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Abstract Male moths possess highly sensitive and selective olfactory systems that detect sex

pheromones produced by their females. Pheromone receptors (PRs) play a key role in this process.

The PR HassOr14b is found to be tuned to (Z)�9-hexadecenal, the major sex-pheromone

component, in Helicoverpa assulta. HassOr14b is co-localized with HassOr6 or HassOr16 in two

olfactory sensory neurons within the same sensilla. As HarmOr14b, the ortholog of HassOr14b in

the closely related species Helicoverpa armigera, is tuned to another chemical (Z)�9-tetradecenal,

we study the amino acid residues that determine their ligand selectivity. Two amino acids located in

the intracellular domains F232I and T355I together determine the functional difference between

the two orthologs. We conclude that species-specific changes in the tuning specificity of the PRs in

the two Helicoverpa moth species could be achieved with just a few amino acid substitutions, which

provides new insights into the evolution of closely related moth species.

DOI: https://doi.org/10.7554/eLife.29100.001

Introduction
Almost all animals detect and react to pheromones and the other chemical cues that indicate food,

shelter or predators, and their olfactory systems are mainly involved in the processes (Wyatt, 2003).

As powerful chemical signals, pheromones are enormously varied in different animal species. How

the animal olfaction has evolved at the molecular level to adapt to the changing pheromones is a

forefront research subject in life sciences.

Moths are good model systems for pheromone communication study. Male moths fly upwind to

find conspecific females releasing a plume of sex pheromone (Cardé and Haynes, 2004). Most

moth sex pheromones have multiple components present in specific ratios that play significant roles

in intraspecific sexual communication and in interspecific reproductive isolation (Cardé et al., 1977).

Male moths possess highly sensitive and selective olfactory sensory neurons (OSNs) located in anten-

nal sensilla that detect the pheromone molecules (Schneider, 1964; Hansson and Stensmyr, 2011).

Pheromone receptors (PRs) located in the dendritic membrane of OSNs play a pivotal role in periph-

eral coding of sex pheromones (Leal, 2013; Sakurai et al., 2004).

Unlike general odorant receptors (ORs) that typically bind more than one ligand (de Fouchier

et al., 2017), PRs are in general narrowly tuned to specific pheromone components (Grosse-

Wilde et al., 2007; Miura et al., 2010; Zhang and Löfstedt, 2015). The ligands of some PRs in lepi-

dopteran species have been successfully identified using heterologous expression systems, including

Xenopus oocytes (Wetzel et al., 2001), the HEK293 cell line (Grosse-Wilde et al., 2006), the Sf9

cell line (Kiely et al., 2007), Drosophila melanogaster delta-halo mutants with an empty ab3A
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neuron (Dobritsa et al., 2003), and Or67D-GAL4 mutants (Kurtovic et al., 2007). However, the

functions of many PRs in moth species are still unknown, thus hindering our understanding of phero-

mone detection at the molecular level in this group of insects.

Closely related moth species often use combinations of the same or similar pheromone compo-

nents, which is a reflection of their common evolutionary history (Cardé and Haynes, 2004). They

also possess homologous PRs with very similar sequences, but clearly differentiated in their ligand

specificity. How do changes in amino acid sequences alter the ligand selectivity of PRs? The single

study to date that has addressed this question showed that a single-point mutation in a PR is respon-

sible for its different specificities in Ostrinia furnacalis and Ostrinia nubilalis (Leary et al., 2012).

Studies of a number of ORs in D. melanogaster and Anopheles gambiae indicated that the determi-

nant amino acids are located mainly in transmembrane domains and extracellular loops (Guo and

Kim, 2010; Hughes et al., 2014; Nichols and Luetje, 2010; Pellegrino et al., 2011), but the molec-

ular mechanisms that determine the ligand selectivity of ORs are still unclear.

The closely related moth species, Helicoverpa assulta and Helicoverpa armigera, are sympatric

pests in Asia. The former is a specialist mainly feeding on solanaceous plants, including tobacco and

hot pepper, whereas the latter is a polyphagous species and is one of the most devastating pests in

the world. H. assulta and H. armigera share two compounds, (Z)�9-hexadecenal (Z9-16:Ald) and

(Z)�11-hexadecenal (Z11-16:Ald) as their principal sex-pheromone components, but in inverse ratios,

93:7 and 3:97, respectively (Piccardi et al., 1977; Wang et al., 2005). (Z)�9-tetradecenal (Z9-14:

Ald) acts as an antagonist in the pheromone communication of H. assulta (Boo et al., 1995;

Wu et al., 2015). In that of H. armigera, Z9-14:Ald acts as an agonist in small amounts (0.3%) (Roths-

child, 1978; Wu et al., 2015; Zhang et al., 2012) but an antagonist in higher amounts (1% and

above) (Gothilf et al., 1978; Kehat and Dunkelblum, 1990; Wu et al., 2015). Three functional types

of pheromone-sensitive sensilla, A, B and C, can be distinguished in the male antennae of the two

species (Baker et al., 2004). Sensilla type A specifically respond to Z11-16:Ald, type B respond to

Z9-14:Ald, and type C respond to Z9-16:Ald, Z9-14:Ald and some other structurally related com-

pounds. B-type and C-type sensilla are classified into subtypes according to their response spectra

(Xu et al., 2016). The population of A-type sensilla predominates in males of H. armigera, while

C-type sensilla are most numerous in males of H. assulta (Wu et al., 2013; Xu et al., 2016). The two

species share almost the same set of orthologous PRs. Previous functional studies of the PRs showed

that HarmOr13 and HassOr13 are specifically tuned to Z11-16:Ald (Jiang et al., 2014; Liu et al.,

2013), HarmOr14b and HassOr16 are tuned to Z9-14:Ald (Jiang et al., 2014; Liu et al., 2013), Har-

mOr16 is tuned to both Z9-14:Ald and (Z)�11-hexadecenol (Z11-16:OH) (Liu et al., 2013), while Har-

mOr6 and HassOr6 are mainly tuned to (Z)�9-hexadecenol (Z9-16:OH) (Jiang et al., 2014).

However, it is still unclear which PR is specific for Z9-16:Ald, the major component of H. assulta sex

pheromone.

In this study, we first identified the PR tuned to Z9-16:Ald in H. assulta. Because C-type sensilla

responding to Z9-16:Ald are densely distributed in the male antennae of H. assulta, we predicted

that this PR should be highly expressed in male antennae. Therefore, we used qPCR to analyze the

expression level of all candidate PRs in male antennae in H. assulta, and then used the Xenopus

oocyte expression system and two-electrode voltage-clamp recording to examine the function of

highly expressed PRs. We surprisingly found that the PR tuned to Z9-16:Ald is HassOr14b, while its

ortholog HarmOr14b is tuned to Z9-14:Ald in the closely related species H. armigera. Next, focusing

on the two orthologous receptors, we identified the amino acid residues determining this functional

shift. We used a series of regional replacements and single-point mutations, coupled with functional

analyses, to demonstrate that two single-point mutations located in the intracellular regions of the

molecule together determine their ligand selectivity. Our results suggest that a change in the tuning

selectivity of PRs during the speciation of some moths could result from just a few mutations.

Results

Phylogenetic analysis of candidate PRs
The reported transcriptome data and full-length cloning of the PRs made it possible to analyze all

candidate PRs in the two closely related species and in other species of Noctuidae. The amino acid

sequences of seven PRs from Helicoverpa species (Jiang et al., 2014; Liu et al., 2014; Xu et al.,
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2015) and 32 PRs from other noctuids were used to construct a phylogenetic tree, where the Orco

sequences represented an outgroup (Krieger et al., 2004; Liu et al., 2013; Mitsuno et al., 2008;

Montagné et al., 2012; Zhang and Löfstedt, 2013; Zhang et al., 2015, Zhang et al., 2014Zhang

et al., 2014Zhang et al., 2014) (Figure 1). In general, the tree was clustered into seven lineages,

Or16, Or6, Or14b, Or14, Or15, Or11, and Or13. Each lineage contains the PR(s) from Helicoverpa

and other noctuids except for Or14b, suggesting that the Or14b cluster specifically occurs in H.

assulta and H. armigera. To investigate the evolutionary pressures acting on the coding regions of

each cluster, we estimated the ratios of nonsynonymous (dN) to synonymous (dS) nucleotide substi-

tution (w = dN/dS) in the PR gene lineages and the Orco lineage using DnaSP version 5.10

(Librado and Rozas, 2009). The w values < 1 were observed in all PR clusters and the Orco cluster

(cluster Or16: w <0.21; cluster Or6: w <0.19; cluster Or14b: w = 0.17; cluster Or14: w <0.15; cluster

Or15: w = 0.13; cluster Or11: w <0.13; cluster Or13, w <0.17; cluster Orco: w <0.03); this indicates

that all the PRs and Orcos analyzed in this study are subjected to purifying selection, which is consis-

tent with the previous studies (Zhang and Löfstedt, 2013; Zhang et al., 2014).

Expression level of candidate PRs in antennae of H. assulta and H.
armigera
The antennal expression levels in males and females were compared using quantitative real-time

PCR (qPCR). All the candidate PRs were male-specific except for Or11, which was highly expressed

in both male and female antennae (Figure 2 and Figure 2—figure supplement 2). In the male

antennae of H. assulta, HassOr14b had the highest expression level, nearly twofold higher than the

levels of HassOr6 and HassOr16, and five- to sixfold greater than that of HassOr13 (Figure 2). The

values of fragments per kilobase of transcript per million reads (FPKM) in different tissues of H.

assulta further demonstrated that HassOr14b is specifically expressed in the male antennae and that

its expression level is the highest among the PRs (Figure 2—figure supplement 1). In the male

antennae of H. armigera, HarmOr13 and HarmOr11 showed the highest expression level, which was

about five- to sixfold higher than HarmOr16 and HarmOr14; HarmOr14b had a low expression level,

even lower than HarmOr16 and HarmOr6 (Figure 2—figure supplement 2). Since the C-type sen-

silla responding to Z9-16:Ald were the most abundant type in the male antennae of H. assulta, we

speculated that HassOr14b would be the PR tuned to Z9-16:Ald, different from HarmOr14b which

tuned to Z9-14:Ald.

PR specifically tuned to Z9-16:Ald in H. assulta
We re-cloned the sequence of HassOr14b and verified it by Sanger sequencing and the transcrip-

tome data of H. assulta. We used the Xenopus laevis oocyte expression system and two-electrode

voltage-clamp recording to study the function of HassOr14b although it has already been shown

that its ortholog, HarmOr14b, is tuned to Z9-14:Ald (Jiang et al., 2014). Oocytes expressing Has-

sOr14b/HassOrco responded robustly to Z9-16:Ald, and to a much lesser extent to Z9-16:OH at a

concentration of 10–4 M (Figure 3A). Z9-16:Ald induced currents increasing from the lowest thresh-

old concentration of 10�6 M to 3.3 � 10–3 M in a dose-dependent manner with an EC50 value of

8.65 � 10–5 M (Figure 4). We also verified the function of the ortholog of HassOr14b, HarmOr14b

and the next most highly expressed PRs in male H. assulta, HassOr6 and HassOr16. As previously

reported (Jiang et al., 2014), we verified that HarmOr14b is specifically tuned to Z9-14:Ald, and

also weakly responds to Z9-16:Ald (Figure 3B), while HassOr6 is mainly tuned to Z9-16:OH (Fig-

ure 3—figure supplement 1A), and HassOr16 is specific for Z9-14:Ald (Figure 3—figure supple-

ment 1B). Water-injected oocytes fail to respond to any of the pheromone component stimuli as

negative controls (Figure 3—figure supplement 2 and Figure 4—figure supplement 1).

Co-localization of HassOr14b with other PRs in type C sensilla
Based on the above results and previous reports (Jiang et al., 2014; Xu et al., 2016), we considered

that HassOr14b, HassOr6 and HassOr16 were most likely to be the PRs expressed in C-type sensilla

of H. assulta. By two-color in situ hybridization, we further analyzed the co-localization of these three

PRs. We found that HassOr14b and HassOr6 were co-localized in some sensilla (arrows,

Figure 5A1–4), while in other sensilla only HassOr14b was detected (arrows, Figure 5B1–4). A simi-

lar situation was observed for HassOr14b and HassOr16. They were co-localized in some sensilla
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Figure 1. The phylogenetic tree of the PRs in Noctuidae. The amino acid sequences are based on the reported

transcriptome data of functionally identified PRs. The Orco lineage is defined as an outgroup. Bootstrap values are

based on 1000 replicates, and values over 50 are shown at corresponding nodes. The bar indicates the

phylogenetic distance value. The nonsynonymous (dN) to synonymous (dS) substitution ratio (w) is labeled in the

Figure 1 continued on next page
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(arrows, Figure 5C1–4), but only HassOr14b was detected in other sensilla (arrows, Figure 5D1–4).

However, HassOr6 and HassOr16 were always expressed in different sensilla (arrows, Figure 5E1–4).

These results indicate that HassOr14b is co-localized with HassOr6 or HassOr16 in different C type

sensilla.

Regional mutations of HassOr14b and functional analysis
HassOr14b and HarmOr14b exhibit 91% amino acid identity (402 out of 440, Figure 6—figure sup-

plement 1), but their ligand selectivity is different. This provided an opportunity to examine the rela-

tionship between structure and function in the two orthologous PRs. From the sequence alignment

and secondary structural analysis (Figure 6; TOPCONS, topcons.net), we found that the 38 differing

amino acids were distributed fairly uniformly in the two proteins. Therefore, we separated the whole

sequence into eight regions (RI–VIII) (Figure 6). Then we conducted a series of mutagenesis experi-

ments by replacing each of the eight regions of HassOr14b with the corresponding segment of Har-

mOr14b, while maintaining the rest of the sequence unchanged. After successfully constructing the

modified sequences, we analyzed their functions as for the wild type (Figure 7). Interestingly, com-

paring with the ligand selectivity of the wild type (Figure 7—figure supplement 2), we observed

that the ligand selectivity of HassOr14b was changed remarkably by replacement of the region VI or

VIII. HassOr14b after replacing the region VI had

a significantly higher response to Z9-14:Ald than

to Z9-16:Ald (Figure 7F), while after replacing

the region VIII had strong responses to both Z9-

16:Ald and Z9-14:Ald (Figure 7H). However,

most of the region replacements in HassOr14b

showed selectivities similar to that of the wild

type, with Z9-16:Ald being the most effective

ligand. In particular, replacement of the regions I

or III produced significantly lower responses to

Z9-16:Ald (Figure 7A and C), while replacement

of the region VII resulted in a significantly stron-

ger response to Z9-16:Ald (Figure 7G). Replace-

ment of the regions II, IV or V did not affect the

selectivity of the receptor with reference to the

wild-type (Figure 7B,D and E).

Site-specific mutations of
HassOr14b and functional analysis
Based on the observation that the ligand selec-

tivity of HassOr14b was changed only by

replacement of the region VI or VIII, we chose

these two segments of the receptor for further

single-site mutations and functional analysis. Five

amino acids (E188G, E196D, F232I, R262K, and

R270K) in the region VI, and three (T355I,

R395K, and A425K) in the region VIII were differ-

ent between HassOr14b and HarmOr14b (Fig-

ures 6 and 8). We replaced each amino acid in

Figure 1 continued

tree. Cluster Or14b and Or15 have a uniform w value for all branches, whereas Cluster Or6, 11, 13, 14, and 16 have

varying w values for all branches within the lineage. The w values of all clusters were less than 1, suggesting that all

PRs were subjected to purifying selection. Abbreviations: Aseg, Agrotis segetum; Harm, H. armigera; Hass, H.

assulta; Hvir, Heliothis virescens; Msep, Mythimna separata; Sexi, Spodoptera exigua; Slitt, Spodoptera littoralis;

Slitu, Spodoptera litura; Sinf, Sesamia inferens. The PRs of H. assulta are indicated by red dots ‘.’. The GenBank

accession numbers of genes used in this analysis are listed in Supplementary file 2.
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Figure 2. Relative mRNA expression levels of PRs by

quantitative real-time PCR analysis in male and female

antennae of H. assulta. Hass♂, male antennae; Hass♀,

female antennae. n = 3 replicates of 40–60 antennae

each. Data are presented as mean ± SEM.
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The following figure supplements are available for

figure 2:

Figure supplement 1. The tissue expression pattern of

PRs in Helicoverpa assulta by Illumina read-mapping

analysis.

DOI: https://doi.org/10.7554/eLife.29100.004

Figure supplement 2. Relative mRNA expression

levels of PRs by quantitative real-time PCR analysis in

male and female antennae of Helicoverpa armigera.

DOI: https://doi.org/10.7554/eLife.29100.005

Yang et al. eLife 2017;6:e29100. DOI: https://doi.org/10.7554/eLife.29100 5 of 21

Research article Neuroscience

https://doi.org/10.7554/eLife.29100.002
https://doi.org/10.7554/eLife.29100.003
https://doi.org/10.7554/eLife.29100.004
https://doi.org/10.7554/eLife.29100.005
https://doi.org/10.7554/eLife.29100


turn by mutating each of the eight residues. Comparing with the wild type (Figure 7—figure supple-

ment 2), we found that the mutant F232I was activated more by Z9-14:Ald than by Z9-16:Ald

(Figure 8C), while the mutant T355I showed very strong responses to both Z9-16:Ald and Z9-14:Ald

(Figure 8F). The other mutations showed largely the same selectivity as the wild type although with

different values of the currents. Compared to the wild type, E196D and R262K still responded to Z9-

16:Ald but showed a decrease in current (Figure 8B and D), E188G and R270K also responded to

Z9-16:Ald but showed an increase in current (Figure 8A and E), while R395K and A425K exhibited

the same response level to Z9-16:Ald and, to a minor extent, to Z9-14:Ald (Figure 8G and H).

We next constructed a mutant bearing the two substitutions (F232I and T355I) that affected the

ligand selectivity of HassOr14b. This two-site mutant showed a robust response to Z9-14:Ald and a

minor response to Z9-16:Ald, reproducing the characteristic selectivity of HarmOr14b (Figure 8I).
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Figure 3. Two-electrode voltage-clamp recordings of Xenopus oocytes with co-expressed HassOr14b/HassOrco,

and HarmOr14b/HarmOrco, stimulated with pheromone components and analogs. (A) Inward current responses

(left) and response profiles (right) of Xenopus oocytes expressing HassOr14b/HassOrco in response to 10�4 M

concentrations of pheromone components and analogs. n = 7 replicates of cells, F = 31.75, p<0.001, one-way

ANOVA, Tukey HSD test. (B) Inward current responses (left) and response profiles (right) of Xenopus oocytes

expressing HarmOr14b/HarmOrco in response to 10�4 M concentrations of pheromone components and analogs.

n = 7 replicates of cells, F = 17.67, p<0.001, one-way ANOVA, Tukey HSD test. Data are presented as

mean ± SEM.

DOI: https://doi.org/10.7554/eLife.29100.006

The following figure supplements are available for figure 3:

Figure supplement 1. Two-electrode voltage-clamp recordings of Xenopus oocytes with co-expressed HassOr6/

HassOrco and HassOr16/HassOrco to stimulation with pheromone compounds and analogs.

DOI: https://doi.org/10.7554/eLife.29100.007

Figure supplement 2. Two-electrode voltage-clamp recordings of Xenopus oocytes injected with distilled water

and stimulated with pheromone compounds and analogs.

DOI: https://doi.org/10.7554/eLife.29100.008

Figure supplement 3. Alignment of amino acid sequences of HassOr14b in three studies: Yang et al.

DOI: https://doi.org/10.7554/eLife.29100.009
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Discussion
Characteristics of chemosensory receptor binding sites are emerging for vertebrate ORs, which are

seven transmembrane-spanning G-protein-coupled receptors, but less is known about insect ORs

(Kato and Touhara, 2009; Ramdya and Benton, 2010). In this study, we identify HassOr14b as the

PR tuned to Z9-16:Ald, the major sex-pheromone component of H. assulta. Its ortholog HarmOr14b

is specific for Z9-14:Ald in H. armigera and we further demonstrate that two single-point mutations,

F232I and T355I, located in the intracellular domains of the receptor, together determine the func-

tional shift between orthologs in the two closely related species.

Novel identified PR and the different combinations with other PRs
As the number of different kinds of OSNs in three types of sensilla is related to the expression level

of the corresponding PRs, the characteristics and abundance of the sensilla thus can provide reliable

information for identifying PRs’ function. The previous studies clarified that the C type sensilla

responding to Z9-16:Ald are predominant in male antennae of H. assulta (Wu et al., 2013;

Wu et al., 2015; Xu et al., 2016), the PR tuning to Z9-16:Ald must be highly expressed in male

antennae. We compare the expression level of all candidate PR genes in the male antennae of H.

assulta and H. armigera. We found that HassOr14b is the most highly expressed in H. assulta, while

HarmOr14b has relatively low expression level in H. armigera. The functional study confirms that

HassOr14b is specifically tuned to Z9-16:Ald, while its ortholog HarmOr14b is specifically tuned to

Z9-14:Ald. This suggests that the two closely related species not only changed Or14b’s expressing

level, but also altered its tuning selectivity. It is worth noting that inward currents of the oocytes

expressing HassOr14b induced by Z9-16:Ald were distinct but relatively low. It is common that the

oocytes expressing some PRs are relatively weaker than others in responding to their ligands. How-

ever, their responding patterns in the oocyte system are generally representative of those in native

OSNs. A clear dose-response curve to the most effective ligand is always helpful to confirm the

receptor’s function.

The previous functional studies of HassOr14b did not find its activity by using the Xenopus system

(Chang et al., 2016; Jiang et al., 2014). In this study, we re-cloned the sequence of HassOr14b by

use of Q5 High-Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA) and repeated again to

verify the sequence by Sanger sequencing for 10 samples, and also compared with the sequence in

the transcriptome data of H. assulta. Finally, we got the correct sequence, in which there are three

amino acids different from the sequence in Jiang et al. (2014) (Figure 3—figure supplement 3).
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Figure 4. Dose responses of Xenopus oocytes with co-expressed HassOr14b/HassOrco stimulated with a range of

Z9-16:Ald concentrations. Inward current responses (left) and response profiles (right) of Xenopus oocytes

expressing HassOr14b/HassOrco in response to Z9-16:Ald at serial concentrations. The EC50 value for Z9-16:Ald

was 8.65 � 10–5 M. n = 7–9 replicates of cells, F = 54.57, p<0.001, one-way ANOVA, Tukey HSD test.

DOI: https://doi.org/10.7554/eLife.29100.010

The following figure supplement is available for figure 4:

Figure supplement 1. Two-electrode voltage-clamp recordings of Xenopus oocytes injected with distilled water

and stimulated with pheromone compounds and analogs.

DOI: https://doi.org/10.7554/eLife.29100.011
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Moreover, we further analyzed the transcriptome data in H. assulta and confirmed that in the three

different amino acids positions, there is no sequence polymorphism. We used the accurate sequence

this time and characterized the function of HassOr14b, which is specifically tuned to Z9-16:Ald, the

major sex pheromone component in H. assulta. Chang et al., 2016 also used the LA-Taq polymerase

(TaKaRa, Shiga, Japan) Jiang et al. (2014) used before when they cloned the sequence, and there is

one amino acid different in the 5’ ends from ours (Figure 3—figure supplement 3). By analyzing the

transcriptome data in H. assulta, we confirmed that this amino acid position has no sequence poly-

morphism. Another difference between the two studies is the vector used in the expression system.

Chang et al., 2016 used the pT7Ts vector, while we use the pCS2+ vector in the expression system.

We suggest that the accuracy and integrity of the sequence is crucial to identify the function of the

receptors. Moreover, the selection of the appropriate expression vector could be also important.

As the ligands of HassOr14b and the second abundant PRs, HassOr6 and HassOR16 are all

included in the responding spectrum of the C type sensilla, we further investigated the expressing

sites of the three PRs in the sensilla. HassOr14b is co-localized with HassOR6 or HassOR16 in the

Figure 5. Two-colour in situ hybridization visualizing the combinations of HassOr14b/HassOr6, HassOr14b/

HassOr16, and HassOr6/HassOr16 in male antennae of H.assulta. (A, B) The localization of HassOr14b and

HassOr6. (C, D) The localization of HassOr14b and HassOr16. (E) The localization of HassOr6 and HassOr16.

Signals were visualized by red (digoxin-labeled probes) (A1, B1, C1, D1), green (biotin-labeled probes) (A2, B2,

C2, D2), and both red and green (A3, B3, C3, D3) fluorescence. Bright-field images are presented as references

(A4, B4, C4, D4). Arrows indicate the cell location. Scale bars: 20 mm.

DOI: https://doi.org/10.7554/eLife.29100.012
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neighboring neurons in the same sensilla, while HassOr6 and HassOr16 are always expressed in dif-

ferent sensilla, which is different from the previous study (Chang et al., 2016). Our results indicate

that there are different combinations of the PRs in the C type sensilla, which is consistent with the

previous single sensillum recording results that there are subtypes in the type C sensilla (Xu et al.,

2016). To the best of our knowledge, this is the first study that shows the various combinations of

PRs were the molecular basis for the different sensilla subtypes in moth species.

Two amino acids located in the intracellular domains together
determine the OR selectivity
Insects use olfactory receptors to discriminate amongst thousands of volatiles or pheromones

(Kaupp, 2010). Insect ORs require the co-expression of a ligand-selective OR and a universal odor-

ant co-receptor (Orco) to form ligand-gated ion channels (Missbach et al., 2014; Vosshall and

Hansson, 2011). In the absence of data on the crystalline structure of insect ORs, the relationship
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Figure 6. Eight mutation regions in the predicted secondary structure of HassOr14b. Each circle indicates an amino acid residue that differs between

HassOr14b and HarmOr14b and is highlighted in orange. Black indicates mutation regions RI and RV; green indicates RII and RVI; grey indicates RIII

and RVIII; blue indicates RIV and RVII. The image was constructed by TOPO2 software (http://www.sacs.ucsf.edu/TOPO2/) based on the secondary

structure predicted by TOPCONS (topcons.net) models (Tsirigos et al., 2015). The structures of both HassOr14b and HarmOr14b were predicted and

the model with a reliable 7-transmembrane structure was adopted.

DOI: https://doi.org/10.7554/eLife.29100.013

The following figure supplement is available for figure 6:

Figure supplement 1. Alignment of amino acid sequences of HassOr14b and HarmOr14b.

DOI: https://doi.org/10.7554/eLife.29100.014
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Figure 7. Two-electrode voltage-clamp recordings of Xenopus oocytes with co-expressed regional mutations and

HassOrco stimulated with pheromone components and analogs. (A) Inward current responses (left) and response

profiles (right) of Xenopus oocytes expressing RI mutant/HassOrco in response to 10�4 M concentrations of

pheromone components and analogs. n = 7 replicates of cells, F = 85.28, p<0.001. (B) Inward current responses

Figure 7 continued on next page
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between structure and function in these molecules is elusive. By amino acid covariation across insect

Orcos and ORs, Hopf et al. constructed the first 3D models of D. melanogaster ORs (Hopf et al.,

2015). However, this provided only an indirect insight into protein structure (Carraher et al., 2015).

Previous site-directed mutagenesis studies performed to probe OR specificity, mainly focused on

the transmembrane domains (TMDs) and extracellular loops (ECLs), based on the assumption that

the TMDs and ECLs of the OR form the ligand-binding pocket (Guo and Kim, 2010). Leary et al.

reported that a single amino acid mutation located in the predicted third TMD could change the

ligand specificity of a PR between that of the Asian corn borer and that of the European corn borer

(Leary et al., 2012). Pellegrino et al. showed that a single natural polymorphism of D. melanogaster

Or59B in the third transmembrane domain altered DEET sensitivity (Pellegrino et al., 2011). In A.

gambiae, a single mutation of AgOr15 at the interface between ECL2 and TMD4, produced large

changes in responses to odors (Hughes et al., 2014). To address the relationship between OR-Orco

structure and function, several recent studies showed that some amino acid residues in the OR or

Orco were essential for channel activity of the heteromeric insect OR-Orco complex (Kumar et al.,

2013; Nakagawa et al., 2012; Turner et al., 2014).

The different ligand selectivities of HassOr14b and HarmOr14b provide a convenient system in

which to study structure-function relationships of PRs. Comparing the whole amino acid sequences

of the two orthologous receptors, we identified two regions that were responsible for their selectiv-

ity. This new method is convenient and efficient, particularly for functional comparisons between

orthologous or paralogous genes with many differing amino acids. By further replacing single amino

acids in the two regions, we finally detected two single-point mutations, T355I and F232I responsible

for the different ligand selectivities of HassOr14b and HarmOr14b. It is for the first time to find that

the two mutation sites in the intracellular domains (ICDs) rather than in the TMDs and ECLs were

involved in determination of ligand selectivity. We suggest two possible explanations for the role of

ICDs. First, the binding site of ligand-specific ORs, such as PRs, may have a complex structure, which

involves TMDs (Leary et al., 2012), ECLs (Hughes et al., 2014) and ICDs. Alternatively, ICDs may

be involved in the specific interactions of the PR with the related G proteins. To relay the signal into

the cell interior, binding of an extracellular molecule to an OR is tightly followed by binding of the

receptor to a trimeric G protein inside the cell (Ignatious Raja et al., 2014; Wicher et al., 2008).

Figure 7 continued

(left) and response profiles (right) of Xenopus oocytes expressing RII mutant/HassOrco in response to 10�4 M

concentrations of pheromone components and analogs. n = 6 replicates of cells, F = 29.11, p<0.001. (C) Inward

current responses (left) and response profiles (right) of Xenopus oocytes expressing RIII mutant/HassOrco in

response to 10�4 M concentrations of pheromone components and analogs. n = 5 replicates of cells, F = 24.94,

p<0.001. (D) Inward current responses (left) and response profiles (right) of Xenopus oocytes expressing RIV

mutant/HassOrco in response to 10�4 M concentrations of pheromone components and analogs. n = 6 replicates

of cells, F = 31.12, p<0.001. (E) Inward current responses (left) and response profiles (right) of Xenopus oocytes

expressing RV mutant/HassOrco in response to 10�4 M concentrations of pheromone components and analogs.

n = 6 replicates of cells, F = 23.80, p<0.001. (F) Inward current responses (left) and response profiles (right) of

Xenopus oocytes expressing RVI mutant/HassOrco in response to 10�4 M concentrations of pheromone

components and analogs. n = 7 replicates of cells, F = 14.77, p<0.001. (G) Inward current responses (left) and

response profiles (right) of Xenopus oocytes expressing RVII mutant/HassOrco in response to 10�4 M

concentrations of pheromone components and analogs. n = 6 replicates of cells, F = 39.40, p<0.001. (H) Inward

current responses (left) and response profiles (right) of Xenopus oocytes expressing RVIII mutant/HassOrco in

response to 10�4 M concentrations of pheromone components and analogs. n = 10 replicates of cells, F = 41.57,

p<0.001. Data are presented as mean ± SEM. One-way ANOVA, Tukey HSD test are used. Mutation regions are

highlighted in red.

DOI: https://doi.org/10.7554/eLife.29100.015

The following figure supplements are available for figure 7:

Figure supplement 1. The construction strategy of HassOr14b mutation sequences.

DOI: https://doi.org/10.7554/eLife.29100.016

Figure supplement 2. Two-electrode voltage-clamp recordings of Xenopus oocytes with co-expressed wild-type

HassOr14b/HassOrco, and wild type HarmOr14b/HarmOrco, stimulated with pheromone components and

analogs.

DOI: https://doi.org/10.7554/eLife.29100.017
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Figure 8. Two-electrode voltage-clamp recordings of Xenopus oocytes with co-expressed site mutations and

HassOrco, stimulated with pheromone components and analogs. (A) Inward current responses (left) and response

profiles (right) of Xenopus oocytes expressing E188G/HassOrco in response to 10�4 M concentrations of

pheromone components and analogs. n = 6 replicates of cells, F = 52.32, p<0.001. (B) Inward current responses

Figure 8 continued on next page
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Elucidation of the details of the structural and functional mechanisms of ORs must await further

study.

Implications for the modulation and evolution of OR selectivity
Animal nervous systems are shaped by shifting environmental selection pressures to perceive and

respond to new sensory cues (Prieto-Godino et al., 2017). The olfactory systems found in all animals

have nearly the same design features, which give olfaction a considerable flexibility for signaling to

evolve. Since the central odor processing is relatively conserved, new olfactory pathways tend to

evolve from the peripheral changes (Galizia and Rössler, 2010; Prieto-Godino et al., 2017). How

mutations in olfactory receptors change the olfactory responses of animals and eventually impact on

the evolution of animal behavior is crucial but remains unclear.

In moth species, the co-evolution of pheromones produced by females and their detection by

males present a paradox. Under stabilizing selection, variation of the female pheromone blend is

limited, and the males typically prefer the most common pheromone blends (Groot et al., 2016;

Roelofs et al., 2002). The w value for all clusters of PRs analyzed in this study are less than 1, sug-

gesting that PRs would be subjected to purifying selection. However, at the same time, the male

moths need to have a degree of plasticity to adapt to changes in signal structures associated with

speciation. Site-directed mutagenesis and functional analyses could validate how many amino acid

substitutions are required to alter a PR’s selectivity.

Based on previous studies, suggesting that H. assulta is ancestral to H. armigera (Cho et al.,

2008; Fang et al., 1997), we tried to reproduce the assumed evolutionary process that mutated

HassOr14b into HarmOr14b. Most of the regional replacements and site mutations did not change

the ligand selectivity of HassOr14b, indicating the functional stability of this PR. Only F232I and

T355I substitutions produced a large change of the ligand selectivity of Or14b, from Z9-16:Ald in H.

assulta to Z9-14:Ald in H. armigera. The former site mutation produced a small shift from Z9-16:Ald

to Z9-14:Ald in the response spectrum, the latter extended and strengthened the responses to both

chemicals, while the two mutations together generated a complete functional shift from Z9-16:Ald

to Z9-14:Ald. These results indicate that the substitutions of a few key amino acids are able to

greatly change PR selectivity, laying the molecular foundations for PR plasticity. Moreover, it seems

that at least two steps, involving in the functional extension and shift, are required for a major func-

tional change of HassOr14b, each step with a single point mutation. In the course of speciation, the

functional change of ORs could be a process with multiple amino acid mutations, a few making dras-

tic changes and many making small modifications or even no change in function.

The two closely related species H. assulta and H. armigera are one of the ideal study systems for

pheromone communication. They share two chemicals, Z9-16:Ald and Z11-16:Ald, as their principal

Figure 8 continued

(left) and response profiles (right) of Xenopus oocytes expressing E196D/HassOrco in response to 10�4 M

concentrations of pheromone components and analogs. n = 7 replicates of cells, F = 65.87, p<0.001. (C) Inward

current responses (left) and response profiles (right) of Xenopus oocytes expressing F232I/HassOrco in response to

10�4 M concentrations of pheromone components and analogs. n = 8 replicates of cells, F = 90.65, p<0.001. (D)

Inward current responses (left) and response profiles (right) of Xenopus oocytes expressing R262K/HassOrco in

response to 10�4 M concentrations of pheromone components and analogs. n = 8 replicates of cells, F = 31.96,

p<0.001. (E) Inward current responses (left) and response profiles (right) of Xenopus oocytes expressing R270K/

HassOrco in response to 10�4 M concentrations of pheromone components and analogs. n = 8 replicates of cells,

F = 56.13, p<0.001. (F) Inward current responses (left) and response profiles (right) of Xenopus oocytes expressing

T355I/HassOrco in response to 10�4 M concentrations of pheromone components and analogs. n = 9 replicates of

cells, F = 85.70, p<0.001. (G) Inward current responses (left) and response profiles (right) of Xenopus oocytes

expressing R395K/HassOrco in response to 10�4 M concentrations of pheromone components and analogs. n = 7

replicates of cells, F = 40.19, p<0.001. (H) Inward current responses (left) and response profiles (right) of Xenopus

oocytes expressing A425K/HassOrco in response to 10�4 M concentrations of pheromone components and

analogs. n = 5 replicates of cells, F = 24.24, p<0.001. (I) Inward current responses (left) and response profiles (right)

of Xenopus oocytes expressing (F232I + T355I)/HassOrco in response to 10�4 M concentrations of pheromone

components and analogs. n = 9 replicates of cells, F = 79.03, p<0.001. Data are presented as mean ± SEM. One-

way ANOVA, Tukey HSD test are used. Mutation sites are highlighted by red dots ‘.’.

DOI: https://doi.org/10.7554/eLife.29100.018
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sex pheromone components but with reverse ratios. Males possess sensitive olfactory systems to

detect conspecific sex pheromone blends. Peripheral coding of the binary blends with reversed

ratios is mainly attributed to two group of specific OSNs in separate antennal sensilla with reverse

population sizes, which reflect different expression levels of related PRs (Wu et al., 2013). In this

study, we discover that HassOr14b, the highest expressed PR in male antennae of H. assulta is tuned

to Z9-16:Ald, the major component of the sex pheromone of H. assulta, while its ortholog Har-

mOr14b is tuned to Z9-14:Ald in H. armigera, which provides us an ideal model to study the deter-

minants of OR selectivity. We systematically identify two single-point mutations, F232I and T355I,

located in the intracellular regions of HassOr14b that together determine the functional shift to its

ortholog, HarmOr14b, in H. armigera. The peripheral modifications of the two closely related spe-

cies took place in both PR expression level and PR tuning selectivity. These findings not only help us

specifically understand the evolution of the two Helicoverpa species, but also provide new insights

into the structure and function of cell membrane receptors.

Materials and methods

Insects
H. assulta and H. armigera were originally collected as larvae in tobacco fields in Zhengzhou, Henan

province of China, and were reared at the Institute of Zoology, Chinese Academy of Sciences, Bei-

jing. The larvae were fed with an artificial diet, mainly composed of wheat germ, yeast and chili for

H. assulta, wheat germ, yeast and tomato paste for H. armigera. Rearing took place at a tempera-

ture of 26 ± 1˚C with a photoperiod of 16L:8D and 55–65% relative humidity. Male and female

pupae were placed in separate cages for eclosion. A 10% honey solution was used as the diet for

adults. Virgin adults at 1–3 days old were used in all experiments.

Xenopus laevis
All procedures were approved by the Animal Care and Use Committee of the Institute of Zoology,

Chinese Academy of Sciences for the care and use of laboratory animals. Female X. laevis were pro-

vided by Prof. Zhan-Fen Qin from Research Center for Eco-Environmental Sciences, Chinese Acad-

emy of Sciences, and reared with pig liver as food in our laboratory. A total of nine healthy naive X.

laevis with 18–24 months of age were at the time of the experiment. They were group housed in the

box with purified water in 20 ± 1˚C. The surgery was performed following the reported protocols

(Nakagawa and Touhara, 2013). X. laevis were anesthetized by bathed in the mixture of ice and

water in 30 min, and the oocytes were surgically collected before experiments.

Sequencing and PR genes of H. assulta expression analysis
Total RNA was extracted using the TRIzol reagent (Invitrogen, Carlsbad, CA) and treated with

RNase-free DNase I. Poly(A) mRNA was isolated using oligo dT beads. First-strand complementary

DNA was generated using random hexamer-primed reverse transcription, followed by synthesis of

the second-strand cDNA using RNaseH and DNA polymerase I. Paired-end RNA-seq libraries were

prepared following Illumina’s protocols and sequenced on the Illumina HiSeq 2000 platform (San

Diego, CA). The RNA-seq reads were mapped using Bowtie2 (Langmead and Salzberg, 2012).

Gene expression levels were measured using the reads per kb per million mapped reads criterion

(FPKM). FPKM values were calculated by custom python script (https://github.com/ningchaozky/

fpkm-calculate-from-bam-or-sam-.git [Ning, 2017]; copy archived at https://github.com/elifescien-

ces-publications/fpkm-calculate-from-bam-or-sam-.git)Ning, 2017. Only genes with a FPKM >1 and

coverage more than 0.6-fold of transcripts were used for further analysis. Differentially expressed

genes were detected using the DEGseq (RRID: SCR_008480) (Wang et al., 2010), which was con-

structed based on the Poisson distribution and eliminated the influences of sequencing depth and

gene length. Annotation of PR genes was performed by NCBI blastx against a pooled insect PR

database and then the expression was extracted from the DEGseq result.

Phylogenetic analysis
Phylogenetic analysis of PRs was performed based on amino acid sequences contained in reports of

PRs of Noctuidae. The phylogenetic tree was constructed using the MEGA6.0 program (RRID: SCR_

Yang et al. eLife 2017;6:e29100. DOI: https://doi.org/10.7554/eLife.29100 14 of 21

Research article Neuroscience

https://github.com/ningchaozky/fpkm-calculate-from-bam-or-sam-.git
https://github.com/ningchaozky/fpkm-calculate-from-bam-or-sam-.git
https://github.com/elifesciences-publications/fpkm-calculate-from-bam-or-sam
https://github.com/elifesciences-publications/fpkm-calculate-from-bam-or-sam
https://scicrunch.org/resolver/SCR_008480
https://scicrunch.org/resolver/SCR_000667
https://doi.org/10.7554/eLife.29100


000667) with neighbor-joining phylogeny using the p-distances model (Tamura et al., 2013). Node

support was assessed using a bootstrap procedure based on 1000 replicates. The ratios of nonsy-

nonymous to synonymous substitutions (dN/dS) were computed using DnaSP version 5.10 (RRID:

SCR_003067) (Librado and Rozas, 2009).

RNA isolation and cDNA synthesis
The antennae from three-day-old virgin adults were dissected and immediately collected into a 1.5

mL Eppendorf tube, containing liquid nitrogen, and stored at �80˚C until use. Total RNA was

extracted by QIAzol Lysis Reagent following the manufacturer’s protocol (including DNase I treat-

ment). RNA quality was checked with a spectrophotometer (NanoDrop 2000, Wilmington, DE). The

single-stranded cDNA templates were synthesized using 2 mg total RNAs from various samples with

0.5 mg oligo (dT) 15 primer (Promega, Madison, WI), heated to 70˚C for 5 min to melt the secondary

structure within the template, then using M-MLV reverse transcriptase (Promega) at 42˚C for 1 hr, and

stored at �20˚C.

Quantitative real-time PCR
qPCR was performed on an Mx3005P qPCR System (Agilent Technologies, Palo Alto, CA) with SYBR

Premix Ex Taq (TaKaRa, Shiga, Japan). The gene-specific primers to amplify an 80–150 bp product

were designed by Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/), and are listed in

Supplementary file 1. The qPCR reaction was: 10 s at 95˚C, followed by 40 cycles of 95˚C for 5 s

and 60˚C for 31 s, followed by the measurement of fluorescence during a 55˚C to 95˚C melting curve

to detect a single gene-specific peak, and to check the absence of primer dimer peaks. The product

was verified by nucleotide sequencing. 18S ribosomal RNA (GenBank number: EU057177.1) was

used as the control gene. Each reaction was run in triplicate (technical replicates) and the means and

standard errors were obtained from three independent biological replicates. The relative copy num-

bers of PR genes were calculated according to the 2–DDCt method (Livak and Schmittgen, 2001).

Cloning of the candidate pheromone receptor of H. assulta and H.
armigera
Based on the full-length nucleotide sequences of PRs in H. assulta or H. armigera (GenBank numbers

are listed in Supplementary file 2), specific primers were designed and are reported in

Supplementary file 1. All amplification reactions were performed using Q5 High-Fidelity DNA Poly-

merase (New England Biolabs). The PCR conditions for the PRs were: 98˚C for 30 s, followed by 30

cycles of 98˚C for 10 s, 50˚C for 30 s and 72˚C for 1 min, and extension at 72˚C for 2 min. Templates

were obtained from male or female antennae of H. assulta or H. armigera. The sequences were veri-

fied by both the Sanger sequencing for 10 samples, and the transcriptome data.

In situ hybridization
Two-color double in situ hybridizations were performed following protocols reported previously

(Krieger et al., 2002; Ning et al., 2016). The sense and antisense primers were used to synthesize

the gene-specific probes from the open-reading frames (Supplementary file 1). Both digoxin (Dig)-

labeled and biotin (Bio)-labeled probes were synthesized by DIG RNA labeling Kit version 12 (SP6/

T7) (Roche, Mannheim, Germany), with Dig-NTP or Bio-NTP (Roche, Mannheim, Germany) labeling

mixture, respectively. RNA probes were subsequently fragmented to 300 nt by incubation in carbon-

ate buffer. Antennae were dissected from 2- to 4-day-old male moths, embedded in JUNG tissue

freezing medium (Leica, Nussloch, Germany) and frozen at �80˚C until use. Sections (12 mm) were

prepared with a Leica CM1950 microtome at �22˚C, then mounted on SuperFrost Plus slides

(Thermo Scientific, Waltham, MA). After a series of fixing and washing procedures, 100 mL hybridiza-

tion solution (Boster, Wuhan, China) containing both Dig and Bio probes was placed onto the tissue

sections. A coverslip was added and slides were incubated in a humid box at 55˚C overnight. After

hybridization, slides were washed twice for 30 min in 0.1 � saline sodium citrate (SSC) at 60˚C,
treated with 1% blocking reagent (Roche, Mannheim, Germany) in TBST (100 mM Tris, pH = 7.5, 150

mM NaCl with 0.03% Triton X-100) for 30 min at room temperature, and then incubated for 60 min

with anti-digoxigen (Roche, Mannheim, Germany) and Strepavidin-HRP (PerkinElmer, Boston, MA).
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Hybridization signals were visualized by incubating the sections for 30 min with HNPP/Fast Red

(Roche, Mannheim, Germany), followed by three 5 min washes in TBS with 0.05% Tween-20 (Tianma,

Beijing, China) at room temperature, with shaking. The sections were incubated with Biotinyl Tyra-

mide Working Solution for 8 min at room temperature followed by the tyramide-signal amplification

(TSA) kit protocols (PerkinElmer, Boston, MA). After three additional washings for 5 min in TBS with

0.05% Tween-20 at room temperature with shaking, sections were finally mounted in Antifade

Mounting Medium (Beyotime, Beijing, China). All the sections were analyzed under a Zeiss LSM710

Meta laser scanning microscope (Zeiss, Oberkochen, Germany). Adobe Illustrator CS6 (RRID: SCR_

014198) (Adobe systems, San Jose, CA) was used to arrange figures only to adjust brightness and

contrast.

Construction of the mutation sequences
To generate the regional mutations, we first cloned each fragment of the sequences. The mutation

fragment was cloned using the primer of Mutant-F and Mutant-R, with the cDNA of H. armigera.

The other parts were cloned using the primer of HassOr14b-F/HassOr14b-Fragment1-R, which gen-

erated the first fragment, and HassOr14b-Fragment2-F/HassOr14b-R, which generated the second

fragment, with the cDNA of H. assulta. The mutation fragment had 25–60 bp overlap sequences

with the other two fragments. The conditions were: 98˚C for 30 s, followed by 25 cycles of 98˚C for

10 s, 52˚C for 30 s and 72˚C for 30 s, and extension at 72˚C for 2 min. Then we used the primers of

HassOr14b-F/HassOr14b-R, with the mixture of purified fragment products as the template, to gen-

erate the regional mutation sequences. The conditions were: 98˚C for 30 s, followed by 20 cycles of

98˚C for 10 s, 52˚C for 30 s and 72˚C for 90 s, and extension at 72˚C for 2 min. The construction dia-

gram was presented in Figure 7—figure supplement 1. For the site mutations, we used the primer

of HassOr14b-F/mutation1 R to generate the first fragment, and the mutation2-F/HassOr14 b-R to

generate the second fragment. Then we used the primer of HassOr14b-F/HassOr14b-R, with the

mixture of purified fragment products as the template, to generate the site mutation sequences.

The conditions were the same as for the construction of regional mutation sequences. The primers

are listed in Supplementary file 1.

Receptor functional analysis
The full-length coding sequences of PRs and mutations were first cloned into pGEM-T vector (Prom-

ega) and then subcloned into pCS2+ vector. cRNAs were synthesized from linearized modified

pCS2+ vectors with mMESSAGE mMACHINE SP6 (Ambion, Austin, TX). Mature healthy oocytes

were treated with 2 mg mL�1 of collagenase type I (Sigma-Aldrich, St. Louis, MO) in Ca2+-free saline

solution (82.5 mM NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM HEPES, pH = 7.5) for 20 min at room tem-

perature. Oocytes were later microinjected with 27.6 ng PR cRNA and 27.6 ng Orco cRNA. Distilled

water was microinjected into oocytes as a negative control. Injected oocytes were incubated for 3–5

days at 16˚C in bath solution (96 mM NaCl, 2 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2, 5 mM HEPES,

pH = 7.5) supplemented with 100 mg mL�1 gentamycin and 550 mg mL�1 sodium pyruvate. Whole-

cell currents were recorded with a two-electrode voltage clamp. Intracellular glass electrodes were

filled with 3 M KCl and had resistances of 0.2–2.0 MW. Signals were amplified with an OC-725C

amplifier (Warner Instruments, Hamden, CT) at a holding potential of �80 mV, low-pass filtered at

50 Hz and digitized at 1 kHz. Data acquisition and analysis were carried out with Digidata 1322A

and pCLAMP software (RRID: SCR_011323) (Axon Instruments Inc., Foster City, CA). Dose-response

data were analyzed using GraphPad Prism (RRID: SCR_002798 6) (GraphPad Software Inc., San

Diego, CA).

Data analysis
Response values are indicated as mean ± SEM. Data were square-root transformed and differences

were considered significant when p<0.05. n represents number of sections in all cases. One-way

ANOVA and Tukey HSD tests with two distribution tails were performed using the Statistical Pro-

gram for Social Sciences 22.0 (RRID: SCR_002865) (IBM Inc., Armonk, NY).
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Cardé RT, Haynes KF. 2004. Structure of the pheromone communication channel in moths. In: , Cardé RT, Millar
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Grosse-Wilde E, Gohl T, Bouché E, Breer H, Krieger J. 2007. Candidate pheromone receptors provide the basis
for the response of distinct antennal neurons to pheromonal compounds. European Journal of Neuroscience
25:2364–2373. DOI: https://doi.org/10.1111/j.1460-9568.2007.05512.x, PMID: 17445234

Grosse-Wilde E, Svatos A, Krieger J. 2006. A pheromone-binding protein mediates the bombykol-induced
activation of a pheromone receptor in vitro. Chemical Senses 31:547–555. DOI: https://doi.org/10.1093/
chemse/bjj059, PMID: 16679489

Yang et al. eLife 2017;6:e29100. DOI: https://doi.org/10.7554/eLife.29100 18 of 21

Research article Neuroscience

3

https://doi.org/10.7554/eLife.29100.023
https://doi.org/10.7554/eLife.29100.019
https://doi.org/10.7554/eLife.29100.020
https://doi.org/10.7554/eLife.29100.021
https://doi.org/10.1007/s00359-003-0483-2
https://doi.org/10.1007/s00359-003-0483-2
https://doi.org/10.1007/BF00187628
https://doi.org/10.1007/BF00988135
https://doi.org/10.1007/BF00988135
https://doi.org/10.1016/j.ibmb.2015.09.010
http://www.ncbi.nlm.nih.gov/pubmed/26416146
https://doi.org/10.1038/srep18742
http://www.ncbi.nlm.nih.gov/pubmed/26744070
https://doi.org/10.1111/j.1365-3113.2008.00427.x
https://doi.org/10.1038/ncomms15709
http://www.ncbi.nlm.nih.gov/pubmed/28580965
https://doi.org/10.1016/S0896-6273(03)00094-1
https://doi.org/10.1016/S0896-6273(03)00094-1
http://www.ncbi.nlm.nih.gov/pubmed/12628173
https://doi.org/10.1093/sysbio/46.2.269
http://www.ncbi.nlm.nih.gov/pubmed/11975343
https://doi.org/10.1146/annurev-ento-112408-085442
http://www.ncbi.nlm.nih.gov/pubmed/19737085
https://doi.org/10.1007/BF01939662
https://doi.org/10.1146/annurev-ento-010715-023638
http://www.ncbi.nlm.nih.gov/pubmed/26565898
https://doi.org/10.1111/j.1460-9568.2007.05512.x
http://www.ncbi.nlm.nih.gov/pubmed/17445234
https://doi.org/10.1093/chemse/bjj059
https://doi.org/10.1093/chemse/bjj059
http://www.ncbi.nlm.nih.gov/pubmed/16679489
https://doi.org/10.7554/eLife.29100


Guo S, Kim J. 2010. Dissecting the molecular mechanism of Drosophila odorant receptors through activity
modeling and comparative analysis. Proteins: Structure, Function, and Bioinformatics 78:381–399. DOI: https://
doi.org/10.1002/prot.22556, PMID: 19714770

Hansson BS, Stensmyr MC. 2011. Evolution of insect olfaction. Neuron 72:698–711. DOI: https://doi.org/10.
1016/j.neuron.2011.11.003, PMID: 22153368

Hopf TA, Morinaga S, Ihara S, Touhara K, Marks DS, Benton R. 2015. Amino acid coevolution reveals three-
dimensional structure and functional domains of insect odorant receptors. Nature Communications 6:6077.
DOI: https://doi.org/10.1038/ncomms7077, PMID: 25584517

Hughes DT, Wang G, Zwiebel LJ, Luetje CW. 2014. A determinant of odorant specificity is located at the
extracellular loop 2-transmembrane domain 4 interface of an Anopheles gambiae odorant receptor subunit.
Chemical Senses 39:761–769. DOI: https://doi.org/10.1093/chemse/bju048, PMID: 25270378

Ignatious Raja JS, Katanayeva N, Katanaev VL, Galizia CG. 2014. Role of Go/i subgroup of G proteins in
olfactory signaling of Drosophila melanogaster. The European Journal of Neuroscience 39:1245–1255.
DOI: https://doi.org/10.1111/ejn.12481, PMID: 24443946

Jiang XJ, Guo H, Di C, Yu S, Zhu L, Huang LQ, Wang CZ. 2014. Sequence similarity and functional comparisons
of pheromone receptor orthologs in two closely related Helicoverpa species. Insect Biochemistry and Molecular
Biology 48:63–74. DOI: https://doi.org/10.1016/j.ibmb.2014.02.010, PMID: 24632377

Kato A, Touhara K. 2009. Mammalian olfactory receptors: pharmacology, G protein coupling and desensitization.
Cellular and Molecular Life Sciences 66:3743–3753. DOI: https://doi.org/10.1007/s00018-009-0111-6, PMID: 1
9652915

Kaupp UB. 2010. Olfactory signalling in vertebrates and insects: differences and commonalities. Nature Reviews
Neuroscience 11:188–200. DOI: https://doi.org/10.1038/nrn2789, PMID: 20145624

Kehat M, Dunkelblum E. 1990. Behavioral responses of male Heliothis armigera (Lepidoptera: Noctuidae) moths
in a flight tunnel to combinations of components identified from female sex pheromone glands. Journal of
Insect Behavior 3:75–83. DOI: https://doi.org/10.1007/BF01049196

Kiely A, Authier A, Kralicek AV, Warr CG, Newcomb RD. 2007. Functional analysis of a Drosophila melanogaster
olfactory receptor expressed in Sf9 cells. Journal of Neuroscience Methods 159:189–194. DOI: https://doi.org/
10.1016/j.jneumeth.2006.07.005, PMID: 16919756

Krieger J, Grosse-Wilde E, Gohl T, Dewer YME, Raming K, Breer H. 2004. Genes encoding candidate
pheromone receptors in a moth (Heliothis virescens). Proceedings of the National Academy of Sciences 101:
11845–11850. DOI: https://doi.org/10.1073/pnas.0403052101

Krieger J, Raming K, Dewer YM, Bette S, Conzelmann S, Breer H. 2002. A divergent gene family encoding
candidate olfactory receptors of the moth Heliothis virescens. European Journal of Neuroscience 16:619–628.
DOI: https://doi.org/10.1046/j.1460-9568.2002.02109.x, PMID: 12270037

Kumar BN, Taylor RW, Pask GM, Zwiebel LJ, Newcomb RD, Christie DL. 2013. A conserved aspartic acid is
important for agonist (VUAA1) and odorant/tuning receptor-dependent activation of the insect odorant co-
receptor (Orco). PLoS ONE 8:e70218. DOI: https://doi.org/10.1371/journal.pone.0070218, PMID: 23894621

Kurtovic A, Widmer A, Dickson BJ. 2007. A single class of olfactory neurons mediates behavioural responses to a
Drosophila sex pheromone. Nature 446:542–546. DOI: https://doi.org/10.1038/nature05672, PMID: 17392786

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9:357–359.
DOI: https://doi.org/10.1038/nmeth.1923, PMID: 22388286

Leal WS. 2013. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes.
Annual Review of Entomology 58:373–391. DOI: https://doi.org/10.1146/annurev-ento-120811-153635,
PMID: 23020622

Leary GP, Allen JE, Bunger PL, Luginbill JB, Linn CE, Macallister IE, Kavanaugh MP, Wanner KW. 2012. Single
mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species.
Proceedings of the National Academy of Sciences 109:14081–14086. DOI: https://doi.org/10.1073/pnas.
1204661109

Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.
Bioinformatics 25:1451–1452. DOI: https://doi.org/10.1093/bioinformatics/btp187, PMID: 19346325

Liu C, Liu Y, Walker WB, Dong S, Wang G. 2013. Identification and functional characterization of sex pheromone
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