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Abstract

In this paper, we contribute the construction of practical perfect multiparty computation
protocols based on the connectivity of graphs.
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1 Introduction

The secure multiparty computation problem is fundamental in cryptography and distributed com-
putations. A solution of multiparty computation problem implies in principle a solution to any
cryptographic protocol problem. After it was proposed by Yao [11] for two party case and Gol-
dreich, Micali , Wigderson [7] for multiparty case, it has become an active and developing field of
information security.

Since in reality many problems under network environment can be modelled into graphs, it sug-
gests us to study multiparty computation based on graphs. Several works including [2] [8] [1] [10] [4]
have been done to study secret sharing schemes based on some special properties of graphs, but
there is few works about multiparty computation based on graphs. In [5], Cramer, Damgard,
Maurer devise a generic construction of multiparty computation protocol from any linear secret
sharing scheme. The efficiency of the construction strongly depends on the efficiency of the linear
secret sharing scheme. Furthermore a dual technique is used to guarantee the linear secret sharing
scheme to be multiplicative, which doubles the computation amount. In this paper, we consider the
family of adversary structures based on the connectivity of graphs. First we construct ideal linear
secret sharing schemes based on the connectivity of graphs. Then we prove the schemes are already
multiplicative, hence the dual technique is not needed. Actually we devise an efficient algorithm
to compute the recombination vector. At last we apply the ideal linear secret sharing schemes to
devise the multiparty computation protocols which are as efficient as the well known ones against
the threshold adversaries.

The paper is organized as follows. Section 1 is an introduction. In section 2, first we prove the
adversary structures based on the connectivity of graphs are Q2, but not Q3, then we construct
ideal linear secret sharing schemes to realize the corresponding access structures. In section 3 we
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prove the ideal linear secret sharing schemes constructed in section 2 are multiplicative. Actually,
we devise an efficient algorithm to compute the recombination vector. At the end of section 3, we
apply the ideal linear secret sharing schemes to devise the multiparty computation protocols based
on connectivity of graphs. The conclusions are in section 4.

2 Secret Sharing Schemes Based on Connectivity of Graphs

In this section, first we give a special class of access structures based on connectivity of graphs,
then we devise ideal linear secret sharing schemes to realize the access structures. In order to do
this, we recall some basic concepts and results such as access structure and adversary structure,
linear secret sharing and monotone span program. Throughout this paper we denote K as a finite
field and P = {P1, · · · , Pn} as the set of n participants.

2.1 Access Structure and Adversary Structure

An access structure, denoted by AS, is a collection of subsets of P satisfying the monotone ascending
property: for any A′ ∈ AS and A ∈ 2P with A′ ⊂ A, it holds that A ∈ AS. An adversary structure,
denoted by A, is a collection of subsets of P satisfying the monotone descending property: for any
A′ ∈ A and A ∈ 2p with A ⊂ A′, it holds that A ∈ A. In this paper, we consider the complete
situation, i.e. A = 2P −AS.

The sets in AS are called authorized sets and the sets in A are called adversary sets. The
minimum access structure, denoted by ASm, is defined as {A ∈ AS|∀B $ A ⇒ B 6∈ AS} and the
sets in ASm are called minimum authorized sets. The maximum adversary structure, denoted by
Am, is defined as {B ∈ A|∀A % B ⇒ A 6∈ A} and the sets in Am are called maximum adversary
sets. Note that AS, A, ASm, and Am can be uniquely determined by one another.

2.2 Linear Secret Sharing Scheme and Monotone Span Program

Secret sharing was proposed by Shamir [9] and Blackley [3] independently. The definition is as
follows. Suppose that S is the domain of secrets, R is the set of random inputs, and Si is the
domain of shares of Pi where 1 ≤ i ≤ n. A perfect secret sharing scheme, PSSS for short, is
composed of the distribution function Π : S ×R → S1 × · · · × Sn and the reconstruction function:
for any A ∈ AS, Re|A : (S1 × · · · × Sn)|A = Si1 × · · · × Si|A| → S such that the following two
requirements are satisfied.

1. Correctness requirement: for any A ∈ AS, s ∈ S, r ∈ R, Re|A(Π(s, r)|A) = s.

2. Security requirement: for any B ∈ A, H(S|Π(S,R)|B) = H(S).

In the following we only discuss perfect secret sharing schemes. A secret sharing scheme is
linear if S, R, Si are linear subspaces over K and the reconstruction function is linear [1]. A linear
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secret sharing scheme, LSSS for short, is called ideal if S = K and dimK(Si) = 1 for 1 ≤ i ≤ n.

Span programs were introduced by Karchmer and Wigderson [8] as a linear algebraic model of
computation. In [1], the author prove the equivalence of devising linear secret sharing scheme real-
izing the access structure and constructing monotone span program computing the corresponding
monotone Boolean function. Suppose K is a finite field, we denote (K,M,−→v , ρ) as the monotone
span program where M is a matrix, ρ is the map from the rows of M to the literal set {x1, · · · , xn},
and −→v is the nonzero target vector. If M is an n× d matrix, then −→v is a d dimensional vector. By
the tool of monotone span program, it is easy to prove the equivalence of devising a linear secret
sharing scheme realizing the access structure AS and finding a finite field K, positive integer l ∈ N,
linear subspaces VPi ⊂ Kl, 1 ≤ i ≤ n, such that

⋂
A∈ASm

∑
Pi∈A VPi −

⋃
B∈Am

∑
Pi∈B VPi 6= φ. In

the following, the formula will be used to construct linear secret sharing scheme.

2.3 Access Structures Based on Connectivity of Graphs and its Realizations

2.3.1 Access Structures Based on Connectivity of Graphs

Let m be a positive integer, n =
(

m
2

)
, and P = {P1, · · · , Pn} the set of participants. Let G(V, E)

be a undirected complete graph with the vertex set V = {v1 · · · , vm} and edge set E = {vivj |i 6=
j, 1 ≤ i, j ≤ m}. Suppose f : P → E is a bijection corresponding each participant with an edge. For
any subset A ⊂ P , G(V, EA) is a spanning subgraph of G(V, E) where EA = {vivj ∈ E|vivj ∈ f(A)}.
Define the access structure

AS = {A ⊂ P |G(V, EA) is a connected graph}. (1)

Obviously AS satisfies the monotone ascending property since G(V, EA) is a spanning subgraph.

Example 2.1 Let m = 4, n = 6, and V = {v1, v2, v3, v4}. Let P = {P1, · · · , P6}, f(P1) = v1v2,
f(P2) = v2v3, f(P3) = v3v4, f(P4) = v4v1, f(P5) = v2v4, f(P6) = v1v3. See the figure.

v1

v2 v3

v4

P1

P2

P3

P4

P5

P6

It’s easy to have ASm = {{P1, P2, P3}, {P2, P3, P4}, {P3, P4, P1}, {P4, P1, P2}, {P1, P2, P5},
{P2, P3, P6}, {P3, P4, P5}, {P4, P1, P6}, {P1, P5, P3}, {P1, P6, P3}, {P2, P6, P4}, {P2, P5, P4},
{P1, P5, P6}, {P3, P5, P6}, {P2, P5, P6}, {P4, P5, P6}}.
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Proposition 2.1 Suppose AS is given by (1) and A = 2P − AS is the adversary structure.
Then A is Q2, but not Q3 2.

Proof: Let G(V, E′) be an disconnected graph with E′ ⊂ E. In order to prove A is Q2, it suffices
to prove that G(V, E − E′) is a connected graph, that is, for every pair of vertices v and v′, they
are connected in the graph G(V, E −E′). Suppose the graph G(V, E′) has k connected components,
k ≥ 2. If the vertices v and v′ are in different connected components of G(V, E′), then the edge
vv′ 6∈ G(V, E′). So the edge vv′ ∈ G(V, E − E′) and it implies v and v′ are connected in the graph
G(V, E − E′). If the vertices v and v′ are in the same connected component of G(V, E′), then we
consider the vertex v′′ in another connected component. We have v and v′′ are connected, v′ and v′′

are connected in the graph G(V, E −E′). Hence v and v′ are connected in the graph G(V, E −E′).

Without loss of generality we can assume |V | ≥ 3. It is equivalent to prove that there exist
three disconnected subgraphs G(V, E1), G(V, E2), and G(V, E3) such that G(V, E) =

⋃3
i=1 G(V, Ei).

Suppose v1, v2, and v3 are three different vertices. Let G(V, Ei) be the spanning subgraph of G(V, E)
obtained by deleting all the edges connected with the vertex vi. Obviously G(V, E1), G(V, E2), and
G(V, E3) are disconnected subgraphs and G(V, E) =

⋃3
i=1 G(V, Ei).

Example 2.2 (following Example 2.1)

v1

v2 v3

v4

P1

P2

P3

P4

P5

P6

Since Am = {{P1, P3}, {P2, P4}, {P5, P6}, {P1, P2, P6}, {P2, P3, P5}, {P3, P4, P6}, {P4, P1, P5}},
it’s easy to verify that A is Q2 but not Q3.

2.3.2 Ideal Linear Secret Sharing Scheme Realizing the Access Structure AS

Let S = K be a finite field with |K| > |Am| and V = Km−1 be the m− 1 dimensional linear space
over K. Select a basis of V , say −→v1 , · · · ,−−−→vm−1, and associate v1 with

−→
0 , vi with

∑i−1
j=1

−→vj , 2 ≤ i ≤ m.

Suppose f(Pi) = vv′, v is associated with the vector −→v , and v′ is associated with the vector
−→
v′ . let

VPi = span{−→v −−→v′ }.

Example 2.3 (following Example 2.1)
2Q2 means that for any B, B′ ∈ A, B ∪B′ $ P . Q3 means that for any B, B′, B′′ ∈ A, B ∪B′ ∪B′′ $ P .
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Let |K| > 7 and V = K3. Select −→v1 = (1, 0, 0), −→v2 = (0, 1, 0), −→v3 = (0, 0, 1). Associate vertex v1

with (0, 0, 0), vertex v2 with (1, 0, 0), vertex v3 with (1, 1, 0), vertex v4 with (1, 1, 1).

v1

v2 v3

v4

P1

P2

P3

P4

P5

P6

(0, 0, 0)

(1, 0, 0)

(1, 1, 1)

(1, 1, 0)

Let VP1 = span{(1, 0, 0)}, VP2 = span{(0, 1, 0)}, VP3 = span{(0, 0, 1)}, VP4 = span{(1, 1, 1)},
VP5 = span{(0, 1, 1)}, VP6 = span{(1, 1, 0)}.

Theorem 2.2
⋂

A∈ASm

∑
Pi∈A VPi −

⋃
B∈Am

∑
Pi∈B VPi 6= φ

Proof: First note that
∑n

i=1 VPi = V . For any A ∈ ASm, G(V, EA) forms a spanning tree
of the graph G(V, E) and adding any extra participant Pi to A will make a circle in the graph
G(V, EA∪{Pi}). Since all the vectors {−→v − −→v′ |f(Pi) = vv′, v is associated with the vector −→v , and

v′ is associated with the vector
−→
v′ } on a circle are linear dependent, it follows that

∑
Pi∈A VPi = V

for any A ∈ ASm. Hence
⋂

A∈ASm

∑
Pi∈A VPi −

⋃
B∈Am

∑
Pi∈B VPi = V −⋃

B∈Am

∑
Pi∈B VPi.

For any B ∈ Am, suppose G(V, EB) =
⋃l

i=1 Gi(Vi, Ei) where Gi(Vi, Ei) is the con-
nected component and l ≥ 2. Since dimK

∑
Pi∈f−1(Ei)

VPi = |Vi| − 1, dimK
∑

Pi∈B VPi ≤∑l
i=1 dimK

∑
Pi∈f−1(Ei)

VPi =
∑l

i=1(|Vi| − 1) =
∑l

i=1 |Vi| − l ≤ m − l < m − 1. Hence∑
Pi∈B VPi $ V . By the following lemma, the theorem is proved.

Lemma 2.3 Suppose V is a linear space over the finite field K, and Vi $ V is a linear subspace,
1 ≤ i ≤ l. If |K| > l, then

⋃l
i=1 Vi $ V .

Vl
⋃l−1

i=1 Vi

xy

Proof: According to reduce of absurdity and without loss of generality, we assume
⋃l−1

i=1 Vi $ V but⋃l
i=1 Vi = V . Choose an element x in Vl −

⋃l−1
i=1 Vi and an element y in

⋃l−1
i=1 Vi − Vl, consider the
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set of elements {x + α · y|α ∈ K}. According to the Pigeonhole Principle, there exists α1 6= α2, and
Vi0 ∈ {Vi|1 ≤ i ≤ l} such that x + α1 · y, x + α2 · y ∈ Vi0. It follows that x, y ∈ Vi0 which contradicts
to the choice of x and y.

Example 2.4 (following Example 2.3)

v1

v2 v3

v4

P1

P2

P3

P4

P5

P6

(0, 0, 0)

(1, 0, 0)

(1, 1, 1)

(1, 1, 0)

Note that ASm = {{P1, P2, P3}, {P2, P3, P4}, {P3, P4, P1}, {P4, P1, P2}, {P1, P2, P5},
{P2, P3, P6}, {P3, P4, P5}, {P4, P1, P6}, {P1, P5, P3}, {P1, P6, P3}, {P2, P6, P4}, {P2, P5, P4},
{P1, P5, P6}, {P3, P5, P6}, {P2, P5, P6}, {P4, P5, P6}},
Am = {{P1, P3}, {P2, P4}, {P5, P6}, {P1, P2, P6}, {P2, P3, P5}, {P3, P4, P6}, {P4, P1, P5}},
VP1 = span{(1, 0, 0)}, VP2 = span{(0, 1, 0)}, VP3 = span{(0, 0, 1)}, VP4 = span{(1, 1, 1)},
VP5 = span{(0, 1, 1)}, VP6 = span{(1, 1, 0)}.
Let K = GF (p) where p > 7 is a prime number, it’s easy to verify that (1, 2, 3) ∈⋂

A∈ASm

∑
Pi∈A VPi −

⋃
B∈Am

∑
Pi∈B VPi.

As a direct result of Theorem 2.2, we have the following corollary.

Corollary 2.4 There is an ideal linear secret sharing scheme realizing the access structure AS.

Since
⋂

A∈ASm

∑
Pi∈A VPi −

⋃
B∈Am

∑
Pi∈B VPi 6= φ, we construct the monotone span program

(K,M,−→v , ρ) as follows. Suppose f(Pi) = vv′, v is associated with the vector −→v , and v′ is associated
with the vector

−→
v′ . M is constituted by all the row vectors −→v −−→v′ for 1 ≤ i ≤ n. ρ maps the row

corresponding with Pi to xi, and −→v can be any vector in
⋂

A∈ASm

∑
Pi∈A VPi −

⋃
B∈Am

∑
Pi∈B VPi .

By the method mentioned in [1], we can construct an ideal linear secret sharing scheme realizing
AS.

Example 2.5 (following Example 2.4)
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v1

v2 v3

v4

P1

P2

P3

P4

P5

P6

(0, 0, 0)

(1, 0, 0)

(1, 1, 1)

(1, 1, 0)

According to Example 2.4, (K,M,−→v , ρ) is the monotone span program where M =


1 0 0
0 1 0
0 0 1
1 1 1
0 1 1
1 1 0



, ρ(i) = xi for 1 ≤ i ≤ 6, and −→v = (1, 2, 3). We can construct an linear secret

sharing scheme as follows [1].

Distribution phase: suppose s ∈ K is the secret, the dealer chooses randomly ri ∈ K for 1 ≤ i ≤
2, computes M · (s − 2r1 − 3r2, r1, r2)τ = (s − 2r1 − 3r2, r1, r2, s − r1 − 2r2, r1 + r2, s − r1 − 3r2)τ

and transmits the i-th row of the vector to Pi secretly where τ represents the transpose.

Reconstruction phase: suppose A is an authorized set and the participants in A want to recover
the secret s. Without loss of generality, we assume A = {P1, P2, P3}. Note that the row vectors in
M associating with x1 is (1, 0, 0), x2 is (0, 1, 0), x3 is (0, 0, 1). The target vector −→v = (1, 2, 3) and
(1, 2, 3) = 1(1, 0, 0)+2(0, 1, 0)+3(0, 0, 1). Hence P1, P2, P3 compute 1(s−2r1−3r2)+2r1 +3r2 = s.

3 Multiparty Computation Protocols Based on Connectivity of
Graphs

In this section, first we prove the ideal linear secret sharing schemes constructed in section 2 are mul-
tiplicative. Actually, we devise an efficient algorithm to compute the recombination vector. Then
we apply the ideal linear secret sharing schemes to devise the multiparty computation protocols
based on connectivity of graphs.

Since the access structures based on connectivity of graphs are Q2, it implies that any poly-
nomial over K can be perfectly securely computed by a multiparty computation protocol against
any adaptive and passive A-adversary [5]. Since for computing a polynomial, it is enough to know
how to compute the addition and multiplication of two elements. In the following, we only discuss
how to compute addition and multiplication securely. Suppose s, s′ are two secrets, Π is the dis-
tribution function. Let Π(s, r) = (s1, · · · , sn) and Π(s′, r′) = (s′1, · · · , s′n). A secret sharing scheme
can be successfully applied to the construction of multiparty computation protocol if it has the
additive property and multiplicative property, that is, Π(s + s′, r′′) = (s1 + s′1, · · · , sn + s′n) and ss′
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can be obtained by the linear combination of (s1s
′
1, · · · , sns′n). Suppose ss′ =

∑n
i=1 zi · sis

′
i, then−→z = (z1, · · · , zn) is called the recombination vector. Obviously the linear secret sharing scheme

satisfies the additive property, but generally speaking it does not satisfy the multiplicative property.

For the basis −→vi = −−→ei−1 of V , we will prove in what follows that the ideal linear secret sharing
scheme constructed in section 2 is multiplicative. Actually, we contribute an efficient algorithm
to compute the recombination vector −→z . Thus we can apply it to get a very efficient multiparty
computation protocol. Notice that we associate vertex v1 with

−→
0 , vertex vi with

∑i−1
j=1

−→ej , 2 ≤ i ≤
m. Hence all row vectors of the n×(m−1) matrix M are constituted by successive 1’s and vice versa.
Assume M = (M1,M2, · · · ,Mm−1) where Mi = (m1i, · · · ,mni)τ is the i-th column of M . Let M∗
be the matrix constituted by all the column vectors Mi ∗Mj , 1 ≤ i ≤ j ≤ m− 1, where Mi ∗Mj =
(m1im1j , · · · ,mnimnj)τ . Note that M∗ is a n× n matrix and M∗ = (Mi1 ∗Mj1 , · · · ,Min ∗Mjn).

Lemma 3.1 The n× n matrix M∗ is nonsingular.

Proof: We put the proof into the Appendix.

Suppose −→v is the target vector. Let N = −→v τ · −→v = (aij)1≤i,j≤m−1,
−→v∗ = (ai1j1 , · · · , ainjn).

Consider the linear equation system (M∗)τ · (z1, · · · , zn)τ = −→v∗τ over K, where z1, · · · , zn are
variables. Since M∗ is nonsingular, there is a solution which we still denoted by (z1, · · · , zn).

Theorem 3.2 (K,M,−→v , ρ) is multiplicative and (z1, · · · , zn) is the recombination vector.

Proof: Suppose M = (M1, · · · ,Mm−1), M∗ = (Mi1 ∗ Mj1 , · · · ,Min ∗ Mjn), N = −→v τ · −→v =
(aij)1≤i≤j≤m−1,

−→v∗ = (ai1j1 , · · · , ainjn) are constructed as above. Let s, s′ be two secrets. Choose
two vectors −→y ,

−→
y′ satisfying −→v · −→y τ = s,−→v · −→y′ τ = s′. Suppose M · −→y τ = (s1, · · · , sn)τ and

M · −→y′ τ = (s′1, · · · , s′n)τ .

Denote




z1

. . .
zn


 = [z1, · · · , zn], for any elements z1, · · · , zn of K,

∑n
i=1 zi · sis

′
i =

(s1, · · · , sn)·[z1, · · · , zn]·(s′1, · · · , s′n)τ = −→y M τ ·[z1, · · · , zn]·M−→
y′ τ . If z1, · · · , zn satisfy the equation

M τ · [z1, · · · , zn] ·M = −→v τ · −→v , then
∑n

i=1 zi · sis
′
i = −→y −→v τ · −→v −→y τ = ss′. Hence it suffices to prove

M τ · [z1, · · · , zn] ·M = −→v τ · −→v ⇔ (M∗)τ · (z1, · · · , zn)τ = −→v∗τ .

Let M = (bij) and M τ = (bji). Then M τ · [z1, · · · , zn] ·M = (bji) · [z1, · · · , zn] · (bij). For any
1 ≤ i ≤ j ≤ m − 1, the (i, j)-th entry of M τ · [z1, · · · , zn] · M is

∑n
k=1 zkbkibkj = (Mi ∗ Mj)τ ·

(z1, · · · , zn)τ . Furthermore, since M τ · [z1, · · · , zn] ·M and −→v τ ·−→v are symmetric matrix, it implies
M τ · [z1, · · · , zn] ·M = −→v τ · −→v ⇔the entries of the upper triangle are equal. Thus it finishes the
proof.

Example 3.1 Suppose the graph G(V, E) and the monotone span program (K,M,−→v , ρ) are
the same as in Example 2.5. Let’s compute the recombination vector and verify (K,M,−→v , ρ) is
multiplicative.
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v1

v2 v3

v4

P1

P2

P3

P4

P5

P6

(0, 0, 0)

(1, 0, 0)

(1, 1, 1)

(1, 1, 0)

First we compute the recombination vector as follows. Note that M =




1 0 0
0 1 0
0 0 1
1 1 1
0 1 1
1 1 0



, ρ(i) =

xi for 1 ≤ i ≤ 6, and −→v = (1, 2, 3). Assume M1 = (1, 0, 0, 1, 0, 1)τ , M2 = (0, 1, 0, 1, 1, 1)τ ,
M3 = (0, 0, 1, 1, 1, 0)τ . Let M∗ = (M1 ∗ M1,M2 ∗ M2,M3 ∗ M3,M1 ∗ M2,M2 ∗ M3,M1 ∗ M3) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 1 1 1 1 1
0 1 1 0 1 0
1 1 0 1 0 0



. Let N =




1
2
3


 · [1, 2, 3] =




1 2 3
2 4 6
3 6 9


 = (aij) where aij is the (i, j)-

th entry of N . Therefore −→v∗ = (a11, a22, a33, a12, a23, a13). Consider the linear equation system

(M∗)τ · (z1, z2, z3, z4, z5, z6)τ = (a11, a22, a33, a12, a23, a13)τ , i.e.




1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 1 1 0
0 0 0 1 0 1
0 0 0 1 1 0
0 0 0 1 0 0



·




z1

z2

z3

z4

z5

z6




=




1
4
9
2
6
3



. It has a unique solution (z1, z2, z3, z4, z5, z6)τ = (−1,−1, 3, 3, 3,−1)τ .

In the following we verify (z1, · · · , z6) is the recombination vector. Suppose s, s′, ri, r
′
i ∈ K,

1 ≤ i ≤ 2. As the distribution phase in Example 2.5, the dealer computes (s1, · · · , s6)τ = M ·
(s − 2r1 − 3r2, r1, r2)τ = (s − 2r1 − 3r2, r1, r2, s − r1 − 2r2, r1 + r2, s − r1 − 3r2)τ , (s′1, · · · , s′6)

τ =
M · (s′ − 2r′1 − 3r′2, r

′
1, r

′
2)

τ = (s′ − 2r′1 − 3r′2, r
′
1, r

′
2, s

′ − r′1 − 2r′2, r
′
1 + r′2, s

′ − r′1 − 3r′2)
τ . It suffices

to verify
∑6

i=1 zi · sis
′
i = ss′.

Compute s1s
′
1 = (s− 2r1 − 3r2) · (s′ − 2r′1 − 3r′2) = ss′ − 2sr′1 − 3sr′2 − 2r1s

′ + 4r1r
′
1 + 6r1r

′
2 −
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3r2s
′ + 6r2r

′
1 + 9r2r

′
2.

Compute s2s
′
2 = r1r

′
1.

Compute s3s
′
3 = r2r

′
2.

Compute s4s
′
4 = (s− r1 − 2r2) · (s′ − r′1 − 2r′2) = ss′ − sr′1 − 2sr′2 − r1s

′ + r1r
′
1 + 2r1r

′
2 − 2r2s

′ +
2r2r

′
1 + 4r2r

′
2.

Compute s5s
′
5 = (r1 + r2) · (r′1 + r′2) = r1r

′
1 + r1r

′
2 + r2r

′
1 + r2r

′
2.

Compute s6s
′
6 = (s− r1 − 3r2) · (s′ − r′1 − 3r′2) = ss′ − sr′1 − 3sr′2 − r1s

′ + r1r
′
1 + 3r1r

′
2 − 3r2s

′ +
3r2r

′
1 + 9r2r

′
2.

It can be easily verified that
∑6

i=1 zi · sis
′
i = −(ss′− 2sr′1− 3sr′2− 2r1s

′+4r1r
′
1 +6r1r

′
2− 3r2s

′+
6r2r

′
1 + 9r2r

′
2) − r1r

′
1 + 3r2r

′
2 + 3(ss′ − sr′1 − 2sr′2 − r1s

′ + r1r
′
1 + 2r1r

′
2 − 2r2s

′ + 2r2r
′
1 + 4r2r

′
2) +

3(r1r
′
1 + r1r

′
2 + r2r

′
1 + r2r

′
2)− (ss′ − sr′1 − 3sr′2 − r1s

′ + r1r
′
1 + 3r1r

′
2 − 3r2s

′ + 3r2r
′
1 + 9r2r

′
2) = ss′.

As a result of this section, we apply the ideal linear secret sharing scheme to devise the protocol
of computing addition and multiplication. It is similar to the one against the threshold adversary [6].
Assume the input values are s and s′, determined by shares s1, · · · , sn and s′1, · · · , s′n, respectively.

Addition For i = 1, · · · , n, Pi computes si + s′i. The shares s1 + s′1, · · · , sn + s′n determine s + s′.

Multiplication For i = 1, · · · , n, Pi computes sis
′
i = t̃i.

Resharing step: Pi secretly shares t̃i, resulting in shares ti1, · · · , tin, and sends tij to Pj .

Recombination step: For j = 1, · · · , n, player Pj computes tj =
∑n

i=1 zitij , where (z1, · · · , zn)
is the recombination vector. The shares t1, · · · , tn determine t = ss′.

4 Conclusions

In this paper we devise the ideal linear secret sharing schemes based on connectivity of graphs
and prove they are multiplicative. Furthermore we devise an efficient algorithm to compute the
recombination vector. We apply the ideal linear secret sharing schemes to devise the practical
perfect multiparty computation protocols which are as efficient as the ones against the threshold
adversaries. The method is different from the generic construction proposed by Cramer, Damgard,
and Maurer and is more efficient for our case.

Appendix

Proof of lemma 3.1: Instead of the tedious but rigorous proof, a heuristic illustration is presented
as follows.
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Consider the case of m = 5, n = 10. Notice that all row vectors in M are constituted by

successive 1’s and vice versa, so M can be arranged as




1
1 1
1 1 1
1 1 1 1

1
1 1
1 1 1

1
1 1

1




by row exchanges. We

construct M∗ by the rule of first adding the columns Mi∗Mi+1 to M , then adding the columns Mi∗

Mi+2, Mi∗Mi+3, · · · . Hence M∗ =




1
...

...
...

1 1
... 1

...
...

1 1 1
... 1 1

... 1
...

1 1 1 1
... 1 1 1

... 1 1
... 1

· · · · · · · · · · · · ... · · · · · · · · · ... · · · · · · ... · · ·
1

...
...

...

1 1
... 1

...
...

1 1 1
... 1 1

... 1
...

· · · · · · · · · · · · ... · · · · · · · · · ... · · · · · · ... · · ·
1

...
...

...

1 1
... 1

...
...

· · · · · · · · · · · · ... · · · · · · · · · ... · · · · · · ... · · ·
1

...
...

...




.

Suppose the i-th row of M∗ is −→ui , 1 ≤ i ≤ 10. Then −→u1 = −→e1 , −→u5 = −→e2 , −→u8 = −→e3 , −→u10 = −→e4 . Since−→e1 + −→e2 + −→e5 = −→u2, −→e5 ∈ span{−→u1, · · · ,−→u10}. Since −→e2 + −→e3 + −→e6 = −→u6, −→e6 ∈ span{−→u1, · · · ,−→u10}.
Since −→e3 + −→e4 + −→e7 = −→u9, −→e7 ∈ span{−→u1, · · · ,−→u10}. Since

∑3
i=1

−→ei +
∑6

i=5
−→ei + −→e8 = −→u3,−→e8 ∈ span{−→u1, · · · ,−→u10}. Since

∑4
i=2

−→ei +
∑7

i=6
−→ei + −→e9 = −→u7, −→e9 ∈ span{−→u1, · · · ,−→u10}. Since∑10

i=1
−→ei = −→u4, −→e10 ∈ span{−→u1, · · · ,−→u10}. Hence −→e1 , · · · ,−→e10 ∈ span{−→u1, · · · ,−→u10} which implies M∗

is nonsingular.
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