[go: up one dir, main page]

Neoaves is a clade that consists of all modern birds (Neornithes or Aves) with the exception of Palaeognathae (ratites and kin) and Galloanserae (ducks, chickens and kin).[4] This group is defined in the PhyloCode by George Sangster and colleagues in 2022 as "the most inclusive crown clade containing Passer domesticus, but not Gallus gallus".[5] Almost 95% of the roughly 10,000 known species of extant birds belong to the Neoaves.[6]

Neoavians
Temporal range: PaleoceneHolocene, 62.5–0 Ma[1] Possible Late Cretaceous origin based on molecular clock[2][3]
Great crested grebe (Podiceps cristatus)
House sparrow (Passer domesticus)
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Aves
Infraclass: Neognathae
Clade: Neoaves
Sibley et al., 1988
Clades

The early diversification of the various neoavian groups occurred very rapidly around the Cretaceous–Paleogene extinction event,[7][8] and attempts to resolve their relationships with each other have resulted initially in much controversy.[9][10]

Phylogeny

edit

The early diversification of the various neoavian groups occurred very rapidly around the Cretaceous–Paleogene extinction event.[11] As a result of the rapid radiation, attempts to resolve their relationships have produced conflicting results, some quite controversial, especially in the earlier studies.[12][13][14] Nevertheless, some recent large phylogenomic studies of Neoaves have led to much progress on defining orders and supraordinal groups within Neoaves. Still, the studies have failed to produce to a consensus on an overall high order topology of these groups.[15][16][17][14] A genomic study of 48 taxa by Jarvis and colleagues in 2014 divided Neoaves into two main clades, Columbea and Passerea, but an analysis of 198 taxa by Prum and colleagues in 2015 recovered different groupings for the earliest split in Neoaves.[15][16] A reanalysis with an extended dataset by Reddy and colleagues in 2017 suggested this was due to the type of sequence data, with coding sequences favouring the Prum topology.[17] The disagreement on topology even with large phylogenomic studies led Alexander Suh in 2016 to propose a hard polytomy of nine clades as the base of Neoaves.[18] An analysis by Houde and colleagues in 2019 recovered Columbea and a reduced hard polytomy of six clades within Passerea.[19]

Despite other disagreements, these studies do agree on a number of supraorderal groups, which Reddy and colleagues in 2017 dubbed the "magnificent seven", which together with three "orphaned orders" make up Neoaves.[17] Significantly, they both include a large waterbird clade (Aequornithes) and a large landbird clade (Telluraves). The groups defined by Reddy and colleagues (2017) are as follows:

  • The "magnificent seven" supraordinal clades:
  1. Telluraves (landbirds)
  2. Aequornithes (waterbirds)
  3. Phaethontimorphae (sunbittern, kagu and tropicbirds)
  4. Otidimorphae (turacos, bustards and cuckoos)
  5. Strisores (nightjars, swifts, hummingbirds and allies)
  6. Columbimorphae (mesites, sandgrouse and pigeons)
  7. Mirandornithes (flamingos and grebes)

Comparison of different proposals for neoavian radiation

edit


Detailed cladogram

edit

The following cladogram illustrates the proposed relationships between all neoavian bird clades.[24]

Neoaves
Columbaves
Elementaves
Telluraves

References

edit
  1. ^ Ksepka, Daniel T.; Stidham, Thomas A.; Williamson, Thomas E. (25 July 2017). "Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K–Pg mass extinction". Proceedings of the National Academy of Sciences. 114 (30): 8047–8052. Bibcode:2017PNAS..114.8047K. doi:10.1073/pnas.1700188114. PMC 5544281. PMID 28696285.
  2. ^ a b Kuhl., H.; Frankl-Vilches, C.; Bakker, A.; Mayr, G.; Nikolaus, G.; Boerno, S. T.; Klages, S.; Timmermann, B.; Gahr, M. (2021). "An unbiased molecular approach using 3'UTRs resolves the avian family-level tree of life". Molecular Biology and Evolution. 38: 108–127. doi:10.1093/molbev/msaa191. PMC 7783168. PMID 32781465.
  3. ^ Field, Daniel J.; Benito, Juan; Chen, Albert; Jagt, John W. M.; Ksepka, Daniel T. (March 2020). "Late Cretaceous neornithine from Europe illuminates the origins of crown birds". Nature. 579 (7799): 397–401. Bibcode:2020Natur.579..397F. doi:10.1038/s41586-020-2096-0. ISSN 0028-0836. PMID 32188952. S2CID 212937591.
  4. ^ a b Jarvis, E. D.; et al. (2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds". Science. 346 (6215): 1320–1331. Bibcode:2014Sci...346.1320J. doi:10.1126/science.1253451. ISSN 0036-8075. PMC 4405904. PMID 25504713.
  5. ^ Sangster, George; Braun, Edward L.; Johansson, Ulf S.; Kimball, Rebecca T.; Mayr, Gerald; Suh, Alexander (2022-01-01). "Phylogenetic definitions for 25 higher-level clade names of birds" (PDF). Avian Research. 13: 100027. Bibcode:2022AvRes..1300027S. doi:10.1016/j.avrs.2022.100027. ISSN 2053-7166.
  6. ^ Ericson, Per G.P.; et al. (2006). "Diversification of Neoaves: integration of molecular sequence data and fossils" (PDF). Biology Letters. 2 (4): 543–547. doi:10.1098/rsbl.2006.0523. PMC 1834003. PMID 17148284. Archived from the original (PDF) on 2009-03-25. Retrieved 2019-08-29.
  7. ^ McCormack, J.E.; et al. (2013). "A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing". PLOS ONE. 8 (1): e54848. arXiv:1210.1604. Bibcode:2013PLoSO...854848M. doi:10.1371/journal.pone.0054848. PMC 3558522. PMID 23382987.
  8. ^ Claramunt, S.; Cracraft, J. (2015). "A new time tree reveals Earth history's imprint on the evolution of modern birds". Sci Adv. 1 (11): e1501005. Bibcode:2015SciA....1E1005C. doi:10.1126/sciadv.1501005. PMC 4730849. PMID 26824065.
  9. ^ Mayr, G (2011). "Metaves, Mirandornithes, Strisores and other novelties - a critical review of the higher-level phylogeny of neornithine birds". J Zool Syst Evol Res. 49: 58–76. doi:10.1111/j.1439-0469.2010.00586.x.
  10. ^ Matzke, A. et al. (2012) Retroposon insertion patterns of neoavian birds: strong evidence for an extensive incomplete lineage sorting era Mol. Biol. Evol.
  11. ^ Claramunt, S.; Cracraft, J. (2015). "A new time tree reveals Earth history's imprint on the evolution of modern birds". Sci Adv. 1 (11): e1501005. Bibcode:2015SciA....1E1005C. doi:10.1126/sciadv.1501005. PMC 4730849. PMID 26824065.
  12. ^ Mayr, G (2011). "Metaves, Mirandornithes, Strisores and other novelties - a critical review of the higher-level phylogeny of neornithine birds". J Zool Syst Evol Res. 49: 58–76. doi:10.1111/j.1439-0469.2010.00586.x.
  13. ^ Matzke, A. et al. (2012) "Retroposon insertion patterns of neoavian birds: strong evidence for an extensive incomplete lineage sorting era" Mol. Biol. Evol.
  14. ^ a b Braun, Edward L.; Cracraft, Joel; Houde, Peter (2019). "Resolving the Avian Tree of Life from Top to Bottom: The Promise and Potential Boundaries of the Phylogenomic Era". Avian Genomics in Ecology and Evolution. pp. 151–210. doi:10.1007/978-3-030-16477-5_6. ISBN 978-3-030-16476-8. S2CID 198399272.
  15. ^ a b Jarvis, E.D.; et al. (2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds". Science. 346 (6215): 1320–1331. Bibcode:2014Sci...346.1320J. doi:10.1126/science.1253451. PMC 4405904. PMID 25504713.
  16. ^ a b Prum, Richard O.; Berv, Jacob S.; Dornburg, Alex; Field, Daniel J.; Townsend, Jeffrey P.; Lemmon, Emily Moriarty; Lemmon, Alan R. (2015). "A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing". Nature. 526 (7574): 569–573. Bibcode:2015Natur.526..569P. doi:10.1038/nature15697. ISSN 0028-0836. PMID 26444237. S2CID 205246158.
  17. ^ a b c d Reddy, Sushma; Kimball, Rebecca T.; Pandey, Akanksha; Hosner, Peter A.; Braun, Michael J.; Hackett, Shannon J.; Han, Kin-Lan; Harshman, John; Huddleston, Christopher J.; Kingston, Sarah; Marks, Ben D.; Miglia, Kathleen J.; Moore, William S.; Sheldon, Frederick H.; Witt, Christopher C.; Yuri, Tamaki; Braun, Edward L. (2017). "Why Do Phylogenomic Data Sets Yield Conflicting Trees? Data Type Influences the Avian Tree of Life more than Taxon Sampling". Systematic Biology. 66 (5): 857–879. doi:10.1093/sysbio/syx041. ISSN 1063-5157. PMID 28369655.
  18. ^ a b Suh, Alexander (2016). "The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves". Zoologica Scripta. 45: 50–62. doi:10.1111/zsc.12213. ISSN 0300-3256.
  19. ^ a b Houde, Peter; Braun, Edward L.; Narula, Nitish; Minjares, Uriel; Mirarab, Siavash (2019). "Phylogenetic Signal of Indels and the Neoavian Radiation". Diversity. 11 (7): 108. doi:10.3390/d11070108. ISSN 1424-2818.
  20. ^ Prum, R.O.; et al. (2015). "A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing". Nature. 526 (7574): 569–573. Bibcode:2015Natur.526..569P. doi:10.1038/nature15697. PMID 26444237. S2CID 205246158.
  21. ^ Braun, Edward L.; Kimball, Rebecca T. (2021). "Data types and the phylogeny of Neoaves". Birds. 2 (1): 1–22. doi:10.3390/birds2010001.
  22. ^ Wu, S.; Rheindt, F.E.; Zhang, J.; Wang, J.; Zhang, L.; Quan, C.; Zhiheng, L.; Wang, M.; Wu, F.; Qu, Y; Edwards, S.V.; Zhou, Z.; Liu, L. (2024). "Genomes, fossils, and the concurrent rise of modern birds and flowering plants in the Late Cretaceous". Proceedings of the National Academy of Sciences. 121 (8). doi:10.1073/pnas.2319696121. PMC 10895254.
  23. ^ Stiller, J.; Feng, S.; Chowdhury, A-A.; et al. (2024). "Complexity of avian evolution revealed by family-level genomes". Nature: in press. doi:10.1038/s41586-024-07323-1. PMC 11111414.
  24. ^ Stiller, J., Feng, S., Chowdhury, AA. et al. Complexity of avian evolution revealed by family-level genomes. Nature (2024). https://doi.org/10.1038/s41586-024-07323-1