
Vaca Ruiz et al. EPJ Data Science 2014, 3:5
http://www.epjdatascience.com/content/3/1/5

REGULAR ART ICLE Open Access

Modeling dynamics of attention in social
media with user efficiency
Carmen Vaca Ruiz1,3*, Luca Maria Aiello2 and Alejandro Jaimes2

*Correspondence:
cvaca@fiec.espol.edu.ec
1Politecnico di Milano, Piazza
Leonardo Da Vinci, 32, Milan, Italy
3FIEC, Escuela Superior Politecnica
del Litoral, Campus Gustavo
Galindo, Km 30.5 via Perimetral,
Guayaquil, Ecuador
Full list of author information is
available at the end of the article

Abstract
Evolution of online social networks is driven by the need of their members to share
and consume content, resulting in a complex interplay between individual activity
and attention received from others. In a context of increasing information overload
and limited resources, discovering which are the most successful behavioral patterns
to attract attention is very important. To shed light on the matter, we look into the
patterns of activity and popularity of users in the Yahoo Meme microblogging service.
We observe that a combination of different type of social and content-producing
activity is necessary to attract attention and the efficiency of users, namely the
average attention received per piece of content published, for many users has a
defined trend in its temporal footprint. The analysis of the user time series of
efficiency shows different classes of users whose different activity patterns give
insights on the type of behavior that pays off best in terms of attention gathering. In
particular, sharing content with high spreading potential and then supporting the
attention raised by it with social activity emerges as a frequent pattern for users
gaining efficiency over time.

Keywords: online attention; microblogging; social networks; time series

1 Introduction
Understanding users’ activities in social media platforms, in terms of the actions they take
and how those actions affect the attention they receive (e.g., comments, replies, re-posts
of messages they post, etc.), is crucial for understanding the dynamics of social media
systems as well as for designing incentives that lead to growth in terms of user activity
and number of users. As expected, given the nature of such platforms, users who receive
attention from their peers tend to be more engaged with the service and are less likely
to churn out []. Insights on the kinds of actions that users take to gain more attention
and become “popular” are therefore important because they can help explain how social
media platforms evolve. In spite of the importance of analyzing such behavior at a large
scale, the dynamics of attention are not well understood. This is largely due to two main
reasons: on one hand that there are few datasets that show the evolution of a network
from its very beginnings, and on the other hand, because most work has focused on the
popularity of content rather than on analyzing the effects of user’s behaviors on how other
users react to them. For example, there have been many studies to establish the reasons
behind user or item popularity in social networks (e.g., [, ]), but the effects that the
patterns of attention received have on the activity and the engagement of the “average”
users have not been thoroughly explored so far.
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In this paper, we address questions that focus on social media users’ behavior at different
stages of their participation in social media platforms. In particular, we introduce a new
way to examine attention dynamics, and from this perspective perform a deep analysis of
the evolution of user activity and attention in a social network from its beginning until
the service ceased to exist. Analyzing the weekly efficiency, i.e. the amount of attention
received in the platform normalized by the amount of content produced, we observe that
% of the users in the dataset exhibit a footprint of their efficiency with a clearly defined
trend (i.e., sharply increasing/decreasing or peaking). We are able to extract patterns of
user behavior from these temporal footprints that reveal differences in the activity behav-
ior of users of different classes. We focus our analysis on Yahoo Meme, a microblogging
service that was launched by Yahoo in  and discontinued in . While the mech-
anisms of interaction in Yahoo Meme were similar to those found in other social media
platforms, to the best of our knowledge, this is the first study that examines in detail the
questions we are addressing from the perspective of user efficiency, using data from a ser-
vice from its initial launch.
The main contributions of this work include:
• Study of the attention dynamics in social networks from the angle of efficiency, namely
the ratio between attention received and activity performed. The notion of efficiency
in time allows to detect patterns that could not emerge using other raw popularity or
activity indicators.

• Definition of a method to classify noisy time series of user-generated events. The
method is successfully used to find classes of users based on the time series of their
efficiency scores, with an accuracy ranging from . to ., depending on the
different classes.

• Extraction of insights useful to detect and prevent user churn. For instance,
exploration of the efficiency time series reveals that increase in efficiency is
determined by creation of high-quality content, but the acquired attention has to be
sustained with additional social activity to keep the efficiency high. If such social
exchange is missing, attention received drops very quickly.

2 Related work
Much effort has been spent lately in measuring the effect that the activity of content pro-
duction and sharing has in influencing the actions of socialmedia participants. Depending
on whether the investigation adopts the perspective of the user who is sharing or of the
content being shared, emphasis has been given to the characterization of either the influ-
ential users or the process of information spreading along social connections.
Different methods to identify influentials, namely individuals who seed viral informa-

tion cascades, have been proposed recently [], and it has been observed that simple mea-
sures such as the raw number of social connections are not good predictors of influence
potential [–]. Instead, the ease of propagation of a piece of content is correlated with
many other features, including the position of the content creator in the social network
[], demographic factors [, ], and the sentiment conveyed in the message [].
For what concerns content-centered analysis, much attention has been devoted to the

study of the structure and diffusion speed of information cascades in social and news me-
dia [–], including YahooMeme [, ]. Weng et al. [] for instance have shown that
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triadic closure helps to explain the link formation in early stages of the user’s lifetime but
later in time it is the information flow the driver for new connections. Despite the difficulty
of determining whether observed cascades are generated by a real influence effect []
(unless performing controlled experiments []), the role of influence in social network
dynamics is widely recognized, albeit not fully understood. Factors related to influence
include geolocation, visibility of the content, or exogenous factors like major geopolitical
or news events for news media [–].
Patterns of temporal variation of popularity have been investigated previously, mostly

focusing on the attention given to pieces of user-generated content. Previous work in-
cludes characterization of the peakness and saturation of video popularity on YouTube in
relation to content visibility [], crowd productivity dependence on the attention gath-
ered by videos [], the classification of burstyTwitter hashtags in relation to topic detection
tasks [], and the clustering of hashtag popularity histograms based on their shape [].
Time series has been used to predict popularity in blogs, where the early reactions of the
crowd to a piece of content is strongly correlated to the expected overall popularity [, ].
In this work we focus on users as opposed to content and we analyze time series of a

metric combining the user activity and the attention received. We do not focus on the
popularity gained at a global scale, but instead we characterize temporal patterns of activ-
ity and attention of each individual. We show that time series of individual user activity
cannot be clustered accurately based on their shapes by state-of-the art methods, so we
propose an algorithm to fix that. Finally, except in rare cases (e.g., []), previous work
on network analysis has relied mostly on limited temporal snapshots. In contrast, we use
the temporal data of the entire life-span of Meme, from its release date until its shut-
down.

3 Dataset description
Meme was a microblogging service launched by Yahoo in April  and discontinued in
May . Users could post messages, receive notifications of posts published by people
they follow (follower ties are directed social connections), and repost messages of other
users or comment on those messages. The overall number of registered users grew at a
constant pace, up to almost K .When neglecting uninvolved users (i.e., users whowere
registered, but stopped explicit activity), we observe a growing trend up to a maximum of
K users around the end of the first year, and then a slow but steady decline. In Table 
we report general statistics on the follower network in the last week of the service. The
final network contains a well-connected core of users resulting in a greatest connected
component covering almost the full network, with a high clustering coefficient. As al-
ready observed for other online social networks, the average path length is proportional
to log log(N), and similarly to other news media the level of social link reciprocity is very
low [].

Table 1 Followers network statistics

Nodes Edges Density 〈k〉 〈kin〉 GWCC% Reciprocity 〈d〉 dmax C

568K 20M 6.2 · 10–5 71 35 0.996 0.096 2.59 11 0.433

� = density, GWCC% = relative size of the greatest weakly connected component, d = geodesic distance, C = clustering
coefficient.
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4 Activity vs. attention
Activity and attention are the two dimensions we aim to examine with our study. After
defining the features, we look at their relationship in terms of correlations of their raw
indicators and then we study them from a novel perspective by defining a metric of user
efficiency. We find that very efficient users tend to write fewer posts per week but are
heavily involved in social activities such as commenting.

4.1 Activity and attention metrics
Wedefine activity and attention indicators that are computed for every user. Activity indi-
cators are measured by the number of posts (pd), reposts (rd), and comments done (cd),
or by the number of new followees added (fwee), while attention is determined by the
number of reposts (rr) ot comments received (cr) from others, and by the number of new
incoming follower links (fw). Reposts received can be direct or indirect (i.e., reposting a
repost). To measure attention we consider direct reposts.
The possibility of indirect reposting originates repost cascades that can be modeled as

trees rooted in the original post and whose descendants are the direct (depth ) and indi-
rect (depth  to the leaves) reposts. Besides being another attention indicator, the cascade
size (cs) is a good proxy for the perceived interestingness of the content because, intuitively,
sharing a piece of content originated by someone who is not directly linked through a so-
cial tie, and therefore is likely to be unknown to the reposter, implies a higher likelihood
that the reposter was interested in that piece content. Therefore, we consider the cascade
size as a measure of content interestingness.
Even though several measure of influence, authoritativeness, or more in general impor-

tance of a user in a networked system have been developed in the past (see for instance
the work by Romero et al. []), here we adopt the perspective of a single user, rather than
of the whole community. Therefore, we are going to interpret the system as a black box
that receives input from a user (activity) and returns some output (attention), without
considering the actual effect that the input causes inside the system. Although this is a
simplification, it allows us to better focus on the user dimension and to cluster users with
respect to the perception they get from the interaction with the system (i.e., attention in
exchange for activity).

4.2 Correlations
When dealing withmultidimensional behavioral data, detecting causation between events
can be difficult [], but potential mechanisms driving the interactions between the dif-
ferent dimensions at play can be spotted through the investigation of correlations []. In
this case, the correlations between activity and attentionmetrics give a first hint about the
potential payoff of some user actions in terms of attention received.
In Figure , visual clues of the relationship between different metrics of activity and

attention are shown in the form of heatmaps. The four plots on the left display the average
values of attention indicators for users whose number of posts and comments resides in
given ranges. To make sure that the trends emerging from the heatmaps are significant,
we count the number of users falling in each of the range buckets. In Table  we report
the average and the median number of users in each bucket of the heatmaps. As expected
from the broad distributions of the activity and attention indicators, few actors have very
high values for some pairs of indicators. For instance, in the heatmap in Figure (E), just
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Figure 1 Correlations between activity and attention. Users were grouped according to the number of x
and y values (plotted on a log scale) and, for each group, the average number of the z-value was calculated
and mapped to a color intensity.

Table 2 Statistics for the number of users considered in each bucket of the heatmaps
depicting the correlations between activity and popularity metrics (Figure 1)

x-axis y-axis Average Median

Posts Reposts received 73.1 39
Posts Comments done 77.9 32
Posts Followers 74.3 45

The average and median number of users per bucket in each combination of metrics is shown.

 users are in the upper-right bucket (users with >  posts and and >  followers).
However, in general the number of users per bucket is sufficiently high to consider the
trend statistically significant, as shown by Table .
First, we observe that attention in terms of followers and comments (Figures (A)-(B))

is correlated with both number of posts and comments done, resulting in a color gradient
becoming brighter when transitioning from the lower-left corner to the upper-right one.
Users who gained more followers were heavier content producers and an even more ev-
ident correlation is found when considering comments received (Figure (B)), likely due
to a comment reciprocity tendency (we calculated the comment reciprocity being around
%, much higher than reciprocity in the follower network). We observe a partially sim-
ilar effect when looking at content-centered indicators, namely the reposts received and
the cascade size (Figures (C)-(D)). In these cases we find a positive correlation with the
number of posts, but not with the amount of comments, suggesting that social interac-
tion, such as commenting on other people posts, does not strongly characterize content
propagation.
The two plots on the right of Figure  show the relation between pairs of attention met-

rics with the number of posts. From Figure (E) we learn that social exposure (i.e., be-
ing followed) and productivity (i.e., number of posts) are both heavily correlated with the
number of reposts. However, people with moderate or heavy posting activity can reach
a high level of attention even having a relatively small audience (as shown by the bright
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colors extending down along the right side of the map). This intuition is confirmed by the
fact that swapping the axes of the two attentionmeasures, the correlation is disrupted (Fig-
ure (F)), meaning that people with high number of posts and reposts do not necessarily
have a large number of followers.

4.3 User efficiency
The above findings support on one hand the intuitive principle about: “the more you give,
the more you get” and, on the other hand, they reinforce the hypothesis that visibility is
not enough to grant a wide diffusion of content (similarly to the “million follower fallacy”
in the context of Twitter []). However, the user perception of the interaction with peers
through an online system is not dependent just by the raw number of feedback actions
received, but also by the amount of attention in relation with the effort spent to gain it.
Given this perspective, we define the efficiency η of a user u in a given time frame [ti, tj] as
the amount of attention received over the amount of activity performed between ti and tj,
for any pair of activity (Act) and attention (Att) metrics:

ηAct,Att
u (ti, tj) =

∑tj
ti Attu

∑tj
ti Actu

. ()

Analogous definitions have been used in different disciplines such as physics and eco-
nomics [], and in most of the cases the efficiency is upper bounded to , i.e., the out-
come from the system cannot exceed the energy given in input. On the contrary, in a
social media setting the efficiency is unbounded and it constitutes an objective function
to maximize in order to increase the engagement of the user base. Even if comments can
be strong indicators of involved user participation, the main focus of the online service
under study is posting and reposting, similarly to Twitter. Therefore we always consider
the number of posts as the metric of activity in the efficiency formula. In the above def-
inition (Formula ()) we assume that the attention that we take into account should be
the one that is directly triggered by the activity considered, we use either the number of
reposts (ηPost,Repost

u ) or the number of comments (ηPost,Comm
u ) as proxies for attention re-

ceived, since other metrics such as number of followers are not necessarily responses to
the posting activity.
The distribution of ηPost,Repost

u and ηPost,Comm
u for all the users during the complete lifetime

of the network is drawn in Figure . Even if the maximum efficiency scores span up to
several hundreds, the majority of users have an efficiency lower than , and most of them

Figure 2 Efficiency scores. Distribution of efficiency scores, bucketed in 0.25-wide bins. Average scores are
0.38 for comments and 1.55 for reposts.
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Figure 3 Activity and efficiency. Average values of activity and status indicators at fixed values of ηu .

have values close to zero. The average over the ηu values of all users is higher than  for
reposts andmuch lower for comments. This is justified by the fact thatMeme emphasized
especially the repost feature. For this reason, next we consider only the efficiency of posts
in relation to reposts, and we refer to it as ηu, for simplicity.
High activity is usually indicative of poor efficiency or, in other words, activity alone is

not indicative of high potential of attention gain. To study more in depth the traits of effi-
cient and inefficient users, we describe users with different ηu values according to several
activity and status features, as shown in Figure .
Insightful patterns emerge. First, the higher the ηu, the lower the activity in terms of

number of posts, but not in the range  ≤ ηu ≤  (containing most of the users), in which
the number of posts grows with ηu. However, when looking at the average number of
posts submitted per week instead, the trend becomes monotonic, confirming the theory
about the limited attention of the audience being a barrier for attention gathering [].
Second, the higher the ηu, the higher the amount of comments: the more efficient users
are the ones who comment the most. Finally, the longevity of the profile and the prestige
on the follower network (computed with standard PageRank) are also distinctive features
of efficient users.

5 Evolution of efficiency in time
Attention attracted by users, and by consequence their efficiency, is not constant in time.
It depends on the amount of activity, the position in the network and other factors. How-
ever next we show that, even if many users exhibit a oscillating but globally stable values
of efficiency in time, more than half the users show sharp variations in their efficiency
time series, that tell more about the activity behavior in different periods of the user life-
time. First, we give the definition of efficiency time series. Then, we explain the algorithm
used to classify users efficiency traces according to the shape of their trend and discuss
the properties of the four classes we found.We (i) find that state-of-the-art algorithms for
clustering of timeseries do not perform well on the noisy traces such the ones generated
by human activity, therefore, based on the observed shapes, (ii) we propose a new classifi-
cation method and evaluate it against a human-curated ground truth, and (iii) we analyze
the differences between user behaviors in the four main user efficiency classes around the
main changepoint of the efficiency curve.

http://www.epjdatascience.com/content/3/1/5
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5.1 Efficiency time series definition
By adapting the efficiency formula for a discrete-time scenario, we model the temporal
efficiency evolution using weekly time series for each user u measuring the efficiency ηu

after each week. The elements of the series are generated as follows:

ηu(ti) =
rr(pti )
|pti |

, ti ∈ Tu = {t, . . . , tn},

where pti represents the set of posts published by user u on week ti, rr(pti ) is the total
number of direct reposts received in the user’s lifetime for the set of posts pti , and Tu is
the sorted list of weeks in which the user u published at least one post.

5.2 Time series type detection
Characterizing users based on the exhibited temporal behavior of their efficiency requires
to extract automatically patterns out of the generated time series. There are two main
families of state-of-the art methods for this task. The first one includes feature-based ap-
proaches that cluster series based on their kurtosis, skewness, trend, and chaos []. The
latter one includes area-under-the-curve methods [–] that consist into dividing the
time series into equally sized fragments, measure the area under the curve in each frag-
ment, represent the time series as a vector of such quantities, and then apply a clustering
algorithm over them (specifically, we used k-means). We first tried those state-of-the art
methods to cluster the efficiency time series. We do not report extensively the results ob-
tained for the sake of brevity, but both feature-based approaches area-under-the-curve
methods produce clusters containing extremely heterogeneous curves, as we assessed by
manual inspection. In addition to that, we tried also a separate approach, proposed few
years ago, that transforms the curves through Piecewise Aggregate Approximation and
Symbolic Aggregate Approximation and then clusters the resulting representations with
k-means []. Also this method lead to very imbalanced clusters, being the % of curves
put in one single cluster. The main issue with those approaches is that they have been
tested in the past mainly on synthetic time series. When time series represent the activity
of single actors theymay have an extremely broad variety of length, shapes, and oscillation
of the curve that the mentioned methods are not able to handle properly.
Even though the produced clusters were very noisy, the area-under-the-curve method

tended to group together curves in four main clusters, with a predominance of well-
recognizable shapes: increasing, decreasing, peaky and steady. Some examples of time se-
ries for each class are depicted in Figure  (top). Driven by the qualitative insights that the
clustering produced, we developed a tailored classification algorithm to obtain cleaner
groups, based on a qualitative, discrete representation of the temporal data, inspired by
the representation of financial time series presented by Lee et al. []. Our algorithm ex-
ecutes the following steps:
. Smoothing. Apply the kernel regression estimator of Nadaraya and Watson [] to

the user temporal data to obtain a smoothed time series t. The smoothing process
gets rid of very sharp and punctual fluctuations, which are very frequent in human
activity time series. Examples of raw curves compared to their smoothed versions are
shown in Figure  (bottom).

. Linguistic transform. Generate a qualitative representation of the time series t for a
user u using three states: High, Medium, Low (H ,M, L). We empirically set the
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Figure 4 Time series examples for each class. Examples of efficiency time series for users of each class
indicated by the clustering of time series. Top: raw time series, bottom: smoothed Time series. Threshold used
to detect changepoints for the first three types are reported with dashed lines.

threshold for high values to . and for medium values to . (i.e., values greater than
the % of the maximum efficiency reached by the user are considered High). The
idea of using threshold values is supported by previous work in time-series
segmentation [].

. Fluctuation reduction. Search for contiguous subsequences of a given state and drop
the subsequences whose length is less than the % of the total length. Similarly to
the smoothing procedure, this step helps to eliminate noisy fluctuations in the time
series. For example, in the series HHHMHHMMMLLL, the fourth element,M is
dropped.

. String collapsing. Collapse the string representation of t by replacing subsequences of
the same state with a single symbol of the same type. For instance, the resulting series
from the previous example, HHHHHMMMLLL, is transformed to HML.

. Detection of Increasing/Decreasing classes. Look for collapsed sequences with just two
groups of symbols and classify as “Increasing” a sequence transitioning from L orM
to the state H and as “Decreasing” those transitioning from H to L orM. The second
and third columns in Figure  show the threshold for High values as a dotted red line.

. Detection of Peaky class. For the unclassified series, find those exhibiting a peaky
shape by looking at outliers in the series whose value is higher than x times the
average value. This method has been successfully used before in the context of
Twitter, with x =  []. Other methods for peak detection we tested [] find just
local peaks, which are very frequent in noisy time series.

. Detection of changepoint. Accurately locating the point in which a curve transitions
between different levels is important to study the behavior of users in their single
activity and popularity metrics around the point in time when these changes occur
[]. For the peak type curves, the changepoint is intuitively defined by the highest
peak, whereas for the increasing and decreasing types the point is identified by the
time in which the linguistic representation of the series transitions from H toM or L
status (decreasing) or from L orM to H status (increasing). For the sake of
comparison, we match our simple technique with the statistical change point analysis
recently proposed by Chen et al. []. We find that, although for most time series the
values from the two methods were very close (at most  or  weeks difference in
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around % of the cases), the statistical changepoint detection often identifies points
right before or right after a change of efficiency.

. Detection of Steady class. The remaining time series are classified as steady.
As inmost previous work [], in absence of an automatic way to compute the quality of

the classes, two of the authors annotated a random sample of , time series per class
to assess the goodness of our algorithm. Since the expected shapes of the curves for each
class are very clear (see examples in Figure ) a human evaluator can decide with certainty
whether the instances from the sample match the expected template. The outcome of the
labeling is very encouraging, with % correct instances in the Decreasing class, % in
the Increasing, and % in Peak, and almost perfect agreement between evaluators (Fleiss
κ = .). For the Steady class, where shapes can vary much, we labeled as misclassified
any curve belonging to the other classes. We found a low portion ofmisclassifed instances
(%). We observe that the users in the steady class are around %, meaning that %
of the users exhibit a temporal footprint of the efficiency curve that has a clearly defined
trend. This is a finding with important implications on the applicative side, meaning that
the majority of users could be accurately profiled as having consistently increasing or de-
creasing efficiency patterns.

5.3 Changepoint detection
Accurately locating the point in which a curve transitions between different levels is im-
portant to characterize the user behavior when his efficiency significantly increases or
drops, thus allowing to study how single activity and popularity metrics vary when these
changes occur []. Changepoint detection refers to the problem of finding time instants
where abrupt changes occur []. Except for the steady time series, which denote a user
behavior that is quite constant in time (or for which transition to higher or lower effi-
ciency levels are much slower), all the other three types have a changepoint in which the
efficiency trend changes radically in a relatively short period of time compared to the total
length of the user lifetime. For the peak type curves, the changepoint is intuitively defined
by the highest peak, whereas for the increasing and decreasing types the point is identified
by the time in which the linguistic representation of the series transitions from H orM to
L status (decreasing) or from L or M to H status (increasing). More general methods to
identify changepoints relying on the changes in mean and variance have been proposed in
the past. For the sake of comparison, we match our simple technique with the statistical
change point analysis recently proposed by Chen et al. []. We find that, although for
most time series the values from the two methods were very close (at most  or  weeks
difference in around % of the cases), the statistical changepoint detection sometimes
identifies points right before or right after a change of efficiency. In fact, the generality of
statistical methods is not a plus in cases in which the set of curves in input is quite homo-
geneous and for which ad-hoc methods result more reliable. For this reason, we use our
definition of changepoint.
Once users with similar profiles in their temporal efficiency evolution have been

grouped, time series are analyzed to identify meaningful changepoints.

6 User efficiency classes
For each detected class, we perform an analysis in aggregate over all the users first and
then we characterize the evolution of the samemetrics in time.We find that (i) publishing
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Table 3 Activity, popularity and longevity indicators for the four user classes

Type %users Activity Attention Time

pd cd fwee cr fw rr cs days weeks

Decreasing 15% 6.11 2.78 10.7 4.90 3.57 25.3 34 491 53
Increasing 16% 10.3 4.74 9.69 6.14 4.82 43.4 51 690 92
Peak 25% 8.10 2.74 6.82 4.07 3.18 9.11 32 703 85
Steady 44% 8.22 3.75 10.3 5.50 4.35 29.1 40 610 72

Values are the median of the average weekly values. Abbreviations used are pd = posts, cd = commentsDone, fwee = followees,
fw = followers, rr = repostsReceived, cs = cascadeSize, days = userLifetime, week = activeWeeks

interesting content helps to boost the efficiency of the subsequent posts through attention
gathering and that (ii) the efficiency gained in that way should be sustained by intense
social activity to avoid it to drop.

6.1 Static analysis of user classes
We aggregate different activity and attention indicator scores over users and weeks, for
each of the four user classes. For all the indicators, we compute their average value per-
week for every user and then we compute the median of all the results obtained for users
of the same class. Median is used instead of average to account for the broad distribution
of values. In addition, to get a measure of the adhesion of users to the service, we measure
the median number of weeks of activity and the median number of days of duration of the
user account. Values for all themetrics are shown inTable  and they show a first picture of
the levels of activity performed and attention attracted by users of different classes. Users
in the Increasing class have the highest values for almost all themetrics compared to other
groups. They are able to attract high levels of attention (fw, rr), combined with the ability
of conciliating the production of content of high interestingness for the community (high
cs) with social activity (high cd and fwee values). As we will show later, the production of
comments and addition of followees is a characteristic of this class through time. On the
contrary, users belonging to the Peak class are the least active in terms of social activity
(low cd and fwee values) but, surprisingly, they are relatively active content publishers and
have the tendency to be active for long time, exhibiting a high number of active weeks and
the highest account duration. They are quite involved in posting but are notmuch engaged
in the social interactions that complements the content production and consumption pro-
cess. As wewill observe next, these users do some commenting activity at the beginning of
their lifetime but they reduce significantly the number of followees or comments rapidly.
Users in the Decreasing and Steady classes receive both a good amount of attention and
establish a high number of social links, backed up by a high content-production activity
in the Steady case. Given the shorter time of involvement and knowing about their sharp
efficiency drop, the users in the Decreasing class are likely people with a good level of par-
ticipation who, differently from the users in Steady, reduced significantly the involvement
in the service at some point.

6.2 Variation around the changepoint
Here we investigate deeper how users in each class distribute the amount of activity in
time. We perform an analysis around the changepoint of the efficiency curve, and see if
the different temporal patterns can explain why their efficiency level changed over time.
We decompose the timeseries into different phases and study the relations between them
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in terms of the activity and attention indicators. Specifically, for all the users belonging to
the classes where the changepoint is given (i.e., all but the Steady class).
Let us define three user-dependent time steps: theweek inwhich the user activity started

wstart , the week of the changepoint of the efficiency curve wcp, and the week of the end of
the activity wend , after which no other action is performed by the user. Accordingly, we
define three phases of the user lifespan referred as Before, CP, After, which represent, re-
spectively: the weeks in the [wstart ,wcp) interval, the changepoint week wcp, and the weeks
in the (wcp,wend] interval. We calculate the average weekly amount of activity and atten-
tion metrics during these three macro-aggregates of weeks. The three values obtained for
each indicator capture the variation of activity and attentionwhen approaching the critical
point in which a consistent change of efficiency is detected.
To detect the variation of the values in the three phases we compute two ratios for each

user: (a) RatioCP = activity-or-attention metric measured in wcp divided by the samemet-
ric computed in [wstart ,wcp), and (b) RatioAfter = activity-or-attention metric measured
in (wcp,wend] divided by the samemetric during [wstart ,wcp). Ratios are then averaged over
all the users of each class. Comparison of ratios between different user classes reveals the
key differences between them: values above  mean that the value of the indicator grew
in CP of in After phases compared to the Before phase. Final results for different values
of activity and attention are reported in Figure . For instance, in Figure (a), we observe
that RatioAfter is above  just for users in the Peaky class. It means that the users in that
class have published more posts after the changepoint than they did before it. We can
summarize our findings as follows:
• Activity and attention at CP. Users of all classes maintain a similar trend in the
number of posts done in CP with a slight increase in the case of the Increasing class
(Figure (a)). For Peak and Increasing classes, the number of reposts received, cascade
size and followers increases significantly in CP compared to Before (Figure (d), (e), (f )
respectively). Since reposts received and cascade size are proxies for content
interestingness, this indicates the production of content that attracts the attention of a
much higher number of users. For both classes, this is the most likely cause of the rise

Figure 5 Ratio of activity and attention. Ratio of activity and attention metrics between the Before phase
and later phases (Change Point and After), for the 3 user classes.
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of their efficiency at CP. For the Decreasing class the attention values start dropping
instead. Finally, differently from other classes, users in the Increasing class produce a
higher number of comments in CP (Figure (b)).

• Social activity after CP. In the After phase, social interaction such as the number of
comments and the addition of new followees considerably increase compared to
Before for the Increasing class (Figures (b), (c)), while they remain stable or in slight
decrease for the Peak class. Decreasing class values drop also in this case.

• Content production activity after CP. The reverse scenario is found when looking at
the posting activity. In the After phase, Peak post messages at a higher rate than Before
(Figure (a)), while Increasing posting activity drops in favor of a higher attention to
social interaction.

The main lesson learned from the above findings is that the submission of pieces of “in-
teresting” content, namely posts that attract the attention of a wider audience than usual,
is the trigger to transition to higher efficiency levels. However, efficiency cannot be main-
tained without cost. Increasing engagement in social activity and expanding the potential
audience turns out to be an effective strategy not to lose efficiency. Conversely, producing
more content without reinforcing the social relationships with the potential consumers
of the content results in a rapid drop of efficiency to the original levels. The difference
between the Increasing and Peaky classes is particularly striking, having the Increasing-
type users fully exploiting social activity with % more followees, % more comments
and % reposts after their changepoint, while Peaky-type users keep their activity ap-
proximately stable (except for an increase of reposts done). Moreover, as expected, when
a status of equilibrium between attention received and activity is disrupted by an arbitrary
reduction of productivity and social interactions, the efficiency is destined to fade quickly.

7 Conclusions
We explored the interplay between activity and attention in Yahoo Meme by defining the
notion of user efficiency, namely the amount of attention received in relation to the content
produced. We find that, unlike the raw attention measures, efficiency has strong negative
correlation with the amount of user activity and users who are involved in social activities
such as commenting, have higher centrality in the social network than average, but are not
necessarily heavy content producers.
However, if we consider commenting as a form of content creation, we observe that

comment takes less effort than creating a post but, frequently, it can be more effective.
It is so because the reciprocity plays a role and the comments network exhibits a higher
reciprocity than that of the follower network. Users can, thus, benefit from the visibility
of a post whenever they comments on it.
We classify into four main classes (sharp increasing/decreasing steps, peaks or stable

trend) the time series of user efficiency with a novel algorithm that overcomes limitations
of previous approaches and we find four main clusters. By analyzing the variation of activ-
ity and attention around the changepoints of the timeseries, we find evidences that user
efficiency is boosted by a particular combination of production of interesting content and
constant social interactions (e.g., comments). In these cases, users gather the attention
fromawider audience by publishing contentwith higher spreading potential and then they
manage to keep the attention high through regular and intensified social activity. These
insights find direct application on the detection and prevention of user churn: being able
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to detect users who increase their efficiency but that are frustrated by not being able to
keep it high can be helped either by recommending them social activities or pushing their
contacts to interact with them. The task of churn prediction is a natural continuation of
the present work that we plan to address in the future.
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