Computer-Aided Control Systems Design: Introduction and Historical
Overview

Andreas Varga

German Aerospace Center, DLR Oberpfaffenhofen
Institute of System Dynamics and Control
Miinchnerstr. 20, 82234 Wessling, Germany
Phone: +49 (8153) 282407

Fax: +49 (8153) 281850
Andreas.Varga@dlr.de

Abstract

Computer-aided control system design (CACSD) en-
compasses a broad range of methods, tools and tech-
nologies for system modelling, control system syn-
thesis and tuning, dynamic system analysis and simu-
lation, as well as validation and verification. The do-
main of CACSD enlarged progressively over decades
from simple collections of algorithms and programs
for control system analysis and synthesis, to compre-
hensive tool sets and user-friendly environments sup-
porting all aspects of developing and deploying ad-
vanced control systems in various application fields.
This article gives a brief introduction to CACSD and
reviews the evolution of key concepts and technolo-
gies underlying the CACSD domain. Several cor-
nerstone achievements in developing reliable numeri-
cal algorithms, implementing robust numerical soft-
ware and developing sophisticated integrated mod-
elling, simulation and design environments are high-
lighted.

Keywords and Phrases

CACSD, simulation, modeling, numerical analysis,
software tools

Introduction

To design a control system for a plant, a typi-
cal computer-aided control system design (CACSD)
work flow comprises several interlaced activities.

Model building is often a necessary first step con-
sisting in developing suitable mathematical models
to accurately describe the plant dynamical behaviour.
High-fidelity physical plant models, obtained for ex-
ample by using first principles modelling, primar-
ily serve for analysis and validation purposes using

appropriate simulation techniques. These dynamic
models are usually defined by a set of ordinary differ-
ential equations (ODEs), differential-algebraic equa-
tion (DAESs) or partial differential equations (PDEs).
However, for control system synthesis purposes sim-
pler models are required, which are derived by sim-
plifying high-fidelity models (e.g., by linearization,
discretization, or model reduction) or directly de-
termined in a specific form from input-output mea-
surement data using system identification techniques.
Frequently used synthesis models are continuous or
discrete-time linear time-invariant (LTI) models de-
scribing the nominal behaviour of the plant in a spe-
cific operating point. The more accurate linear pa-
rameter varying (LPV) models may serve to account
for uncertainties due to various performed approxi-
mations, nonlinearities or varying model parameters.

Simulation of dynamical systems is a closely re-
lated activity to modelling and is concerned with per-
forming virtual experiments on a given plant model
to analyse and predict the dynamic behaviour of a
physical plant. Often modelling and simulation are
closely connected parts of dedicated environments,
where specific classes of models can be built and ap-
propriate simulation methods can be employed. Sim-
ulation is also a powerful tool for the validation of
mathematical models and their approximations. In
the context of CACSD, simulation is frequently used
as a control system tuning-aid, as, for example, in
an optimization-based tuning approach using time-
domain performance criteria.

System analysis and synthesis are concerned with
with the investigation of properties of the underlying
synthesis model and in the determination of a con-
trol system which fulfills basic requirements for the
closed-loop controlled plant, such as stability or var-
ious time or frequency response requirements. The
analysis also serves to check existence conditions for



the solvability of synthesis problems, according to es-
tablished design methodologies. An important syn-
thesis goal is the guarantee of the performance robust-
ness. To achieve this goal robust control synthesis
methodologies often employ optimization-based pa-
rameter tuning in conjunction with worst-case analy-
sis techniques. A rich collection of reliable numeri-
cal algorithms are available to perform such analysis
and synthesis tasks. These algorithms form the core
of CACSD and their development represented one of
the main motivations for CACSD-related research.

Performance robustness assessment of the result-
ing closed-loop control system is a key aspect of the
verification and validation activity. For a reliable as-
sessment, simulation-based worst-case analysis rep-
resents often the only way to prove the performance
robustness of the synthesized control system in the
presence of parametric uncertainties and variabilities.

Development of CACSD tools

The development of CACSD tools for system analysis
and synthesis started around 1960, immediately after
general purpose digital computers and new program-
ming languages became available for research and de-
velopment purposes. In what follows we give a histor-
ical survey of these developments in the main CACSD
areas.

Modelling and simulation tools

Among the first developments were modelling and
simulation tools for continuous-time systems de-
scribed by differential equations based on dedicated
simulation languages. Over forty continuous-system
simulation languages had been developed as of 1974
[Nilsen and Karplus, 1974], which evolved out of at-
tempts at digitally emulating the behaviour of widely
used analog computers before 1960. A notable de-
velopment in this period was the CSSL standard [Au-
gustin et al, 1967], which defined a system as an in-
terconnection of blocks corresponding to operators
which emulated the main analog simulation blocks
and implied the integration of the underlying ODEs
using suitable numerical methods. For many years,
the ACSL preprocessor to Fortran [Mitchel and Gau-
thier, 1976] was one of the most successful implemen-
tations of the CSSL-standard.

A turning point was the development of graphi-
cal user interfaces allowing graphical block-diagram
based modelling. The most important developments
were SystemBuild [Shah et al, 1985] and SIMULAB
(later marketed as Simulink) [Grace, 1991]. Both
products used a customizable set of block libraries

and were seamlessly integrated in, respectively, MA-
TRIXx and MATLAB, two powerful interactive ma-
trix computation environments (see below). Sys-
temBuild provided several advanced features such as
event management, code generation, and DAE-based
modelling and simulation. Simulink excelled from
the beginning with its intuitive, easy-to-use user inter-
face. Recent extensions of Simulink allow the mod-
elling and simulation of hybrid systems, code gener-
ation for real-time applications, and various enhance-
ments of the model building process (e.g., object-
oriented modelling).

The object-oriented paradigm for system mod-
elling was introduced with Dymola [Elmqvist, 1978]
to support physical system modelling based on in-
terconnections of subsystems. The underlying mod-
elling language served as the basis of the first ver-
sion of Modelica [Elmquist et al., 1997], a mod-
ern equation-based modeling language which was
the result of a coordinated effort for the unification
and standardization of expertise gained over many
years with object-oriented physical modelling. The
latest developments in this area are comprehensive
model libraries for different application domains such
as mechanical, electrical, electronic, hydraulic, ther-
mal, control, and electric power systems. Notable
commercial front-ends for Modelica are Dymola,
MapleSim and SystemModeler, where the last two are
tightly integrated in the symbolic computation envi-
ronments Maple and Mathematica, respectively.

Numerical software tools

The computational tools for CACSD rely on many
numerical algorithms whose development and imple-
mentation in computer codes was the primary moti-
vation of this research area since its beginnings. The
Automatic Synthesis Program (ASP) developed in
1966 [Kalman and Englar, 1966], was implemented
in FAP (Fortran Assembly Program) and ran only
on an IBM 7090-7094 machine. The Fortran II ver-
sion of ASP (known as FASP) can be considered
to be the first collection of computational CACSD
tools ported to several mainframe computers. Inter-
estingly, the linear algebra computations were cov-
ered by only three routines (diagonal decomposition,
inversion and pseudo-inverse) and no routines were
used for eigenvalue or polynomial roots computation.
The main analysis and synthesis functions covered
the sampled-data discretization (via matrix exponen-
tial), minimal realization, time-varying Riccati equa-
tion solution for quadratic control, filtering, and sta-
bility analysis. The FASP program itself performed
the required computational sequences by interpreting
simple commands with parameters. The extensive



documentation containing a detailed description of
algorithmic approaches and many examples marked
the starting point of an intensive research on algo-
rithms and numerical software, which culminated in
the development of the high-performance control and
systems library SLICOT [Benner et al, 1999; Huffel
et al, 2004]. In what follows, we highlight the main
achievements along this development process.

The direct successor of FASP is the Variable Di-
mension Automatic Synthesis Program (VASP) (im-
plemented in Fortran IV on IBM 360) [White and
Lee, 1971], while a further development was ORA-
CLS [Armstrong, 1978], which included several rou-
tines from the newly developed eigenvalue package
EISPACK [Smith et al, 1976; Garbow et al, 1977] as
well as solvers for linear (Lyapunov, Sylvester) and
quadratic (Riccati) matrix equations. From this point,
the mainstream development of numerical algorithms
for linear system analysis and synthesis closely fol-
lowed the development of algorithms and software for
numerical linear algebra. A common feature of all
subsequent developments was the extensive use of ro-
bust linear algebra software with the Basic Linear Al-
gebra Subprograms (BLAS) [Lawson et al, 1979] and
the Linear Algebra Package (LINPACK) for solving
linear systems [Dongarra et al, 1979]. Several control
libraries have been developed almost simultaneously,
relying on the robust numerical linear algebra core
software formed of BLAS, LINPACK and EISPACK.
Notable examples are: RASP (based partly on VASP
and ORACLS) [Griibel, 1983] — developed originally
by the University of Bochum and later by the German
Aerospace Center (DLR); BIMAS [Varga and Sima,
1985] and BIMASC [Varga and Davidoviciu, 1986] —
two Romanian initiatives; and SLICOT [Boom et al,
1991] — a Benelux initiative of several universities
jointly with the Numerical Algorithm Group (NAG).

The last development phase was marked by the
availability of the Linear Algebra Package (LAPACK)
[Anderson et al, 1992], whose declared goal was to
make the widely used EISPACK and LINPACK li-
braries run efficiently on shared-memory vector and
parallel processors. To minimize the development
efforts, several active research teams from Europe
started, in the framework of the NICONET Project,
a concentrated effort to develop a high-performance
numerical software library for CACSD as a new sig-
nificantly extended version of the original SLICOT.
The goals of the new library were to cover the main
computational needs of CACSD, by relying exclu-
sively on LAPACK and BLAS, and to guarantee sim-
ilar numerical performance as that of the LAPACK
routines. The software development used rigorous
standards for implementation in Fortran 77, modu-

larization, testing, and documentation (similar to that
used in LAPACK). The development of the latest ver-
sions of RASP and SLICOT eliminated practically
any duplication of efforts and led to a library which
contained the best software from RASP, SLICOT, BI-
MAS and BIMASC. The current version of SLICOT
is fully maintained by the NICONET Association'
and serves as basis for implementing advanced com-
putational functions for CACSD in interactive envi-
ronnslents as MATLAB?, Maple3, Scilab* and Oc-
tave-.

Interactive tools

Early experiments during 1970-1985 included the de-
velopment of several interactive CACSD tools em-
ploying menu-driven interaction, question—answer di-
alogues or command languages. The April 1982 spe-
cial issue of IEEE Control Systems Magazine was
dedicated to CACSD environments and presented
software summaries of 20 interactive CACSD pack-
ages. This development period was marked by the
establishment of new standards for programming lan-
guages (Fortran 77, C), availability of high-quality
numerical software libraries (BLAS, EISPACK, LIN-
PACK, ODEPACK), transition from mainframe com-
puters to minicomputers and finally to the nowadays-
ubiquitous personal computers as computing plat-
forms, spectacular developments in graphical display
technologies, and application of sound programming
paradigms (e.g., strong data typing).

A remarkable event in this period was the develop-
ment of MATLAB, a command language based inter-
active matrix laboratory [Moler, 1980]. The original
version of MATLAB was written in Fortran 77. It was
primarily intended as a student teaching tool and pro-
vided interactive access to selected subroutines from
LINPACK and EISPACK. The tool circulated for a
while in the public domain and its high flexibility
was soon recognized. Several CACSD-oriented com-
mercial clones have been implemented in the C lan-
guage, the most important among them being MA-
TRIXx [Walker et al, 1982] and PC-MATLAB [Moler
et al, 1985].

The period after 1985 until around 2000 can be
seen as a consolidation and expansion period for
many commercial and non-commercial tools. In an
inventory of CACSD-related software issued by the
Benelux Working Group on Software (WGS) under

Uhttp://www.niconet-ev.info/en/

Zhttp:// www.mathworks.com
3http://www.maplesoft.com/products/maple/
“http://www.scilab.org/
Shitp://www.gnu.org/software/octave/



the auspices of the IEEE Control Systems Society,
there were in 1992 in active development 70 stand-
alone CACSD packages, 21 tools based on or similar
to MATLAB, and 27 modelling/simulation environ-
ments. It is interesting to look more closely at the
evolutions of the two main players MATRIXx and
MATLAB, which took place under harshly compet-
itive conditions.

MATRIXXx with its main components Xmath, Sys-
temBuild and AutoCode, had over many years a lead-
ing role (especially among industrial customers), ex-
celling with a rich functionality in domains such as
system identification, control system synthesis, model
reduction, modelling, simulation, code generation.
After 2003, MATRIXx® became a product of Na-
tional Instruments Corporation and complements its
main product family LabView, a visual programming
language based system-design platform and develop-
ment environment’.

MATLAB gained broad academic acceptance
by integrating many new methodological develop-
ments in the control field into several control-related
toolboxes. MATLAB also evolved as a powerful
programming language, which allows easy object-
oriented manipulation of different system descrip-
tions via operator overloading. At present, the
CACSD tools of MATLAB and Simulink represent
the industrial and academic standard for CACSD.
The existing CACSD tools are constantly extended
and enriched with new model classes, new compu-
tational algorithms (e.g., structure-exploiting eigen-
value computations based on SLICOT), dedicated
graphical user interfaces (e.g., tuning of PID con-
trollers or control-related visualizations), advanced
robust control system synthesis, etc. Also many third-
party toolboxes contribute to the wide usage of this
tool.

Basic CACSD functionality incorporating sym-
bolic processing techniques and higher precision
computations is available in the Maple product
MapleSim Control Design Toolbox as well as in the
Mathematica Control Systems product. Free alter-
natives to MATLAB are the MATLAB-like environ-
ments Scilab, a French initiative pioneered by INRIA,
and Octave, which has recently added some CACSD
functionality.

Summary and Future Directions

The development and maintenance of integrated
CACSD environments, which provide support for all
aspects of the CACSD cycle such as modelling, de-

Shttp://www.ni.com/matrixx/
http://www.ni.com/labview

sign, and simulation, involve sustained, strongly in-
terdisciplinary efforts. Therefore, the CACSD tool
development activities must rely on the expertise of
many professionals covering such diverse fields as
control system engineering, programming languages
and techniques, man-machine interaction, numerical
methods in linear algebra and control, optimization,
computer visualization, and model building tech-
niques. This may explain why currently, only a few
of the commercial developments of prior years are
still in use and actively maintained/developed. Un-
fortunately, the number of actively developed non-
commercial alternative products is even lower. The
dominance of MATLAB, as a de facto standard for
both industrial and academic usage of integrated tools
covering all aspects of the broader area of computer
aided control engineering (CACE), can not be over-
seen.

The new trends in CACSD are partly related to
handling more complex applications, involving time-
varying (e.g., periodic, multi-rate sampled-data, and
differential-algebraic) linear dynamic systems, non-
linear systems with many parametric uncertainties,
and large-scale models (e.g., originating from the
discretization of PDEs). To address many compu-
tational aspects of model building (e.g., model re-
duction of large order systems), optimization-based
robust controller tuning using multiple-model ap-
proaches, or optimization-based robustness assess-
ment using global-optimization techniques, parallel
computation techniques allow substantial savings in
computational times and facilitate addressing compu-
tational problems for large scale systems. A topic
which needs further research is the exploitation of the
benefits of combining numerical and symbolic com-
putations (e.g., in model building and manipulation).

Cross-references

CACSD software tools, modelling and simulation,
system identification, model reduction, optimization-
based design, robust synthesis, robustness assess-
ment, verification and validation

Recommended reading

The historical development of CACSD concepts and
techniques was the subject of several articles in ref-
erence works [Rimvall and Jobling, 1995; Schmid,
2002]. A selection of papers on numerical algorithms
underlying the development of CACSD appeared in
[Patel et al, 1994]. The special issue No. 2/2004 of
the IEEE Control Systems Magazine on Numerical
Awareness in Control presents several surveys on dif-
ferent aspects of developing numerical algorithms and



software for CACSD.

The main trends over the last three decades in
CACSD related research can be followed in the
programs/proceedings of the biannual IEEE Sym-
posia on CACSD from 1981 to 2013 (partly avail-
able at http://ieeexplore.ieee.org) as well as of the
triennial IFAC Symposia on CACSD from 1979 to
2000. Additional information can be found in sev-
eral CACSD-focused survey articles and special is-
sues (e.g., No. 4/1982; No. 2/2000) of the IEEE Con-
trol Systems Magazine.

Anderson E, Bai Z, Bishop J, Demmel J, Du Croz J,
Greenbaum A, Hammarling S, McKenney A, Os-
trouchov S, Sorensen D (1992) LAPACK User’s
Guide. SIAM, Philadelphia

Armstrong ES (1978) ORACLS - A System for
Linear-Quadratic Gaussian Control Law Design.
Technical Paper 1106 96-1, NASA

Augustin DC, Strauss JC, Fineberg MS, Johnson BB,
Linebarger RN, Sansom FJ (1967) The SCi contin-
uous system simulation language (CSSL). Simula-
tion 9:281-303

Benner P, Mehrmann V, Sima V, Van Huffel S, Varga
A (1999) SLICOT - a subroutine library in systems
and control theory. In: Datta BN (ed) Applied and
Computational Control, Signals and Circuits, vol 1,
Birkhiuser, pp 499-539

Boom A, Brown A, Geurts A, Hammarling S, Kool
R, Vanbegin M, Van Dooren P, Huffel SV (1991)
SLICOT, a subroutine library in control and sys-
tems theory. In: Prepr. 5th IFAC/IMACS Symp.
CADCS’91, Swansea, UK, Pergamon Press, Ox-
ford, pp 89-94

Dongarra JJ, Moler CB, Bunch JR, Stewart GW
(1979) LINPACK User’s Guide. SIAM Publica-
tions, Philadelphia

Elmquist H et al (1997) Modelica — A Uni-
fied Object-Oriented Language for Phys-
ical Systems Modeling (Version 1). URL
http://www.modelica.org/documents/Modelical.pdf

Elmqvist H (1978) A structured model language for
large continuous systems. PhD thesis, Department
of Automatic Control, Lund University, Sweden

Garbow BS, Boyle JM, Dongarra JJ, Moler CB (1977)
Matrix Eigensystem Routines — EISPACK Guide
Extension. Springer-Verlag, Heidelberg

Grace ACW (1991) SIMULAB, an integrated envi-
ronment for simulation and control. In: Proc. of
American Control Conference, Boston, MA, USA,
pp 1015-1020

Griibel G (1983) Die regelungstechnische Programm-
bibliothek RASP. Regelungstechnik 31:75-81

Huffel SV, Sima V, Varga A, Hammarling S, Dele-
becque F (2004) High-performance numerical
software for control. Control Systems Magazine
24:60-76

Kalman RE, Englar TS (1966) A User’s Manual for
the Automatic Synthesis Program (Program C).
Technical Report CR-475, NASA

Lawson CL, Hanson RJ, Kincaid DR, Krogh FT
(1979) Basic linear algebra subprograms for For-
tran usage. ACM Transactions on Mathematical
Software 5:308-323

Mitchel EEL, Gauthier JS (1976) Advanced con-
tinuous simulation language (ACSL). Simulation
26:72-78

Moler CB (1980) MATLAB Users’ Guide. Tech. rep.,
Department of Computer Science, University of
New Mexico, Albuquerque, USA

Moler CB, Little J, Bangert S, Kleinman S (1985) PC-
Matlab, Users’Guide, Version 2.0. Tech. rep., The
MathWorks, Inc, 158 Woodland St, Sherborn, MA
USA

Nilsen RN, Karplus WJ (1974) Continuous-system
simulation languages: A state-of-the-art sur-
vey. Mathematics and Computers in Simulation
16:17-25, DOI http://dx.doi.org/10.1016/S0378-
4754(74)80003-0

Patel RV, Laub AJ, Van Dooren (Eds) P (1994) Nu-
merical Linear Algebra Techniques for Systems
and Control. IEEE Press, Piscataway, NJ, USA

Rimvall C, Jobling CP (1995) Computer-Aided Con-
trol Systems Design. In: Levine WS (ed) The
CONTROL HANDBOOK, CRC Press, pp 429-
442

Schmid C (2002) Computer-Aided Control System
Engineering Tools. In: Unbehauen H (ed) Con-
trol Systems, Robotics and Automation, Encyclo-
pedia of Life Support Systems (EOLSS), URL
http://www.eolss.net

Shah CS, Floyd MA, Lehman LL (1985) MATRIXx:
Control design and model building CAE capabil-
ities. In: Jamshidi M, Herget CJ (eds) Advances
in Computer Aided Control Systems Engineering,
North-Holland, Elsevier Science Publishers, Ams-
terdam, pp 181-207

Smith BT, Boyle JM, Dongarra JJ, Garbow BS, Ikebe
Y, Klema VC, Moler CB (1976) Matrix Eigen-
system Routines - EISPACK Guide, Second Edi-
tion, Lecture Notes in Computer Science, vol 6.
Springer-Verlag



Varga A, Davidoviciu A (1986) BIMASC - A package
of Fortran subprograms for analysis, modelling, de-
sign and simulation of control systems. In: Hansen
NE, Larsen PM (eds) Prepr. of 3rd IFAC/IFIP Int.
Symposium on Computer Aided Design in Control
and Engineering (CADCE’85), Copenhagen, Den-
mark, Pergamon Press, Oxford, pp 151-156

Varga A, Sima V (1985) BIMAS - A basic mathemat-
ical package for computer aided systems analysis
and design. In: Gerter J, Keviczky L (eds) Prepr.
of 9th IFAC World Congress, Budapest, Hungary,
vol 8, pp 202-207

Walker R, Gregory C, Shah S (1982) MATRIXx: A
data analysis, system identification, control design
and simulation package. Control Systems Maga-
zine 2:30-37

White JS, Lee HQ (1971) Users Manual for the Vari-
able Automatic Synthesis Program (VASP). Tech-
nical Memorandum TM X-2417, NASA



