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Abstract. In this note we show a consequence of the recent observation
that narrow-pipe hash designs manifest an abberation from ideal random
functions for finding collisions for those functions with complexities much
lower than the so called generic birthday paradox lower bound. The prob-
lem is generic for narrow-pipe designs including classic Merkle-Damg̊ard
designs but also recent narrow-pipe SHA-3 candidates. Our finding does
not reduces the generic collision security of n/2 bits that narrow-pipe
functions are declaring, but it clearly shows that narrow-pipe designs
have a property when we count the calls to the hash function as a whole,
the birthday paradox bound of 2n/2 calls to the hash function is clearly
broken. This is yet another property in a series of similar “non-ideal ran-
dom” properties (like HMAC or PRF constructions) that narrow-pipe
hash function manifest and that are described in [1] and [2].

1 Introduction

Merkle-Damg̊ard construction, introduced in 1989 ([3], [4]), is the most
used method how to design hash functions. Even before the formal pro-
posal of the Merkle-Damg̊ard construction, there were known results in
the thesis of Merkle from 1979 [5] that say that when an adversary is
given 2k distinct target hashes, (second) preimages can be found after
hashing about 2n−k messages, instead of expected 2n different messages.

For the first generic attack against Merkle-Damg̊ard construction we
can treat the length-extension attack.

Then in 2004 we saw another generic attack described in the paper
of Joux [6]. The Joux analysis showed that the attacker can find multi-
collisions much more faster than expected: r messages with the same hash
value can be found in ln2r×2n/2 instead of 2n(r−1)/r calls of hash function.



Soon after that, in 2005, Kelsey and Schneier extended ideas of Joux
in [7] to find second preimages of messages long 2k-message-blocks with
complexity k × 2n/2+1 + 2n−k+1 which is below the generic bound of 2n.

In this note we show another generic attack against Merkle-Damg̊ard
and narrow-pipe constructions when hashing long messages of 2k blocks.
Our attack reduces the collision search, from the generic bound of 2n/2

to 2n/2−k/2 number of hash calls, where hashing is done over messages of
length 2k blocks.

2 Notations

For the definition of narrow and wide-pipe hash function, let us denote:

– C(h, m) - a compression function C with chaining variable h and
message block variable m.

– hlen - the length of the chaining variable, i. e. the length of compres-
sion function output.

– mlen - the length of the message block.
– hashlen - the length of the hash function output.

If the compression function has the property, that for every value m
the function C(h, m) ≡ Cm(h) is an ideal random function of the variable
h, we denote it as IRF (h).

If the compression function has the property, that for every value h
the function C(h, m) ≡ Ch(m) is an ideal random function of the variable
m, we denote it as IRF (m).

The hash function is defined by a narrow-pipe compression function
(NPCF), iff hashlen = hlen = mlen

2 and the compression function is
IRF (h) and IRF (m).

The hash function is defined by a wide-pipe compression function
(WPCF), iff hashlen = hlen

2 = mlen
2 and the compression function is

IRF (h) and IRF (m).

3 Main contribution of this note

Theorem 1. Suppose that the hash function H : {0, 1}∗ → {0, 1}n is
defined by a narrow-pipe compression function C : {0, 1}n×{0, 1}mlen →
{0, 1}n. Then we can find a collision (M, M ′) for the hash function H
using much less than 2n/2 calls to the hash function H (the lower bound
of the birthday paradox).



Proof. For the sake of simplicity, let us suppose n = hashlen = 256.
The general case is analogous. In this case, the hashed message is padded
and divided into 512-bit blocks. Let us suppose that a message M (for
instance the content of a hard disk or a RAM memory) is divided into
two parts A and B, i.e. M = A||B, where the part A consist of just
one message block of 512 bits, and the number of 512-bit blocks in the
part B is N = 235 (in case of current 2TByte HDD). Let us denote by
hA the intermediate chaining value, obtained after hashing the part A
of the message M and let us suppose that the content of the part B is
never changing - so it consists of constant message blocks const1, const2,
. . ., constN (note that if padding is a part of the definition, it is also a
constant block). We compute the final hash with the following iterative
procedure:

h1 = C(hA, const1)
h2 = C(h1, const2)
h3 = C(h2, const3)

. . .
hN = C(hN−1, constN )

H(M) = hN

If the compression function C is IRF (h), then the chaining values are
loosing the entropy in every of the N steps above. From Corollary 3[2]
we obtain that the entropy of the final hash hN is equal to

E(hash) = hashlen + 1− log2(N),

and for N = 235 it gives

E(hash) = 222.

If we compute hash values for 2111 different parts A (whereas the part
B remains unchanged), we will obtain 2111 hash values hN . According to
the birthday paradox it is sufficient for finding a collision in the set of
these values with probability around 1

2 . Cryptographically strong hash
function H should require approximately 2128 hash computations. ut

Corollary 1. For hash functions H() constructed as in Theorem 1, find-
ing a pair of colliding messages (M, M ′) that are long N = 2k blocks, can
be done with O(2n/2−k/2) calls to the hash function H(). ut

Note 1: If we count the number of calls to the compression function
C(Hi, Mi), then with our collision strategy we are calling actually more



times the compression function. Namely, 2111×235 = 2145. So, our finding
does not reduces the n

2 bits of collision security that narrow-pipe functions
are declaring, but we clearly show that narrow-pipe designs have a prop-
erty when we count the calls to the hash function as a whole, the birthday
paradox bound of 2n/2 calls to the hash function is clearly lowered.

Note 2: This technique is not applicable to wide-pipe hash functions
because the entropy reduction after applying the compression function
C(Hi, Mi) to different message blocks starts from the value hlen which is
two times bigger than hashlen i.e. hlen = 2hashlen. So the final reduction
from hlen to hashlen bits will make the technique described in this note
ineffective against wide-pipe designs.
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