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Abstract: Recently, several strong designated verifier signature schemes have been proposed in

the literature. In this paper, we first point out that such so-called strong designated verifier 

signature scheme is just message authentication code HMAC. Without the key property, 

unforgeability, for signatures, these schemes cannot enable signers to have complete controls over 

their signatures as demanded by Chaum and Van Antwerpen originally. No signer would use such 

Designated Verifier Signature schemes if he does not trust the designated verifier entirely. Then 

we introduce a new notion for the strong designated verifier signature scheme and its security 

requirements. We further propose the first strong designated verifier signature scheme based on 

Schnorr signature scheme, and provide a formal security proof under the DL assumption and the 

CDH assumption in the random oracle model. Finally, we discuss general methods to construct the

strong designated verifier signature scheme.
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model.

1 Introduction
Twenty years ago, Chaum and Van Antwerpen introduced a new primitive of cryptology, 

undeniable signature [4]. The motivation came from the following scenario: A software vendor 

puts digital signatures on its products to allow it to authenticate them as correct, free of viruses, 

etc, but only wants paying customers to be able to verify the validity of these signatures. 

Undeniable signatures can address this problem, which allows signers to have complete controls

over their signatures. The verification of a valid undeniable signature requires the participation of 

the signer in an interactive confirmation protocol. On the other hand, the signer can prove that an 

alleged signature is a forgery through an interactive disavowal protocol. This property prevents the 

recipient from proliferating the copies of signatures without the signer’s consent. Undeniable 

signatures find various applications in the real world such as licensing software, electronic cash, 

electronic voting and auctions.

However, this kind of signatures does not always achieve its goal, since this, in itself, only allows 

the prover to decide when a signature is verified and not by whom (or even by how many), 

because of blackmailing attacks [6] and mafia attacks [5].

In Eurocrypt’96, Jakobsson et al. [10] suggested a solution, designation of verifiers, that wanted to 

resolve the conflict between authenticity and privacy, and to dodge the described attacks by 

limiting who can be convinced by a proof. They showed that how, with only small change in the 

confirmation protocol for undeniable signatures, the confirmer could designate verifiers.

Jakobsson et al. first introduced the concept of Designated Verifier Signature schemes (DVS), 
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They suggested that the DVS must satisfy the following requirement: 

“Only the specified verifier can be convinced by the proof, even if he shares all his secret 

information with entities that want to get convinced”.

But this requirement is not necessary in the real world. The private key of verifier, as its name 

implies, can not be shared with other entities. A group of users sharing the same private key must 

be considered to be a user since they must hold the same accountability for the same private key in 

law. They further introduced the concept of Strong Designated Verifier Signature schemes (SDVS), 

in which no third party other than the designated verifier could even verify the validity of a 

designated verifier signature, since the designated verifier’s private key was required in verifying 

phase. In [18], Saeednia et al. firstly formalized the notion of the strong designated verifier 

signature, and proposed an efficient scheme. No signers would use such Designated Verifier 

Signature schemes those are harmful to themselves. Saeednia et al. put forward a new property, 

source hiding, the strong designated verifier signature scheme must satisfy. Given a message and 

its signature, it is infeasible to determine who from the original signer or the designated verifier 

generated the signature, even if one knows all the private keys. This property is accomplished by 

the designated verifier’s capability of creating another signature designated to him which is 

indistinguishable from the signer’s signature. Consequently, if there is some dispute between the 

original signer and the designated verifier, outsiders would have not any way to arbitrate it. It 

follows that the key property, unforgeability, for signatures, is no longer required.

Originally, the Designated Verifier Signature schemes result from the signer’s distrusts in the

designated verifier. Now, the signer must bear common responsibility of the signatures generated 

by the designated verifier together with the designated verifier. It is the unhappiest outcome for the 

signer to use such so-called Designated Verifier Signature schemes. No signers would use such 

Designated Verifier Signature schemes those are harmful to themselves.

Recently, several strong designated verifier signature schemes and their identity-based variants

have been proposed in the literature [16, 13, 14, 8, 12, 3, 23, 22, 11, 21, 20, 15]. Among them, the 

most efficient schemes have the verification equations [9]:

 = H(m, k), where k = Bx
Ay mod p = Ax

By mod p, or k = ê(QIDB, SIDA) = ê(SIDB, QIDA).

As results, abandoning the essential requirement (unforgeability) for signatures, these so-called

strong designated verifier “signature” schemes have been degenerated into the keying hash 

function [2]. Obviously, such simple message authentication code HMAC cannot accomplish the 

task proposed by Chaum and Van Antwerpen originally, i.e., completely controlling verification of 

signatures with non-repudiation. 

Non-repudiation is the priority of any signature scheme. Sacrificing non-repudiation to exchange 

source hiding is more kicks than halfpence, “penny wise and pound foolish”

Therefore, the studies of so-called designated verifier "signatures", originating from Jakobsson, 

developed by Saeednia, followed by many researchers, have gone astray.

To achieve the goal putted forward by Chaum and Van Antwerpen, the strong designated verifier 

signature, just as its name implies, must satisfy two security requirements: unforgeability and 

unverifiability. Only the original signer can generate signatures and only the designated verifier 

can verify signatures. In this paper, we would like to provide new definition for the strong 

designated verifier signature and its security requirements. We will propose a concrete scheme



< 3 >

based on Schnoor signatures [19], and provide a formal security proof under the DL assumption 

and the CDH assumption in the random oracle model. Moreover we will discuss general methods

to construct strong designated verifier signature scheme.

The rest of this paper is organized as follows. In Section 2, we propose the definition of strong 

designated verifier signature scheme and its security model. In section 3, we present a concrete 

strong designated verifier signature scheme based on Schnoor signature. We discuss the general 

methods to construct strong designated verifier signature scheme, which concludes this paper.

2 The definition of strong designated verifier signature scheme and its security model
In this section, we first present a precise definition of the strong designated verifier signature 

scheme, and then describe the security requirements by providing its security model.

2.1 The definition of the strong designated verifier signature scheme

Definition 1 (Strong designated verifier signature scheme)

A strong designated verifier signature scheme is a triple of algorithms (KeyGen, Sign, Ver):

 The key generation algorithm KeyGen that when given a security parameter 1k as input, outputs 

two pairs (skj, pkj) of matching private key and public key for the signer S and the designated 

verifier V respectively, j {S, V}. It is clear that KeyGen must be a probabilistic algorithm.

 The signing algorithm Sign that when given the (skS, pkS, pkV, m) of the matching private key

skS and public key pkS of the signer, the public key pkV of designated verifier and a message m

as input, produces a signature . The signing algorithm might be probabilistic, and in some 

schemes it might receive other input as well.

 The verification algorithm Ver that on input (skV, pkS, m, ), the private key skV of the 

designated verifier, the public key pkS of the signer together with the message m and its

signature , obtains either invalid or valid, with property that if (skS, pkS, skV, pkV) 
KeyGen(1k) and   Sign(skS, pkS, pkV, m), then Ver(skV, pkS, m, ) = valid. In general, the 

verification algorithm need not be probabilistic.

2.2 Security requirements and security models

The standard definition of the security of ordinary signature schemes, together with the first 

construction that satisfies it, was given by Goldwasser et al. [7]. Hence the strong designated 

verifier signature scheme must be existential unforgeable against adaptive chosen message attacks 

(EUF-CMA). However, the definition of ordinary EUF-CMA should be modified since the 

designated verifier might be an adversary. Additionally, the strong designated verifier signature 

scheme demands that only designated verifier can verify the validity of the signatures by using his 

private key. 

Informally, there are two security requirements:

1. Unforgeability requires that nobody, including designated verifier, could forge any signature 

without the knowledge of the private key of the signer.

2. Unverifiability requires that nobody, except for signer, could verify any signature without the 

knowledge of the private key of the designated verifier.

Security model for unforgeability

We say that a strong designated verifier signature scheme is Strong UnForgeable against adaptive 
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Chosen Message Attacks (SUF-CMA) launched by a designated verifier adversary if no 

polynomial bounded adversary A has a non-negligible advantage against the challenger in the 

following game:

KeyGen: The challenger takes as input 1k, runs the randomized algorithm to generate the key pair

(skS, pkS) of the signer and a public cryptographic hash function H. The adversary A chooses a 

group of key pairs (skV0, pkV0,…, skVn, pkVn) of the designated verifier. The designated verifier’s

public keys should be certified by a certificate authority.

Queries: A issues signature queries adaptively on messages of his choice with respect to the 

public key pkS of the signer and any public key pkVi of the designated verifier.

Response: Finally, the adversary A outputs a new designated verifier signature under the public 

keys pkS of the signer and one public key pkV of the designated verifier.

The adversary A wins the game if the output signature is nontrivial, i.e. it is not the answer of a 

signature query. The probability is over the coin tosses of the key generation algorithm and of A.

Remark 1: Here it is strong unforgeability [1], where the adversary needs to forge a new signature 

of a message and is allowed to ask for more signatures of the same message many times, and each 

new answer would give him some useful information. This more liberal rule makes the adversary 

successful when it outputs one new signature on a previously signed message.

Remark 2: This is a chosen key model, the adversary is allowed to choose the public keys of the 

designated verifier. As usually, theses public keys should be certified by a CA. The CA should 

verifies that an applicant knows that the corresponding private key by demanding the applicant to 

send the CA a signature, under the public key it is attempting to get certified, of some message that 

includes the public key and the identity of the applicant. 

Security model for unverifiability

We say that a strong designated verifier signature scheme is UnVerifiable against adaptive Chosen 

Message Attacks (UV-CMA) if no polynomial bounded adversary A has a non-negligible 

advantage against the challenger in the following game:

KeyGen: The challenger takes as input 1k, runs the randomized algorithm to generate the key pair 

(skS, pkS) of the signer and the key pairs (skV0, pkV0,…, skVn, pkVn) of a group of the designated 

verifiers and a public cryptographic hash function H. Finally, the challenger gives the public keys 

(pkS, pkV0, pkV1,…, pkVn) and the hash function H to the adversary A.

Queries: A issues queries q1, ..., qm adaptively, where query qi is one of:  

- Designated verifier signature query <mi, pkVi>.

- Signature verify query <mi, i, pkVi>. 

Challenge: A outputs two messages mi0, mi1 as well as the two public keys pkVi0, pkVi1 on which it 

wishes to be challenged.

The challenger picks a random bit b  {0, 1} and sets b = Sign(mib, pkVib). It sends b as the 

challenge to the adversary A.

The adversary A asks more signature queries and signature verify queries adaptively. 

The only constraint is that b did not appear in any signature verify query.

Guess: Finally, the adversary A outputs a guess b’  {0, 1} and wins the game if b = b’. 
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We define adversary A's advantage in attacking the designated verifier signature scheme as the 

following function of the security parameter k (k is given as input to the challenger): AdvA(k) = 

2Pr[b = b’] – 1.

The probability is over the random bits used by the challenger and the adversary.

Remark 3: This security notion requires that it is computational infeasible to distinguish between 

two messages and two public keys, chosen by the adversary, which message has been signed with

respect to which verifier’s public key, with a probability significantly better than one half.

3 The concrete strong designated verifier signature
In this section, we present a concrete strong designated verifier signature and provide a formal 

security proof.

3.1 The concrete strong designated verifier signature

KeyGen: Take a security parameter 1k as input, run a randomized key generation algorithm to 

generate a group Gg,p = {g0, g1, …, gq-1 mod p}, where p and q are large primes and g is a 

generator of order q, and choose a public collision-free hash functions H: {0, 1}* Zp
* Zp

* Zp
*

Zq
*. The signer picks up at random xS in Zq

* as his private key and computes his public key YS = 

Sxg mod p. The designated verifier generates his key pair {xV, YV} similarly. 

Sign: For a message m  {0, 1}*, the key pair {xS, YS} of the signer and the pubic key YV of the

designated verifier, first pick up at random t in Zq
*, and compute r = gt mod p, k = Sx

Vy mod p, e

= H(m, r, YV, k) and s = t - exS mod q. The strong designated verifier signature is  = (e, s).

Verify: Given a signature  = (e, s), the public key YS of the signer and the private key xV of the 

designated verifier, check the verification equation e = H(m, 
e

S
s yg mod p, YV, Vx

Sy mod p).

Completeness: Because s = t - exS mod q, r = gt mod p, implies r = 
e

S
s yg mod p . Moreover, 

Vx
Sy mod p = k = Sx

Vy mod p. Hence, the signature  = (e, s) produced by the signing algorithm 

Sign is always valid.

Note that our results can also be carried over to other groups, such as those built on elliptic curves.

3.2 Security proof

Security of the proposed strong designated verifier signature is related to the following complexity 

assumptions:

3.2.1 Security assumptions

The Discrete logarithm problem : Given (g, ga mod p), compute a for any a  Zp
*.

Definition 2 (DL assumption)

A probabilistic algorithm D is said to (t, )-break a DL problem in the group Gg,p, if on input (g, ga

mod p) and after running in at most t steps, D computes the discrete logarithm DLg(g
a) = a with 
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probability at least , where the probability is taken over the coins of D and a chosen uniformly 

from Zp
*.

We say that the (t, )-DL problem assumption holds in Gg,p if no t-time algorithm has an 

advantage at least  in solving DL problem in Gg,p.

The Computational Diffie-Hellman problem : Given (g, ga, gb mod p), compute gab mod p for 

any a, b  Zp
*.

Definition 3 (CDH assumption)

A probabilistic algorithm C is said to (t, )-break the CDH problem in the group Gg,p, if on input (g, 

ga, gb mod p) and after running in at most t steps, C computes gab mod p, with probability at least , 
where the probability is taken over the coins of C and a, b chosen uniformly from Zp

*.

We say that the (t, )-CDH problem assumption holds in Gg,p if no t-time algorithm has an 

advantage at least  in solving CDH problem in Gg,p.

3.2.2 Security proof for unforgeability

In fact, the proposed signature scheme is a variant of Schnorr signature scheme [19], by adding the 

public key of the designated verifier and the Diffie-Hellman key into the hash function. Because, 

Schnorr signature scheme is strong existential unforgeable against adaptive chosen message 

attacks (EUF-CMA) under the DL assumption [17], so is the strong designated verifier signature 

scheme proposed. Although designated verifier’s public keys are chosen by the adversary, they 

should be certified by the CA. We can extract the corresponding private keys in the random oracle 

model from the knowledge proofs in certifying public keys. With this trivial modification to that 

of [17], we can show unforgeability. For the reason of brevity, we do not provide it in this paper.

3.2.3 Security proof for unverifiability

Theorem: Suppose that the (t’, ’)-CDH problem assumption holds in Gg,p, then the strong 

designated verifier scheme is (t, qH, qS, qV, )-secure against undesignated verifiers on Gg,p for all t

and  in the random oracle model, where 

t’  t + (n + 1 + 2qS)Cexp(Gg,p)

’  /2 - qS (qH + qS)/q – qv/(q
2 - qH - qS).

Here Cexp(Gg,p) denotes the computation of a long exponentiation in the group Gg,p.

Proof: We use the random oracle model to show the security of the strong designated verifier

signatures against an undesignated verifier. Assume that we are given an undesignated verifier UV

that (t, qH, qS, qV, )-breaks the scheme. That is, UV is a probabilistic polynomial time computer 

program which is supplied with a long public sequence of random bits, and can ask a polynomial 

number of questions to the random oracles H, DS, SV. We want to construct a “simulator” 

algorithm C, which takes (p, q, g, ga, gb mod p) as input. Algorithm C simulates the signature 

scheme to the undesignated verifier UV. Algorithm C answers UV’s hash function queries H,

designated verifier signature queries DS and signature verify queries SV, and tries to translate 

UV’s possible verifies into a solution to the Computational Diffie-Hellman problem (g, ga, gb mod 

p). 

The following is the attack game:

Algorithm C sets ga mod p to be the public key YS of the signer and ( 0bbgg , 1bbgg …, nbb gg
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mod p) to be the public keys (YV0, …, YVn) of a group of designated verifiers, where (b0, b1, …, bn) 

are numbers in Zq
* chosen by Algorithm C. Finally, Algorithm C gives the public keys (YS; YV0,

YV1, …, YVn) to the undesignated verifier UV.

At any time, the adversary UV can query hash oracles H, sign oracle DS and verify oracle SV. To 

response to these queries, C maintains two lists of tuples for the hash oracles H and the sign oracle 

DS. We refer to the two lists as the H-list and the S-list, respectively. The contents of the two lists 

are “dynamic” during the attack game. Namely, when the game starts, they are initially empty, but 

at the end of the game, they record all pairs of queries/answers.

Answering H-oracle queries: If UV issues a hash oracle query (mi, ri, Yi, ki) where 1 i  qH, C

looks up the H-list to get the corresponding answer. If ((mi, ri, Yi, ki), ei) exists in the H-list, C

answers with ei. Otherwise C generates ei from Zq* uniformly at random, answers with it, and adds 

((mi, ri, Yi, ki), ei) to the H-list.

Answering sign-oracle queries: If UV issues a sign query (mi, Yi) where 1 i  qS, C generates ei, si

from Zq* uniformly at random, computes ri = ii e
S

s Yg mod p. Then C looks for an item ((*, *, Yi, 

ki), *) in the H-list to find ki. Otherwise, C generates ki from Zq* uniformly at random. If there 

exists an item ((mi, ri, Yi, ki), ei’) in the H-list with ei’ ei, C aborts and restarts simulation (the 

probability of this unfortunate coincidence occurring is at most (qH + qS)/q.). C answers with ((mi, 

Yi), ei, si), and adds ((mi, ri, Yi, ki), ei) to the H-list, ((mi, Yi), ei, si) to the S-list.

Answering verify-oracle queries: If UV issues a verify query ((mi, Yi), ei, si), where 1 i  qV, C

looks for such item in the S-list. If C finds it, C answers with valid. Else if there exists an item ((mi, 

ri, Yi, ki), ei) in the H-list, C answers with invalid. Otherwise, C aborts and restarts simulation. The 

probability that ((mi, Yi), ei, si) is a valid signature and there is no item ((mi, *, Yi, *), ei) in the 

H-list is at most 1/(q2 - qH - qS).

According to the security model, UV outputs two sign queries. Without loss of generality, we 

assume that they are (m0, YV0) and (m1, YV1). C picks a random bit b  {0, 1} and sets b = Sign(mb, 

YVb). It sends b as the challenge to the adversary UV.

The adversary UV is allowed to continue to ask more signature queries and signature verify 

queries adaptively. 

The only constraint is that b did not appear in any signature verify query.

Finally, the adversary UV outputs a guess b’  {0, 1} and wins the game if b = b’.

By definition, Pr[b = b’] = AdvUV(k)/2 + 1/2.

If neither (m0, r0, YV0, k0) nor (m1, r1, YV1, k1) has queried by UV to the H-oracle in the game, UV

has no information about b since the answer to the hash function is randomly chosen, thus

Pr[b = b’] = 1/2.

Suppose that (m0, r0, YV0, k0) has queried in a H-oracle query, thus, k0 = 0Vx
Sy = Sx

Vy 0 = 

)( 0bbag  mod p implies gab = 0)/(0
bagk mod p. Algorithm C can find it in the H-list.

Therefore, ’  /2 - qS(qH + qS)/q – qv/(q
2 - qH - qS).
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Similarly t’  (t + (n + 1+2qS)Cexp(Gg,p)).  

Q.E.D.

Remark : This proof only show that nobody could verify any signature without the knowledge of 

the Diffie-Hellman key between the signer and the designated verifier. Hence, both the signer and 

the designated verifier are able to verify the designated verifier signature. This is reasonable since 

the signer should certainly control the signatures he has signed.

On the other hand, given the Diffie-Hellman key, judges can resolve possible disputes between the 

signer and the designated verifier.

4 Conclusions
Because Jakobsson et al. gave up the non-repudiation requirement that is essential in the ordinary 

signature scheme, so-called strong designated verifier “signature” schemes have been degenerated 

into the keying hash function. Obviously, such simple message authentication code HMAC cannot 

accomplish the task proposed by Chaum and Van Antwerpen originally, i.e., completely 

controlling verification of undeniable signatures with non-repudiation. Moreover, the designated 

verifier is able to create another signature designated to him which is indistinguishable from the 

signer’s signature. The signer must bear common responsibility of the signatures generated by the 

designated verifier together with the designated verifier. No signer would use such Designated 

Verifier Signature schemes if he does not trust the designated verifier entirely. Therefore, the 

research lines originated from Jakobsson et al. is not practical at all.

In this paper, we have solved this task, by introducing the new notion of strong designated verifier 

signature scheme. We have provided a new definition and new security requirements: 

unforgeability and unverifiability. Then we have proposed the first strong designated verifier 

“signature” scheme based on Schnoor signatures and have provided a formal security proof. 

From the concrete scheme, we obtain a general method to construct a provably secure strong 

designated verifier signature scheme. Adding the Diffie–Hellman key to the hash function of a 

variety of signature scheme since the hash function is indispensable in any provably secure 

signature scheme.
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