
Multi-sensor data fusion for urban area classification
Aliaksei Makarau, Gintautas Palubinskas, and Peter Reinartz

Remote Sensing Technology Institute
German Aerospace Center (DLR)

82234 Wessling, Germany
{aliaksei.makarau, gintautas.palubinskas, peter.reinartz}@dlr.de

Abstract— Nowadays many sensors for information acquisition
are widely employed in remote sensing and different properties
of the objects can be revealed. Unfortunately each imaging
sensor has its own limits on scene recognition in the sense of
thematic, temporal, and other interpretation. Integration (fusion)
of different data types is expected to increase the quality of scene
interpretation and decision making. In recent time integration
of synthetic aperture radar (SAR), optical, topography or geo-
graphic information system data is widely performed for many
tasks such as automatic classification, mapping or interpretation.

In this paper we present an approach for very high resolution
multi-sensor data fusion to solve several tasks such as urban
area automatic classification and change detection. Datasets with
different nature are integrated using the INFOFUSE frame-
work [1], consisting of feature extraction (information fission),
dimensionality reduction, and supervised classification. Fusion
of WorldView-2 optical data and laser Digital Surface Model
(DSM) data allows for different types of urban objects to
be classified into predefined classes of interest with increased
accuracy. Numerical evaluation of the method comparing with
other established methods illustrates advantage in the accuracy
of structure classification into low-, medium-, and high-rise
buildings together with other common urban classes.

I. INTRODUCTION

Data or image fusion is a developing area of research espe-
cially in remote sensing and geoscience. Different modalities
of data can be obtained by different sensors for the same area,
and more properties can be revealed on the area structure, con-
tents, properties, etc. Several novel and competitive approaches
on urban area and landcover classification using fusion were
proposed.

Rottensteiner et. al. [2] presented a method for building
detection from LIDAR data and multi-spectral images, and
have shown its applicability in a test site of heterogeneous
building shapes. The method is based on the application of the
Dempster-Shafer theory for data fusion. The authors note that
the achieved results are satisfactory but in some cases buildings
and trees cannot be accurately separated, either because of
shadows or because the resolution of the LIDAR data is not
sufficient.

Pacifici et. al. [3] developed the best fusion algorithm for
2007 GRSS Data Fusion Contest. The algorithm is based
on a neural network classification enhanced by preprocessing
and postprocessing. Principal component analysis was applied
on SAR data. Altogether, 14 inputs to the neural network
were given: 2 SAR images, 6 Landsat-5 spectral images,
and 6 Landsat-7 spectral images. The classification into 5

classes (City center, Residental area, Sparce buildings, Water,
Vegetation) provided Kappa coefficient equal to 0.93.

Fauvel et. al. [4] applied decision fusion for the classifica-
tion of urban area. The fusion approach consists in two steps.
In the first step, data are processed by each classifier separately
and the algorithms provide for each pixel membership degrees
for the considered classes. In the second step, a fuzzy decision
rule is used to aggregate the results provided by the algo-
rithms according to the classifiers’ capabilities. The method
was tested and validated with two classifiers on IKONOS
images from urban areas. The proposed method improves the
classification results when compared with the separate use of
the different classifiers. The overall accuracy of classification
for 6 classes (Large buildings, Houses, Large roads, Streets,
Open areas, and Shadows) is 75.7 %.

In this paper we present an example of urban area clas-
sification using data fusion. Since urban area provides dif-
ferent classes of interest and the objects of the same class
can have highly varying properties, the task of urban land
cover classification becomes more difficult. For example, the
buildings of one class (e.g. medium-rise) may have different
spectral properties of the roofs and such buildings may be
difficult to classify into one class. Also confusion with other
classes is a usual issue (e.g. roads and buildings). To overcome
this problem we propose to use the fusion of multispectral
image and the DSM. Different sources of information allow
to increase the number of classes as well as the accuracy of
classification. The use of the DSM data is expected to give a
possibility to classify buildings with highly varying spectral
properties of the roofs into a class they belong to (low-,
medium-, and high- rise buildings) and prevent confusion with
other classes (e.g. roads).

II. INPUT DATA

In order to investigate and illustrate the effectiveness of the
proposed approach we have chosen the area of Munich city
as a test scene. Munich contains variety of urban building
types and structures, such as old town, residential area, low-
, medium-, and high-rise buildings, rail road, water regions,
bare soil, etc. Two very high resolution datasets were cho-
sen: WorldView-2 multispectral imagery and laser DSM data.
WorldView-2 multispectral data was obtained at the 12-th
July 2010, 10:30:17 Local time. Multispectral data contains
8 11-bit bands, 2m spatial resoliution, the panchromatic data
contain one 11-bit band, 0.5m spatial resolution. The spectral
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Fig. 1. Diagram of the INFOFUSE framework for multi-sensor data fusion
and classification

bands were pan-sharpened using an image fusion method
based on high-frequency image data addition to low-resolution
spectral image [5]. This method provides minimal distortion
of spectral and spatial characteristics of multispectral imagery
[6]. Laser DSM data was generated from the LiDAR data (last
return pulses were used). The LiDAR point cloud data was
acquired in February 2003. The DSM data was registered to
the pansharpened multispectral image.

III. DATA FUSION AND CLASSIFICATION

Data fusion framework consists of three main stages.
• Feature extraction from input datasets. These features

are expected to characterize different properties of struc-
tures and objects. This step is called information fission.
After the feature extraction a large amount of redundant
information is obtained.

• Dimensionality reduction using unsupervised clus-

tering. This step is performed to acquire the unique
description of the data in terms of clusters and to reduce
the dimensionality of the extracted features [1].

• Fusion of the clustered features. The fusion is per-
formed using a Bayesian Network [7] or a Neural Net-
work (NN) [8]. The Bayesian or Neural network is trained
on the data produced at the previous step (clustered
features) according to supervisely selected classes and
training areas. After the supervised training the classifi-
cation (inference) is possible to perform.

Further sections contain detailed description of the method.

A. Feature extraction

Co-Occurence texture features for the pan-sharpened multi-
spectral data were calculated [9]. Among the texture features
the Mean, Variance, Homogeneity, Contrast, Dissimilarity,
Entropy, Second Moment, and Correlation). Experiments on
the processing co-occurrence window size revealed that the
window of size 7×7 provided more proper description of ob-
jects during the unsupervised clustering for the classification.
Optical data is used for description of spectral properties of

the objects. Since the DSM data provides relief and surface
topography of the scene, the DSM allows to separate objects
of different nature by their relevant height irrespectively of the
same spectral characteristics.

Several combinations of the features can be created from the
multispectral data, the texture, and the DSM. The combination
providing the best quality can be selected for automatic
classification. The following combinations can be created:

• Optical multispectral data, and the DSM data,
• Texture and the DSM,
• Optical multispectral data and Texture
• Optical multispectral data, Texture, and the DSM

B. Unsupervised clustering

Since the aim of this step is to combine features with
similar properties and to reduce the dimensionality of the
calculated feature data, any unsupervised clustering method
can be employed for this task. K-means clustering based on
entropy [10] was applied on each extracted feature separately.
The number of clusters for each feature can be different and
defined individually according to the type of the feature.

C. Information fusion using Bayesian/Neural network

A Bayes network or a Neural network is employed to fuse
the extracted features and to produce the inference (i.e. classi-
fication through fusion). Bayesian or Neural network allows to
combine information from different sources of measurement,
therefore the fusion of incommensurable features (numerical,
logical, semantical, etc.) can be performed. Supervised training
of the network allows to estimate the network state and a
classification is possible to perform.

IV. AUTOMATIC CLASSIFICATION

We have selected 8 main classes for the urban scene: 1)
Low-rise buildings; 2) Medium-rise buildings; 3) High-rise
buildings; 4) Roads; 5) Water; 6) Forest/Trees; 7) Grass; 8)
Shadow. Since the same objects can have highly varying
properties (spectral, textural, etc.) it may be very hard to train
a classifier on such inhomogeneous data and to produce a
classification with a high accuracy. For example, buildings
have different material of the roofs, therefore highly varying
spectral characteristics of the material (tiles, concrete, highly-
reflecting metal, etc.) make difficult to classify such inhomoge-
neous objects into one class of interest. Therefore a predefined
class containing objects with highly varying spectral properties
is divided into several subclasses.

Subclasses were defined for each of the low-, medium-,
and high-rise buildings, and roads class. After such extension
the overall number of the classes is 16: Low-rise buildings,
include: 1) roof tile, 2) concrete roof, 3) dark color roof;
Medium-rise buildings, include: 4) roof tile, 5) concrete roof,
6) green color metal roof, 7) highly reflecting roof; High-
rise buildings, include: 8) roof tile, 9) concrete roof, 10)
dark color roof; Roads, include: 11) asphalt pavement, 12)
concrete pavement; 13) Water; 14) Forest/Trees; 15) Grass; 16)
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Shadow. After the classification into the 16 classes, the defined
subclasses are merged to produce the classes of interest.

The ground truth for the area under investigation was
proofed by the ATKIS vector map provided by Bavarian
State Agency for Surveying and Geoinformation (Landesamt
für Vermessung und Geoinformation). The assessment of
the buildings height was made using the DSM and manual
interpretation of very high resolution airborne data obtained
by the DLR 3K camera system [11].

The number of clusters in the unsupervised clustering
usually has value between 40 and 100. Experimental search
found that the value of 80 provides significant dimensionality
reduction with high accuracy of the landcover classification.

A Multilayer perceptron (MLP) was employed for the data
fusion and classification implemented in the IDL. A feed-
forward neural network based on scaled conjugate gradient
training was employed [8]. The network contains two hidden
layers with 16 neurons in each layer. Training of the MLP
made 1000 training epochs.

V. CHANGE DETECTION

The classification using an MLP allows to obtain posterior
probabilities of the classification map. Image area with a low
probability is difficult to classify into any of the possible
classes. This situation may be caused that these areas represent
landcover classes not learned by the used classifier, or the used
datasets provide different, unsufficient, or changed information
about the area. For example, the time gap between the acqui-
sitions may be long enough and some changes in the area may
happen (pavement change, construction of buildings, etc.) and
different data types can represent different types of landcover
for the same region. Such areas with low probabilities can not
be classified with high certainty, therefore labeled as changed
landcover.

VI. ASSESSMENT

Table I presents Overall accuracy (OVA) and Kappa coeffi-
cient scores for the widely used classification methods Max-
imum Likelihood (ML) and Support Vector Machine (SVM)
together with the proposed approach (INFOFUSE). The ML
and SVM were run in the ENVI software, the SVM employed
RBF kernel. The ML and SVM used feature data composed
from the Multispectral, Texture, and the DSM. Classification
results for different combinations of the data and features as
well as classification using single sensor data are given.

A. Automatic classification

The best accuracy of the classification provided INFOFUSE
method on the combination of the multispectral data, the
texture features, and the DSM. Table II presents a confusion
matrix for the best classification result (LRB - Low-rise
buildings, MRB - Medium-rise buildings, HRB - High-rise
buildings). Confusion of low-rise building (up to three floors)
and medium-rise buildings (from four to eleven floors), or
medium-rise buildings and high-rise buildings (from twelve to
fourty floors) may be caused that buildings of different number

TABLE I
CLASSIFICATION ACCURACY USING DIFFERENT METHODS TOGETHER

WITH THE PROPOSED APPROACH. BEST RESULT IS MARKED IN BOLD

Method Features (fission, total number) OVA, % Kappa
ML Multispectral (8) 68.74 0.6402
ML DSM (1) 32.20 0.2478
ML Texture (64) 73.10 0.6930
ML Texture+DSM (65) 81.85 0.7900
ML Multispectral+DSM (9) 91.02 0.8958
ML Multispectral+Texture (72) 74.03 0.7073
ML Multispectral+Texture+DSM (73) 82.07 0.7941

SVM Multispectral (8) 63.70 0.5771
SVM DSM (1) 34.75 0.2056
SVM Texture (64) 71.94 0.6757
SVM Texture+DSM (65) 72.47 0.6817
SVM Multispectral+DSM (9) 74.93 0.7078
SVM Multispectral+Texture (72) 76.84 0.7497
SVM Multispectral+Texture+DSM (73) 72.53 0.6822

INFOFUSE Multispectral (8) 76.00 0.7205
INFOFUSE DSM (1) 54.25 0.4511
INFOFUSE Texture (64) 77.16 0.7350
INFOFUSE Texture+DSM (65) 88.53 0.8644
INFOFUSE Multispectral+DSM (9) 87.11 0.8487
INFOFUSE Multispectral+Texture (72) 94.07 0.9309
INFOFUSE Multispectral+Texture+DSM (73) 96.04 0.9539

of floors can have the same height and similar material of the
roofs, or the DSM data normalization produced errors. Also,
low quality of normalized DSM data can lead to confusion of
low-rise buildings and roads. Confusion of forest and shadow
comes from the fact that trees in a forest produce shadowing,
therefore forest area is always contains shadows. The accuracy
highly depends on the preparation of the data (multispectral
image pan-sharpening and the DSM normalizing).

Low accuracies of the ML classification method may be
caused that the ML classifier can not efficiently deal with dif-
ferent distributions of the data and features, or the multisensor
data is not classified in the way of consensus classification
[12]. High classification accuracy produced using the Multi-
spectral and DSM data seems to be produced by a chance and
is not promised to produce the same results on other data.

A subscene of a classification map (INFOFUSE; Optical
multispectral data+Texture+DSM) is presented in Figure 2.
Figure 2(d) shows postprocessed image with clumping (clump-
ing adds spatial coherency to existing classes by combining
adjacent similar classified areas).

B. Change detection

Since the classifier provided posterior probabilities, the
regions with low probabilities (below 0.95) are marked in
black. Figure 2(b) together with the landcover classes contains
such regions. The low probabilities are expected to show
the evidence of the landcover class change (construction of
buildings or change of the structures height).

VII. CONCLUSION

This paper presents a multi-sensor data fusion method
for urban area classification. The fusion model is based on
information fission, dimensionality reduction, and information
aggregation and employs relevant ways of multisource data
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TABLE II
CONFUSION MATRIX, INFOFUSE, USED DATA AND FEATURES: OPTICAL MULTISPECTRAL, TEXTURE, AND THE DSM

Class LRB MRB HRB Roads Water Forest Grass Shadow Total
LRB 1793 32 13 14 0 32 0 0 1884
MRB 818 5214 104 0 0 0 0 0 6136
HRB 19 61 4256 0 0 0 0 0 4336
Roads 270 1 6 7590 0 0 0 0 7867
Water 0 0 0 0 3784 0 0 0 3784
Forest 0 0 0 0 0 5714 3 0 5717
Grass 0 0 0 0 0 31 3528 0 3559

Shadow 0 0 0 0 4 28 0 2961 2993
Total 2900 5308 4379 7604 3788 5805 3531 2961 36276

(a)

(b)

(c)

(d)

Fig. 2. A region of the classification map: (a) visible range multispectral
image (bands 5,3,2), (b) a region of the classification into 16 classes, (c)
composition of the subclasses to make the classes of interest (low-, medium-,
and high-rise buildings) and other classes of urban area, (d) clumped (c)

combination. Utilized multi-sensor data (multispectral and
DSM) allow to increase the number of classes and to boost the
accuracy of the classification. The results of the classification
are used for the composition of specific classes of interest (i.e.
low-, medium-, and high- rise buildings) together with other
urban classes.

Multi-sensor data is processed separately and the fusion and
classification method follows consensus rules of multisource
data classification. The data classification is not influenced by
the limitations of dimensionality and the calculation complex-
ity primarily depends on the step of dimensionality reduction.

The shown method has also a high potential for the task of
change detection, which is a matter for future research.

ACKNOWLEDGMENT

We would like to thank European Space Imaging (EUSI) for
provision of Digitalglobe WorldView-2 data. This work was
supported by the DLR-DAAD research grant (A/09/95629).

REFERENCES

[1] G. Palubinskas and M. Datcu, “Information fusion approach for the
data classification: an example for ERS-1/2 InSAR data,” International
Journal of Remote Sensing, vol. 29, no. 16, pp. 4689–4703, 2008.

[2] F. Rottensteiner, J. Trinder, S. Clode, K. Kubik, and B. Lovell, “Building
detection by Dempster-Shafer fusion of LIDAR data and multispectral
aerial imagery,” ICPR, vol. 2, pp. 339–342, 2004.

[3] F. Pacifici, F. Del Frate, W. Emery, P. Gamba, and J. Chanussot, “Urban
mapping using coarse SAR and optical data: Outcome of the 2007 GRSS
data fusion contest,” IEEE GRSL, vol. 5, no. 3, pp. 331–335, 2008.

[4] M. Fauvel, J. Chanussot, and J. A. Benediktsson, “Decision fusion for
the classification of urban remote sensing images,” IEEE TGRS, vol. 44,
no. 10, pp. 2828–2838, 2006.

[5] G. Palubinskas and P. Reinartz, “Multi-resolution, multi-sensor image
fusion: general fusion framework,” accepted to the JURSE 2011.

[6] A. Makarau, G. Palubinskas, and P. Reinartz, “Multiresolution image
fusion: Phase congruency for spatial consistency assessment,” in 100
Years ISPRS - Advancing Remote Sensing Science Symposium, TC VII,
Vienna, Austria, July 2010.

[7] R. Neapolitan, Learning Bayesian Networks. Prentice Hall, 2004.
[8] C. Bishop, Neural Networks for Pattern Recognition. Oxford University

Press, 1995.
[9] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features

for image classification,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 3, no. 6, p. 610621, 1973.

[10] G. Palubinskas, “An unsupervised clustering method by entropy min-
imization,” in Maximum Entropy and Bayesian Methods, W. von der
Linden et al., Eds., Kluwer Academic Publisher, 1999, pp. 327–334.

[11] F. Kurz, D. Rosenbaum, U. Thomas, J. Leitloff, G. Palubinskas,
K. Zeller, and P. Reinartz, “Near real time airborne monitoring system
for disaster and traffic applications,” in ISPRS, Hannover, 2-5 June 2009.

[12] J. Benediktsson, J. Sveinsson, and P. Swain, “Hybrid consensus theoretic
classification,” IEEE TGRS, vol. 35, no. 4, pp. 833–843, jul. 1997.

24

In: Stilla U, Gamba P, Juergens C, Maktav D (Eds) JURSE 2011 - Joint Urban Remote Sensing Event --- Munich, Germany, April 11-13, 2011


