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Abstract 17 

The demand for accurate solar irradiance nowcast increases together with the rapidly growing 18 

share of solar energy within our electricity grids. Intra-hour variabilities, mainly caused by clouds, 19 

have a significant impact on solar power plant dispatch and thus on electricity grids. All sky 20 

imager (ASI) based nowcasting systems, with a high temporal and spatial resolution, can 21 

provide irradiance nowcasts that can help to optimize CSP plant operation, solar power plant 22 

dispatch and grid operation. The radiative effect of clouds is highly variable and depends on 23 

micro- and macrophysical cloud properties. Frequently, nowcasting systems have to 24 

measure/estimate the radiative effect during complex multi-layer conditions with strong 25 

variations of the optical properties between individual clouds.      26 

We present a novel approach determining cloud transmittance from measurements or from 27 

correlations of transmittance with cloud height information. The cloud transmittance is measured 28 

by a pyrheliometer when shaded, as the ratio of shaded direct normal irradiance (DNI) and clear 29 

sky DNI. However, for most clouds, direct transmittance measurements are not available, as 30 

these clouds are not shading the used pyrheliometers. These clouds receive an estimated 31 

transmittance value based on (1) their height, (2) results of a probability analysis with historical 32 

cloud height and transmittance measurements as well as (3) recent transmittance 33 

measurements and their corresponding cloud height. Cloud heights are measured by a 34 

stereoscopic approach utilizing two ASIs. We discuss site dependencies of the presented 35 

transmittance estimation method and the potential integration of automatic cloud classification 36 

approaches.   37 

We validated the cloud transmittance estimation over two years (2016 and 2017) and compare 38 

the probabilistic cloud transmittance estimation approach with four simple approaches. The 39 
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overall mean-absolute deviation (MAD) and root-mean-square deviation (RMSD) are 0.11 and 40 

0.16 respectively for transmittance. The deviations are significantly lower for optically thick or 41 

thin clouds and larger for clouds with moderate transmittance between 0.18 and 0.585.  42 

Furthermore we validated the overall DNI forecast quality of the entire nowcasting system, using 43 

this transmittance estimation method, over the same data set with three spatially distributed 44 

pyrheliometers. Overall deviations of 13% and 21% are reached for the relative MAD and RMSD 45 

with a lead time of 10 minutes. The effects of the chosen data set on the validation results are 46 

demonstrated by means of the skill score.  47 
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1 Introduction 52 

1.1 Motivation and state of the art 53 

Substantial price drops especially in photovoltaic (PV) but also in concentrating solar thermal 54 

power (CSP) generation lead to a notable growth of the total share of solar energy within our 55 

grids. Estimations for the total global PV electricity contributions for the year 2030 vary largely 56 

from 4.1% to 15.9% (Breyer et al. 2017). However, the variable nature of the incoming 57 

downward shortwave solar radiation impacts the dispatched solar electricity and poses 58 

operational challenges for CSP plants (Hirsch et al. 2014) as well as electricity grids (Perez et 59 

al. 2016). Attenuation in clouds induces the strongest contribution of intra-hour variability 60 

(Schroedter-Homscheidt et al. 2018). The magnitude of solar irradiance scattering and 61 

absorption, causing the attenuation, depends on various micro- and macrophysical properties of 62 

the clouds (Hess et al. 1998). The solar irradiance arriving on the ground can be predicted by 63 

forecasting systems, which observe and analyze the present cloud cover. Intra-hour solar 64 

irradiance forecast could be used to reduce needed backup/storage capacities (Chen et al. 65 

2017) and optimize the operation of CSP power plants (Noureldin et al. 2017) and electricity 66 

grids (Inman et al. 2013).  67 

Due to current temporal and spatial resolution constrains, satellite based systems and numerical 68 

weather models are not suitable for intra-hour forecast (Schroedter-Homscheidt & Gesell 69 

2016; Lorenz et al. 2009). All sky imager (ASI) systems can provide the required temporal and 70 

spatial resolution for such short-term intra-hour forecasts.  71 

ASI based nowcasting systems detect clouds in the sky images, geolocate them, identify their 72 

motion and analyze their radiative effect. Cloud detection algorithms can be based on a set of 73 
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fixed thresholds applied to the images’ RGB values (e.g. Heinle et al. 2010; Kazantzidis et al. 74 

2012), clear sky libraries (e.g. Chow et al. 2011; Wilbert et al. 2016a) or machine learning 75 

approaches (e.g. Taravat et al. 2015; Ye et al. 2017). Geolocation of clouds can be achieved by 76 

stereoscopic approaches (e.g. Nguyen et al. 2014; Blanc et al. 2017; Kazantzidis et al. 2017) 77 

or by introducing additional supplementary remote sensing of cloud heights (e.g. Schmidt et al. 78 

2016; Richardson et al. 2017). The most widely used cloud tracking approaches are based on 79 

block matching (e.g. Nguyen et al. 2014; Blanc et al. 2017; Kazantzidis et al. 2017) or optical 80 

flow algorithms (e.g. Huang et al. 2012; West et al. 2014; Chow et al. 2015). The radiative 81 

effect of clouds can be analyzed by radiative transfer models. Mejia et al. 2016 couples 82 

synthetic overcast sky images with a radiative transfer model and estimates the cloud optical 83 

thickness from the images. Tzoumanikas et al. 2016 classifies the dominant cloud type from 84 

ASI images and studies the radiative effect by a radiative transfer model and aerosol information 85 

gathered by a Cimel sun photometer. Another option to analyze the radiative effect, are 86 

numerous spatially distributed solar irradiance measurements on the ground (e.g. Schmidt et 87 

al. 2016).  88 

1.2 Objective of presented work  89 

In previous publications we presented and validated a nowcasting system with individual cloud 90 

objects (Nouri et al. 2018, Kuhn et al. 2017). Each cloud object receives corresponding 91 

attributes such as height, position, motion and transmittance. The image processing consists of 92 

the cloud segmentation with a four dimensional clear sky library (Wilbert et al. 2016a), 93 

stereoscopic cloud geolocation (Nouri et al. 2019), a block matching cloud tracking approach 94 

(Nouri et al. 2019) and the cloud transmittance estimation approach, which is the main topic of 95 

this paper. Finally spatial DNI maps with lead times up to 15 minutes ahead in steps of 1 minute 96 

and edge lengths of 8 km are created (Nouri et al. 2018). Also global horizontal irradiance (GHI) 97 
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maps and global tilted irradiance (GTI) maps can be created, but this is not the scope of this 98 

work. We present a probabilistic cloud transmittance estimation method, based on historical and 99 

recent cloud height and transmittance measurements. The required cloud height is measured 100 

with a stereoscopic method described in Nouri et al. 2019. The transmittance of clouds (T) for 101 

the instrument specific field of view can be measured by ground based pyrheliometer (Raschke 102 

& Cox 1983; Zangvil & Lamb  1997), as the ratio of shaded (Ish) and clear sky irradiance (Icl) 103 

according to Equation 1.  104 

� = 	 ��� ���⁄  
Equation 1 

In this work, the attenuation of the direct solar beam is measured with a CHP1 Kipp&Zonen 105 

pyrheliometer (5° field of view). For the determination of the clear sky DNI, the Linke turbidity is 106 

calculated from DNI measurements according to Ineichen & Perez 2002. Shaded DNI 107 

measurements are rejected using the method from Hanrieder et al. 2016 & Wilbert et al. 108 

2016b. The current Linke turbidity is calculated by the most recent and unshaded Linke turbidity 109 

measurements, weighting more recent measurements stronger. The predicted clear sky DNI is 110 

calculated with the current Linke turbidity according to Ineichen & Perez 2002. The used clear 111 

sky DNI is validated over a two year period (2016 and 2017). An overall relative MAD of roughly 112 

1% is observed, which is considered as acceptable for the nowcasting system.  113 

The used nowcasting system creates irradiance maps with an edge length of 8 km and forecasts 114 

up to 15 minutes ahead. Various clouds detected by the ASIs might cast a shadow on the 115 

observed area within the next 15 minutes. The angular distance of relevant clouds to the sun as 116 

seen depends on the cloud height and speed. For some of these clouds a transmittance 117 

measurement might be available, but for many clouds the transmittance cannot be measured 118 

directly (see Figure 1). A homogenous average transmittance, corresponding to the last 119 
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measured transmittance values, for all visible clouds might be acceptable as a first 120 

approximation during single-layer conditions. However, this approach would lead to increased 121 

uncertainties during complex but frequent multi-layer conditions (Wang et al. 2000; Li et al 122 

2011). Therefore, an extended transmittance allocation approach is needed.  123 

 124 

Figure 1: Sky images of an ASI located in close proximity to a pyrheliometer (Left) single-layer day (Right) multi-layer 125 
day with different cloud types. 126 

1.3 Radiative effect of different cloud classes and cloud height layers 127 

A probabilistic approach is chosen which is motivated by two facts. Firstly vertical cloud profiles 128 

hold important information for distinct cloud types (Frederick & Steele 1995; Wang & Sassen 129 

2001; Kahn et al. 2008). In general the troposphere is discretized into a lower, middle and high 130 

layer. Cumulus (Cu), stratus (St) and stratocumulus (Sc) clouds are associated to the lower 131 

layer, altocumulus (Ac) and altostratus (As) to the middle layer and cirrus (Ci), cirrocumulus (Cc) 132 

and cirrostratus (Cs) to the higher layer (Rossow & Schiffer 1999). Vertical thick clouds like 133 

nimbostratus (Ns) and deep convective clouds can extend over all three layers. The heights of 134 

the borders between these layers are not static and dependent on latitude (Manabe 1969; 135 

Ohring & Adler 1978; Sassen & Wang 2012). Sassen & Wang 2012 divide the earth in the 136 

three latitude belts, polar, mid-latitude and tropics (see Table 1), with corresponding borders 137 

between the three layers.  138 



   

8 

Table 1: Borders of troposphere low, middle and upper layer for the three latitude belts polar, mid-latitude and tropics 139 
as defined by Sassen & Wang 2012 (values in brackets describe transition zone between layers) 140 

 
Low layer Middle layer high layer 

Polar 
(> 66°33’ north and south) 0 km < h ≤ 1.8 km (2.4 km) 

(1.8 km) 2.4 km < h ≤ 
5.0 km (7.0 km) h > (5.0 km) 7.0 km 

Mid-latitude 
(23°26’ to 66°33’ north and south) 0 km < h ≤ 1.8 km (2.4 km) 

(1.8 km) 2.4 km < h ≤ 
6.0 km (8.0 km) h > (6.0 km) 8.0 km 

Tropics 
(< 23°26’ north and south) 0 km < h ≤ 1.8 km (2.4 km) 

(1.8 km) 2.4 km < h ≤ 
7.0 km (10.0 km) h > (7.0 km) 10.0 km 

 141 

The second fact motivating the probabilistic approach is that different cloud types can be 142 

associated to different optical properties (Chen et al. 2000). Solar irradiance is attenuated in the 143 

atmosphere by absorption and scattering. The attenuation caused by clouds is described by the 144 

cloud optical thickness (COT). The COT of a cloud depends on micro- and macrophysical 145 

properties such as particle size distribution, shape, water path (WP), thermodynamic phase and 146 

vertical extent (King 1987; Hess et al. 1998; Chen et al. 2000; Kokhanovsky 2004). Especially 147 

WP, which describes the vertically integrated water content (WC), and effective particle size are 148 

proportional to COT (Lohmann & Neubauer 2018). The average global WP of low and middle 149 

layer clouds is significantly larger than compared to high layer clouds (Rossow & Schiffer 150 

1999). Larger effective particle size leads to stronger absorptance whereas smaller effective 151 

particle size increases the scattering (Chang& Li 2002). Rossow & Schiffer 1999 used within 152 

International Satellite Cloud Climatology Project (ISCCP) nine cloud types discretized by cloud 153 

top pressure and COT. Hahn et al. 2001 relate ISCCP data to visual observations from the 154 

ground and reduce the ISCCP cloud type definition to four distinguishable types: all low layer 155 

clouds (Cu, Sc, St and fog), optically thin middle layer clouds (Ac and thin As), cirrus clouds (Ci, 156 

Cs and Cc) and thick high –topped clouds (cumulonimbus (Cb), Ns and thick As). The ISCCP 157 

data set states the lowest average COT with 2.2 for the cirrus clouds. Cirrus clouds consist 158 

almost exclusively of nonspherical ice crystals of various shapes (Fu 1996). The optical 159 

properties differ significantly between ice crystals and spherical liquid drops. The extinction 160 
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coefficients of water clouds are one or two orders of magnitude greater than those of ice clouds 161 

with the same WP (Sun & Shine 1994). The effective particle size is at least one order of 162 

magnitude greater for ice particle compared to liquid particle with the same WC. Thus, the 163 

chance of multiple scattering is greater for water clouds (Sun & Shine 1994). In more recent 164 

studies with combined radar and lidar as well as CloudSat and CALIPSO measurements, the 165 

global average COT of ice clouds are found around 1 with an ice WP of 25 gm-2 (Hong & Liu 166 

2016). The radiative properties of mixed phased clouds have to be considered too. Low layer 167 

and middle layer clouds are often considered as purely liquid clouds and high layer clouds as ice 168 

clouds. The reality is somewhat more complex. Clouds with temperatures above 0°C consist of 169 

liquid particles and clouds with temperatures below -40°C consist of ice particles. However, in 170 

between clouds may consist of supercooled liquid particles, ice particles or a mixture 171 

(Pruppacher & Klett 1997). Around 30% of all clouds within the temperature range of -8°C and 172 

-26°C consist of mixed phase clouds (Sun & Shine 1994). The related strong variation of the 173 

optical thickness can be described roughly by a linear function of the ice fraction, with optically 174 

thicker liquid dominated clouds to optically thinner ice dominated clouds (Sun & Shine 1994). 175 

Especially clouds from the middle troposphere layer have temperatures associated with mixed 176 

phase clouds. Ac clouds are liquid dominated and As clouds ice dominated (Sassen & Wang 177 

2012).  178 

There is no simple relation between cloud height, type and optical thickness, due to the highly 179 

variable micro- and macrophysical nature of clouds. However, a tendency exists for mainly 180 

optically thick low layer liquid clouds, optically moderate to thick middle layer clouds and 181 

optically thin high layer ice clouds. Therefore, a probabilistic approach, including historical and 182 

current cloud height and transmittance measurements (see Figure 2), seems feasible to relate 183 

cloud height and transmittance for cloud transmittance estimations (if needed).  184 
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 185 

Figure 2: Rough structure of probabilistic cloud transmittance estimation approach 186 

Section 2 of this paper presents the nowcasting and validation test set up. Section 3 describes 187 

the transmittance estimation and allocation method. The results of a validation with a data set of 188 

two years are presented in section 4. Site dependencies of the presented approach as well as 189 

the potential of an automatic cloud classification for the improvement of the used transmittance 190 

estimation method are discussed in section 5. The conclusion is given in section 6. 191 

2 Nowcasting and validation instrumentation and data  192 

The nowcasting system used in this study consists of two ASIs (Mobotix Q24 surveillance 193 

cameras) and one CHP1 pyrheliometer. The DNI data quality check is done according to 194 

Geuder et al. 2015. The cameras and pyrheliometer are cleaned each weekday. Hemispherical 195 

sky images are taken every 30 s.  196 

The studied nowcasting system is located at the Plataforma Solar de Almería (PSA) in southern 197 

Spain (latitude: 37.09° (north) and longitude: -2.36° (east) see Figure 3). Two additional 198 

reference pyrheliometers, used for the forecast validation, are placed north of the cameras (see 199 

Figure 2). Additional cloud base height (CBH) measurements are taken by a CHM 15k Nimbus 200 
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ceilometer from the G. Lufft Mess- und Regeltechnik GmbH. The ceilometer data are used for 201 

the probability analysis described in section 3.   202 

574 cloudy days distributed over the years 2014 to 2017 are used for the probability analysis. A 203 

total of 316419 valid transmittance measurements are detected within this data set. The 204 

complete years 2016 and 2017 are used for the validation (see section 4) of the transmittance 205 

estimation method. The data set of the probability analysis and the data set of the validation 206 

data set have no overlap. The probability analysis data set considers only data samples with 207 

transmittance measurements, whereas the validation data set considers only data sample with 208 

estimated transmittance values.   209 

 210 

 211 

Figure 3: Aerial image of PSA with markers for the ASIs, pyrheliometer and ceilometer (Source: Google Earth 212 
[Accessed: 05.05.2018]). 213 
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3 Determination of cloud transmittance  214 

3.1 Analysis of the relation between cloud height and transmittance 215 

The nowcasting system treats clouds as individual objects with universal constant properties 216 

within a single cloud. However, real clouds consist of complex inhomogeneous structures with 217 

horizontal (Titov 1998; Madhavan et al. 2016) and vertical (Chang and Li 2002; Kikuchi et al. 218 

2006) variabilities, which affect the optical properties. Moreover, cloud boundaries are not clear. 219 

Koren et al. 2007 describes a so-called twilight zone around the clouds. This twilight zone can 220 

extend tens of kilometers away from the clouds and consist of cloud fragments and hydrated 221 

aerosols. Bar-Or et al. 2010 differentiates the sky in cloud free and cloud field, where the cloud 222 

field consists of the clouds and the twilight zone with corresponding cloud properties. This 223 

spatial uncertainty of cloud boundaries is reflected by DNI measurements, making unambiguous 224 

transmittance measurements frequently challenging. However, reliable transmittance 225 

measurements are needed for the probability analysis. To study stable transmittance 226 

measurements DNI measurements with a temporal resolution of 5 s are used. Transmittance 227 

measurements are only considered if the standard deviation is less or equal 0.05 over a time 228 

period of ±20 s. This threshold is determined empirically. Transmittance measurements are 229 

compared with cloud heights measured by a ceilometer. Ceilometer measurements are chosen 230 

for the probability analysis, as they are considered to be more accurate in comparison to ASI 231 

derived cloud heights (Nouri et al. 2019), which show especially for higher cloud layers a 232 

stronger dispersion. ASI derived cloud height information could be used, but for this study we 233 

aim to create a data base with the highest possible accuracies to test the limitations of our cloud 234 

estimation approach. Yet, the ceilometer is limited to cloud measurements directly above the 235 

sensor. Thus, the cloud height measured by the ceilometer and the cloud transmittance 236 
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determined by a close by pyrheliometer often do not belong to the same cloud. Therefore, we 237 

confine the probability analysis to conditions with constant lowest CBH. We define these 238 

conditions as having standard deviations of the ceilometer measurements less or equal to 500 m 239 

over a time period of ±15 minutes. Furthermore, measurements are only considered if the sun 240 

elevation angle is above 10° as for very small solar elevations the clouds shading the 241 

pyrheliometers are far away from the clouds above the ceilometer.  242 

The probability analysis is performed on 574 cloudy days between January 2014 and December 243 

2017 at PSA. A total of 316419 valid transmittance measurements with single-layer cloud 244 

conditions are available. Figure 4 shows the occurrence of cloud height readings as measured 245 

by the ceilometer within this time period.  246 

 247 

Figure 4: Histogram of cloud height readings as measured by the ceilometer used for the probability analysis.  248 

Cloud heights are discretized in five height ranges from 0 to 12.5 km in 2.5 km steps. Readings 249 

above 12.5 km are not considered, due to their scarcity (see Figure 4). The lowest range 250 

describes all low layer clouds, whereas the second and third layer describes the middle layer 251 
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clouds and the last two ranges the high layer clouds. Figure 5 depicts the transmittance 252 

measurement distribution over the five height ranges as box plot. The expected increase of 253 

transmittance with cloud height is clearly visible. The average transmittance measurements from 254 

the lowest to the highest cloud range are 0.06, 0.15, 0.36, 0.52 and 0.68. Especially the lowest 255 

height range shows unambiguous results. The moderate middle height range 2.5 to 5.0 km as 256 

well as the highest range 10.0 to 12.5 km show a comparatively low variability in transmittance. 257 

The 25th and 75th percentile cover a transmittance range of 0.16 and 0.29 respectively. The 258 

strongest variabilities in transmittance occur in the height ranges 5.0 to 7.5 km and 7.5 to 259 

10.0 km, with a covered transmittance range by the 25th and 75th percentile of 0.64 and 0.54 260 

respectively. 261 

 262 

Figure 5: Transmittance readings discretized over cloud heights from 574 cloudy days taken at the PSA.  263 

For the further analysis five arbitrary transmittance ranges from 0 to 0.9 in 0.18 steps are 264 

defined. Optically very thin clouds with transmittance above 0.9 are not considered by the 265 

nowcasting system. A reliable detection of these optically very thin clouds by the ASIs cannot be 266 

assured. The occurrence probability of the defined transmittance range within the height ranges 267 

is analyzed for each of the 574 days separately. The box plots in Figure 6 show the probability 268 

distribution of transmittance range occurrence within the five height ranges over all days. For the 269 
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two lowest height ranges, the average probability for optically very thick clouds (0 ≤ T < 0.18) are 270 

93% (0 ≤ h < 2.5 km) and 77% (2.5 ≤ h < 5.0 km). The remaining transmittance ranges have an 271 

average probability below 10%. The height ranges 5.0 to 7.5 km and 7.5 to 10.0 km show the 272 

strongest dispersion in probability of transmittance. In the case of the height range 5.0 to 7.5 km 273 

the highest average probability remains with the optically very thick clouds (42%). However, the 274 

average probability for optically thin clouds (0.72 ≤ T ≤ 0.9) rises to 21%. An almost inverse 275 

situation is observed for the height range 7.5 to 10.0 km, with an average probability of 21% for 276 

the optically thick clouds and 34% for the optically thin clouds. For both height ranges the 277 

remaining transmittance ranges show a significantly high average probability above 10%. The 278 

average probability for thick clouds is quite low with 2% (0 ≤ T <0.18) and 6% (0.18 ≤ T <0.36) 279 

for the highest cloud height range. On the opposite side of the transmittance spectrum the 280 

average probabilities are 23% (0.54 ≤ T < 0.72) and 54% (0.72 ≤ T ≤ 0.9). 281 

  282 
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    283 

    284 

 285 

Figure 6: Probability of cloud transmittance occurrence for different cloud transmittance and cloud height ranges from 286 
574 cloudy days taken at the PSA.   287 
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3.2 Cloud transmittance estimation method for the nowcasting 288 

system  289 

The transmittance estimation for the nowcasting system is based on the ASI derived cloud 290 

object specific cloud height. Average relative mean-absolute deviations (MAD) of ≈10%, ≈18% 291 

and ≈22% of the ASI cloud heights compared to the ceilometer cloud heights were observed for 292 

low layer, middle layer and high layer clouds respectively (Nouri et al. 2019). The possible 293 

deviation of ASI derived and ceilometer derived cloud heights could lead to erroneous 294 

transmittances. These errors are estimated to be acceptable for the method given the 295 

distribution of transmittances within each cloud height and the wide height bins. Shadow 296 

projection is done individually for each cloud. Thus, the responsible cloud is known together with 297 

its corresponding cloud height and transmittance measurement. The nowcasting system saves 298 

the recent transmittance measurements and cloud height information in a data base. The 299 

transmittances of all detected clouds in the sky without transmittance measurement are 300 

determined based on (1) the cloud height, (2) the probability analysis results and (3) recent 301 

transmittance measurements. The flow chart for the transmittance estimation method, which 302 

explains the method in detail including examples, is shown in Figure 7.  303 

 304 

  305 
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 306 

 307 

 308 

Figure 7: Flowchart for the transmittance estimation with historical results from the probability analysis and recent 309 
cloud transmittance and height measurements within the nowcasting system (h: cloud height, Tmeas: measured 310 

transmittance, Test: estimated transmittance and Pr: average probability corresponding to cloud transmittance and 311 
cloud height range). Examples of the three options are given marked by *. 312 
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4 System validation  313 

4.1 Validation of transmittance estimation approach  314 

Sky images of a two years data set (2016 and 2017) taken at PSA are processed with the 315 

nowcasting system including the transmittance estimation approach described in section 3. DNI 316 

maps for the current situation and forecasts up to 15 minutes ahead in 1 minute steps are 317 

created. Each valid transmittance measurement over the 2 years is saved into a database. 318 

Transmittance measurements are gathered in around 14.2% of all processed image series 319 

(considering only conditions with clouds). The validation method utilizes all corresponding DNI 320 

maps with lead time 0 and 1 minute describing the time stamps of the transmittance 321 

measurements. The actual cloud transmittance measurement is applied to the DNI map with a 322 

lead time of 0 minute. The clouds responsible for the transmittance measurement received 323 

previously to the transmittance measurement a transmittance estimation according to section 324 

3.2, which is known from the DNI map with a lead time of 1 minute (see Figure 8). Thus a 325 

comparison between previously estimated and later measured cloud transmittance, 326 

corresponding to the same cloud, is possible. 327 

  328 
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 329 

Figure 8: Illustration matching transmittance measurements with previously estimated transmittance values from the 330 
same cloud. (Left) cloud with estimated cloud transmittance 1 minute prior to actual transmittance measurement. 331 

(Right) Cloud with transmittance measurement. 332 

A scatter density plot is shown in Figure 9. Accumulated relative frequencies of each column 333 

add up to 100%. Overall a good agreement is reached with the strongest deviations for the 334 

moderate transmittance ranges. A frequent transmittance overestimation is apparent. This is due 335 

to two causes. Firstly, the cloud height measurements for the probability analyses are obtained 336 

by a ceilometer. As mentioned before, the ceilometer measurements are limited to clouds 337 

directly above the sensor. Thus, often the cloud height and cloud transmittance measurements 338 

do not belong to the same cloud. This issue is addressed by limiting the data set of the 339 

probability analysis to conditions with a constant lowest CBH, assuming quasi constant cloud 340 

heights for all visible clouds. This limits the probability analysis almost entirely to single-layer 341 

conditions. Multi-layer conditions are only considered in the case of a continuous lowest layer 342 

overcast condition, which is a rare case for the PSA. But in general the occurrences of multiple 343 

cloud layers are not rare. In a global scale, multi-layer conditions occur in around 42% of all 344 

cases (Wang et al. 2000). The total attenuation increases with these multi-layer conditions since 345 

the direct solar rays have to pass through several cloud layers. The validation period includes 346 
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such multi-layer conditions, but receives cloud transmittance estimation corresponding mainly to 347 

single-layer conditions. Secondly, the cloud height validation of the nowcasting system detected 348 

a tendency for a slight overestimation of the cloud height (Nouri et al. 2019), which leads 349 

according to the results of the probability analysis to transmittance overestimations.  350 

 351 

Figure 9: Scatter density plot transmittance estimation over transmittance measurement for the validation data set. The 352 
color coding represents the relative frequency for each pixel in a column of the scatter density plot. Accumulated 353 

relative frequencies of one column add up to 100%. 354 

Figure 10 shows the MAD and root-mean-square deviation (RMSD) within transmittance ranges 355 

(0.045 step size) and the corresponding data density. Nearly 25% of all transmittance 356 

measurements belong to the optically very thick clouds with T ≤ 0.045. Each of the remaining 357 

transmittance ranges contains less than 10% of the data. The comparatively high share of 358 

optically very thick clouds is partially due to multi-layer conditions, which often attenuate the 359 

majority of direct irradiance.  360 

The MAD amounts to 0.06 for the optically very thick clouds and rises to a maximum of 0.20 with 361 

0.315 ≤ T < 0.36. Afterwards the MAD drops down to 0.03 for optically thin clouds with 362 

0.855 ≤ T ≤ 0.9. The higher deviations for the moderate transmittance ranges comply with the 363 
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results of the probability analysis. The strongest occurrences of the moderate transmittances are 364 

found for the middle cloud layer and the lower part of the higher cloud layer up to 10 km (see 365 

Figure 5). These are also the layers with the strongest transmittance dispersion. This comes not 366 

as a surprise, since especially the middle troposphere covers a wide temperature range, which 367 

enables supercooled liquid, ice and mix particle clouds. Thus, the determination of optical 368 

properties is more difficult for the middle layer (Sassen & Wang 2012; Kayetha & Collins 369 

2016).   370 

 371 

Figure 10: MAD, RMSD and data density over transmittance ranges for the validation data set. 372 

The overall average MAD and RMSD over the entire data set are 0.11 and 0.16 respectively. It 373 

has to be pointed out, that these deviations are only relevant if estimates for the transmittance 374 

are required. Often consecutive transmittance measurements occur (due to horizontally large 375 

clouds/cloud fields), which makes the estimation of clouds transmittance unnecessary for many 376 

relevant clouds that shade the target area and leads to a significant reduction of the deviations. 377 

This is especially the case for the current conditions and the immediate future of a couple of 378 



   

23 

minutes ahead. For nowcast looking further into the future, the clouds transmittance estimation 379 

becomes more important. 380 

4.2 Benchmarking of different cloud transmittance approaches  381 

In the following we will compare our probabilistic transmittance estimation approach with four 382 

more basic transmittance estimation approaches.  383 

 Binary approach with a transmittance of 0 for all clouds.  384 

 Binary approach with a transmittance of 0.32 for all clouds (average transmittance over 385 

entire data set of the probability analysis). 386 

 Cloud transmittance estimation according to the average transmittance within the 387 

corresponding cloud height bin as given in Figure 5 (This is equivalent to the presented 388 

probabilistic approach if no recent transmittance measurements are available). 389 

 A persistence approach, which allocates to all clouds a transmittance corresponding to 390 

the last measured transmittance. 391 

The additional transmittance approaches are validated according to the procedure described in 392 

section 4.1. The overall average MAD and RMSD of all approaches are stated in Table 2. The 393 

lowest deviations are achieved with the probabilistic approach. The strong deviations of the 394 

binary approaches are no surprise, considering the observed distribution in cloud transmittance 395 

(see section 3.1). The advantage of the probabilistic approach compared to the remaining 396 

approaches can be explained by the combination of historical with recent information, whereas 397 

the simple approaches use only historical or recent information.  398 

  399 
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Table 2: Overall MAD and RMSD for different transmittance estimation approaches 400 

 
MAD RMSD 

Probabilistic approach 0.11 0.16 

Binary 0 0.39 0.49 

Binary 0.32 0.27 0.31 

Historical average height dependent  0.24 0.30 

Persistence 0.17 0.26 

 401 

The deviations discretized over transmittance ranges are illustrated in Figure 11. The binary 402 

approaches dominate the bins they are related to, with a linear increasing deviation from these 403 

bins. The advantage of the probabilistic approach is most visible for optical very thick or very thin 404 

clouds.    405 
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406 

 407 

Figure 11: MAD, RMSD and data density over transmittance ranges for the validation data set for different transmittance 408 
estimation approaches 409 

 410 
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4.3 Validation of DNI forecast  411 

Three reference pyrheliometer are used to validate the overall forecast quality of the irradiance 412 

maps, according to the approach described in Kuhn et al. 2017. Pixels from the irradiance maps 413 

corresponding to pyrheliometer positons are compared to the reference DNI values on 1 minute 414 

averages (see Figure 12 (left)). Relative deviation metrics of the validation period (two years) are 415 

shown in Figure 12 (right). The relative bias, MAD and RMSD for lead time 0 minutes is 416 

approximately 2%, 4% and 8%, respectively, and rises up to 5%, 15% and 23%, respectively, for 417 

a lead time of 15. The deviations increase for higher lead times, due to uncertainties of the used 418 

tracking and transmittance estimation method. As mentioned before, the transmittance 419 

estimations become more important, for predictions further into the future. 420 

         421 

Figure 12: (Left) Example DNI map with marked positions of reference pyrheliometers (Right) Relative statistics of 422 
irradiance maps validation with three reference pyrheliometer including the years 2016 and 2017.   423 

The comparison of nowcasting validation results is a difficult task, due to the complex and 424 

variable nature of the processes within the earth’s atmosphere. The results of the same system 425 

may vary strongly during different ambient conditions. For the comparison of systems, often the 426 

skill score is used (Marquez & Coimbra 2013). The skill score given as  427 
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� = 	1 − ����� �����⁄  
Equation 2 

whereas RMSDN describes the investigated nowcasting system and RMSDP a corresponding 428 

persistence forecast. The overall system skill score over the entire data set is shown in Figure 429 

13 (blue line). The skill score drops from lead time 1 to lead time 15 from around 0.11 to 0.01. 430 

However, the chosen validation data set has also a strong impact on the skill score. As we 431 

shown in this work as well as previous publications (Nouri et al. 2019), will ASI based 432 

nowcasting deviations rise in the case of multi-layer conditions including middle and high layer 433 

clouds, compared to more simple single layer conditions with low layer clouds. The orange line 434 

of Figure 13 shows the skill score, when 10% of the days are filtered. These filtered days include 435 

multi-layer conditions with middle and high layer clouds. We observe a skill score improvement 436 

of up to 10%. The comparison of two example days shows this even more clearly. The yellow 437 

curve of Figure 13 shows the skill score of a complex multi-layer day with stratus/altostratus as 438 

well as cirrus/cirrostratus clouds. The persistence forecast outperformance the presented 439 

nowcasting system on this day. On the contrary, on a single layer day with cumulus clouds, 440 

outperformance the presented nowcasting system clearly the persistence forecast (see purple 441 
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curve of Figure 13). The DNI curves of both example days are illustrated in Figure 14. 442 

 443 

Figure 13: Skill score of entire data set (blue), filtered data set without 10 % of the most complex days (multi-layer 444 
including high layer clouds)(orange), complex example day with multi-layer stratus/altostratus & cirrus/cirrostratus 445 

clouds (yellow) and simple day with single layer cumulus clouds (purple) 446 

 447 

Figure 14: DNI curves of example days (Left) example day 1 with complex multi-layer stratus/altostratus & 448 
cirrus/cirrostratus clouds (Right) simple day with single layer cumulus clouds 449 

  450 
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5 Site dependencies and the potential of automatic cloud 451 

classification  452 

5.1 Discussing site dependence  453 

The transmittance estimation approach presented here uses a probabilistic look-up table 454 

generated for and corresponding to the local conditions of PSA. Other sites might have different 455 

statistical relationships between the distribution of cloud transmittance and height. Especially 456 

latitude dependencies regarding e.g. cloud height related moisture and cloud type distributions 457 

must be taken into account (Manabe 1969; Ohring & Adler 1978; Sassen & Wang 2012). 458 

Deviations in cloud type distribution, despite equal latitude, occur due to local meteorological 459 

conditions. Furthermore, the occurrence of low layer clouds is higher in the southern hemisphere 460 

compared to the northern hemisphere, probably due to the larger proportion of ocean surfaces 461 

(Stubenrauch et al. 2006). Seasonal or diurnal dependencies of the cloud distribution 462 

(Stubenrauch et al. 2006) are currently not considered. 463 

However, the described approach always includes recent cloud transmittance measurements 464 

belonging to the actual site and uses the results of the probability analysis as weighting factors if 465 

several measured values can be considered. During operation the cloud transmittance 466 

measurements and the corresponding height measurements taken by the nowcasting system 467 

are saved into a database. Thus, the PSA probability data base is gradually improved and finally 468 

replaced by measurements belonging to the new site, improving the nowcasting quality with 469 

time.   470 
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5.2 Potential of cloud classification for improving cloud transmittance 471 

estimations 472 

Objective visual classification of clouds with its strong variation of micro- and macrophysical 473 

properties is a difficult task. A bias depending on the experience and preferences of the user is 474 

unavoidable. However, various groups developed cloud classification approaches from ASI 475 

images (e.g. Heinle et al. 2010; Kazantzidis e al. 2012; Wacker et al. 2015; Huertas-Tato et 476 

al. 2017). All of the mentioned groups use approaches with machine learning algorithms, such 477 

as the k-nearest neighbor’s or random forests algorithm. In most cases up to seven cloud types 478 

are considered, including clear sky, cumulus, stratus/altostratus, stratocumulus, 479 

cirrocumulus/altocumulus, cirrus/cirrostratus and cumulonimbus/nimbostratus (Heinle et al. 480 

2010). Huertas-Tato et al. 2017 added the class multicloud, which does not distinguish between 481 

different cloud types, but indicates if more than one cloud type is present.  482 

The cloud classification approaches from ASIs achieve high accuracies with correct hit rates 483 

around 90% for single-layer conditions (see Table 3). However, the accuracies drop significantly 484 

with random data sets including multi-layer conditions (Wacker et al. 2015).   485 

  486 
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Table 3: Some published average cloud classification accuracies   487 

 Average hit rate 

 Single-layer conditions Single & Multi-layer conditions 

Heinle et al. 2010 87.52% n/a 

Kazantzidis e al. 2012 87.90% n/a 

Wacker et al. 2015 91.70% Down to ≈ 50%  

Huertas-Tato et al. 2017 77.3% 72.60%
(
*

)
 

(
*

)
 Including multicloud class without further specification of the present cloud classes   

An accurate automatic cloud classification from the ASI images is expected to further improve 488 

the transmittance estimation approach described in section 3. The site dependency issue during 489 

the initial phase at a new site could be reduced by linking transmittance measurements directly 490 

to the cloud type rather than cloud height. Furthermore, the distinction between different middle 491 

layer cloud types with liquid dominated Ac and ice dominated As clouds would be helpful, 492 

although the optical cloud properties from the same cloud class remain variable especially for 493 

middle layer clouds (Sassen & Wang 2012; Kayetha & Collins 2016). To estimate the potential 494 

improvement, we manually classified 10% of the transmittance validation data set, introduced in 495 

section 4. The data selection considers 10% of each day, within a day the data is chosen 496 

randomly. Thus, no bias is introduced due to the data selection. Only the clouds which mask the 497 

sun from the perspective of the ASI are classified. We use the cloud classes cumulus, 498 

stratus/altostratus, stratocumulus, cirrocumulus/altocumulus and cirrus/cirrostratus according to 499 

Heinle et al. 2010. Situations with cumulonimbus/nimbostratus, which seldom occur at PSA, are 500 

rejected. The transmittance validation data set includes no clear sky conditions. Multi-layer 501 

conditions are accepted, as long as the cloud covering the sun (ASI perspective) is clearly 502 

distinguishable/classifiable. The transmittance of each manually classified cloud is known, thus 503 

we discretized transmittance ranges over cloud classes. The relative occurrence of 504 
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transmittance ranges within cloud classes is shown in Figure 15. Different colors refer to 505 

different transmittance ranges. Rather unambiguous results exist for predominantly optically 506 

thick cumulus and stratocumulus as well as predominantly thin cirrus/cirrostratus clouds. A 507 

strong dispersion is visible for the cloud classes stratus/altostratus as well as 508 

cirrocumulus/altocumulus. In particular the combined class, including low layer stratus and 509 

middle layer altostratus clouds, is unfavorable for the transmittance determination. A slightly 510 

different classification scheme is recommended to be combined with the cloud height base 511 

approach, distinguishing between separate stratus and altostratus as well as cirrocumulus and 512 

altocumulus clouds. However, the results shown in Figure 15 show a good agreement with the 513 

results of the probability analysis (section 3.1) as well as the validation of the transmittance 514 

estimation (section 4.1).  515 

 516 
Figure 15: Relative occurrence of transmittance ranges within cloud classes (manually classified). Different colors refer 517 

to different transmittance ranges. All bars of the same transmittance range add up to 100%.    518 
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6 Conclusion and outlook 519 

We presented a method to determine cloud transmittance with a cloud object based solar 520 

irradiance nowcasting system consisting of multiple ASIs and a pyrheliometer (Nouri et al. 521 

2018). Each detected cloud object receives a cloud height, determined by a stereoscopic 522 

method (Nouri et al. 2019). Some of the cloud objects receive transmittance measurements, 523 

acquired by the pyrheliometer. The remaining cloud objects need transmittance estimations. A 524 

novel probabilistic approach has been developed, correlating cloud transmittance 525 

measurements and cloud height measurements. We developed a transmittance estimation 526 

approach (suitable for real-time operation), which calculates a weighted average transmittance 527 

from recent transmittance measurements with corresponding cloud heights. The weighting 528 

factors are defined by the average probability of transmittance values within the corresponding 529 

height range. Transmittance and accurate ceilometer cloud height measurements from 574 530 

cloudy days distributed over the years 2014 to 2017 were analyzed. The results of the 531 

probability analysis show a clear correlation between low layer optically thick clouds and high 532 

layer optically thin clouds. Middle layer clouds are ambiguous with a strong dispersion from 533 

optically thin to optically thick clouds. This was to be expected, due to the micro- and 534 

macrophysical properties of middle layer clouds (Sassen & Wang 2012; Kayetha & Collins 535 

2016). Nevertheless the presented validation of the transmittance estimation procedure, over the 536 

entire years 2016 and 2017, reached an overall MAD and RMSD of 0.11 and 0.16 respectively. 537 

We compared the probabilistic transmittance estimation approach with two binary, a simple 538 

statistical and a persistence approach. The probabilistic approach outperforms clearly all of 539 

them.  540 
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Three ground based pyrheliometer stations were used to validate the overall DNI forecast 541 

according to Kuhn et al. 2017. Over the two years validation period a relative bias, MAD and 542 

RMSD of 2%, 4% and 8% respectively were found for a lead time of 0 minutes. The deviation 543 

metrics rise up to 5%, 15% and 23% respectively for a lead time of 15 minutes ahead. Cloud 544 

tracking and transmittance estimation uncertainties, are the main cause for increased deviation 545 

with higher lead times. The increase of the deviations with higher lead times are dominated by a 546 

steep rise within the first four minutes, then the deviation metrics curves flatten out. This is due 547 

to the fact that in the case of low lead times actual transmittance measurements are frequently 548 

available for the relevant clouds. For higher lead times the transmittance values of the relevant 549 

clouds are in almost all cases estimated values.  550 

Of course the validation results are affected by the chosen data set. The performance of 551 

nowcasting system will vary under different conditions. We discuss the influence of complex 552 

multi-layer conditions compared to more homogeneous single-layer on the skill score. We 553 

conclude that the comparison from nowcasting system on the basis of different data sets 554 

remains a difficult task.         555 

The site dependence of the presented approach was discussed. The cloud height and 556 

transmittance distribution of the used probability analysis represents the conditions at PSA. 557 

However, new cloud transmittance and height measurements of a new site will substitute with 558 

time the PSA data and thus improve the system accuracy    559 

ASI based cloud classifications could improve the transmittance estimation and reduce the site 560 

dependence. However, a system improvement requires particularly high classification 561 

accuracies with middle layer clouds and multi-layer conditions. Currently the highest 562 

classification inaccuracies are found with stratus/altostratus and cirrocumulus/altocumulus 563 



   

35 

(Wacker et al. 2015) as well as multi-layer conditions (Wacker et al. 2015; Huertas-Tato et al. 564 

2017). These are precisely the conditions, in which also the probabilistic approach shows the 565 

highest deviations. Furthermore the relationships between cloud type and transmittance for the 566 

cloud classes stratus/altostratus and cirrocumulus/altocumulus, which include the middle layer 567 

clouds, are as expected ambiguous. A simplified classification could be conceivable, which 568 

discretizes the cloud cover in optically thin and optically thick clouds within the cloud height 569 

ranges. This would be also a first step away from clouds with homogenous optical properties to 570 

more realistic clouds with both horizontal and vertical variability.  571 

ASI based nowcasting systems harbor a great potential for energy, meteorology and 572 

atmospheric sciences and industry. The correct assessment of the transmittance of clouds is 573 

one of the main challenges that have to be mastered. The presented approach can be used to 574 

estimate the transmittance for such nowcasting systems.  575 

Acknowledgment 576 

This research has received funding from the European Union’s FP7 Programme under Grant 577 

Agreement no. 608623 (DNICast project) and the German Federal Ministry for Economic Affairs 578 

and Energy within the WobaS project. 579 

  580 



   

36 

References 581 

 582 

Bar-Or, R. Z., Koren, I., Altaratz, O., 2010. Estimating cloud field coverage using morphological 583 

analysis, Environ. Res. Lett., 5(1), 014022. doi:10.1088/1748-9326/5/1/014022. 584 

 585 

Blanc, P., Massip, P., Kazantzidis, A., Tzoumanikas, P., Kuhn, P., Wilbert, S., Schüler, D., Prahl, 586 

C., 2017. Short-term forecasting of high resolution local DNI maps with multiple fish-eye 587 

cameras in stereoscopic mode. AIP Conf. Proc. 1850 (1), 140004. doi: 10.1063/1.4984512. 588 

 589 

Breyer, C., Bogdanov, D., Gulagi, A., Aghahosseini, A., Barbosa, L., Koskinen, O., Barasa, M., 590 

Caldera, U., Afanasyeva, S., Child, M., Farfan, J., Vainikka, P., 2017. On the role of solar 591 

photovoltaics in global energy transition scenarios. Progr. Photovoltaics 25, 727–745. doi: 592 

10.1002/pip.2885 593 

 594 

Chang, F.-L., and Z. Li, 2002: Estimating the vertical variation of cloud droplet effective radius 595 

using multispectral nearinfrared satellite measurements. J. Geophys. Res., 107, 4257, AAC 7-1-596 

AAC 7-12. doi:10.1029/2001JD000766. 597 

 598 

Chen, J., Rossow, W. B., Zhang, Y., 2000. Radiative effects of cloud-type variations. J. Climate, 599 

13, 264–286. doi: 10.1175 1520 0442 2000 013 0264 REOCTV 2.0 CO 2 600 



   

37 

 601 

Chen, X., Du, Y., Wen, H., 2017. Forecasting based power ramp-rate control for PV systems 602 

without energy storage. In: 2017 IEEE 3rd International Future Energy Electronics Conference 603 

and ECCE Asia (IFEEC 2017 - ECCE Asia), pp. 733–738. doi: 10.1109/IFEEC.2017.7992130 604 

 605 

Chow, C.W., Urquhart, B., Lave, M., Dominguez, A., Kleissl, J., Shields, J., Washom, B., 2011. 606 

Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed. Solar 607 

Energy 85, 2881–2893. doi: 10.1016/j.solener.2011.08.025 608 

 609 

Chow, C.W., Belongie, S., Kleissl, J., 2015. Cloud motion and stability estimation for intra-hour 610 

solar forecasting. Solar Energy 115, 645–655. http://dx.doi.org/10.1016/j.solener.2015.03.030. 611 

 612 

Frederick, J. E., Steele, H. D., 1995. The transmission of sunlight through cloudy skies: An 613 

analysis based on standard meteorological information. J. Appl. Meteor., 34, 2755–2761. doi: 614 

10.1175/1520-0450(1995)034<2755:TTOSTC>2.0.CO;2 615 

 616 

Fu Q., 1996. An accurate parameterization of the solar radiative properties of cirrus clouds for 617 

climate models. J Climate;9:2058–82. doi: 10.1175/1520-618 

0442(1996)009<2058:AAPOTS>2.0.CO;2 619 

 620 



   

38 

 621 

Geuder, N., Wolfertstetter, F., Wilbert, S., Schüler, D., Affolter, R., Kraas, B., Lüpfert, E., 622 

Espinar, B., 2015. Screening and Flagging of Solar Irradiation and Ancillary Meteorological Data, 623 

Energy Procedia, 69, 1989–1998. doi:10.1016/j.egypro.2015.03.205, 2015. 624 

 625 

Hahn, C. J., Rossow, W. B., Warren, S. G., 2001. ISCCP cloud properties associated with 626 

standard cloud types identified in individual surface observations. J. Climate, 14, 11–28. doi: 627 

10.1175/1520-0442(2001)014<0011:ICPAWS>2.0.CO;2 628 

 629 

Hanrieder, N., Sengupta, M., Xie, Y., Wilber, S., Pitz-Paal, R., 2016. Modeling beam attenuation 630 

in solar tower plants using common DNI measurements. Solar Energy 129, pp. 244-255. doi: 631 

10.1016/j.solener.2016.01.051 632 

 633 

Heinle, A., Macke, A., Srivastav, A., 2010. Automatic cloud classification of whole sky images, 634 

Atmos. Meas. Tech. 3 (2010) 557-567. doi: 10.5194/amt-3-557-2010 635 

 636 

Hess, M., Koepke, P., Schult, I., 1998. Optical properties of aerosols and clouds: The software 637 

package OPAC. Bull. Amer. Meteor. Soc, 79, 831–844. doi: 10.1175/1520-638 

0477(1998)079<0831:OPOAAC>2.0.CO;2  639 

 640 



   

39 

Hirsch, T., Martin, N., Gonzalez. L., Biencinto, M., Wilbert, S., Schroedter-Homscheidt, M., 641 

Chenlo, F., Feldhoff, J., 2014. Direct Normal Irradiance Nowcasting methods for optimized 642 

operation of concentrating solar technologies, DNICast project, DNIcast Deliverable 2.1. 643 

http://www.dnicast-project.net 644 

 645 

Hong, Y., Liu, G., Li, J.-L. F., 2016. Assessing the Radiative Effects of Global Ice Clouds Based 646 

on CloudSat and CALIPSO Measurements, J. Climate, 29, 7651–7674. doi:10.1175/JCLI-D-15- 647 

0799.1 648 

 649 

Huang, H., Yoo, S., Yu, D., Huang, D., Qin, H., 2012. Correlation and local feature based cloud 650 

motion estimation. In: Proceedings of the Twelfth International Workshop on Multimedia Data 651 

Mining. MDMKDD ’12. ACM, New York, NY, USA, pp. 1–9. doi: 10.1145/2343862.2343863 . 652 

 653 

Huertas-Tato, J., Rodríguez-Benítez, F.J., Arbizu-Barrena, C., Aler-Mur, R., Galvan-Leon, I., 654 

Pozo-Vázquez, D., 2017. Automatic cloud-type classification based on the combined use of a 655 

sky camera and a ceilometer. J. Geophys. Res. Atmos. 122, 11045–11061. doi: 656 

10.1002/2017JD027131 657 

 658 

Ineichen, P., Perez, R., 2002. A new airmass independent formulation for the Linke turbidity 659 

coefficient. Solar Energy 73, pp. 151-157. doi: 10.1016/S0038-092X(02)00045-2 660 

 661 



   

40 

Inman, R.H., Pedro, H.T.C., Coimbra, C.F.M., 2013. Solar forecasting methods for renewable 662 

energy integration. Prog. Energy Combust. Sci. 39, 535–576. doi: 10.1016/j.pecs.2013.06.002.  663 

 664 

Kahn, B.H., Chahine, M.T., Stephens, G.L., Mace, G.G., Marchand, R.T., Wang, Z., Barnet, 665 

C.D., Eldering, A., Holz, R.E., Kuehn, R.E., Vane, D.G., 2008. Cloud type comparisons of AIRS, 666 

CloudSat, and CALIPSO cloud height and amount, Atmos. Chem. Phys., 8, 1231-1248. doi: 667 

10.5194/acp-8-1231-2008. 668 

 669 

Kayetha, V.K., Collins, R.L., 2016. Optically thin midlevel ice clouds derived from Cloud Aerosol 670 

Lidar and Infrared Pathfinder Satellite Observations, J. Appl. Remote Sens. 10(4), 046007. doi: 671 

10.1117/1.JRS.10.046007. 672 

 673 

Kazantzidis, A., Tzoumanikas, P., Bais, A.F., Fotopoulos, S., Economou, G., 2012. Cloud 674 

detection and classification with the use of whole-sky ground-based images, Atmos. Res. 113 675 

80-88. doi: 10.1016/j.atmosres.2012.05.005 676 

 677 

Kazantzidis, A., Tzoumanikas, P., Blanc, P., Massip, P., Wilbert, S., Ramirez-Santigosa, L., 678 

2017. 5 - short-term forecasting based on all-sky cameras. In: Kariniotakis, G. (Ed.), Renewable 679 

Energy Forecasting. Woodhead Publishing Series in Energy. Woodhead Publishing, pp. 153–680 

178. doi: 10.1016/B978-0-08-100504-0.00005-6  681 

 682 



   

41 

Kikuchi, N., Nakajima, T., Kumagai, H., Kuroiwa, H., Kamei, A., Nakamura, R., Nakajima, T. Y., 683 

2006. Cloud optical thicness and effective particle radius derived from transmitted solar radiation 684 

measurements: comparison with cloud radar observations, J. Geophys. Res. 111, D07205. 685 

doi:10.1029/2005JD006363 686 

 687 

King, M. D., 1987. Determination of the scaled optical thickness of clouds from reflected solar 688 

radiation measurements. J. Atmos. Sci., 44, 1734–1751. doi: 10.1175/1520-689 

0469(1987)044<1734:DOTSOT>2.0.CO;2 690 

 691 

Kokhanovsky A. 2004. Optical properties of terrestrial clouds. Earth Sci Rev 2004;64:189–241. 692 

doi: 10.1016/S0012-8252(03)00042-4 693 

 694 

Koren, I., Remer, L.A., Kaufman, Y.J., Rudich, Y., Martins, J.V., 2007. On the twilight zone 695 

between clouds and aerosols Geophys. Res. Lett. 34 L08805. doi: 10.1029/2007GL029253  696 

 697 

Kuhn, P., Nouri, B., Wilbert, S., Prahl, C., Kozonek, N., Schmidt, T., Yasser, Z., Ramirez, L., 698 

Zarzalejo, L., Meyer, A., Vuilleumier, L., Heinemann, D., Blanc, P., Pitz-Paal, R., 2017. 699 

Validation of an all-sky imager-based nowcasting system for industrial PV plants. Prog. 700 

Photovolt.: Res. Appl. doi: 10.1002/pip.2968. 701 

 705 



   

42 

Li, J., Yi, Y., Minnis, P., Huang, J., Yan, H., Ma, Y., Wang, W., Ayers, J.K., 2011. Radiativeeffect 706 

differences between multilayered and single-layer clouds derived from CERES, CALIPSO, and 707 

CloudSat data. J. Quant. Spectrosc. Radiat. Transfer, 112, 361–375. doi: 708 

10.1016/j.jqsrt.2010.10.006 709 

 710 

Lohmann, U., Neubauer, D., 2018. The importance of mixed-phase and ice clouds for climate 711 

sensitivity in the global aerosol–climate model ECHAM6-HAM2, Atmos. Chem. Phys., 18, 8807–712 

8828. doi: 10.5194/acp-18-8807-2018 713 

 714 

Lorenz, E., Remund, J., Müller, S., Traunmüller, W., Steinmaurer, G., Pozo, D., Ruiz-Arias, J., 715 

Fanego, V., Ramirez, L., Romeo, M., Kurz, C., Pomares, L., Guerrero, C., 2009. Benchmarking 716 

of different approaches to forecast solar irradiance. 24th European Photovoltaic Solar Energy 717 

Conference, Hamburg, Germany, 21–25. 718 

 719 

Madhavan, B. L., Kalisch, J., Macke, A., 2016. Shortwave surface radiation network for 720 

observing small-scale cloud inhomogeneity fields, Atmos. Meas. Tech., 9, 1153–1166. 721 

doi:10.5194/amt-9- 1153-2016 722 

 723 

Manabe, J., 1969. Climate and the ocean circulation I. The atmospheric circulation and the 724 

hydrology of the earth surface. Mon. Wea. Rev., 97, 739-774. doi: 10.1175/1520-725 

0493(1969)097<0775:CATOC>2.3.CO;2   726 



   

43 

 727 

Marquez, R., Coimbra, C. F., 2013. Proposed metric for evaluation of solar forecasting models., 728 

Journal of solar energy engineering, 135(1). doi: 10.1115/1.4007496 729 

 730 

Mejia, F. A., Kurtz, B., Murray, K., Hinkelman, L. M., Sengupta, M., Xie, Y., Kleissl, J., 2016. 731 

Coupling sky images with radiative transfer models:A new method to estimate cloud optical 732 

depth, Atmos. Meas. Tech., 9, 4151–4165. doi:10.5194/amt-9-4151-2016. 733 

 734 

Noureldin, K., Hirsch, T., Kuhn, P., Nouri, B., Yasser, Z., Pitz-Paal, R., 2017. Modelling an 735 

Automatic Controller for Parabolic Trough Solar Fields under Realistic Weather Conditions, 23rd  736 

SolarPACES Conference 737 

 738 

Nouri, B., Kuhn, P., Wilbert, S., Prahl, C., Pitz-Paal, R., Blanc, P., Schmidt, T., Yasser, Z., 739 

Ramirez Santigosa, L., Heineman, D., 2018. Nowcasting of DNI Maps for the Solar Field Based 740 

on Voxel Carving and Individual 3D Cloud Objects from All Sky Images, AIP Conference 741 

Proceedings. Vol. 2033. doi:10.1063/1.5067196 742 

 743 

Nouri, B., Kuhn, P., Wilbert, S., Hanrieder, N., Prahl C., Zarzalejo, L., Kazantzidis, A., Blanc, P., 744 

Pitz-Paal, R., 2019, Cloud height and tracking accuracy of three all sky imager systems for 745 

individual clouds . Sol. Energy 177, 213–228. doi: 10.1016/j.solener.2018.10.079 746 



   

44 

 747 

Nguyen, D.A., Kleissl, J., 2014. Stereographic methods for cloud base height determination 748 

using two sky imagers. Solar Energy 107, 495–509. doi: 10.1016/j.solener.2014.05.005.  749 

 750 

Ohring, G., Adler, S., 1978. Some experiments with a zonally-averaged climate model, Journal 751 

of Atmospheric Science. 35, 186–205. doi: 10.1175/1520-752 

0469(1978)035<0186:SEWAZA>2.0.CO;2 753 

 754 

Perez, R., David, M., Hoff, T.E., Jamaly, M., Kivalov, S., Kleissl, J., Lauret, P., Perez, M., 2016. 755 

Spatial and temporal variability of solar energy. Found. Trends Renew. Energy 1 (1), 1–44. doi: 756 

10.1561/2700000006 757 

 758 

Pruppacher, R. H., Klett, J. D., 1997. Microphysics of Clouds and Precipitation. 2nd ed. 759 

Atmospheric and Oceanographic Sciences Library, Vol. 18, Kluwer Academic Publishers, ISBN 760 

978-0-306-48100-0 761 

 762 

Raschke, R.A., Cox, S.K., 1983. Instrumentation and technique for deducing cloud optical 763 

thickness. J. Clim. Appl. Meteorol. 22 (11), 1887 – 1893. doi: 10.1175/1520-764 

0450(1983)022<1887:IATFDC>2.0.CO;2 765 

 766 



   

45 

Richardson, W., Krishnaswami, H., Vega, R., Cervantes, M., 2017. A Low Cost, Edge 767 

Computing, All-Sky Imager for Cloud Tracking and Intra-Hour Irradiance Forecasting. 768 

Sustainability 2017. 9(4). 482. doi: 10.3390/su9040482  769 

 770 

Rossow, W. B., Schiffer, R. A., 1999. Advances in understanding clouds from ISCCP. Bull. 771 

Amer. Meteor. Soc., 80, 2261-2287. doi: 10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2 772 

 773 

Sassen, K., Wang, Z., 2012. The clouds of the middle troposphere: Composition, radiative 780 

impact, and global distribution, Surv.Geophys., 33(3–4), 677–691. doi:10.1007/s10712-011-781 

9163-x. 782 

 783 

Schmidt, T., Kalisch, J., Lorenz, E., Heinemann, D., 2016. Evaluating the spatio-temporal 784 

performance of sky-imager-based solar irradiance analysis and forecasts. Atmos. Chem. Phys. 785 

16, 3399–3412. doi: 10.5194/acp-16-3399-2016.  786 

 787 

Schroedter-Homscheidt, M., Gesell, G., 2016. Verification of sectoral cloud motion based direct 788 

normal irradiance nowcasting from satellite imagery, AIP Conf. Proc. 1734, 150007. doi: 789 

10.1063/1.4949239 790 

 791 



   

46 

Schroedter-Homscheidt, M., Kosmale, M., Jung, Sandra., Kleissl, Jan., 2018. Classifying 792 

ground-measured 1 minute temporal variability within hourly intervals for direct normal 793 

irradiances, Meteorol. Z., doi: 10.1127/metz/2018/0875 794 

 795 

Stubenrauch, C. J.,  Chedin, A., Rädel, G., Scott, N.A. Serrar, S., 2006. Cloud properties and 796 

their seasonal and diurnal variability from TOVS Path-B. J. Climate, 19, 5531–5553. doi: 797 

10.1175/JCLI3929.1 798 

 799 

Sun, Z., Shine, K. P., 1994. Studies of the radiative properties of ice and mixed-phase clouds. 800 

Quart. J. Roy. Meteor. Soc., 120, 111–137. doi: 10.1002/qj.49712051508 801 

 802 

Taravat, A., Frate, F. D., Cornaro, C., Vergari, S., 2015. Neural Networks and Support Vector 803 

Machine Algorithms for Automatic Cloud Classification of Whole-Sky Ground-Based Images, 804 

IEEE Geoscience and Remote Sensing Letters 12(3), 666–670. doi: 10. 1109/ LGRS. 2014. 805 

2356616 806 

 807 

Titov, G. A., 1998. Radiative horizontal transport and absorption in stratocumulus clouds. 808 

Journal of the Atmospheric Sciences, 55, 2549 – 2560. doi: 10.1175/1520-809 

0469(1998)055<2549:RHTAAI>2.0.CO;2 810 

 811 



   

47 

Tzoumanikas, P., Nikitidou, E., Bais, A.F., Kazantzidis, A., 2016. The effect of clouds on surface 812 

solar irradiance, based on data from an all-sky imaging system, Renew. Energy 95, 314-322. 813 

doi: 10.1016/ j.renene.2016.04.026. 814 

 815 

Wacker, S., Grobner, J., Zysset, C., Diener, L., Tzoumanikas, P., Kazantzidis, A., Vuilleumier, 816 

L., Stockli, R., Nyeki, S., Kämpfer, N., 2015. Cloud observations in Switzerland using 817 

hemispherical sky cameras, J. Geophys. Res. Atmos. 120. doi: 10.1002/2014JD022643. 818 

 819 

Wang, J., Rossow, W., Zhang, Y., 2000. Cloud Vertical Structure and Its Variations from a 20-Yr 820 

Global Rawinsonde Dataset. J. Clim. 13, 3041 – 3056. doi: 10.1175/1520-821 

0442(2000)013<3041:CVSAIV>2.0.CO;2 822 

 823 

Wang, Z., Sassen, K., 2001. Cloud type and macrophysical property retrieval using multiple 824 

remote sensors. /. Appl. Meteor., 40, 1665-1682. doi: 10.1175/1520-825 

0450(2001)040<1665:CTAMPR>2.0.CO;2 826 

 827 

West, SR., Rowe, D., Sayeef, S., Berry, A., 2014. Short-term irradiance forecasting using 828 

skycams: motivation and development. Sol. Energy. 110. 188-207. 829 

http://dx.doi.org/10.1016/j.solener.2014.08.038.  830 

 831 



   

48 

Wilbert, S., Nouri, B., Prahl, C., Garcia, G., Ramirez, L., Zarzalejo, L., Valenzuela, L., Ferrera, 832 

F., Kozonek, N., Liria, J., 2016a. Application of Whole Sky Imagers for Data Selection for 833 

Radiometer Calibration. In: EU PVSEC 2016 Proceedings, 1493–1498. doi: 834 

10.4229/EUPVSEC20162016-5AO.8.6 835 

 836 

Wilbert, S., Kleindiek, S., Nouri, B., Geuder, N., Habte, A., Schwandt, M., Vignola, F., 2016b. 837 

Uncertainty of rotating shadowband irradiometers and Si-pyranometers including the spectral 838 

irradiance error. AIP Conference Proceedings 1734. doi: 10.1063/1.4949241 839 

 840 

Ye, L., Cao, Z., Xiao, Y., 2017. DeepCloud: Ground-Based Cloud Image Categorization Using 841 

Deep Convolutional Features, IEEE Transactions on Geoscience and Remote Sensing 55(10), 842 

5729–5740. doi: 10.1109/TGRS.2017.2712809 843 

 844 

Zangvil, A., Lamb P.J., 1997. Characterization of sky conditions by the use of solar radiation 845 

data Solar Energy,61, pp. 17-22. doi: 10.1016/S0038-092X(97)00035-2 846 

 847 


