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Abstract. The stream ciphers Py, Py6 were designed by Biham and Se-
berry for the ECRYPT-eSTREAM project in 2005. However, due to sev-
eral recent cryptanalytic attacks on them, a strengthened version Pypy
was proposed to rule out those attacks. The ciphers have been promoted
to the ‘Focus’ ciphers of the Phase II of the eSTREAM project. The
impressive speed of the ciphers make them the forerunners in the com-
petition. Unfortunately, even the new cipher Pypy was found to retain
weaknesses, forcing the designers to again go for modifications. As a re-
sult, three new ciphers TPypy, TPy and TPy6 were built. Among all
the members of the Py-family of ciphers, the TPypy is conjectured to
be the strongest. So far, there is no known attack on the TPypy. This
paper shows that the security of TPypy does not grow exponentially
with the key-size. The main achievement of the paper is the detection
of input-output correlations of TPypy that allow us to build a distin-
guisher with 2281 randomly chosen key/IVs and as many outputwords
(each key generating one outputword). The cipher TPypy was claimed
by the designers to be secure with keysize up to 256 bytes, i.e., 2048 bits.
Our results establish that the TPypy fails to provide adequate security
if the keysize is longer than 35 bytes, i.e., 280 bits. Note that the dis-
tinguisher is built within the design specifications of the cipher. Because
of remarkable similarities between the TPypy and the TPy, our attacks
are shown to be effective for TPy also. The paper also points out how
the other members of the Py-family (i.e., TPy6, Py6, Pypy and Py6) are
also weak against the current and some existing attacks.

⋆ This work was supported in part by the Concerted Research Action (GOA) Mefisto
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1 Introduction

Timeline: the Py-family of Ciphers

– April 2005. The ciphers Py and Py6, designed by Biham and Seberry,
were submitted to the ECRYPT project for analysis and evaluation in the
category of software based stream ciphers [1]. The impressive speed of the
cipher Py in software (about 2.5 times faster than the RC4) made it one of
the fastest and most attractive contestants.

– March 2006 (at FSE 2006). Paul, Preneel and Sekar reported distin-
guishing attacks with 289.2 data and comparable time against the cipher Py
[8]. Crowley [4] later reduced the complexity to 272 by employing a Hidden
Markov Model.

– March 2006 (at the Rump session of FSE 2006). A new cipher, namely
Pypy, was proposed by the designers to rule out the aforementioned distin-
guishing attacks on Py [2].

– May 2006 (presented at Asiacrypt 2006). Distinguishing attacks were
reported against Py6 with 268.6 data and comparable time by Paul and
Preneel [9].

– October 2006 (to be presented at Eurocrypt 2007). Wu and Preneel
showed key recovery attacks against the ciphers Py, Pypy, Py6 with chosen
IVs. This attack was subsequently improved by Isobe et al. [5].

– January 2007. Three new ciphers TPypy, TPy, TPy6 were proposed by the
designers [3]. These three ciphers can very well be viewed as the strengthened
versions of the previous ciphers Py, Pypy and Py6 where the above attacks
do not apply. So far there exist no attacks on TPypy, TPy and TPy6.

Contribution of the paper. From the previous discussion, the list that orders
the Py-family of ciphers in terms of increasing security is: Py6→Py→ Pypy →
TPy6 → TPy → TPypy. In this paper we build a distinguishing attack on the
strongest member of the Py-family of cipher TPypy with 2281 data. The TPypy
is normally used with a 32-byte key and a 16-byte initial value (or IV). However,
the key size may vary from 1 byte to 256 bytes and the IV can be of any size from
1 byte to 64 bytes. When TPypy is used with key of size longer than 35 bytes
(or, 280 bits), our attack is better than the exhaustive key search and therefore,
constitutes an academic break of the cipher. Ideally the security of a stream
cipher should increase exponentially with the key-size. Our major contribution
is that, for the TPypy (as well as TPy, TPy6, Pypy and Py) the security does
not grow exponentially beyond 35 bytes. These weaknesses result in the first
attacks on TPypy, TPy and TPy6.

For Pypy and Py, the attacks outlined in this paper are also valid with data
and time complexities 2281. It is now very important to make a distinction be-
tween the current attacks and previous attacks on Pypy and Py.
Our attack on Pypy (and also Py) and the attack on it by Wu and Preneel. Re-
cently, Wu and Preneel [10] have reported a key recovery attack on Pypy based
on the weaknesses of its IV setup [11]. There are three major limitations of their
attack: (i) the attack does not work if the IV size is shorter than 10 bytes; (ii)
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the attack-model assumes a powerful adversary who can control the IVs, some-
thing which is difficult to implement in practice. On the other hand, the attack
described in this paper does not depend on any of the above constraints. More
precisely, the attacks described in the paper work (i) for IV of any length, even
if (ii) the adversary has no control over the IVs.

Organization of the paper. In Sect. 4, we detect correlation between the inputs
and the outputs of the TPypy at rounds 1, 3, 5 and 9. The correlation gives rise
to a bias in the output distribution which is quantified in Sect. 5. In Sect. 6, we
generalize the results of Sect. 4. The construction of a distinguisher is shown in
Sect. 7. Finally, we conclude with a discussion on (1) the applicability of these
attacks on all other Py-family of ciphers, (2) an implication of the attacks when
combined with those of [8] and (3) the possibility of the existence of stronger
distinguishers for all the Py-family of ciphers by combining the various biases.

2 The Round Function of TPypy and TPy

The TPypy and TPy use the same initialization, that is, their key setup and IV
setup algorithms are identical [3]. Algorithm 1 describes one round of TPypy.
The only difference is in the round function – TPy generates two outputwords
(lines 5 and 6), each of 4 bytes, in every round where TPypy outputs only one
of them (line 6). We assume that the key/IV setups of both TPypy and TPy
generate perfectly random outputs. The round function takes as inputs the array
P (which is a permutation of the elements of the set {0, ..., 255}), the array Y

(which contains 260 elements (each element is a 32-bit integer) and a 32-bit
variable s. The operation ‘rotate(X)’ implies a cyclic rotation of the elements
of array X by one position. The ‘ROTL32(s, n)’ function cyclically rotates the
variable s to the left by n positions (see Fig. 1).

Algorithm 1 A Round of TPypy and TPy

Require: Y [−3, ..., 256], P [0, ..., 255], a 32-bit variable s

Ensure: 64-bit random output
/*Update and rotate P*/

1: swap (P [0], P [Y [185]&255]);
2: rotate (P );

/* Update s*/
3: s+ = Y [P [72]] − Y [P [239]];
4: s = ROTL32(s, ((P [116] + 18)&31));

/* Output 4 or 8 bytes (least significant byte first)*/
5: output ((ROTL32(s, 25)⊕Y [256])+Y [P [26]]);/* This step is skipped for TPypy*/
6: output (( s ⊕Y [−1]) + Y [P [208]]);

/* Update and rotate Y */
7: Y [−3] = (ROTL32(s, 14) ⊕ Y [−3]) + Y [P [153]];
8: rotate(Y );
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3 Notation and Convention

We follow the same convention as described in [8]. The Oi(j) denotes the jth
bit (where j = 0 denotes the lsb) of the outputword generated in round i. We
denote the arrays obtained after the key/IV setup by P0, Y1 and s0. This ensures
uniform indices in the formula for the output generated at round 1. For example,
when the above convention is followed, O1 = (s1 ⊕ Y1[−3]) + Y1[P1[153]]. Hence
at the beginning of step m, we have Pm, Ym+1 and sm. Next, the Ym[k] and
the Pm[k] denote the kth elements of the arrays Ym and Pm respectively. The
Ym[k]j , the Pm[k]j denote the jth bit (where j = 0 denotes the lsb) of Ym[k],
Pm[k] respectively. The operators ‘+’ and ‘−’ denote addition modulo 232 and
subtraction modulo 232 respectively, except when used in expressions of the form
Pm[k] = Pn[l] ± x, where they denote addition and subtraction over Z. The
symbol ‘⊕’ denotes bitwise exclusive-or.

4 Motivational Observation

Our principal observation is the detection of a relation between inputs and out-
puts of TPypy (and hence TPy) which is formulated in the theorem below. Such
types of weaknesses are sometimes difficult to eliminate from the stream ciphers
based on arrays and modular addition as analyzed by Paul in his Ph.D. thesis
[7].

Theorem 1. O1(0) ⊕O3(0) ⊕O5(0) ⊕O9(0) = 0 if the following 14 conditions on
the elements of P and Y are simultaneously satisfied.

1. P2[116] ≡ −18(mod 32) (event E1),

2. P3[116] ≡ 0(mod 32) (event E2) or P3[116] ≡ −18(mod 32) (event E′

2),

3. P4[116] ≡ −18(mod 32) (event E3),

4. P5[116] ≡ 0(mod 32) when P3[116] ≡ 0(mod 32) occurs (event E4) or
P5[116] ≡ −18(mod 32) when P3[116] ≡ −18(mod 32) occurs (event E′

4),

5. P6[116] ≡ −18(mod 32) (event E5),

6. P7[116] ≡ −18(mod 32) (event E6),

7. P8[116] ≡ −18(mod 32) (event E7),

8. P9[116] ≡ −18(mod 32) (event E8),

9. P2[72] = P3[239] + 1 (event E9),

10. P2[239] = P3[72] + 1 (event E10),

11. P4[72] = P5[239] + 1 (event E11),

12. P4[239] = P5[72] + 1 (event E12),

13.
∑9

i=6(Yi[Pi[72]] − Yi[Pi[239]]) = 0 (event E13),

14. Y9[P9[208]]0 ⊕ Y5[P5[153]]0 ⊕ Y5[P5[208]]0 ⊕ Y3[P3[153]]0 ⊕ Y3[P3[208]]0 ⊕
Y1[P1[208]]0 ⊕ Y6[256]0 ⊕ Y4[256]0 ⊕ Y3[5]0 ⊕ Y1[3]0 = 0 (event E14).
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Fig. 1. (a) Yi[k] = Yi+1[k − 1] for −2 ≤ k ≤ 256; Yi+1[256] = Y 1
i [−3] when k = −3

(Y 1
i [−3] = (ROTL32(si, 14) ⊕ Yi[−3]) + Yi[Pi[153]]); (b) si and ROTL32(si, (32 − n))

where 0 ≤ n ≤ 31

Proof. From line 6 of Algorithm 1, it is found that

O1 = (s1 ⊕ Y1[−1]) + Y1[P1[208]] (1)

⇒ O1(0) = s1(0) ⊕ Y1[−1]0 ⊕ Y1[P1[208]]0 . (2)

From line 7 of Algorithm 1 and Fig. 1, it is obtained that

Y4[256] = (ROTL32(s3, 14) ⊕ Y3[−3]) + Y3[P3[153]] (3)

⇒ Y4[256]0 = ROTL32(s3, 14)0 ⊕ Y3[−3]0 ⊕ Y3[P3[153]0 . (4)

But, ROTL32(s3, 14)0 = s3(18) and Y3[−3] = Y1[−1] ⇒ Y3[−3]0 = Y1[−1]0 .

Substituting these two results in (4) and rearranging the terms we get

Y1[−1]0 = s3(18) ⊕ Y4[256]0 ⊕ Y3[P3[153]]0 . (5)

Putting (5) in (2) gives

O1(0) = s1(0) ⊕ s3(18) ⊕ Y4[256]0 ⊕ Y3[P3[153]]0 ⊕ Y1[P1[208]]0. (6)

Similarly,

O3(0) = s3(0) ⊕ s5(18) ⊕ Y6[256]0 ⊕ Y5[P5[153]]0 ⊕ Y3[P3[208]]0 . (7)

Looking at (2), one can write the formulas for O5(0) and O9(0) as

O5(0) = s5(0) ⊕ Y5[−1]0 ⊕ Y5[P5[208]]0,

O9(0) = s9(0) ⊕ Y9[−1]0 ⊕ Y9[P9[208]]0.
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Again from Fig. 1, we have

Y5[−1] = Y1[3] ⇒ Y5[−1]0 = Y1[3]0,

Y9[−1] = Y3[5] ⇒ Y9[−1]0 = Y3[5]0.

Therefore,

O5(0) = s5(0) ⊕ Y1[3]0 ⊕ Y5[P5[208]]0, (8)

O9(0) = s9(0) ⊕ Y3[5]0 ⊕ Y9[P9[208]]0. (9)

From (6), (7), (8) and (9),

O1(0) ⊕ O3(0) ⊕ O5(0) ⊕ O9(0) = s1(0) ⊕ s3(18) ⊕ s3(0) ⊕ s5(18) ⊕ s5(0) ⊕ s9(0)

⊕ Y1[P1[208]]0 ⊕ Y3[P3[153]]0 ⊕ Y3[P3[208]]0

⊕ Y5[P5[153]]0 ⊕ Y5[P5[208]]0 ⊕ Y9[P9[208]]0

⊕ Y1[3]0 ⊕ Y3[5]0 ⊕ Y4[256]0 ⊕ Y6[256]0.

The formulas for s2 and s3 are given below (see Algorithm 1):

s2 = ROTL32(s1 + Y2[P2[72]] − Y2[P2[239]], P2[116] + 18 mod 32), (10)

s3 = ROTL32(s2 + Y3[P3[72]] − Y3[P3[239]], P3[116] + 18(mod 32). (11)

Condition 1 (i.e., P2[116] ≡ −18 mod 32) reduces (10) to

s2 = s1 + Y2[P2[72]] − Y2[P2[239]].

Therefore, (11) becomes

s3 = ROTL32(s1 +
3

∑

i=2

(Yi[Pi[72]] − Yi[Pi[239]]), P3[116] + 18 mod 32). (12)

Now, condition 9 (i.e., P2[72] = P3[239] + 1) and condition 10 (i.e., P2[239] =

P3[72] + 1) together imply
∑3

i=2(Yi[Pi[72]] − Yi[Pi[239]]) = 0 and hence re-
duce (12) to

s3 = ROTL32(s1, P3[116] + 18 mod 32). (13)

Now, when

1. event E2 (that is, P3[116] ≡ 0 mod 32) occurs, (13) becomes

s3 = ROTL32(s1, 18) ⇒ s3(18) = ROTL32(s1, 18)18 = s1(0);

2. event E′

2 (i.e., P3[116] ≡ −18 mod 32) occurs, (13) becomes

s3 = ROTL32(s1, 0) = s1 ⇒ s3(0) = s1(0).

Hence, when the event
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1. E1 ∩ E2 ∩ E9 ∩ E10 occurs then s3(18) = s1(0),
2. E1 ∩ E′

2 ∩ E9 ∩ E10 occurs then s3(0) = s1(0).

Similarly, when the event

1. E3 ∩ E4 ∩ E11 ∩ E12 occurs then s5(18) = s3(0),
2. E3 ∩ E′

4 ∩ E11 ∩ E12 occurs then s5(0) = s3(0).

By similar arguments, it is seen that s9(0) = s5(0) when condition 5 (that is,
P6[116] ≡ −18 mod 32), condition 6 (i.e., P7[116] ≡ −18 mod 32), condition
7 (i.e., P8[116] ≡ −18 mod 32), condition 8 (i.e., P9[116] ≡ −18 mod 32) and

condition 13 (i.e.,
∑9

i=6(Yi[Pi[72]]−Yi[Pi[239]]) = 0) are simultaneously satisfied.
Condition 13 generates many sets of conditions on the elements of the S-box P

which are provided in Table 1. Each row in the table lists a set of 4 conditions
on the elements of array P . For example, the 4 conditions listed in the first row
are:

1. P6[72] = P7[239] + 1,
2. P7[72] = P6[239] − 1,
3. P8[72] = P9[239] + 1,
4. P9[72] = P8[239] − 1.

The intersection of these 4 events is denoted by G1. The occurrence of Gj (1 ≤
j ≤ 9) implies the occurrence of the event E13. Likewise, we have 16 sets of

Table 1. When Gj (1 ≤ j ≤ 9) occurs, condition 13 is satisfied

Event P6[72] P7[72] P8[72] P9[72]

G1 P7[239] + 1 P6[239] − 1 P9[239] + 1 P8[239] − 1

G2 P7[239] + 1 P8[239] + 1 P9[239] + 1 P6[239] − 3

G3 P7[239] + 1 P9[239] + 2 P6[239] − 2 P8[239] − 1

G4 P8[239] + 2 P6[239] − 1 P9[239] + 1 P7[239] − 2

G5 P8[239] + 2 P9[239] + 2 P6[239] − 2 P7[239] − 2

G6 P8[239] + 2 P9[239] + 2 P7[239] − 1 P6[239] − 3

G7 P9[239] + 3 P6[239] − 1 P7[239] − 1 P8[239] − 1

G8 P9[239] + 3 P8[239] + 1 P6[239] − 2 P7[239] − 2

G9 P9[239] + 3 P8[239] + 1 P7[239] − 1 P6[239] − 3

conditions, denoted by Hk (1 ≤ k ≤ 16), on the elements of P where each set
comprises 5 conditions. When those 5 conditions are simultaneously satisfied,
condition 14 of Theorem 1 is satisfied. One such set of 5 conditions is shown
below.

1. P5[153] = 3 ⇒ Y5[P5[153]] = Y5[3] = Y3[5] ⇒ Y5[P5[153]]0 = Y3[5]0,
2. P3[153] = 1 ⇒ Y3[P3[153]] = Y3[1] = Y1[3] ⇒ Y3[P3[153]]0 = Y1[3]0,
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3. P9[208] = 253 ⇒ Y9[P9[208]] = Y9[253] = Y6[256] ⇒ Y9[P9[208]]0 = Y6[256]0,
4. P5[208] = 255 ⇒ Y5[P5[208]] = Y5[255] = Y4[256] ⇒ Y5[P5[208]]0 = Y4[256]0,
5. P1[208] = P3[208] + 2⇒ Y3[P3[208]] = Y1[P1[208]]

⇒ Y3[P3[208]]0 = Y1[P1[208]]0.

We restate condition 14 of Theorem 1 here:

Y9[P9[208]]0 ⊕ Y5[P5[153]]0 ⊕ Y5[P5[208]]0 ⊕ Y3[P3[153]]0 ⊕ Y3[P3[208]]0

⊕ Y1[P1[208]]0 ⊕ Y6[256]0 ⊕ Y4[256]0 ⊕ Y3[5]0 ⊕ Y1[3]0 = 0.

We observe that the above equation holds when the previous 5 conditions are
satisfied simultaneously. The other 15 sets of conditions can be found in Table 2.
The occurrence of Hk (1 ≤ k ≤ 16) implies the occurrence of the event E14. Let
Dj,k denote the event E1 ∩E2 ∩E3 ∩E4 ∩E5 · · · ∩Gj ∩Hk and Fj,k denote the
event E1 ∩E′

2 ∩E3 ∩E′

4 ∩E5 · · · ∩Gj ∩Hk where 1 ≤ j ≤ 9, 1 ≤ k ≤ 16. Hence,
it follows that, if Ej,k or Fj,k occurs then

O1(0) ⊕ O3(0) ⊕ O5(0) ⊕ O9(0) = 0.

This completes the proof. ⊓⊔

5 Estimation of the Bias in the Outputs

Under the assumption of a perfect key/IV setup (see Section 2), we now proceed
to estimate Prob[O1(0) ⊕O3(0) ⊕O5(0) ⊕O9(0) = 0]. The conditions listed under
Theorem 1 fall into one of the following categories:

1. Pn[116] ≡ −18 or 0 mod 32, 2 ≤ n ≤ 9,
2. an element of P is related to another element of P , and
3. an element of P is equated to a constant term.

The probability of occurrence of an event falling under category 2 or 3, is approx-
imately 1

256 = 1
28 . It may be recalled from Sect. 4 that the event Gj (1 ≤ j ≤ 9)

is the intersection of 4 independent events, all of which fall under category 2
described above. Hence,

P [Gj ] ≈ (
1

28
)4 =

1

232
, 1 ≤ j ≤ 9. (14)

Again, event Hk (1 ≤ k ≤ 16) is the intersection of 5 independent events. The
first four events come under category 2 and the fifth event falls under category
3. Therefore,

P [Hk] ≈ (
1

28
)5 =

1

240
, 1 ≤ k ≤ 16. (15)

Hence,

P [∪9
j=1Gj ] =

9
∑

j=1

P [Gj ] ≈
9

232
. (16)
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Similarly,

P [∪16
k=1Hk] ≈

16

240
=

1

236
. (17)

The independent events E9, E10, E11 and E12 also come under category 2.
Therefore,

P [E9] = P [E10] = P [E11] = P [E12] ≈
1

28

⇒ P [E9 ∩ E10 ∩ E11 ∩ E12] ≈ (
1

28
)4 =

1

232
. (18)

Now we calculate the probabilities, using Bayes’ rule, for events coming under
category 1. We know that P2[116] ≡ −18 mod 32 ⇒ P2[116] ∈ {14, 46, 78, 110, 142,

174, 206, 238}. Therefore,

P [E1] =
8

256
.

Now, P3[116] ≡ 0 mod 32 (i.e., event E2) implies P3[116] ∈ {0, 32, 64, 96, 128, 160, 192, 224}.
Since P3[116] 6= P2[116],

P [E2|E1] =
8

255

⇒ P [E2 ∩ E1] = P [E2|E1] · P [E1] =
8

256
·

8

255
.

On the other hand, if P3[116] ≡ −18 mod 32 (i.e., event E′

2) then P3[116] ∈
{14, 46, 78, 110, 142, 174, 206, 238} and hence

P [E′

2 ∩ E1] =
8

256
·

7

255
.

By similar arguments we have

P [E3 ∩ E2 ∩ E1] = P [E3|E2 ∩ E1] · P [E2 ∩ E1] =
8

256
·

8

255
·

7

254
,

P [E4 ∩ E3 ∩ E2 ∩ E1] =
8

256
·

8

255
·

7

254
·

7

253
,

P [E′

4 ∩ E3 ∩ E2 ∩ E1] =
8

256
·

7

255
·

6

254
·

5

253
.

Proceeding similarly, we see that

P [∩8
i=1Ei] =

8

256
·

8

255
·

7

254
·

7

253
·

6

252
·

5

251
·

4

250
·

3

249
≈

1

243.7
, (19)

and

P [E′] =
8

256
·

7

255
·

6

254
·

5

253
·

4

252
·

3

251
·

2

250
·

1

249
≈

1

248.5
(20)
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where E′ denotes E1 ∩ E′

2 ∩ E3 ∩ E′

4 ∩ E5 ∩ E6 ∩ E7 ∩ E8. Since ∩8
i=1Ei and E′

are mutually exclusive,

P [(∩8
i=1Ei) ∪ E′] =

1

243.7
+

1

248.5
≈

1

243.7
. (21)

If the events coming under category 1 are assumed to be independent then the
values of the probabilities in (19) and (20) are identical. In such case each of
them is equal to

(
8

256
)8 = 2−40

instead of 2−43.7 and 2−48.5 respectively. The difference is notable and attributed
to the fact that an event falling under category 1 has a larger number of outcomes
than an event coming under category 2 or 3. Finally, we have 4 independent
events: (∩8

i=1Ei)∪E′, E9 ∩E10 ∩E11 ∩E12, Gj and Hk. We find that the inter-
section of these 4 events is Dj,k ∪ Fj,k (see Sect. 4). Hence from (14), (15), (18)
and (21), we get

P [Dj,k ∪ Fj,k] = P [(∩8
i=1Ei) ∪ E′] · P [E9 ∩ E10 ∩ E11 ∩ E12] · P [Gj ] · P [Hk]

=
1

243.7
·

1

232
·

1

232
·

1

240
.

Let A denote the event
⋃9,16

j=1,k=1 Dj,k ∪ Fj,k. Then, from (16) and (17)

P [A] =
1

243.7
·

1

232
·

9

232
·

1

236
≈

1

2140.5
. (22)

Now we are ready to calculate the probability P [O1(0)⊕O3(0)⊕O5(0)⊕O9(0) = 0].
Note that the outputs are uniformly distributed if event A does not occur.1 Let
R0 denote O1(0) ⊕ O3(0) ⊕ O5(0) ⊕ O9(0). Now, using Bayes’ rule we have

P [R0 = 0] = P [R0 = 0|A] · P [A]

+ P [R0 = 0|Ac] · P [Ac]

= 1 · 2−140.5 +
1

2
· (1 − 2−140.5)

=
1

2
· (1 + 2−140.5). (23)

Note that the above probability would have been exactly 1/2 if the TPypy had
been an ideal stream cipher.

6 Generalizations of the Attack

In this section, we show that the outputs (O1(i), O3(i), O5(i), O9(i), 1 ≤ i ≤ 31)
are also biased. Next we calculate the probability P [O1(i)⊕O3(i)⊕O5(i)⊕O9(i) =

1 This fact is established from the assumption that the key/IV setups are perfect and
produce uniformly distributed initial state.
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0] where 0 ≤ i ≤ 31. From (1) and (3) we get,

O1(i) = s1(i) ⊕ Y1[−1]i ⊕ Y1[P1[208]]i ⊕ c1(i), (24)

Y4[256]i = ROTL32(s3, 14)i ⊕ Y3[−3]i ⊕ Y3[P3[153]i ⊕ d1(i), (25)

where 0 ≤ i ≤ 31 and c1, d1 are the carry terms in (1) and (3) respectively.
Similarly,

O3(i) = s3(i) ⊕ Y3[−1]i ⊕ Y3[P3[208]]i ⊕ c3(i) (26)

O5(i) = s5(i) ⊕ Y5[−1]i ⊕ Y5[P5[208]]i ⊕ c5(i), (27)

O9(i) = s9(i) ⊕ Y9[−1]i ⊕ Y9[P9[208]]i ⊕ c9(i) (28)

where 0 ≤ i ≤ 31. Now, ROTL32(s3, 14)i = s3(i+18 mod 32) and Y3[−3]i =
Y1[−1]i. Substituting these two results in (25) and rearranging the terms we get,

Y1[−1]i = s3((i+18) mod 32) ⊕ Y4[256]i ⊕ Y3[P3[153]]i ⊕ d1(i). (29)

Putting (29) in (24) we get,

O1(i) = s1(i) ⊕ s3((i+18) mod 32) ⊕ Y4[256]i ⊕ Y3[P3[153]]i ⊕ Y1[P1[208]]i

⊕ c1(i) ⊕ d1(i). (30)

Similarly, if d3 denotes the carry term in

Y6[256] = (ROTL32(s5, 14) ⊕ Y5[−3]) + Y5[P5[153]],

we have,

O3(i) = s3(i) ⊕ s5((i+18) mod 32) ⊕ Y6[256]i ⊕ Y5[P5[153]]i ⊕ Y3[P3[208]]i

⊕ c3(i) ⊕ d3(i). (31)

Since Y5[−1]i = Y1[3]i and Y9[−1]i = Y3[5]i, ∀i ∈ {0, ..., 31}, (27 and (28) can be
written as:

O5(i) = s5(i) ⊕ Y1[3]i ⊕ Y5[P5[208]]i ⊕ c5(i), (32)

O9(i) = s9(i) ⊕ Y3[5]i ⊕ Y9[P9[208]]i ⊕ c9(i). (33)

From (30), (31), (32) and (33),

O1(i) ⊕ O3(i) ⊕ O5(i) ⊕ O9(i) = s1(i) ⊕ s3((i+18) mod 32) ⊕ s3(i) ⊕ s5((i+18) mod 32)

⊕ s5(i) ⊕ Y1[P1[208]]i ⊕ Y3[P3[153]]i ⊕ Y3[P3[208]]i

⊕ s9(i) ⊕ Y5[P5[153]]i ⊕ Y5[P5[208]]i ⊕ Y9[P9[208]]i

⊕ Y1[3]i ⊕ Y3[5]i ⊕ Y4[256]i ⊕ Y6[256]i

⊕ c1(i) ⊕ c3(i) ⊕ c5(i) ⊕ c9(i) ⊕ d1(i) ⊕ d3(i). (34)

Let the event E14 under Theorem 1 be redefined as follows.

Y9[P9[208]]i ⊕ Y5[P5[153]]i ⊕ Y5[P5[208]]i ⊕ Y3[P3[153]]i ⊕ Y3[P3[208]]i

⊕ Y1[P1[208]]i ⊕ Y6[256]i ⊕ Y4[256]i ⊕ Y3[5]i ⊕ Y1[3]i = 0. (35)
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Now, using the techniques described in Sect. 4, it can be easily verified that
when the first 13 conditions listed under Theorem 1 and (35) are simultaneously
satisfied, (34) reduces to

O1(i) ⊕ O3(i) ⊕ O5(i) ⊕ O9(i) = c1(i) ⊕ c3(i) ⊕ c5(i) ⊕ c9(i) ⊕ d1(i) ⊕ d3(i). (36)

Let,

Ri = O1(i) ⊕ O3(i) ⊕ O5(i) ⊕ O9(i),

Ti = c1(i) ⊕ c3(i) ⊕ c5(i) ⊕ c9(i) ⊕ d1(i) ⊕ d3(i). (37)

Now,

P [Ri = 0] = P [Ri = 0|A] · P [A]

+ P [Ri = 0|Ac] · P [Ac]

= P [Ti = 0] · P [A]

+ P [Ti = 0|Ac] · P [Ac]

= P [Ti = 0] · 2−140.5 +
1

2
· (1 − 2−140.5). (38)

We observe that the carry terms c, d are generated in expressions of the form
(S⊕A)+B, where S, A and B are uniformly distributed and independent 32-bit
variables. Hence, we can use the following result from [8].

P [c1(i) = 0] =
1

2
+

1

2i+1
.

Let p = 1
2 + 1

2i+1 . Also,

P [c3(i)] = P [c5(i)] = P [c9(i)] = P [d1(i)] = P [d3(i)] = p.

We see that Ti = 0 when an even number of terms on the RHS of (37) equate
to zero. Since the probability of any of the terms equating to zero is p,

P [Ti = 0] = p6 +

(

6

2

)

· p4 · (1 − p)2 +

(

6

4

)

· p2 · (1 − p)4 + (1 − p)6

= p6 + 15 · p4 · (1 − p)2 + 15 · p2 · (1 − p)4 + (1 − p)6. (39)

Substituting p = 1
2 + 1

2i+1 in (39) and simplifying the resultant expression we
get,

P [Ti = 0] =
1

2
+ 15 · 2−(5+2i) + 2−(5+6i). (40)

When i = 0, we get P [Ti = 0] = 1 which is the expected value. Finally,
putting (40) in (38) we get,

P [Ri = 0] =
1

2
+ (15 · 2−(5+2i) + 2−(5+6i)) · 2−140.5

=
1

2
+ 15 · 2−(145.5+2i) + 2−(145.5+6i). (41)
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Using the techniques described above and in Sect. 4 and 5, one can show that (41)
applies to outputs generated at rounds t, t + 2, t + 4 and t + 8, i.e.,

P [Ot(i) ⊕ Ot+2(i) ⊕ Ot+4(i) ⊕ Ot+8(i) = 0] =
1

2
+ 15 · 2−(145.5+2i)

+ 2−(145.5+6i). (42)

And when i = 0 (i.e., for the lsb), (42) becomes:

P [Ot(0) ⊕ Ot+2(0) ⊕ Ot+4(0) ⊕ Ot+8(0) = 0] =
1

2
· (1 + 2−140.5). (43)

7 The Distinguisher

A distinguisher is an algorithm which distinguishes a stream of bits from a stream
of bits that follow the uniform distribution. The distinguisher we construct, using
the observations described in the previous sections, collects the lsbs of sufficiently
many outputs (Ot, Ot+2, Ot+4, Ot+8). To compute the minimum number of
samples required to establish the distinguisher, we use the following corollary of
a theorem from [6].

Corollary 1. If an event e occurs in a distribution X with probability p and
in Y with probability p(1 + q) then, if p = 1

2 , O( 1
q2 ) samples are required to

distinguish X from Y with non-negligible probability of success.

In the present case, e is the event Ot(0) ⊕ Ot+2(0) ⊕ Ot+4(0) ⊕ Ot+8(0) = 0,
X is the distribution of the outputs Ot, Ot+2, Ot+4 and Ot+8 produced by a
perfectly random keystream generator and Y is the distribution of the outputs
produced by TPypy. From (43), p = 1

2 , q = 1
2140.5 . Hence O( 1

(2−140.5)2
) = O(2281)

output samples are needed to construct the distinguisher with non-negligible
probability of success. It should be noted that distinguishers can be constructed
by considering higher order bits of (Ot, Ot+2, Ot+4, Ot+8). However, as the
maximum bias is found in the lsb, the best distinguisher requires O(2281) samples
to distinguish TPypy from random. Essentially, the attacker collects 2281 samples
from as many randomly generated key/IVs and establishes the distinguisher.
Note that if the keysize is more than 35 bytes (or, 280 bits), this attack can be
built within the design specifications.

8 Adapting the Attacks to TPy6, Pypy, Py and Py6

The attacks described in the previous sections can be adjusted for TPy6 also, in
a similar way the attack on Py in [8] was modified to work for Py6 in [9]. Since
the round functions of TPypy, TPy and TPy6 are identical with those of Pypy,
Py and Py6 respectively, it is easy to see that the aforementioned attacks on
TPypy, TPy and TPy6 are also applicable to Pypy, Py and Py6.

Moreover, it is important to note that the existing distinguishing attacks on
the Py and Py6 as described in [4] and [9] are also effective on TPy and TPy6.
Therefore, the best distinguishers on TPy and TPy6 are with data 272 and 268.
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9 Conclusions and Future Work

This paper for the first time finds weaknesses in the stream cipher TPypy which
is conjectured to the most secure candidate of the Py-family of ciphers. Pre-
cisely, the paper shows that the security of the stream cipher TPypy does not
grow exponentially with the key-size. This is established by constructing a dis-
tinguisher which works with 2281 outputwords and comparable time. Note that,
when TPypy is used with key-size longer than 35 bytes, i.e., 280 bits, our attack
constitutes an academic break of the cipher.

Given the striking similarities between TPy and TPypy (see Algorithm 1),
the current attacks can also be applied to TPy. In fact, we have further noted
that some of the existing attacks also work for TPy and TPy6. Moreover, in
Appendix B, we present additional weaknesses in TPy by combining the results
of this paper with the results described in [8]. Thus we have many weaknesses in
the round functions of TPy and TPypy. It seems quite possible to combine these
weaknesses to construct stronger distinguishers for both the ciphers. Crowley,
in [4], describes a method which uses a Hidden Markov Model to combine the
distinguishers on Py. This method reduced the data complexity of an attack on
Py by a factor of 217. The same method can certainly be applied here too, but
a complete description is beyond the scope of this paper.
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A Disjoint Events

Here, we prove that for event E13 to occur with probability 1, the 9 conditions
Gj , 1 ≤ j ≤ 9 can be considered exhaustive. That is, E13 occurs with random
probability 1

32 when none of the events Gj occur. From the discussion in Sect. 4,
we know that s5(0) = s9(0) when the following conditions are simultaneously
satisfied:

1. P6[116] ≡ −18(mod 32) (event E5),
2. P7[116] ≡ −18(mod 32) (event E6),
3. P8[116] ≡ −18(mod 32) (event E7),
4. P9[116] ≡ −18(mod 32) (event E8),

5.
∑9

i=6(Yi[Pi[72]] − Yi[Pi[239]]) = 0 (event E13).

It may be recalled from Sect. 4 that Table 1 shows nine events (G1, ...,
G9), where the occurrence of any Gi, 1 ≤ i ≤ 9, implies that event E13 oc-
curs. It is to be noted that the nine events are not pairwise disjoint. This can
be demonstrated as follows. Let us consider the events G1 and G2 and let us
assume that P6[239] = P8[239] + 2. Hence, P6[239] − 1 = P8[239] + 1 and
P8[239] − 1 = P6[239] − 3, with the result that rows 1 and 2 become identi-
cal. Therefore, G1 = G2 when P6[239] = P8[239] + 2. Similarly, any condition
which equates two events, say Gi and Gj (i, j ∈ {1, ..., 9} and i 6= j), will relate
Pm[239] and Pn[239] (n, m ∈ {6, 7, 8, 9}, n 6= m). The relation is of the form
Pm[239] = Pn[239] + (n − m), and the probability of its occurrence is approxi-
mately 1

256 . We restate event E13 here,

Y6[P6[72]]−Y6[P6[239]]+Y7[P7[72]]−Y7[P7[239]]+Y8[P8[72]]−Y8[P8[239]]+
Y9[P9[72]] − Y9[P9[239]] = 0.

We see that any relation of the above form will only equate two Y terms
preceded by the same ‘−’ sign (Ym[Pm[239]] and Yn[Pn[239]]) and thus the terms
do not get cancelled. Hence it is not necessary that this relation must hold for
E13 to occur. Now, the probability that

– the 4 conditions forming Gi (where 1 ≤ i ≤ 9) are simultaneously satsified
and

– a relation of the form Pm[239] = Pn[239]+(n−m) (where n, m ∈ {6, 7, 8, 9},
n 6= m) holds,

will be approximately equal to ( 1
256 )5 = P [Gi]

256 . Such a relation of the above
form, which is an extra condition on the elements of P and which amounts to no
significant increase in the probability that E13 occurs, is therefore redundant.
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There is still one important point that we have overlooked - it is not necessary
that relations are to be drawn between elements of P in order that condition
13 under Theorem 1 be satisfied. One could try to relate the elements of array
Y directly. However, any such a relation would occur with a probability of ap-
proximately 1

232 - which is much lesser than P [Pm[239] = Pn[239]+(n−m)] ≈ 1
28 .

In summary, the satisfiability of the four conditions listed in each row of
Table 1, is sufficient for our analysis and any extra condition is discarded.

Table 2 below shows 16 events (H1,..., H16), where the occurrence of any
Hi, 1 ≤ i ≤ 16, implies that event E14 occurs. Under each event Hi we have 5
conditions on the elements of array P . From the table, one can infer that barring
the 5th condition, the other 4 conditions equate an element of P to a constant
term. Following this observation, it is easy to show that Hi 6= Hj for any i,
j ∈ {1, ..., 16} where i 6= j. Now, by similar arguments as above, one can prove
that for event E14 to occur with probability 1, the 16 conditions Hk, 1 ≤ k ≤ 16
are exhaustive. That is, E14 occurs with random probability 1

2 when none of the
events Hk occur.

B Another Statistical Weakness in TPy

In this section, we combine the results of this paper with the results of [8] to find
a new weakness in TPy. The algorithm for TPy includes line 5 of Algorithm 1.
We use the convention followed in [8]. We label the outputs generated in line
5 and line 6 as the ‘1st output-word’ and ‘2’nd output-word respectively. Let
Om,n (where m ∈ {1, 2}) denote the mth output-word generated in the nth
round of TPy. Om,n(j) denotes the j the bit of Om,n. The following is a corollary
of Theorem 2 of [8].

Corollary 2. O1,8(0) = O2,10(0) if the following six conditions on the elements
of the S-box P are simultaneously satisfied.

1. P9[116] ≡ −18(mod 32) (event L1),
2. P10[116] ≡ 7(mod 32) (event L2),
3. P9[72] = P10[239] + 1 (event L3),
4. P9[239] = P10[72] + 1 (event L4),
5. P9[26] = 1 (event L5),
6. P10[208] = 254 (event L6).

We recall the following from Sect. 4.

1. Event L1 = E8,
2. E = E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5 · · · ∩E14 and
3. F = E1 ∩ E′

2 ∩ E3 ∩ E′

4 ∩ E5 · · · ∩E14.

Now, we have the following theorem:

Theorem 2. O2,1(0) ⊕ O2,3(0) ⊕ O2,5(0) ⊕ O2,9(0) ⊕ O2,10(0) ⊕ O1,8(0) = 0 if
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Table 2. When Hk (1 ≤ k ≤ 16) occurs, condition 14 is satisfied.

Event Y5[3]
(= Y3[5] =
Y1[7])

Y1[3](=
Y3[1])

Y6[256](=
Y9[253])

Y4[256](=
Y5[255])

5th Condition

H1 Y5[P5[153]]
(P5[153] = 3)

Y3[P3[153]]
(P3[153] = 1)

Y9[P9[208]]
(P9[208] = 253)

Y5[P5[208]]
(P5[208] = 255)

Y3[P3[208]] = Y1[P1[208]]
(P1[208] = P3[208] + 2)

H2 Y5[P5[153]]
(P5[153] = 3)

Y3[P3[208]]
(P3[208] = 1)

Y9[P9[208]]
(P9[208] = 253)

Y5[P5[208]]
(P5[208] = 255)

Y3[P3[153]] = Y1[P1[208]]
(P1[208] = P3[153] + 2)

H3 Y5[P5[208]]
(P5[208] = 3)

Y3[P3[153]]
(P3[153] = 1)

Y9[P9[208]]
(P9[208] = 253)

Y5[P5[153]]
(P5[153] = 255)

Y3[P3[208]] = Y1[P1[208]]
(P1[208] = P3[208] + 2)

H4 Y5[P5[208]]
(P5[208] = 3)

Y3[P3[208]]
(P3[208] = 1)

Y9[P9[208]]
(P9[208] = 253)

Y5[P5[153]]
(P5[153] = 255)

Y3[P3[153]] = Y1[P1[208]]
(P1[208] = P3[153] + 2)

H5 Y3[P3[153]]
(P3[153] = 5)

Y3[P3[208]]
(P3[208] = 1)

Y9[P9[208]]
(P9[208] = 253)

Y5[P5[208]]
(P5[208] = 255)

Y5[P5[153]] = Y1[P1[208]]
(P1[208] = P5[153] + 4)

H6 Y3[P3[153]]
(P3[153] = 5)

Y1[P1[208]]
(P1[208] = 3)

Y9[P9[208]]
(P9[208] = 253)

Y5[P5[208]]
(P5[208] = 255)

Y5[P5[153]] = Y3[P3[208]]
(P3[208] = P5[153] + 2)

H7 Y3[P3[153]]
(P3[153] = 5)

Y3[P3[208]]
(P3[208] = 1)

Y9[P9[208]]
(P9[208] = 253)

Y5[P5[153]]
(P5[153] = 255)

Y5[P5[208]] = Y1[P1[208]]
(P1[208] = P5[208] + 4)

H8 Y3[P3[153]]
(P3[153] = 5)

Y1[P1[208]]
(P1[208] = 3)

Y9[P9[208]]
(P9[208] = 253)

Y5[P5[153]]
(P5[153] = 255)

Y5[P5[208]] = Y3[P3[208]]
(P3[208] = P5[208] + 2)

H9 Y3[P3[208]]
(P3[208] = 5)

Y3[P3[153]]
(P3[153] = 1)

Y9[P9[208]]
(P9[208] = 253)

Y5[P5[208]]
(P5[208] = 255)

Y5[P5[153]] = Y1[P1[208]]
(P1[208] = P5[153] + 4)

H10 Y3[P3[208]]
(P3[208] = 5)

Y1[P1[208]]
(P1[208] = 3)

Y9[P9[208]]
(P9[208] = 253)

Y5[P5[208]]
(P5[208] = 255)

Y5[P5[153]] = Y3[P3[153]]
(P3[153] = P5[153] + 2)

H11 Y3[P3[208]]
(P3[208] = 5)

Y3[P3[153]]
(P3[153] = 1)

Y9[P9[208]]
(P9[208] = 253)

Y5[P5[153]]
(P5[153] = 255)

Y5[P5[208]] = Y1[P1[208]]
(P1[208] = P5[208] + 4)

H12 Y3[P3[208]]
(P3[208] = 5)

Y1[P1[208]]
(P1[208] = 3)

Y9[P9[208]]
(P9[208] = 253)

Y5[P5[153]]
(P5[153] = 255)

Y5[P5[208]] = Y3[P3[153]]
(P3[153] = P5[208] + 2)

H13 Y1[P1[208]]
(P1[153] = 7)

Y3[P3[153]]
(P3[153] = 1)

Y9[P9[208]]
(P9[208] = 253)

Y5[P5[208]]
(P5[208] = 255)

Y5[P5[153]] = Y3[P3[208]]
(P3[208] = P5[153] + 2)

H14 Y1[P1[208]]
(P1[153] = 7)

Y3[P3[208]]
(P3[208] = 1)

Y9[P9[208]]
(P9[208] = 253)

Y5[P5[208]]
(P5[208] = 255)

Y5[P5[153]] = Y3[P3[153]]
(P3[153] = P5[153] + 2)

H15 Y1[P1[208]]
(P1[153] = 7)

Y3[P3[153]]
(P3[153] = 1)

Y9[P9[208]]
(P9[208] = 253)

Y5[P5[153]]
(P5[153] = 255)

Y5[P5[208]] = Y3[P3[208]]
(P3[208] = P5[208] + 2)

H16 Y1[P1[208]]
(P1[153] = 7)

Y3[P3[208]]
(P3[208] = 1)

Y9[P9[208]]
(P9[208] = 253)

Y5[P5[153]]
(P5[153] = 255)

Y5[P5[208]] = Y3[P3[153]]
(P3[153] = P5[208] + 2)
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1. event E or F occurs, and
2. the event L2 ∩ L3 ∩ L4 ∩ L5 ∩ L6 occurs.

The proof is straightforward and follows from Sect. 4 and the proof of The-
orem 1 in [8]. It is to be noted that for event E14 to occur with probability
1, the 16 conditions Hk, 1 ≤ k ≤ 16 are not exhaustive. A careful look at
Table 2 would reveal the reason. All the events except H6, H8, H10 and H12,
have one of the conditions of the form P3[X] = 1, where X ∈ {153, 208}. Now,
P3[X] = 1 ⇒ P9[26] 6= 1. Therefore, we have E14 to occur with probability 1
when H6 ∪ H8 ∪ H10 ∪ H12 occurs.

As before, one can try to generalize the above theorem for round t and bit i.
It is also possible to draw other corollaries from Theorem 2 of [8] and use them
in tandem with generalizations of Theorem 1 to find many more relationships
among the outputs generated by TPy. The probability that the conditions listed
under Theorem 2 are simultaneously satisfied, will be lesser than P [E ∪ F ] =
2−140.5. Hence the distinguisher thus constructed will require more than 2281

samples. Nevertheless, the existence of a large number of biases in the outputs
of TPy and TPypy can be exploited to construct stronger distinguishers for both
the ciphers.
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