Compute a = f · c. Considering the fact that the coefficients of a are in the
range [− q2 ,

q
2 ), x̄ = a (mod 3) will be a ternary polynomial. Decode x̄ to obtain the message.
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NTRU encryption does not make use of FFT for polynomial multiplications. Polynomials are either
ternary/sparse, or formed by three ternary/sparse polynomials. Thus, polynomial multiplications can
be done using fast direct algorithms. Moreover, the parameter q is a power of two, which means that
modular reduction is easily done by dropping most-significant bits. The above simplified NTRU is
derived from the “Fast Fp” variant of NTRU, where f is formed by f = 1 + 3F . As a result, f is
always invertible in R3 = Z3[x]/〈xN − 1〉 which is a requirement in NTRU encryption.

4 Implemented Authentication Protocols

Proposed lattice-based authentication protocols were reviewed in Section 1.1. Most of them have a zero-
knowledge base protocol with noticeable soundness error. As a result, it should be repeated several
times to obtain a secure authentication protocol. Even parallel repetition makes them very inefficient
for constrained devices, in terms of computation and communication complexities. Instead, we have
chosen GLP [GLP12] and BLISS [DDLL13] signature schemes, and transformed them to lattice-based
authentication Protocols 1 and 2. The other implemented protocols are two instantiations of the Dousti
and Jalili [DJ13] authentication scheme. The Dousti-Jalili protocol is an efficient zero-knowledge proof
which uses a statistically hiding bit string commitment and a semantically secure encryption algorithm,
in a black-box manner. We have utilized a ring-based variant of Kawachi et al.’s commitment scheme
[KTX08] in the instantiations. Additionally, LP-LWE encryption [LP11] and the simplified NTRU
of Section 3.2 are integrated to form Protocols 3 and 4. Some significant improvement in reducing
computation time, required RAM space, and communication overhead can be observed by integrating
LP-LWE encryption into the Dousti-Jalili Protocol, compared to a black-box usage of this encryption.

4.1 GLP Protocol

Protocol 1 explains the authentication protocol derived from the GLP signature scheme. A random
polynomial a ∈ Rp is fixed by a trusted authority as a system parameter. In the absence of such an
authority, parties can run a multi-party random-generation protocol to produce a. R[α] is a subset of

Rp with coefficients between −α and α. x(1) denotes a polynomial obtained by dividing x’s coefficients
by 2(κ− 32)− 1, and keeping their integral parts.

Protocol 1 (GLP) The secret key sk consists of random s1, s2 ∈ R[1]. The corresponding public
key is pk = a · s1 + s2. The protocol rounds are as follows.

1. Prover: Generate two polynomials y1,y2 ∈ R[κ] at random. Then, send u = (a · y1 + y2)(1) to
the verifier.

2. Verifier: Send a random polynomial c in which 32 coefficients are either +1 or −1, and all others
are zero.

3. Prover: Compute z1 = s1 · c + y1 and z2 = s2 · c + y2. If z1 or z2 is outside R[κ−32], or
z2
′ = Compress(a ·z1−pk · c, z2) is equal to ⊥, terminate the protocol. Otherwise, send (z1, z2

′).

Verification step: Verify that z1, z2
′ are both in R[κ−32]. Then, accept iff u = (a·z1+z2

′−pk·c)(1).

In the first round, sending (a · y1 + y2)(1) is like dropping least-significant bits of the message in
order to reduce its size. The Compress function is a linear time compression algorithm which drops
some bits from z2, again to reduce its size and leverage the communication complexity. The internal
function of Compress is described in [GLP12]. Ducas et al. [DDLL13] showed that the use of the
Compress function introduces an existential forgery attack on GLP signature schemes. However, this
attack is not applicable when this signature scheme is converted to an authentication protocol.
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In round 3, prover may reject to respond in order to prevent information leakage about the secret
key. In this case, the verifier should re-run the protocol from the beginning until a valid response is
received. A possible technique to decrease total number of rounds (due to Lyubashevsky [Lyu09]) is
to send multiple independent y1’s and y2’s by the prover in round 1. Then, in round 3, he can try
challenges sequentially and respond to the first one which is not rejected. Unfortunately, this method
will increase the average time because computation of each pair y1,y2 is time consuming and dominates
the savings in communication time.

Note that Protocol 1 avoids using any Gaussian sampling and all random values are from uniform
distribution, which is significantly more efficient. Moreover, computation of a ·z1−pk ·c as an input of
the Compress function do not need more polynomial multiplications because it is equal to a·y1+y2−z2.

4.2 DDLL Protocol

Protocol 2 explains the authentication protocol derived from BLISS signature scheme. R2q denotes the
polynomial ring Z2q[x]/〈xn + 1〉, where q is a prime. ζ is a scalar such that ζ(q− 2) ≡ 1 (mod 2q). By
bxed, we mean the value obtained by dropping d least-significant bits from x. DZn,σ is n-dimensional
discrete Gaussian distribution with standard deviation σ, and 〈a, b〉 is the inner-product of a and b.
All polynomial operations are performed in R2q.

Protocol 2 (DDLL) Random polynomials f , g are sampled during key generation; both have exactly
δ1n coefficients in {−1,+1}. Polynomial f should also be invertible in R2q. Then, (s1, s2) = (f , 2g+1)
is the secret key and pk = 2(2g + 1)/f is the public key. The parameter M is a constant. Protocol
rounds are as follows.

1. Prover: Sample two polynomials y1,y2 from DZn,σ. Then, compute u = ζpk · y1 + y2 and send
bued to the verifier.

2. Verifier: Send a random polynomial c ∈ R2q which has exactly κ coefficients equal to 1 and all
others equal to 0.

3. Prover: Choose a random bit b ∈ {0, 1}. Compute z1 = y1+(−1)bs1 ·c, z2 = y2+(−1)bs2 ·c, and

z†2 = (bued − bu− z2ed) mod p. Consider vectors S =
[
s1 s2

]t
and Z =

[
z1 z2

]
. With probability

1
/(

M exp(−‖S·c‖
2

2σ2 ) cosh( 〈Z,S·c〉2σ2 )
)

, send (z1, z
†
2) to the verifier. Otherwise, terminate the protocol.

Verification step: Reject if either
∥∥∥[z1|2d · z†2]

∥∥∥ > β2 or
∥∥∥[z1|2d · z†2]

∥∥∥
∞
> β∞. Then, accept iff

bζpk · z1 − ζqced + z†2 = bued.

Similar to Protocol 1, the verifier should restart the protocol if the prover fails in round 3, and in
order to reduce the average running time of the protocol, it is better to repeat it sequentially. Several
optimizations are proposed in the design of BLISS which can be directly applied here. In the key
generation process, the public key is computed as pk = 2pk′ for some pk′ ∈ Rq. Multiplication of
pk · y (in R2q) in round 1 can be done more efficiently by first multiplying pk′ · y (in Rq) using FFT
method, and then doubling the result. The use of a precomputed FFT form of pk′ increases efficiency
further. Multiplication of s1 · c and s2 · c in round 3 is more efficient to be done directly, rather than
using FFT conversion; because c has only κ non-zero coefficients and the coefficients of s1, s2 are all
small.

The acceptance probability in round 3 can be separated into two independent Bernoulli probabili-
ties, one proportional to 1/ exp(−‖S · c‖2 /2σ2) and the other proportional to 1/ cosh(〈Z,S · c〉/2σ2).
The former does not depend on Z and can be evaluated before computing z1 and z2. In this case, the
protocol can be repeated earlier. Because the distribution of coefficients in z1, z

†
2 is exactly known (i.e.,
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a Gaussian distribution with known standard deviation), one can send them coded by Huffman codes
in order to reduce the message size and communication time. To this end, an encoding lookup-table is
used on the prover’s side. To produce discrete Gaussian samples, we have implemented the Bernoulli
sampler which has a 0.5 KB precomputed table. One can implement the cumulative distribution ta-
ble method instead, however, it consumes more than 40 KB of the flash memory. The performance
comparison of these two sampling methods is provided in Section 5.2.

4.3 DJ-LWE Protocol

In the following two subsections, two instantiations of the Dousti-Jalili protocol [DJ13] are introduced.
These protocols use an encryption scheme instead of a trapdoor function. To give an overview of the
plain Dousti-Jalili protocol, in the first round, the prover commits to a random bit-string u. In round 2,
the verifier chooses a bit-string challenge x and sends its encryption c = Encrypt(x) using the public
key of the prover. The prover, who has the corresponding secret key, can decrypt the message and
obtain x. However, he does not directly send x to the verifier, but sends x⊕ u in round 3. In round 4,
the verifier sends the randomness r used to encrypt the challenge in round 2. Now the prover checks
that the verifier already knows the challenge x (by re-encrypting x using r, and comparing it with the
message of round 2) and decommit to u in the last round. Finally, the verifier checks the correctness of
the commitment and compares the challenge with the unmasked message of round 3 to authenticate
the prover.

Protocol 3 is an instantiation of the Dousti-Jalili protocol using a Ring-SIS based variant of Kawachi
et al.’s commitment scheme [KTX08] and LP-LWE encryption [LP11]. The dimension of LP-LWE
encryption is denoted by N to be distinct from the dimension of the commitment n. The operations of
LP-LWE are done in the ring Rq = Zq[x]/〈xN + 1〉, while the operations of the commitment scheme
are done in Rp = Zp[x]/〈xn + 1〉. DZN ,σ is a discrete Gaussian distribution with standard deviation σ.
The function Encode converts x ∈ {0, 1}N to a polynomial in Rq by mapping bit 0 to a 0 coefficient,
and bit 1 to a b q2c coefficient. On the other hand, Decode receives a polynomial and converts each
coefficient to 0 if it is between −b q4c and b q4c, and to 1 otherwise.

Protocol 3 (DJ-LWE) a1, ...,am ∈ Rp and a ∈ Rq are random polynomials generated by a trusted
authority as system parameters, or achieved by running a multiparty random-generation protocol.
The key-pair (sk,pk) is a key pair of LP-LWE. Commitment operations are performed in Rp while
LP-LWE ones are done in Rq.

1. Prover: Generate two (mn/2)-bit random strings u and ρ, and build polynomials u1, ...,um/2,ρ1, ...,ρm/2,
where the i-th coefficient of uj (resp., ρj) is 0 or 1 according to (i× j)-th bit of u (resp., ρ). Send

c̄ = Com(u; ρ) =
∑m/2
i=1 ai · ui +

∑m/2
i=1 am/2+i · ρi.

2. Verifier: Choose a random challenge x ∈ {0, 1}N . Let x̄ = Encode(x). Sample e1, e2, e3 from
DZN ,σ, and compute c1 = a ·e1 +e2 and c2 = pk ·e1 +e3 + x̄. Finally, send (c1, c2) to the prover.

3. Prover: Compute x′ = Decode(sk · c1 + c2), and send x′ ⊕ u.
4. Verifier: Send e1 as the randomness used during the encryption.
5. Prover: Compute e2 = c1−a·e1 and e3 = c2−pk ·e1−x̄′, where x̄′ = Encode(x′). All e1, e2, e3

should be short (i.e., in the expected range of the Gaussian distribution). Otherwise, terminate the
protocol. Finally, send ρ to decommit.

Verification step: Compute u′ = (x′ ⊕ u)⊕ x, and accept iff c̄ = Com(u′; ρ).

If the prover is honest, x′ will be equal to x and the verifier convinces in the verification step. In
the general Dousti-Jalili protocol, the verifier sends all the randomness used for the encryption (i.e.,
all e1, e2, and e3) in round 4. However, it suffices to send only e1 because both e2, e3 can be uniquely
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determined. This also leads to less memory usage on the prover. Moreover, a precomputed FFT of a
and a1, ...,am can be given to the prover (practically, loaded into the smart card or microcontroller
at the manufacturing time). This applies to sk and pk as well. Although storing sk in FFT form may
cause a little memory overhead (because sk coefficients are short and require less memory space, while
the values in FFT representation are spread in Zq), but this still can improve the computation time
as one FFT calculation is eliminated.

Applying FFT on u1, ...,um/2 and ρ1, ...,ρm/2 in round 1 can be performed efficiently using the
special modulus p = 257. As described in Section 3.1, reducing modulo 257 can be done very quickly
without any multiplications or loops. Moreover, these FFTs consist of only 16-bit multiplications and
additions and no 32-bit arithmetic is needed. Considering the fact that 8-bit architectures are versatile
in constrained devices, this leads to a noticeable reduction in computation time. A comparison between
the performance of FFT implementation using this parameter set and other general ones is provided
in Section 5.2.

The resulting commitment value c̄ in round 1 can be sent without applying FFT inverse. This
does not violate the security properties of the commitment because FFT and FFT inverse are two
publicly known conversions. Polynomials c1 and c2, which are sent by the verifier in round 2, can be
already in FFT representation, eliminating more FFT computations on the prover (i.e., the constrained
device). Note that e1 should be sent in coefficient representation because the prover should verify its
short length, which is defined on coefficient values. There are also two inevitable FFT inverses when
computing e2, e3 in round 5, again to verify their short length. An advantage of this protocol over
Protocol 2 is that there is no need to generate discrete Gaussians on the prover’s side. All Gaussian
samplings are done by the verifier which is very powerful compared to our constrained devices.

4.4 DJ-NTRU Protocol

Protocol 4 is another instantiation of the Dousti-Jalili protocol using the simplified NTRU encryption,
described in Section 3.2.

Protocol 4 (DJ-NTRU) The key-pair (sk,pk) is a key pair of NTRU. The protocol rounds are as
follows:

1. Prover: Generate two (mn/2)-bit random strings u and ρ, and build polynomials u1, ...,um/2,ρ1, ...,ρm/2,
where the i-th coefficient of uj (resp., ρj) is 0 or 1 according to (i× j)-th bit of u (resp., ρ). Send

c̄ = Com(u; ρ) =
∑m/2
i=1 ai · ui +

∑m/2
i=1 am/2+i · ρi.

2. Verifier: Choose a random challenge x ∈ {0, 1}`. Encrypt x by CPA-secure NTRU encryption,
and send the ciphertext c. Keep blinding polynomial r for round 4.

3. Prover: Decrypt c to recover the message x′ ∈ {0, 1}`, and send x′ ⊕ u.
4. Verifier: Send r as the randomness used during the encryption.
5. Prover: Check that c = r·pk+x̄′, where x̄′ is the polynomial encoding of x′. Otherwise, terminate

the protocol. Finally, send ρ to decommit.

Verification step: Compute u′ = (x′ ⊕ u)⊕ x, and accept iff c̄ = Com(u′; ρ).

If the prover is honest, x′ will be equal to x and the verifier convinces in the verification step. In
the following, we claim that a CPA-secure encryption is enough for the security of the Dousti-Jalili
protocol. The security model allows the attacker to interact arbitrarily with an honest prover to gather
information. Then, she is disconnected from the prover and tries to impersonate him to an honest
verifier.

Lemma 1. Assuming CPA-security of the simplified NTRU, Protocol 4 is a secure authentication
protocol under active attacks.
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Proof Sketch Assume that an adversary A is able to break Protocol 4. We will use A to build another
adversary B that wins in an IND-CPA game for NTRU. When the adversary B receives the ciphertext
challenge c from the challenger, she runs A in a block-box manner. In the first phase, B communicates
to A as a prover. Note that B cannot perform all prover jobs because she does not know the secret key.
Similar to the proof of zero-knowledgeness in the Dousti-Jalili protocol, B sends a completely random
message in round 3. Then, when she receives x in round 4, she rewinds A to round 3, and answers
the challenge correctly. In the second phase, A tries to impersonate the prover. Now, B is acting as a
verifier and sends c (the game challenge) to A in round 2, without knowing its blinding polynomial.
If the adversary A is successful to generate correct x′ ⊕ u in round 3, it is not too difficult for B to
extract x′. She can rewind A to round 2 and honestly send another challenge, which she knows its
blinding polynomial. Thus, she can now finish the protocol successfully. Note that the value of u is
the same in this second run because it has been fixed in round 1 and A cannot decommit to another
value. By knowing x′ ⊕ u and u, B can obtain x′ and wins the IND-CPA game. This contradicts with
the assumption of the lemma.

5 Experimental Results

5.1 Measurement Settings

Constrained implementations are done on a proprietary smart card and an AVR MEGA microcon-
troller. The smart card consists of a plain 32-bit ARM7TDMI processor running at 4.92 MHz. It has
an ISO/IEC 7816 (contact) interface, and supports transport protocol T=0. ARM source codes are
written in C++ and compiled using ARM/Thumb Compiler of RVDS 2.2 and optimized for maximum
speed.

Regarding microcontroller implementation, we have chosen ATmega64 from AVR MEGA family
which has an 8-bit data bus. Although ATmega64 supports a higher clock speed, we have configured
a clock of 8 MHz, because this is reasonable for the one embedded in a smart card. ATmega64 has
64 KB of flash memory and 4 KB of SRAM. Flash memory is programmable at the manufacturing
time but cannot be modified at runtime. Thus, it contains instruction codes, imported keys, any fixed
protocol parameters, and lookup tables. Moreover, ATmega64 has 2 KB of internal EEPROM which
is writable during operation, but has a very high writing delay in comparison to SRAM. Occasionally,
when the implementations require more than 4 KB of SRAM, we have used EEPROM as a temporary
storage. AVR source codes are written in C language, and compiled by AVR-GCC 4.7.2 and optimized
for maximum speed.

The verifier’s side of authentication protocols is implemented on a typical personal computer (PC),
which has 4 GB of RAM and a 3.3 GHz Intel Core i3-2120 CPU. The PC is equipped with an ACS
ACR1281U-C1 card reader which has dual interfaces (contact and contactless). The source code for
the verifiers are written in C# using WinSCard API to communicate with the smart card.

5.2 Performance of the Primitives

This section contains the performance results of FFT and discrete Gaussian sampling. We have chosen
four parameter sets for FFT implementations, which are FFT–128–257, FFT–256–7681, FFT–512–
12289, and FFT-512-8383489. The first number indicates the degree n, and the second one indicates the
modulus q. The mentioned technique in Section 3.1 has been used in the parameter set FFT–128–257.
FFT–256–7681 is a recommended parameter set [LP11, GFS+12] for 128-bit secure LP-LWE encryption
based on Ring-LWE. FFT–512–12289 and FFT–512–8383489 are from parameter sets of BLISS-I and
GLP signature schemes. Each of these FFTs are implemented using four methods of computing mod
operation. The first one is the compiler generated code for the mod operator of C/C++. Two other
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Fig. 2. The running time of fast Fourier transform with different parameter sets, where the mod operation is
implemented using a number of methods. Numerical results are provided in Table 4.

methods are smallest power of two [GLP12] and double-size multiplication [DDLL13]. The last one
is our method of same-size multiplication which is optimized for constrained processors. All these
methods have been explained in Section 3.1.

Figure 2 shows the running time of FFT implementations on the ARM7TDMI smart card and
ATmega64 microcontroller. FFT–128–257 is exceptionally fast, specially on the 8-bit ATmega64. For
the other parameter sets, our method of computing mod is faster than other methods on the 32-
bit ARM7TDMI. It outperforms the double-size multiplication method, mainly because its 64-bit
multiplication is translated into several 32-bit instructions. Moreover, the method of smallest power of
two does not perform well on the ARM7TDMI, because reducing a few bits from operands does not have
a significant improvement on the running time when multiplication of 16×16-bit values are performed
by the hardware in a very short period of time. On the ATmega64, the results are different. Except
FFT–256–7681 for which our method is the best, the compiler generated code has the best running
time on the other larger parameters. The compared methods are designed for a long-word processor and
perform well on the 32-bit ARM7TDMI. However, it seems that the overhead of breaking long-word
operations into 8-bit instructions is so large that can cancel out the impact of the optimizations. Thus,
we think that is why the compiler generated code for ATmega64 is more efficient on larger parameters.

In order to generate random samples from discrete Gaussian distribution, one needs a uniform
pseudo-random number generator first. We have implemented the ANSI X9.17 standard to generate
uniform random numbers. This standard exploits a symmetric encryption Enc. At the manufacturing
stage, a random key k and an initial seed value s are embedded into the hardware. Whenever new
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Fig. 3. Running time and lookup table size of the cumulative distribution table algorithm and the Bernoulli
sampler, where 512 samples are generated from discrete Gaussian distribution with standard deviations 4.51
and 215. Numerical results are provided in Table 5.

random data is required, the current time d is obtained with maximum accuracy (e.g., by reading the
counter of a fine-grained timer), and t ← Enck(d) is computed. Then, x ← Enck(s ⊕ t) is outputted
as the new random data, and the seed is updated as s ← Enck(x ⊕ t). On our smart card, we have
utilized a coprocessor which evaluates DES encryption for the Enc function. However, ATmega64 has
no cryptographic hardware, and we have implemented DES encryption in software for random data
generation.

Discrete Gaussian samples are obtained by running two algorithms, the cumulative distribution
table method and the Bernoulli sampler. The target distributions are on Z, centered at the origin, and
with standard deviations 4.51 and 215. The standard deviation 4.51 is used in the 128-bit secure ring-
based LP-LWE encryption [LP11, GFS+12]. The other standard deviation (215) is used in BLISS-I
signature scheme. Figure 3 shows the running time and lookup-table size of the sampling algorithms.
For the standard deviation 4.51, the method of cumulative distribution table is significantly faster than
the Bernoulli sampler, at the expense of a slightly larger lookup table, which is still suitable for our
target devices. This means that for narrow Gaussian distributions, the cumulative distribution table
method is better even for constrained devices. However, for the standard deviation 215, the cumulative
distribution table is very large.

5.3 Performance of the Encryption Schemes

We have implemented NTRU encryption, standardized in IEEE P1363.1, as well as a simplified CPA-
secure NTRU encryption described in Section 3.2, and provably-secure LP-LWE encryption by Lindner
and Peikert [LP11]. The used parameters for LP-LWE and both NTRU encryptions are specified in
Table 2. Parameters for LP-LWE are proposed by Lindner and Peikert [LP11] and Göttert et al.
[GFS+12]. NTRU parameters are from EES439EP1 parameter set in IEEE P1363.1. The parameters
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Table 2. Parameters of implemented LP-LWE, NTRU, and CPA-secure NTRU encryptionsfor a security of
128 bits

LP-LWE
N q σ

256 7681 4.51

[CPA-] NTRU
N q d1 d2 d3 ` Ts Tc

439 2048 9 8 5 65 126 112

of these encryption schemes are all configured for a security of 128 bits. In the implementation of LP-
LWE, we have considered that the polynomial a, which is a global parameter, is already converted to the
FFT form. Moreover, key-pair (sk, pk) are outputted in their FFT representation by the key generation
algorithm. Thus, the encryption and decryption are performed faster while the key generation has a
small overhead.

The running time of lattice-based encryptions are provided in Figure 4. The results are separately
presented for key generation time, encryption time, and decryption time. Except the key-generation
time of NTRU and CPA-secure NTRU encryptions, all other operations are performed in less than
400 ms. Utilizing a cryptography co-processor for these computations, which is common in the design of
smart cards, one can achieve very fast lattice-based encryptions in practice. It is also worth-mentioning
that LP-LWE decryption is 4.4 times faster than the standard NTRU, and is 1.8 times faster than
the simplified CPA-secure NTRU on the ARM7TDMI. The running times of LP-LWE encryption are
also comparable to the NTRU and CPA-NTRU ones. Because of the precomputations done in the key
generation algorithm, the decryption of LP-LWE involves only 2 FFTs of dimension 256, while the
decryption of CPA-secure NTRU consists of 3 multiplications of a regular polynomial with a ternary
polynomial, each of dimension 439. Considering the fact that LP-LWE is provably-secure and patent-
free, the use of this scheme, as an alternative to the NTRU variants, appears to be advantageous.

5.4 Protocols Performance

Parameters for the implemented authentication protocols are specified in Table 3. The parameters
for GLP protocol are the same as “Set I” parameters proposed in [GLP12], where provide 80 bits
of security. The other implemented protocols are all configured to obtain 128 bits of security. DDLL
protocol’s parameters are obtained from BLISS-I [DDLL13]. The parameters for the commitment part
of DJ-LWE and DJ-NTRU protocols are chosen in such a way that they take advantage of FFT–128–257
optimization techniques. Moreover, setting m = 20 leads to a statistically hiding commitment scheme,
needed by the security proof of these protocols. Other parameters of DJ-LWE and DJ-NTRU are
same as the parameters of LP-LWE and NTRU encryptions in Table 2, respectively. According to the
results of Section 5.2, on the ARM7TDMI, all protocols are implemented using the proposed technique
for computing mod operation. However, on the ATmega64, GLP and DDLL implementations use the
compiler-generated code for the mod operator (as it is more efficient for their set of parameters),
and only DJ-LWE uses our method. The CPA-secure NTRU encryption in DJ-NTRU protocol has
q = 2048. Thus, computing mod operations are easily performed by right shifts.

Figure 5 illustrates the running time of a complete authentication process using each of the im-
plemented protocols. The processing times of the verifiers were all less than 35 ms and ignored. Com-
munication times are measured using a dummy prover who performs no computations and just sends
and receives real-size messages. Note that the communication times for ATmega64 are estimated. The
communication times of ARM7TDMI smart card are quite large. That is because this smart card only
supports T=0 transport protocol, and the messages are in the form of traditional application protocol
data units (APDUs), limited by a maximum length of 256 bytes. We have estimated communication
times of the ATmega64 microcontroller for the case of T=1 transport protocol and extended APDUs
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Fig. 4. Encryption, decryption, and key generation time of lattice-based encryption schemes; Numerical results
are provided in Table 6.

(without the limit of traditional APDUs). Moreover, note that the running times of GLP and DDLL
protocols are different in each run due to the protocol repetition, and the results in Figure 5 are in
average. Figure 6 also shows the portion of important computation parts in the processing time of the
protocols.

Figure 7 illustrates flash memory and RAM usage of the lattice-based authentication protocols
on our constrained devices. Required RAM for the GLP and DDLL protocols are a little larger than
available RAM on the ATmega64. In order to solve this issue, some intermediate polynomials are
temporarily swapped out into the EEPROM. The overhead of these swaps are approximately 998,000
(1.2% of total) and 1,078,000 (2.6% of total) clock cycles for the GLP and DDLL protocols, respectively
(see Table 9).

6 Conclusion

In this paper, we have implemented efficient lattice-based authentication protocols on a typical smart
card and a microcontroller. In addition, we have implemented fast Fourier transform under various
configurations, and discrete Gaussian sampling using different algorithms. These implementations enjoy
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Table 3. Parameters of implemented lattice-based authentication protocols; The parameters of the GLP
protocol obtain 80 bits of security, but the other protocols are configured for a security of 128 bits.

GLP Protocol
n p κ

512 8383489 214

DDLL Protocol
n q d p δ1 σ κ β2 β∞

512 12289 10 24 0.3 215 23 12872 2100

DJ-LWE / DJ-NTRU
n m p

128 20 257
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Fig. 5. The overall running time of implemented authentication protocols, separated into processing and com-
munication times; Note that the communication times of ATmega64 are estimated. Numerical results are
provided in Table 8.

special optimizations regarding our constrained devices. Our results show that lattice-based schemes are
efficient enough to be used practically on such constrained environments. Moreover, our analysis on the
performance of different methods to perform primitives of lattice-based cryptography may be applied
to design new lattice-based schemes for similar platforms. We have also measured the performance of
a provably-secure lattice-based encryption in comparison to the well-known NTRU encryption. These
results indicate that provably-secure lattice-based encryption is comparable to and even better than
NTRU in terms of the running time, while NTRU’s security is heuristic and it is patent-encumbered.
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den. Discrete Ziggurat: A Time-Memory Trade-off for Sampling from a Gaussian Distribu-
tion over the Integers. Technical Report 510, 2013.

[CHKP12] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai Trees, or How to
Delegate a Lattice Basis. Journal of Cryptology, 25(4):601–639, October 2012.

[CLRS10] Pierre-Louis Cayrel, Richard Lindner, Markus Rückert, and Rosemberg Silva. Improved
Zero-Knowledge Identification with Lattices. In Swee-Huay Heng and Kaoru Kurosawa,
editors, Provable Security, number 6402 in Lecture Notes in Computer Science, pages 1–17.
Springer, 2010.
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APPENDIX

A Java Card Implementation

In this section, we report the results of implementing lattice-based authentication protocols on Java
Card. Java Card is a specification, defined and maintained by Oracle Corporation, which enables
smart card issuers or the end user to program a smart card, rather than using a fixed functionality
programmed at the manufacturing time. Java Cards have a cryptography library to perform a wide
range of encryption algorithms, as well as some primitives such as modular exponentiation and big-
number operations. However, our implementations could not get advantage of these API because
lattice-based schemes rely only on modular addition and multiplication on small numbers. Thus, the
running times of lattice-based authentication protocols are very large, due to numerous arithmetic
operations which are done using high-level JVM instructions. Nevertheless, this shows that lattice-
based schemes can also be implemented on widely used Java Cards. According to the detailed running
times of Figure 6, an approach to achieve desired efficiency is that Java Card operating systems provide
APIs for heavy primitives of lattice-based schemes, such as FFT or discrete Gaussian sampling.

Lattice-based authentication protocols are implemented as Java Card applets, and executed on a
Feitian FT-Java/H10CR smart card. Feitian FT-Java/H10CR supports Java Card 2.2.2 and Global
Platform 2.1.1 specifications. It has 3 KB of transient RAM and 160 KB of EEPROM. This card has
dual interfaces of ISO/IEC 7816 (contact) and ISO/IEC 14443 (contactless). We have measured the
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Fig. 8. The overall running time of the authentication protocols on Java Card, separated into processing and
communication times

running times when the card is used via both interfaces. Figure 8 shows the running time of Java Card
executions. The processing time using the contactless interface is larger because the clock rate is lower
in this case.

B Numerical Results

In this section, we have provided our detailed time and space measurements on the ARM7TDMI smart
card and ATmega64 microcontroller. The processing times are both in clock cycles and milliseconds for
better comparison. Tables 4 and 5 contain the results of running fast Fourier transform and discrete
Gaussian sampling, respectively. Table 6 shows the performance of lattice-based encryption schemes.
RAM and flash memory usages of implemented authentication protocols are provided in Table 7.
Lastly, Tables 8 and 9 contain the timing results of these protocols. Table 9 has also a column “Num.”
which shows the number of invocations for each part, as well as the number of repetitions for the whole
protocol.
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Table 4. Running time of FFT with various typical parameters using different algorithms to compute mod
operation (times are in millisecond.)

Compiler Gen. Small 2 Power Double-size Mult. Our Method

Device Parameter Cycle Time Cycle Time Cycle Time Cycle Time

ARM7TDMI

128-257 44,053 8.95

256-7681 164,070 33.3 161,012 32.7 132,023 26.8 109,306 22.2

512-12289 332,300 67.5 368,228 74.8 287,227 58.8 260,521 53.0

512-8383489 762,489 155 775,575 158 597,413 121 381,951 77.6

ATmega64

128-257 56,916 7.11

256-7681 949,552 118 1,171,989 146 1,259,799 157 754,668 94.3

512-12289 2,072,459 259 2,650,317 331 2,765,274 346 2,207,787 276

512-8383489 4,252,710 532 5,422,161 678 10,233,177 1,279 9,289,380 1,161

Table 5. Average running time of sampling 512 values from discrete Gaussian distributions, using the cumu-
lative distribution table method and the Bernoulli sampler

Device Algorithm Dev. Cycle Time

ARM7TDMI

Cumul. Dist. Table
4.51 111,922 22.7 ms

215 213,148 43.3 ms

Bernoulli Sampler
4.51 709,776 144 ms

215 1,131,305 230 ms

ATmega64

Cumul. Dist. Table
4.51 617,600 77,2 ms

215 3,780,894 473 ms

Bernoulli Sampler
4.51 6,869,236 859 ms

215 8,219,955 1,027 ms

Table 6. Running time of the implemented lattice-based encryption schemes

Key Generation Encryption Decryption

Device Algorithm Cycle Time Cycle Time Cycle Time

ARM7TDMI

LP-LWE 575,047 0.117 s 878,454 179 ms 226,235 46.0 ms

NTRU 26,456,559 5.38 s 695,181 141 ms 999,365 203 ms

CPA-NTRU 26,456,559 5.38 s 464,999 94.5 ms 406,190 82.6 ms

ATmega64

LP-LWE 2,770,592 0.346 s 3,042,675 380 ms 1,368,969 171 ms

NTRU 76,444,403 9.56 s 2,008,678 251 ms 1,390,713 174 ms

CPA-NTRU 76,444,403 9.56 s 1,005,679 126 ms 696,322 87.0 ms
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Table 7. Flash memory and RAM usage of the implemented lattice-based authentication protocols

Device Memory GLP DDLL DJ-LWE DJ-NTRU

Both

RAM 4166 B 5202 B 1888 B 3510 B

FFT Lookup Tables 9.00 KB 5.00 KB 2.0 KB 0.50 KB

Bernoulli Samp. Table – 0.40 KB – –

Huffman Codebook – 5.33 KB – –

Protocol Params & Keys 3.00 KB 3.00 KB 8.00 KB 5.08 KB

ARMT7DMI
Program Codes 33.3 KB 30.9 KB 42.4 KB 53.7 KB

Total Flash Memory 45.3 KB 44.6 KB 52.4 KB 59.3 KB

ATmega64
Program Codes 4.43 KB 11.4 KB 6.02 KB 13.4 KB

Total Flash Memory 16.4 KB 25.1 KB 16.0 KB 18.9 KB

Table 8. Total running time of the implemented lattice-based authentication protocols

Device Time Part GLP DDLL DJ-LWE DJ-NTRU

ARM7TDMI

Proc. 2.56 s 1.11 s 0.358 s 0.380 s

Comm. 19.1 s 1.98 s 2.58 s 1.61 s

Overall 21.7 s 3.09 s 2.94 s 1.99 s

ATmega64
Proc. 10.8 s 5.26 s 0.562 s 0.287 s

Comm. (est.) 3.12 s 0.338 s 0.425 s 0.283 s

Overall 13.9 s 5.60 s 0.986 s 0.570 s

Table 9. Detailed running time of the implemented lattice-based authentication protocols

ARM7TDMI ATmega64

Protocol Part Num. Cycle Time Cycle Time

GLP

FFT 2 5,347,314 1,087 ms 59,537,940 7,442 ms

Sparse Mult. 2 5,160,778 1,049 ms 2,963,086 370 ms

Total 7 rep. 12,579,070 2,557 ms 86,656,602 10,832 ms

DDLL

FFT 2 833,667 169 ms 6,631,868 829 ms

Gaussian 1024 3,620,176 736 ms 26,303,858 3,288 ms

Sparse Mult. 2 143,360 29.1 ms 886,798 111 ms

Huff. Enc. 1024 85,303 17.3 ms 651,755 81.5 ms

Total 1.6 rep. 5,478,943 1,113 ms 42,069,682 5,259 ms

DJ-LWE
FFT 23 1,208,978 246 ms 3,402,324 425 ms

Total 1 rep. 1,761,831 358 ms 4,495,186 562 ms

DJ-NTRU

FFT 20 881,060 179 ms 1,138,320 142 ms

Sparse Mult. 2 649,343 132 ms 851,961 106 ms

Total 1 rep. 1,871,954 380 ms 2,293,270 287 ms
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