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Abstract 

Recent progress in nanophotonics and material science has inspired a strong interest in optically-induced material 
dynamics, opening new research directions in the distinct fields of Floquet matter and time metamaterials. Floquet 
phenomena are historically rooted in the condensed matter community, as they exploit periodic temporal drives to 
unveil novel phases of matter, unavailable in systems at equilibrium. In parallel, the field of metamaterials has been 
offering a platform for exotic wave phenomena based on tailored materials at the nanoscale, recently enhanced 
by incorporating time variations and switching as new degrees of freedom. In this Perspective, we connect these 
research areas and describe the exciting opportunities emerging from their synergy, hinging on giant wave-matter 
interactions enabled by metamaterials and on the exotic wave dynamics enabled by Floquet and parametric phe-
nomena. We envision Floquet metamaterials in which nontrivial modulation dynamics, and their interplay with 
tailored material dispersion and nontrivial material properties such as anisotropy, non-Hermiticity and nonreciprocity, 
introduce a plethora of novel opportunities for wave manipulation and control.
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1  Introduction
The large progress in nanofabrication techniques, com-
bined with a better understanding of electromagnetics 
and material science at the nanoscale have been at the 
basis of the recent surge of interest around engineered 
materials with optical properties not available in nature. 
The initial interest in metamaterials was sparked by the 
quest for a negative index of refraction, motivated by 
the goal of achieving “perfect” lensing [1], but today it 
encompasses a much broader range of properties emerg-
ing from the nanostructure of suitably tailored artificial 
media with subwavelength features [2]. To date, this field 
of research has been stretching across various wave plat-
forms, with implementations spanning optics and micro-
waves, acoustics, elasticity, seismic and water waves, also 
extending towards the quantum domain. The wealth of 
exotic wave phenomena enabled by this concept includes 
negative refraction (Fig.  1a) [1], epsilon-near-zero and 

other near-zero-index wave phenomena (Fig.  1b) [3, 4], 
cloaking [5, 6], extreme anisotropic (Fig. 1c) [7], bianiso-
tropic and nonlocal responses [2] and topological phases 
[8], among several others. Metasurfaces, the planarized 
version of metamaterials, have enabled smaller foot-
prints, ease of fabrication and lower losses [9, 10]. Fur-
thermore, metasurfaces can be more efficiently pumped 
externally compared to bulky three-dimensional struc-
tures (Fig. 1d) [11], opening interesting opportunities in 
the realm of time metamaterials: engineered materials 
whose extreme optical features and light-matter interac-
tions can be controlled and modulated in time and space, 
leading to new phenomena typically unavailable in time-
invariant media, including frequency shifting, active 
beam steering and nonreciprocity (Fig.  1d) [11, 12], 
synthetic optical drag [13], Floquet topological effects 
(Fig. 1h) [13–17], and luminal amplification [18] among 
several others [19].

The concept of designer matter has also inspired sig-
nificant research efforts in the condensed matter com-
munity, broadening the horizon of known phases of 
matter: the rise of graphene and other two-dimensional 
materials, followed by van der Waals stacking [20] and, 

Open Access

Official Journal of CIOMP
elight.springeropen.com

†Shixiong Yin and Emanuele Galiffi are Equal contributors
*Correspondence:  aalu@gc.cuny.edu
1 Photonics Initiative, Advanced Science Research Center, The City University 
of New York, 85 St. Nicholas Terrace, New York 10031, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43593-022-00015-1&domain=pdf
elight.springeropen.com


Page 2 of 13Yin et al. eLight             (2022) 2:8 

more recently, twisted atomic layers [21], has been open-
ing exciting frontiers for emerging material responses, 
with opportunities for ultra-low-footprint optoelectron-
ics, moiré physics and conductor-to-insulator transitions 
[22]. Significant attention has also been raised by topo-
logical phases of matter hosting unusually robust edge 
transport [23]. In the framework of non-Hermitian and 
open systems, parity-time (PT) symmetric and broken 
phases have been also exciting both the classical and 
quantum communities [24]. Finally, many-body-localized 
phases have gained a spotlight following a long-stretch-
ing series of proofs of their existence [25]. Interestingly, 
several of these material phases, oftentimes envisioned 
in electronic systems, have been demonstrated in wave 
settings using suitably engineered metamaterials, by the 
means of optical and acoustic implementations map-
ping their tight-binding models into specific architected 
lattices. Several topological phases of matter, including 
some that had been predicted but never found in con-
densed matter systems, have been realized in classical 
wave settings through metamaterials, highlighting the 
potential for the crossroad between these two fields to 
serve as a catalyst for progress and experimental vali-
dation, as well as a fast-track for new concepts towards 
applications.

Out-of-equilibrium systems offer yet more opportuni-
ties for exotic condensed matter phenomena. Of particu-
lar relevance in this context has been the recent activity 
in Floquet matter, characterized by Hamiltonians that 
experience an explicit periodic temporal drive. This field, 
originally rooted in the study of dynamical systems, land-
mark examples being the Kapitza pendulum [26] and the 
kicked rotor model of classical and quantum chaos [27], 
has recently gained momentum, owing to recent demon-
strations of optically pumped material systems with laser 
beams that can induce sizeable changes in their response 
properties (Fig.  1e–f), being it atomic lattices or solid-
state crystals [29]. Floquet engineering has shown how 
tailored temporal modulations of materials can produce 
exotic phenomena, such as non-trivial topological phases 
(Fig.  1g) [30], also through the engineering of synthetic 
frequency dimensions (Fig.  1i) [31], exceptional points 
[32], localization [33] and even superconductivity [34]. 
The application of these concepts to many-body-local-
ized systems has recently paved the way towards the 
experimental realization of time-crystals, stable phases of 
matter characterized by long-range temporal order [35].

As sketched in Fig. 1, the enabling power demonstrated 
by the metamaterial platform in channeling ideas from 
condensed matter physics towards wave phenomena sug-
gests that new opportunities arise by bridging Floquet 
engineering and time metamaterials. In this context, 
this Perspective discusses opportunities for novel forms 

of light-matter interactions enabled by Floquet metama-
terials. More specifically, Sect.  2 offers a brief introduc-
tion to the key concepts underlying Floquet physics. In 
Sect. 3 we zoom into the temporal variations of a Floquet 
metamaterial, to showcase the concept of time-domain 
meta-atoms, discussing some of the exotic phenomena 
emerging at time-interfaces in dispersive materials, and 
the major role played by the interplay between dispersion 
and temporal variations. We demonstrate how, once the 
timescales of the material response become compara-
ble to the ones of Floquet temporal variations, a wealth 
of new wave phenomena can be enabled by controlling 
the modulation scheme and the underlying metamate-
rial dispersion. The interplay between tailored temporal 
nonlocality (frequency dispersion) and temporal modu-
lations highlights several directions ahead for exotic 
wave phenomena induced by temporal drives and pump-
ing of engineered materials, with open challenges and 
unique opportunities. Finally, in Sect.  4 we look at the 
confluence between Floquet physics and metamaterials, 
making the case for a broad spectrum of opportunities 
opened by blending Floquet engineering with metama-
terials and nanophotonics into the rising field of Floquet 
metamaterials.

2 � Floquet physics
As the temporal analogue of spatial Bloch theory for crys-
talline solid-state systems, Floquet phenomena emerge in 
systems characterized by a periodic dependence on time. 
The evolution of a phenomenon of interest, governed by 
Schrödinger-like dynamics of the form

where � is a general (vector or scalar) field and Ĥ is the 
Hamiltonian describing the system, is of Floquet-type if 
we can assume that the Hamiltonian has periodicity T  , so 
that:

where the angular frequency � = 2π/T  acts as a recipro-
cal lattice vector along the frequency dimension. In such 
a scenario, the temporal dependence of the fields can be 
generally expressed in the form

where −π/T < ω < π/T  is an eigenvalue corresponding 
to the quasi-frequency, the temporal analogue of crystal 
momentum in periodic spatial structures, and the Flo-
quet mode obeys

(1)
∂

∂t
�(t) = Ĥ(t)�(t),

(2)Ĥ(t) = Ĥ(t + T ) =
∑

m

Ĥme
−im�t

.

(3)�(t) = e−iωt
�(t),
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following the same temporal periodicity of the Hamil-
tonian Ĥ(t).

Exploiting the Floquet ansatz, we can derive a time-
independent eigenvalue problem as customary in solid-
state physics:

where α is the index of a specific eigenstate with quasi-
frequency eigenvalue ωα , and m and n are indexes denot-
ing the Fourier order of the amplitudes φ(m)

α  and φ(n)
α  of 

the αth Floquet mode, which can thus be computed in 
Fourier basis by direct diagonalization [37].

An effective way of interpreting Floquet systems is 
to consider how a periodic temporal drive introduces 
an effective ladder of states, which introduces a “syn-
thetic” dimension to the problem. Each incommensurate 

(4)�(t) = �(t + T ) =
∑

m

φ(m)e−im�t
,

(5)
∑

m

(Ĥn−m −m�δmn)φ
(m)
α

= ωαφ
(n)
α

,

frequency contributing to the temporal drive results in 
an additional dimension in the Hamiltonian. This is illus-
trated in Fig. 2a: the Ĥ0 term is responsible for hopping 
within a single frequency “sheet”, as it may be induced 
by the crystal structure, external magnetic fields, etc., 
whereas the Ĥn−m terms are responsible for hopping 
between different frequency sheets [37]. This approach 
has been exploited in Floquet engineering to produce 
topological phenomena across a number of dimensions 
larger than those of the underlying spatial crystal [38]. 
One instance where the Floquet picture can be illuminat-
ing is its use in revealing the connection between Thou-
less pumping1 in a 1D chain and the quantum Hall effect 
[39] in a 2D lattice, where one of the two dimensions is 

Fig. 1  Schematic of the key features encompassed within the fields of Floquet engineering and metamaterials, as well as some of the potential 
outcomes of their combination to engineer novel forms of wave control. Panels: a Artistic rendition of negative refraction [36]; b Light funneling 
with epsilon-near-zero materials [4]; c Shear-polaritonic dispersion in the non-orthogonal anisotropic material β-Gallium Oxide [7]; d Doppler-like 
frequency shifting, beam steering and nonreciprocity enabled by spatiotemporal metasurfaces [10]; e Phonon vibrations induced by an infrared 
pump beam (top panel) result in a net directional force, responsible for a transient deformation of the crystal structure [29]; f An infrared pump 
beam periodically modulates the effective charge in a crystal lattice, such that the effective permittivity varies at twice the frequency, producing 
phonon-mediated parametric amplification [28]; g Topological transitions enabled by circularly polarized Floquet pumping [30]; h Experimental 
implementation of an elastic Floquet topological insulator [14, 15]; i An electro-optically modulated ring resonator hosts a Floquet ladder of states 
[31]. Insets adapted from the respective references

1  Thouless pumping refers to the quantized charge transport that can be 
induced in a crystal by periodically modulating hopping and on-site energy in 
e.g. the Rice-Mele model of a 1D topological consisting of intracell and inter-
cell hopping, plus a staggered on-site potential [37].
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replaced by the Floquet ladder. Another effect induced 
by a periodic pump in the same setup is the formation of 
Wannier-Stark ladders and Bloch oscillation2 [40], which 
arises from the effective electric field produced by the 
temporal modulation in the high-modulation-frequency 
regime [37].

A periodic drive can generate new harmonics, and 
can also distort the band structure at the fundamental 
frequency. The generation of new harmonics can at the 
same time support parametric amplification (Fig.  2b), 
as a result of the resonant constructive interference 
between waves sharing the same momentum but with 
opposite (positive/negative) frequency. An analogous 
way of understanding parametric gain in the spirit of 
solid-state theory is the formation of a horizontal band-
gap (also called a “k-gap”) near the edge of the tempo-
ral Brillouin zone (Fig. 2c), where the bands “fold” back 
towards lower energies and higher momenta, mirror-
ing their spatial counterpart. As opposed to the case of 
spatial periodicities, in the temporal case the evanescent 
states in the gap do not necessarily decay in space, but 

they can grow exponentially in time, yielding paramet-
ric amplification. Importantly, the resulting formation 
of a bandgap from the coupling between positive and 
negative frequencies in a Floquet system also implies sig-
nificant alteration of the system response near these tem-
poral high-symmetry points. In this direction, important 
progress has been recently reported on several fronts 
across nonlinear optics and photonics [29], whereby 
strong optical or infrared pulses are used to induce para-
metric gain [28], as well as to induce phase transitions, 
for instance between trivial and superconductive phases 
[34], between topologically inequivalent phases [41] and 
between phases characterized by widely different optical 
nonlinearities [42].

Recent implementations of Floquet systems have found 
fertile ground in acoustics, with the realization of Flo-
quet topological insulators in Kagome lattices (Fig.  2d) 
[14] of acoustic resonators featuring a phased spatio-
temporal modulation in the acoustic capacitance of their 
constituents (Fig.  2e). Furthermore, photonics has also 
been shown to offer great potential for the realization 
of synthetic frequency dimensions, with several works 
deploying electro-optical modulators to generate Flo-
quet ladders in ring resonators [17, 43], also in conjunc-
tion with multiple synthetic degrees of freedom, such as 
angular momentum, as depicted in Fig. 2f–h [38].

Fig. 2  a A periodically modulated system can be equivalently modelled as a lattice of modes, with the non-zero frequency components of the 
Hamiltonian providing the coupling between the different frequency “sheets”. b Periodically pumped systems exhibit parametric instabilities at 
those states which are separated from their time-reversal partner by a modulation frequency � = 2ω0 , where ω0 is the frequency of the amplified 
input wave. c These instabilities can be equivalently regarded as the result of the opening of k-gaps, hosting imaginary states which grow or decay 
exponentially over time. d Acoustic Floquet topological insulator formed by a Kagome lattice featuring a phased time-modulation of the acoustic 
capacitance C at its three corner sites, producing an angular bias. e The introduction of the capacitance modulation results in the opening of a 
topological band-gap. An instance of edge state hosted within the topological gap is shown in panel (d). Adapted from [14]. f A ring resonator is 
temporally modulated by an electro-optic modulator (EOM), and its clockwise (CW) and counterclockwise (CCW) states are coupled by a pair of 
non-intersecting waveguides. g, h This setup produces a system with two synthetic dimensions, the Floquet ladder and the angular momentum 
basis, within a single ring-resonator. Adapted from [38]

2  Bloch oscillations are periodic temporal oscillations that arise when Bloch 
waves in a crystal are subject to a static potential gradient, such a static elec-
tric field applied to electrons in a periodic potential [40].
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In particular, Floquet topological insulators feature 
unique properties compared to their static counterparts, 
which highlight the powerful opportunities enabled by 
Floquet concepts: their quasi-energy eigenspectrum is 
no longer defined along the entire energy (frequency) 
axis, but on a torus. As a consequence, the existence of 
topologically protected edge states, typical of topologi-
cal insulators, is no longer tightly linked to the topo-
logical index of the respective bands: edge modes can be 
found in Floquet systems even in the absence of a differ-
ence between topological invariants of two bulk bands 
[30]. Due to the difficulties of implementing efficient 
time-modulation schemes, the first implementations of 
Floquet topological insulators have been reproduced by 
replacing the temporal dimension with a spatial dimen-
sion. For instance, helically modulated waveguide arrays 
have been used to implement photonic Floquet topologi-
cal insulators. Although these systems remain recipro-
cal due to their time-invariance, the chiral evanescent 
coupling between the waveguides leads to a splitting in 
degeneracy between states with opposite pseudo-spin, 
thereby enabling a degree of topological protection [44]. 
More recently, this concept has been extended to include 
chiral arrangements of interstitial sites, realizing single 
photonic systems capable of hosting distinct topologi-
cally nontrivial phases [45]. In addition, following the 
demonstration of topological lasers [46], theoretical pro-
posals have been put forward to realize Floquet topo-
logical lasing [47], opening a promising path for further 
advances. Finally, blending Floquet physics with non-
linear optics has recently led to the first observation of 
topological solitons in twisted waveguide arrays [48]. It 
is worth remarking however that temporal and spatial 
degrees of freedom are not interchangeable, due to the 
different causality relations between impinging and scat-
tered waves underlying the respective scenarios. More 
specifically, forward and backward scattered waves at a 
spatial interface do not interfere with each other, whilst 
temporally scattered forward and backward waves do 
interfere, an effect which underpins for instance para-
metric amplification and modulation instabilities (see 
e.g. Sect. 3, details are also discussed in [19]), phenomena 
that cannot emerge in spatial-analogues of Floquet sys-
tems like the ones mentioned above.

In acoustics, space-Floquet photonic systems have been 
deployed to demonstrate a bounty of topological effects. 
Notably, exploiting the helical waveguide concept, corner 
states and higher-order topological phases were recently 
demonstrated experimentally [49]. An additional meth-
odology to realize Floquet-topological phases without 
time-modulation exists, which relies on coupled resona-
tor optical waveguides (CROWs), originally proposed in 
[50]. This concept exploits arrays of resonators coupled 

via multiple channels, such as the coupling via the dif-
ferent channels introduces a different phase, thereby 
producing a synthetic gauge field. This concept has been 
deployed in a periodic fashion to experimentally realize 
Z2 topological phases for sound [16].

The framework of metamaterials indeed offers a rich 
host of opportunities for implementations and further 
explorations of Floquet engineering. Their subwave-
length constitutive elements, the meta-atoms, support 
engineered scattering features ideally suited to support 
the exotic targeted response, playing a paramount role in 
defining emergent responses, such as dispersive [51], chi-
ral [52], non-Hermitian [53] and nonreciprocal proper-
ties [11, 54]. In the next section we argue that, in analogy 
with spatial metamaterials, the form of temporal switch-
ing imposed on a medium can be treated as a temporal 
meta-atom, offering a wealth of new opportunities for 
engineering wave phenomena.

3 � Time‑interfaces as temporal meta‑atoms
In the spatial domain, meta-atoms with a spatial extent 
smaller than the wavelength can be engineered to pos-
sess tailored features, such as electric and magnetic 
responses, spatial and temporal dispersion, chirality, 
gyromagnetism, and others. These scattering signatures 
dictate and determine the exotic response of the result-
ing metamaterial once collections of these meta-atoms 
are properly arranged in a lattice. The time-dependence 
in Floquet engineering can be mapped into the same 
framework: tailored temporal modifications at timescales 
shorter than the periodic variations of a signal in time can 
act as the analogue of meta-atoms in the time domain, 
supporting emergent temporal scattering responses. Fol-
lowing this analogy, tailored collections of these tem-
poral interfaces can therefore introduce exotic wave 
phenomena, which can be leveraged in time or space–
time metamaterials. In this paradigm, time acts truly as 
an additional dimension for wave engineering [55]. For 
instance, photonic time crystals can leverage light scat-
tering and interference from multiple time-interfaces, as 
the parameters of a medium are switched faster than one 
cycle of the signal they are manipulating [13]. In this Sec-
tion, we discuss the unusual wave phenomena at these 
time-interfaces and their combinations, and discuss an 
outlook on how they can be leveraged to form Floquet 
metamaterials.

3.1 � Macroscopic description of temporal scattering
The macroscopic electromagnetic properties of iso-
tropic, non-dispersive optical materials can be described 
by the conventional constitutive relations D = ε0εE and 
B = µ0µH , where ε and µ are the relative permittivity and 
permeability, respectively. The corresponding refractive 
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index is n = √
εµ and the wave impedance is η = √

µ/ε . 
A spatial boundary generally forms at a discontinuity of n 
and/or η in space. For example, an interface at z = 0 can 
be represented by n(z) = n1�(−z)+ n2�(z) , where �(z) 
is the Heaviside step function. As shown in Fig. 3(a), the 
temporal analogue is a time-interface, which emerges if 
we consider a discontinuity of n (and/or η ) in time, e.g. 
n(t) = n1�(−t)+ n2�(t) , occurring uniformly across 
space. Dual to a spatial boundary, which preserves fre-
quency and energy, such a temporal interface conserves 
the wavelength and the electromagnetic momentum. 
Light scattering at such a time-interface was first inves-
tigated in [56], and it has been revisited among different 
communities over the years, including signal process-
ing [57], microwave engineering [58], plasma physics 
[61, 62] and more recently optics [60]. Recently, several 
applications of time interfaces in wave engineering have 
emerged, ranging from time-refraction [59, 63–65], 
impedance transformations in time [66, 67], inverse 
prism phenomena [68], temporal aiming [69], temporal 
Brewster angle [70], and even non-Hermitian physics, 
such as the temporal analogue of PT-symmetry [53] and 
time-metamaterials with gain and loss [71]. For an exten-
sive review, the interested reader may refer to Ref. [19].

Mathematically, temporal scattering is an initial 
value problem of the wave equation defined by tempo-
ral boundary conditions. If we assume the continuity 
of electric and magnetic charges at the time interface, 
the electric displacement D and magnetic flux density B 
must be continuous [72]. By applying the Laplace trans-
form and the initial-value theorem, one can obtain these 

same initial conditions [73]. A monochromatic plane 
wave scattered by a time-interface at t = 0 , whose flux 
density fields are written as Dx(t < 0) = D0e

−iω1t eik1z 
and By(t < 0) = η1D0e

−iω1t eik1z , undergoing a refrac-
tive index change from n1 =

√
ε1µ1 to n2 =

√
ε2µ2 at 

t = 0 , and a wave impedance change from η1 =
√
µ1/ε1 

to η2 =
√
µ2/ε2 , generates forward and backward 

waves with coefficients

respectively.
In an actual experiment, the involved waves have 

a finite frequency bandwidth �ω1 and momentum 
bandwidth, as depicted by the yellow curves in Fig. 3a, 
whose temporal and spatial spectrum is shaded in yel-
low in the dispersion diagram in Fig. 3b. Intuitively, the 
scattered waves should be simply the linear superpo-
sition of the individual plane wave components of the 
input: we expect the spatial spectrum �k to be pre-
served, whereas the frequency spectrum is reshaped to 
�ω2 , as shown by the transition in Fig. 3b from the yel-
low shadow to the blue (forward wave T) and the red 
(backward wave R) shadows. More rigorously, we can 
expand the incident wave at t = t0 in momentum space:

where the integrand is the plane wave component with 
wavenumber k and associated frequency ω1 = ck/n1 . 
Because of linearity, the total field after the time-interface 

(6)T = η2 + η1

2η2
, and R = η2 − η1

2η2
,

(7)Dinc(z, t0) =
∫ +∞

−∞
D0(k , t0)e

ikzdk ,

Fig. 3  A macroscopic time-interface and the associated effect on the wave dispersion of time-scattering. a Field variations at a point in an 
unbounded homogeneous medium experiencing a time-interface created by a switching refractive index n(t) . The boundary conditions are 
the continuity of both electric displacement D and magnetic flux density B. An arbitrary wave packet (in yellow) splits into a forward (in blue) 
and a backward (in red) wave with the same envelope but oscillate at a different frequency. b The arrows in the dispersion diagram show the 
conservation of the spatial spectrum �k and the frequency and bandwidth conversion from �ω1 to �ω2
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at t = t0 then equals the linear superposition of all scat-
tered plane waves:

where M(k , t; t0) = Te−iω2(t−t0) + Reiω2(t−t0) is the trans-
fer function in momentum space. Under the assumption 
of no material dispersion, ω2 = ck/n2 , as illustrated by 
the blue line in Fig. 3b, and the scattering coefficients in 
Eq. (6) are independent of both k and ω . Hence, we can 
explicitly write the expression in real space by applying 
an inverse Fourier transform, leading to

This result indicates that the total field after the time-
interface consists of two counter-propagating waves 
sharing the same envelope as the incident wave. Such 
waveform preservation is guaranteed by the non-dis-
persive nature of our material, while in the presence 
of frequency dispersion some distortion would be 
expected. Mathematically speaking, the absence of dis-
persion guarantees not only k-independence in T and 
R, but more importantly that the Fourier transform of 
the transfer function M(k , t; t0) consists of the sum of 
two Dirac delta functions, associated with the instan-
taneous optical response of a non-dispersive medium.

3.2 � Time‑interfaces in the presence of material dispersion
If material dispersion cannot be neglected, i.e., when 
the material response time is comparable with the tem-
poral variations of the involved signals, Eq. (8) no longer 
admits an explicit solution, and the waveform of the inci-
dent wave will be distorted in time. Such spectral distor-
tion is physically caused by nonlocal phenomena of the 
material in time, corresponding to a convolution of the 
applied electric field E with the temporal response of the 
electric susceptibility χ of the medium, which induces the 
macroscopic electric polarization density:

where the susceptibility χ is an analytic function subject 
to causality. Extensive research efforts have been dedi-
cated to the investigation of scattering problems in such 
dispersive media. The relation between the electric and 
the polarization fields in nonlocal materials appears as an 
additional differential equation, raising the order of the 
scattering problem and therefore introducing additional 
eigenstates. Therefore, additional boundary conditions 

(8)

Dtot(z, t > t0) =
∫ +∞

−∞
M(k , t; t0)D0(k , t0)e

ikzdk ,

(9)Dtot(z, t > t0) = TDinc

(

z − c

n2
(t − t0), t0

)

+ RDinc

(

z + c

n2
(t − t0), t0

)

.

(10)

P(r, t) = ε0

∫

dr′
∫

dt ′χ
(

r, t; r′, t ′
)

E
(

r − r
′
, t − t ′

)

,

(ABCs) are required at the interface to determine how an 
incident wave couples to these eigenmodes in temporally 
nonlocal media. Quite interestingly, analogous problems 
have been analyzed in the context of spatial interfaces 
involving spatially nonlocal media, particularly the con-
text of plasmonics and metamaterials, for which spatial 
nonlocalities often cannot be neglected. In solid state 
physics, the first proposal of a spatially dispersive model 
with ABCs was discussed by Pekar, who introduced it in 
the 1950s in order to model excitons in semiconductors 
[74], initiating a tide of different arguments for finding 
ABCs based on various phenomenological arguments 
[75] and a scrutiny on their need [76, 77].

In the field of metamaterials, sub-wavelength meta-
atoms often imply the emergence of nontrivial spatial 
nonlocal phenomena [78, 79], since their response may 
be nontrivially determined not only by the local elec-
tric and magnetic fields, but also by their derivatives in 
space. For instance, metamaterials consisting of planar 
multilayers or nanowire-arrays (Fig.  4a and b respec-
tively) are both well-known to support a peculiar hyper-
bolic dispersion of their isofrequency contours [80]. 
Hence, when homogenized they can support a similar 
set of eigenmodes and associated nonlocal response, 
but the required boundary conditions at their interface 
can be completely different. Consider for instance the 
nanowire metamaterials in Fig. 4b, whose homogenized 
permittivity response for electric fields polarized along 
the wires is nonlocal, with a dependence on the longitu-
dinal wave number kx given by εxx = 1+ k2p/

(

k2h − k2x
)

 , 
where kp is the plasma wavenumber, and kh is the wave-
number of the host medium [81]. At an interface, the 
required ABCs can have different macroscopic forms: 
if the metal nanowires are not connected to an exterior 
perfect electric conductor (PEC), then the normal com-
ponent of conduction current at the spatial interface 
between the metamaterial and the upper homogeneous 
dielectric should vanish [81, 82]: Jn(x = 0) = 0 . On the 
other hand, if the nanowires are grounded, i.e., their 
bottom ends are connected to a PEC, then the normal 
conduction current at the boundary follows the Neu-
mann boundary condition ∂Jn/∂n = 0 [83]. More gener-
ally, if the nanowire metamaterial is terminated by an 
imperfect conductor, the ABC is a linear combination 
of the previous two. In each scenario, the scattering at 
the interface will have different responses as a function 
of these ABCs. Similar arguments can be applied to 
excitons and polaritons in semiconductors [75], where 
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the conduction current is replaced by the excitonic or 
polaritonic polarization density.

By duality, time-interfaces involving temporally non-
local (dispersive) media are subject to similar features. 
Time interfaces involving frequency dispersion have 
been originally studied in [58], and later in the context 
of rapidly growing plasmas [61]. After time-interfaces 
have become of interest in the optics community [60], 
the topic has been revamped [84]. Recently, additional 
boundary conditions at time-interfaces have been 
explored for the Drude-Lorentz model, accounting for 
a time-switched density of oscillators [85] and for more 
general dynamic models based on the balance of dis-
tributions [86]. A time-interface between two disper-
sive media obeying the Lorentz model is illustrated in 
Fig. 4c. As an example, here we consider a monochro-
matic incident wave (yellow curve) and a time inter-
face for which the second medium features a single 
resonance at ω0 = �E/� , where �E is the energy gap 
of the two-level system describing the material. In the 
frequency domain, the relative permittivity reads

(11)ε(ω) = 1+
ω2
p

ω2
0 − ω2 − iωγ

,

where the plasma frequency ωp =
√

Ne2/(m∗ε0) , N  
and m∗ are the volume carrier density and their effec-
tive mass, respectively, and γ is the collision frequency 
responsible for absorption. Across the time-interface, 
momentum conservation requires

In general, the incoming wave can couple to four 
scattered waves (wavepackets in four colors in Fig. 4c), 
corresponding to the four solutions for ω2 of the 
biquadratic equation obtained by squaring Eq. (12). 
Phenomenologically, temporal wave scattering from a 
non-dispersive medium to a Lorentz-type dispersive 
medium is shown in the dispersion diagram of Fig. 4d: 
a mode on the yellow straight line (the incident mono-
chromatic plane wave) couples to the four branches of 
the new dispersion curves, while retaining its momen-
tum. Their amplitudes TH , RH , TL and RL in Fig. 4d can 
be obtained by applying the two temporal boundary 

(12)ω1

√
ε1 = ω2

√

√

√

√

1+
ω2
p2

ω2
0 − ω2

2 − iω2γ
.

Fig. 4  Time-interfaces with temporal nonlocality arising from different microscopic dynamics, analogous to spatially nonlocal metamaterials. (a-b) 
Nonlocal metamaterials in the form of a multilayer, and b nanowires. c A time-interface between two temporally nonlocal (dispersive) media. The 
plasma frequency ωp is assumed to be switched from ωp1 to ωp2 . The incident wave is denoted by the yellow wavepacket, while the four scattered 
waves, two forward and two backward, are drawn in different colors. d Dispersion diagram of a non-dispersive medium (yellow line) and the one 
of a medium with Lorentz-type dispersion (the other four curves). The dashed arrows illustrate the temporal scattering process. e and f show 
two different protocols of switching ωp : the density of carriers is suddenly increased from N1 to N2 in e where the number of symbolic oscillators 
increases; the effective mass becomes heavier from m∗

1
 to m∗

2
 in f where the individual electron becomes smaller visually. The red curves show the 

temporal evolution of the electric field under two different switching schemes
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conditions discussed in Sect. 3.1, coupled to two ABCs 
determined by the microscopic dynamics of the time-
interface, i.e., the actual phenomena involved in the 
temporal scattering process. Crucially, these micro-
scopic temporal dynamics will determine the coeffi-
cients of the four waves.

In order to highlight the role of the microscopic pic-
ture in the temporal scattering process, we can consider 
a Drude-Lorentz material, in which the time-domain 
polarization vector follows the dynamic equation [85]

If we assume that the time interface is formed by 
switching ωp from ωp1 to ωp2 at t = 0 , there are differ-
ent options in which such an event can be realized: for 
instance, we can create or annihilate carriers in the mate-
rial, such that the volume carrier density N  suddenly 
jumps from N1 to N2 [85, 87], as shown in Fig. 4e, or we 
may consider alter the effective mass of the electrons 
from m∗

1 to m∗
2 , as shown in Fig.  4f, by somehow modi-

fying the band structure. Both events result in the same 
macroscopic effect on the permittivity of the material. In 
the first switching scheme, as shown in Ref. [85], the elec-
tric polarization density and its first derivative in time 
must be continuous across the time-interface:

However, if the effective mass is switched in time, the 
complete form of Newton’s second law should be consid-
ered, allowing for a time-dependent mass F = d(mv)/dt . 
Accordingly, in this second scenario the Lorentz disper-
sion is recast as [85]

different from Eq. (13). Inferring conservation of car-
rier momentum, Eq. (15) may be modified as

Hence, the same macroscopic model of dispersion at 
a time interface may result in different ABCs, which in 
turn produce a different scattering response. A numeri-
cal example comparing the electric field produced in 
a time-scattering where the electron number N  and 
the effective mass m∗ are switched is shown in Fig.  4e 
and f respectively. In both cases, the resulting plasma 

(13)d2P

dt2
+ γ

dP

dt
+ ω2

0P = ε0ω
2
pE.

(14)P
(

t = 0
+) = P

(

t = 0
−)

.

(15)
dP

dt

(

t = 0
+) = dP

dt

(

t = 0
−)

.

(16)
d

dt

(

m∗ dP

dt

)

+m∗γ
dP

dt
+m∗ω2

0P = Ne2E,

(17)m∗
1

dP

dt

(

t = 0
+) = m∗

2

dP

dt

(

t = 0
−)

frequency changes from ωp1 = 0.03ωinc to ωp2 = 3ωinc 
with ω0 = 2ωinc and γ = 0 , ωinc being the frequency of 
the incident wave. In Fig. 4e we assume that the carrier 
density suddenly increases, and four scattered waves 
(with frequencies approximately ±0.54ωinc,±3.70ωinc ) are 
generated. Importantly, in the case where N  is switched, 
both the electric field (red curve) and its first derivative 
are continuous, as required by the ABCs in Eqs. (14) and 
(15). In contrast, when the effective mass is switched to 
accomplish the same change in plasma frequency, the 
scattered electric field oscillates at the same frequency 
components, but the relative coefficients are significantly 
different. Hence, the resulting fields that emerge from the 
time interface experience a completely different evolu-
tion in time. In the second scenario, the first derivative of 
the electric field becomes discontinuous, as a result of the 
discontinuity in dP/dt required to balance the change in 
effective carrier mass [Eq. (17)].

Modifications of the effective electron mass of a 
material are also at the basis of the large nonlinearities 
recently reported in epsilon-near-zero (ENZ) materi-
als [88], connecting these problems to exciting develop-
ments in the field of metamaterials. Similarly, we can 
expect interesting phenomena to emerge when consid-
ering time-interfaces in polaritonic systems. Polaritons 
emerge when light is strongly coupled to resonant mate-
rial responses, such that light and matter oscillations can-
not be considered decoupled [89]. For instance, when 
the intersubband transitions of multiple quantum wells 
are aligned and strongly coupled with optical modes of 
nanoresonators, quantum-well polaritons emerge, which 
can support ultrafast optical switching and nonlineari-
ties [90]. The enhanced nonlinearities based on inter-
subband transitions in multiple quantum wells have also 
been explored to achieve electrically tunable polaritonic 
metasurfaces, featuring efficient intensity modulation 
and beam manipulation of harmonically generated light 
[91]. It is intriguing to explore how multiple engineered 
time-interfaces, i.e., a tailored sequence of time-switch-
ing events, can manipulate and engage polaritons. Such 
tailored (space-)time polaritons may form a new category 
of meta-atoms, unveiling abundant physics and applica-
tions ready to be exploited in the context of nontrivial 
topologies in the synthetic frequency dimension [31] as 
discussed in Sect. 2, ultrafast frequency conversion [92], 
and efficient phase conjugation [93, 94], to name a few.

4 � Floquet metamaterials
Time-interfaces as meta-atoms in the temporal domain 
host rich opportunities for the engineering of temporal 
and spatiotemporal meta-structures. We now stand at 
the confluence of the fields of metamaterials and Floquet 
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physics, opening exciting directions in the emerging area 
of Floquet metamaterials, as we illustrated in the lower 
part of Fig.  1. The opportunities opened by this conflu-
ence are several and diverse.

From the experimental viewpoint, the mature field 
of metamaterials consists of a highly multidisciplinary 
community, where new ideas find prompt experimen-
tal validation across a wide range of wave realms: from 
optics to radio waves, acoustics and elasticity, water and 
seismic waves, the metamaterials framework offers an 
effective pathway towards not only experimental imple-
mentations, but also technological impact, particularly 
due to the opportunity for fundamentally novel con-
cepts to be readily deployed in addressing challenges 
across multiple wave-related fields. For instance, water 
waves have already proven a fertile ground for the reali-
zation of time-reversal, dynamical localization and other 
effects induced by switching at rates faster than the wave 
frequency (see e.g. Refs. [95, 96]). Other strategies have 
been developed in acoustics using both piezoelectric 
components [97], and more recently digitally activated 
meta-atoms which can reproduce an arbitrary time-var-
ying response at ultrafast speeds [98]. In low-frequency 
electromagnetics, switching by means of varactor diodes 
and nonlinear inductors at rates faster than the period of 
the propagating waves still remains an open challenge, 
particularly due to the need for realizing pump-circuits 
with a sufficiently low time-constant. Such an implemen-
tation would undoubtedly constitute a groundbreaking 
result across the electromagnetics community, opening 
new technological avenues in microwave science, and a 
new playground for Floquet metamaterials.

Pushing Floquet metamaterials towards the infrared 
and optical domain currently constitutes a formidable 
challenge, promising however groundbreaking rewards 
for next-generation light-matter control. Highly nonlin-
ear material responses and long-lived resonances capable 
of achieving large field-enhancements and at the same 
time slow down light propagation appear to hold the key 
towards the implementation of Floquet metamaterials 
at higher frequencies. In order to enable this vision, as 
briefly mentioned in Sect. 3.2, polaritonic materials have 
recently proven to be promising candidates.

When material resonances are sufficiently strong, ENZ 
phenomena arise, which enable large relative changes in 
dielectric permittivity within a low loss platform, ideally 
suited for Floquet metamaterials, as recently demon-
strated with the realization of time-refraction [64], effi-
cient harmonic generation [99], and negative refraction 
[100]. In a similar context, vibrational modes strongly 
coupled with light in phonon polaritons have opened 
various opportunities for Floquet matter: being longer-
lived than plasmons, phonon polaritons offer an ideal 

trade-off between field confinement and quality factors, 
in addition to their high directionality, and associated 
exotic dispersion relations [7, 101]. Recent efforts have 
successfully demonstrated pumping of phonon modes 
in SiC for parametric amplification in a pump-probe set-
ting [28] based on Floquet phenomena [102, 103]. Along 
a similar direction, pump-induced switching of the dis-
persion of surface polaritons has recently been reported 
[104]. This avenue is further broadened by the opportu-
nity to structure these polaritonic media, in the spirit of 
the metamaterial concept. Structuring polaritonic media 
in the plane of propagation, realizing phonon-polaritonic 
metasurfaces, or by stacking them in thin layers, with 
the option of introducing a finite twist angle between 
the optical axes of the different layers, offers unique 
opportunities to tailor their dispersion in extreme ways, 
which may be then exploited in pump-probe experiments 
to demonstrate Floquet metamaterials. In particular, 
the high directionality achievable in polaritonic media 
enables anisotropic gain, which may be exploited, for 
instance, to achieve novel non-Hermitian functionalities 
by exploiting systems with balanced gain and loss in dif-
ferent directions.

From the theoretical viewpoint, the synergy between 
metamaterials and Floquet physics offers the opportu-
nity to realize new wave responses hinging on both the 
spatial and the temporal structure of a system, which can 
couple non-trivially to their mutual geometric and mate-
rial dispersion [44, 84–86]. While Floquet engineering 
can be used to design artificial spatially nonlocal effects 
[105], temporal nonlocality, as introduced in e.g. an elec-
tromagnetic system via coupling to a (natural or engi-
neered) resonance of the host medium, can supply an 
additional timescale to a Floquet system, enabling room 
to design the interplay between wave frequency, modula-
tion frequency, and resonance frequency of the material, 
effectively opening a potential opportunity for the design 
of polaritons in the time-domain. In addition, these new 
degrees of freedom, when coupled to spatial ones such 
as in spatiotemporally modulated systems [11], can fur-
ther broaden the spectrum of opportunities for Floquet 
metamaterials.

From a fundamental viewpoint, one mismatch in this 
confluence appears to be the fact that much of the many-
body physics constituting a substantial branch of Floquet 
engineering appears out of reach for the metamaterials 
world, since classical waves are typically equivalent to 
“single-particle” problems in quantum mechanics. Rather 
than an obstacle, however, this challenge ultimately con-
stitutes an unprecedented opportunity for much of the 
nonlinear wave physics developed in classical systems 
to be approached via fundamentally new angles. For 
instance, while photons do not interact directly with each 
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other, they can do so via material nonlinearities (and sim-
ilar arguments hold for elastic and acoustic media) [106]. 
Preliminary efforts in this direction have been made to 
map χ3 nonlinearities onto effective Bose-Hubbard mod-
els for photons interacting along the synthetic frequency 
dimension [107, 108]. Under this light, Floquet metama-
terials may offer a much more accessible route to inves-
tigate many-body phenomena in classical wave settings 
through material nonlinearities, potentially enabling new 
insights to be reached into the physics of both nonlinear 
waves and interacting condensed matter systems.

5 � Conclusions
In this Perspective, we have connected the two flour-
ishing and so far mostly disconnected areas of Floquet 
engineering and metamaterials, as illustrated in Fig. 1. In 
particular, we envision a wealth of opportunities available 
in the rising context of Floquet metamaterials. Rather 
than illuminating a blueprint, we have stepped inside of 
the building blocks of Floquet metamaterials, the time-
interfaces constituting the temporal analogues of meta-
atoms, and discussed some of their key features in both 
a macroscopic and microscopic picture, in the context 
of the interplay between temporal inhomogeneities and 
material dispersion. In this framework, we highlighted 
how the microscopic mechanism behind material dis-
persion plays a key role in determining the resulting 
wave dynamics at each switching event, and, transitively, 
within a Floquet metamaterial.

Crucially, the simple consideration of dispersion in 
Sect. 3 and the outlook in Sect. 4 stand as an entrée before 
the wealth of additional physics which can be unleashed 
once additional features such as nonlinearity, anisotropy 
and chirality are taken into account at time-interfaces, 
highlighting that forthcoming opportunities with Floquet 
metamaterials stretch way beyond our present discussion 
here. From an experimental perspective, non-ideal time-
interfaces with finite rise-time not only challenge exist-
ing theories, but also suggests another degree of freedom 
in designing sub-periodic temporal unit cells, hinting at 
a potentially new concept of time-polariton, which could 
be formed when the rise-time, the response time of a 
material, and the period of the involved wave coexist over 
comparable timescales. Besides, the modulation efficien-
cies of the optical properties of a material are typically 
weak. Facing this challenge may inspire us to enhance 
the scattering at purely temporal interfaces, by creating 
temporal interfaces with strong spatial field confinement 
in resonant modes. Finally, inspired by the artificial intel-
ligence (AI)-aided inverse design of photonic systems, 
similar techniques could be transferred to the design of 

temporal meta-atoms, taking more degrees of freedom 
into account simultaneously.

In conclusion, we believe that the confluence of Floquet 
engineering and metamaterials opens an unprecedented 
opportunity to design novel forms of wave-matter inter-
actions, with sub-period temporal structures promising 
to play a key role in establishing Floquet metamaterials as 
a new research horizon for both condensed matter phys-
ics and photonics.
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