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Abstract

The inversion of soil moisture from Synthetic Aperture Radar (SAR) closure phases is intrinsically plagued by

ambiguities that affect the moisture order. This work shows a characterization of the ambiguities and a way

to solve for them with the help of interferometric coherence. This allows to properly constrain the inversion

and to retrieve the moisture signal. A data set of ALOS-2/PALSAR-2 L-band images is used as an example of

successful inversion at the scene level, with sub-kilometer resolution. The results are validated with soil moisture

products based on ASCAT and show a high degree of correlation. The raw moisture derived by the algorithm

could be immediately used to correct SAR interferometric phases; however, for applications that need absolute

moisture levels, a calibration step is likely necessary. Unexpectedly, a good performance was observed over

forested areas, which suggests a sensitivity of closure phases to tree moisture; at the same time, over pastures

and agricultural fields the closure phase signal was found relatively weak. Additional research is needed to

evaluate the applicability of the same measurements principle to shorter wavelengths and exploitation of potential

synergies with backscatter and polarimetric information.
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1. Introduction

Soil moisture is a key variable in modeling the wa-

ter cycle, energy and carbon fluxes and therefore rele-

vant for many disciplines including hydrology, meteo-

rology, and climatology (Ochsner et al. (2013); Wag-

ner et al. (2012)). Whereas moisture probes give pre-

cise point measurements, the high spatial variability

of the moisture signal limits the usefulness of single

probes or even sensor networks for characterizing a

given area (Peng et al. (2017); Crow et al. (2012)).

Remote sensing techniques are useful in sensing the

moisture field over large areas, with their limitations:

coarse spatial resolution (e.g. > 10 km), sparse tem-

poral sampling (e.g. a few days), sensitivity only to

the first centimeters of soil (i.e. no root zone mois-

ture) (Mohanty et al. (2017)). Currently, the most

successful wide-area retrieval concepts belong to the

field of microwave remote sensing, active and pas-

sive (Peng & Loew (2017); Das & Paul (2015); Kor-

nelsen & Coulibaly (2013)).

Both active and passive techniques often require

compensation of unwanted influences related to the

vegetation cycle and surface roughness (Brocca et al.

(2011); Wagner et al. (1999)). Products derived

from synthetic aperture radar backscatter cannot fully

exploit the high resolution of SAR images: exten-

sive spatial averaging is typically needed in order to

counter the instability of surface roughness (Thoma

et al. (2008)).

This paper presents a novel moisture measurement

concept based on SAR closure phases. This concept

has the potential to offer moisture products with fine

spatial resolution (e.g. 500 m or better), which is

one unmet need identified in Peng & Loew (2017),

the other being high temporal resolution. Consider-

ing the three interferograms Il,m, Im,n, In,l generated

with three images l, m, n and averaged spatially, the
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closure phase is simply the phase of the cyclic prod-

uct of the interferograms:

Φl,m,n = arg(Il,m Im,n In,l). (1)

Closure phases are interferometric observables whose

potential in SAR has not been entirely explored

yet (De Zan et al. (2015)). It has been known for

a few years that interferometric and closure phases

carry information on soil moisture (Morrison et al.

(2011); De Zan et al. (2014); Zwieback et al. (2015)),

however the retrieval of moisture levels from closure

phases has not shown any progress (Zwieback et al.

(2017)). On the other hand, there would be obvious

advantages in using closure phases instead of interfer-

ometric phases for moisture inversion: closure phases

are immune to all simple propagative effects like tar-

get displacement, delays in atmospheric propagation,

topographic effects, i.e. the usual contributors to the

interferometric phase.

The approach proposed in this contribution could

complement existing methods (radiometric or scat-

terometric) for soil moisture retrieval. However, with

this work we do not claim to introduce an operational,

efficient, and validated technique for soil moisture re-

trieval. We report first experiments with L-band data,

which we selected considering the coherence advan-

tage and the fact that closure phases are larger in L-

band compared to higher frequencies. Our first results

are promising; however, the only L-band spaceborne

SAR sensor today is PALSAR-2 onboard ALOS-2, and

for any operational soil moisture applications its spa-

tial and temporal sampling is likely insufficient. How-

ever, more satellite L-band SAR’s are being launched,

and we should prepare today for future opportunities.

The physical modelling and understanding is also

not complete: in the data set we examined, for ex-

ample, the scale of the closure phase signal is rather

weak over the (relatively small) areas of pasture and

rice fields. Surprisingly, we were able to perform con-

sistent inversions over large forested areas, where the

closure signal is very strong. All this shows the need

for further understanding before an operational algo-

rithm can be designed and the potential of closure

phases can be fully harnessed.

Apart from the potential for soil moisture retrieval,

the successful inversion of a moisture model will al-

low correcting the interferometric phases, both for

single interferograms and for multi-image interfero-

metric processing. These corrections are especially

relevant for the lower frequency SAR’s, since the effect

of moisture variations roughly scales with the wave-

length (Zwieback et al. (2017)).

In this publication we specifically address the pres-

ence of an ambiguity in the moisture model for clo-

sure phases: the same set of observed closure phases

can be explained almost equally well by different sets

of moisture levels. The ambiguity arises because the

closure phases can only partially constrain the order-

ing of the acquisitions according to moisture levels.

This is illustrated in Section 2. Once this ambigu-

ity is tackled explicitly and correctly solved, the way

is open for reliable moisture inversion (Section 3).

Section 4 presents inversion results and a compari-

son with several available products. Successful inver-

sion of moisture levels allows compensating moisture-

induced contributions to interferometric phases (Sec-

tion 5) thus improving traditional repeat-pass InSAR

products like deformation monitoring of the Earth’s

crust.

2. Ambiguities in closure phases models

2.1. Interferometric models for moisture

We want to model the interferograms as a function

of the moisture values in the two interfering acqui-

sitions, indexed by l and m. Our starting point is

Eq. (11) in (De Zan et al. (2014)), which derives the

expected value of the interferogram as a function of

the two wavenumbers (kl and km) and the scattering

profile in the soil f (z). We report it here for conve-

nience:

Il,m =

∫ ∞

0

f (z)exp(− j2kl z)(exp(− j2kmz))∗ dz. (2)

The star indicates the complex conjugation operation.

The wavenumbers kn depend on the dielectric con-

stant, which is a function of the moisture levels (θn,

in the following) and soil type (Hallikainen et al.

(1985); Bircher et al. (2016)). A good approximation

is to take the formula for normal incidence (Morrison

& Bennett (2015); De Zan et al. (2014))

k =
Æ

ω2µε, (3)

where ω is the angular frequency, µ and ε = ε(θ) are

respectively the dielectric permeability and permittiv-

ity.

Assuming an exponential scattering profile f (z) =

exp(−2α),α > 0, the expected value of the interfero-

gram is:

Il,m =
1/2

j(kl − k∗
m
) +α

. (4)
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If α = 0, the model is trivially the one of Eq. (12)

in (De Zan et al. (2014)),

Il,m =
1/2

j(kl − k∗
m
)
, (5)

and the scattering intensity at different depths is gov-

erned solely by the dielectric constant itself, or more

precisely, by the imaginary part of the wavenumbers.

Note that the interferogram in Eq. (5) is not nor-

malized: normalization is straightforward and is nec-

essary if one needs to compute interferometric co-

herences. The coherence decays approximately with

moisture difference, as one can see in De Zan et al.

(2014). The corresponding closure phase Φl,m,n is

simply the phase of the cyclic triple product

Φl,m,n = arg

�

1/2

j(kl − k∗
m
)

1/2

j(km − k∗
n
)

1/2

j(kn − k∗
l
)

�

. (6)

It is useful to consider another specialization of

Eq. (4), by discarding the imaginary part of the

wavenumbers and setting necessarily α 6= 0:

Il,m =
1/2

j(kl − km) +α
. (7)

This case describes also the SAR tomographic setting

(see Dall (2007), Eq.(9)), in which it is common to

assume that the variations of the viewing angle do not

affect the scattering profile. This model is useful to

derive an approximation to the closure phase (De Zan

et al. (2015))

Φl,m,n = arg(Il,m Im,n In,l)

≈ −α−3(kl − km)(km − kn)(kn − kl).
(8)

By further approximating kl − km ∝ θl − θm, i.e.

the soil moisture difference, one can obtain a direct

link between closure phases and moisture variations:

Φl,m,n ≈ −α
−3(θl − θm)(θm − θn)(θn − θl) (9)

where the proportionality parameter αwill have to be

properly adjusted.

2.2. Ambiguities in sorting the acquisitions according

to the moisture level

Ambiguities in closure phase models block the

way to the successful inversion of the parameters of

interest, in this particular case the moisture level,

as (Zwieback et al. (2017)) has clearly identified. In

this section we will try to shed light on the character of
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Figure 1. Closure-phase signs allow sorting acquisitions according to in-
creasing moisture, but the result is wrapped. In the example, acquisitions 5
is the driest, 6 is the wettest, as indicated by the color.
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Figure 2. Left: one possible moisture evolution is displayed with filled cir-
cles. The open circles replicate the evolution to simulate the circular wrap-
ping of the moisture ordering. Right: an alternative moisture ordering that
would generate the same closure phase signs. It corresponds to a different
selection of the ambiguity interval (dashed horizontal lines). Additional in-
formation is needed to select the correct solution.

the ambiguities. We are going to base our discussion

on the signs of the closure phases, as we observed that

ambiguities arise in the inversion when two or more

moisture histories yield a set of closure phases which

have the same signs. We start by considering the sim-

plified model for closure phases given by Eq. (9). This

model is not totally equivalent to the one of Eq. (6),

however the signs of the closure phases are identical,

as one can easily verify. The two models are there-

fore considered equivalent for our purpose, and the

conclusions will be valid for both.

It is immediate to verify that cyclical permutations

of the moisture ordering of three acquisitions will not

change the sign of Φl,m,n (Zwieback et al. (2017)).

The same extends to any number of acquisitions and

any closure phase that can be generated with those

acquisitions. Thus it follows that the signs of the clo-

sure phases can be exploited to sort the acquisitions

according to the moisture level, up to a special kind of

3



ambiguity: The signs of the closure phases are invari-

ant to cyclic permutations of the moisture order. Fig. 1

illustrates an example of the ambiguous ordering of

six acquisitions. This ambiguity means that there are

many indistinguishable sorting possibilities: for in-

stance, both orders (5,2,1,4,3,6) and (1,4,3,6,5,2) of

increasing moisture are acceptable by looking just at

the signs of the corresponding closure phases. Of

course the different permutations correspond to to-

tally different moisture trajectories in time as shown

in Fig. 2.

The central problem is therefore recovering the

right order among those allowed by the closure phase

signs. This is equivalent to finding out the acquisition

with the highest moisture level, or the lowest. In gen-

eral, with N acquisitions there are N ambiguous so-

lutions. One can think of different ways of resolving

the ambiguity either using SAR observables or exter-

nal data.

2.3. Additional data are needed to solve the ambiguities

External data (moisture data from other sensors,

or from numerical weather models) could help iden-

tifying, for instance, the acquisition with the high-

est or the lowest moisture level. Nevertheless the

availability, accuracy and spatial resolution of these

measurements is not sufficient for our objectives. It

is therefore necessary to extract this information di-

rectly from the SAR images.

Using SAR backscatter as a proxy for moisture is

also a possibility (Wagner et al. (2007)). Accord-

ing to our limited experience, it is hard to reliably

identify the wettest or the driest acquisition from the

backscatter series. Note that this is a different applica-

tion from reconstructing the moisture evolution from

the backscatter, for which there exist operational algo-

rithms. Our lack of success may also be explained by

insufficient spatial mitigation of temporal roughness

instability, or by seasonal variations in the backscatter

not related to moisture changes. In any case, we soon

abandoned this way when we found a viable solution

based on the local interferometric coherence.

The local interferometric coherence is influenced

by temporal decorrelation, volumetric decorrelation,

ground changes, and also by soil moisture. For this

reason, a direct estimation of the soil moisture from

the coherence is probably impossible. Nevertheless,

we think that the coherence can be used to unravel

the ambiguity issue: our concept is to collect a list

of rules that a wrong soil moisture ordering would

break, therefore allowing us to reject it, or at least

consider it as unlikely. For example, images with dif-

ferent levels of soil moisture should typically present

lower coherence levels than images with similar mois-

ture. At the same time one should not forget that

measured coherence values can be lower than pre-

dicted from the inverted moisture, because of tem-

poral decorrelation or other effects, but for sure they

cannot be higher. The coherence compensated with

the predicted moisture is expected to decrease with

time. These considerations allow to evaluate the like-

lihood of any given solution of the ambiguity.

3. Inversion algorithm

Our objective is the recovery of the moisture

changes that explain the closure phases. The input

data of the inversion are therefore the observed clo-

sure phases Φ̂l,m,n, whereas the moisture levels are the

unknown variables to be estimated. We collect them

in the vector θ . The inverse problem is solved by min-

imizing a function that represents how well the data

predicted by the moisture model fit the observations.

We simply took the mean square difference between

predicted and observed data:

E(θ) =
∑

l,m,n

�

Φ̂l,m,n −Φl,m,n(θ )
�2

. (10)

Due to the non-linearity of the problem the cost func-

tion presents many local minima: a nonlinear opti-

mization method would then, in theory, be necessary.

However, the global minimum of the cost function is

not necessarily associated with the correct soil mois-

ture sequence because of the ambiguities in the model

and of the data noise. For this reason, global opti-

mization algorithms are alone not sufficient to find

the correct solution of the problem.

The method we developed to estimate the soil mois-

ture consists of three parts:

(I) For each data pixel, we first establish in which

sequence the acquisitions are connected in order

to ensure monotonically increasing moisture values.

That is, we establish the moisture order, subject to

circular permutation ambiguity. The acquisitions are

now arranged in a chain like in Fig. 1;

(II) In the second part, we determine which of the

acquisitions presents the highest moisture level, we

therefore solve the ambiguity and break the moisture

circle at the correct point. This stage corresponds, for

example, to choosing the solution on the left in Fig. 2;

(III) Finally, we recover the actual moisture levels

by a global minimization of the cost function while
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constraining the variables to keep the order estab-

lished in the latter step. The next sections will en-

lighten these procedures more in detail. Figure 3

shows a schematic representation of the whole pro-

cedure.

Among all possible closure phase combinations,

only a subset contains independent data. For N im-

ages, the number of independent closure phases is

(N − 1) · (N − 2)/2. In our inversions we always use

at least as many closure phases as the number of in-

dependent ones. At the same time the number of un-

knowns is only N − 1 since we do not seem to have

enough sensitivity to estimate the starting value of the

moisture sequence and we fix it arbitrarily to a reason-

able value. With increasing number of acquisitions,

the number of independent data outgrows quickly the

number of unknowns, thus making the result more

reliable. For example, with 4 images there are 3 in-

dependent closure phases and 3 unknowns, with 12

images there are 55 independent closure phases and

11 unknowns.

Figure 3. Block diagram of the inversion algorithm.

3.1. Collection of Ambiguous Solutions

According to Section 2, due to the ambiguity of the

closure phase problem, various moisture sequences

can produce almost the same closure phases. For this

reason, a global optimization will find multiple solu-

tions with similar levels of mean square error that are

circularly similar.

In our method we run multiple times a simple min-

imization algorithm (Powell’s method) that can only

find local minima, for each run we use a different ran-

dom starting point in the moisture domain. This way,

the solutions that are produced should have compa-

rable small error and either be the correct one, or a

circularly equivalent solution, or a different solution.

If the phase noise is sufficiently low and the physical

model is correct, we assume that the most frequent

solutions and with lowest cost that are found belong

to the same moisture chain, i.e. the correct circular

ordering. The ambiguity has now to be solved, the im-

ages with the maximum and minimum moisture must

be identified to open the chain and establish the final

moisture order.

3.2. Solution of the Ambiguity

Based on the premises expounded in Sect. 2.2, we

developed a first simple algorithm which has shown to

provide acceptable results with our test cases; it might

have to be improved for other scenarios. We base

our rule on the expectation that the observed coher-

ence should be lower for acquisitions with different

soil moisture than for acquisitions with similar mois-

ture. Therefore, images which are distant in the (cor-

rect) moisture order, thus possibly having the most

different moisture values, should present the lowest

coherence levels among all. On the contrary, images

which are close in the moisture order should present

the highest levels of coherence. We exploit this to sep-

arate the wettest from the driest image. Each image

is tested for the position of the wettest element in the

chain: Let Bi be the set of measured coherence val-

ues for pairs separated by i steps in the order under

test. For each bin we select the maximum coherence

mi = max(Bi) and fit a line as a function of the bin

(i.e. through the points (i, mi) ). The image which

gives the steepest downward line is selected as the

correct one. The choice of picking the maximum

coherence instead of the average needs some expla-

nation. Note that for small moisture differences there

is no guarantee to measure high coherence as other

factors might come into play and degrade the coher-

ence. However there are typically many pairs with

small moisture difference in a data set, and we require

only the maximum of their coherences to be high. For

large moisture differences, instead, there is no doubt

that we should always observe low coherences.
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Figure 4. Example of ambiguity solution. At the top, the images chain:
(1, 3, 6, 4, 10, 9, 12, 5, 7,8, 2,11) in decreasing order as indicated by the ar-
row; the maximum value is still unknown. In the bottom, coherence plots
for two maximum candidates: 6 and 3. Each triangle is the pixel’s coherence
of an interferogram, its abscissa is the distance between the two images of
the interferogram in the supposed order. The dashed line is fitted to the max-
imum coherences of each distance: the black triangles. The outer numbers
in the top chain are the slope of the fitted lines. The steepest line is formed
when the image 6 is selected as the maximum one, as in the left plot.

Figure 4 illustrates this procedure with a real-

data example. Let us suppose that, with 12 im-

ages, the selected chain in decreasing order is:

(1,3,6,4,10,9,12,5,7,8,2,11), any circular shift of

this chain might represent the correct order of mois-

ture. To decide whether, for instance, it is more likely

for number 6 or number 3 to be wettest date, we show

the two respective coherence plots. The abscissa is the

distance in the order: if we are plotting the pixel’s co-

herence of the interferogram between images 6 and

8 when the supposed maximum is 6 (i.e. in the left

plot), the distance is 7. The gradient of the line fit-

ting the maximum coherences (black triangles) is in-

dicated close to the respective chain maximum in the

top part of the figure. It becomes clear that the num-

ber 6 is more likely to be the right choice, since it cor-

responds to the steepest downward line. In fact, if we

select the number 6 as wettest, we see that the prin-

ciple that says that images with similar moisture have

high coherence and different ones low coherence is

honored by and large.

3.3. Constrained Inversion

Once the order has been established a constrained

inversion can be performed, fixing the order of the

moisture to the selected one. We use a simple con-

strained optimizer, which runs multiple times with

different random starting points to achieve a global

search. Finally, the moisture solution with the low-

est cost is selected. The moisture of the first image

is kept constant and not inverted, as the sensitivity of

the closure phase to a moisture offset is not sufficient

to recover it.
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Figure 5. Area of Kumamoto, Japan: optical satellite photo from Google
maps service (a) and geocoded closure phase (b) with exaggerated hillshad-
ing.
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4. Results and Validation

We experimented with an ALOS-2/PALSAR-2 data

set consisting of 12 images, acquired in HH polariza-

tion from March to November, 2016 over the area of

Kumamoto, Japan.

We tested two forward models: the physical one of

Equation (6) with Hallikainen dielectric model (Hal-

likainen et al. (1985)), and the simplified one of Equa-

tion (9). The results are quite similar but the physical

model can better fit the data: its mean square error is

generally lower than the simplified model’s one. We

are therefore presenting the physical model inversion

results.

We used several products to compare with our re-

sults: the surface soil moisture product based on AS-

CAT scatterometer measurements provided by the EU-

METSAT’s H SAF project, the soil moisture product

from ESA Climate Change Initiative (ESA CCI v04.2

COMBINED), the ERA5 reanalysis product by ECMWF

and the surface soil moisture provided by the SMAP

mission (Level-4 Global 3-hourly 9 km EASE-Grid

Analysis Update). One must say that SMAP does not

provide level-2 radiometric measurements over our

area of interest because of radio-frequency interfer-

ence.

4.1. Kumamoto

Figure 5a shows the extent of the SAR image and

ground elevation of the Kumamoto area derived from

the SRTM DEM. As it can be seen from the optical

satellite photo of the area in Figure 5a, the ground

coverage includes coniferous forests, grasslands, rice

cultures, and cities. Figure 5b is an example of

geocoded closure phase, which can be compared to

the ground cover. Figure 6 shows other phase ex-

amples, it can be easily noted that forested areas of-

ten present high closure phase values, different from

grassland and urban areas.

The SAR images were acquired in stripmap mode

with 80 MHz range bandwidth yielding a range res-

olution of about 3 meters and an azimuth resolution

of about 3 meters. Interferometric processing used a

90 by 90 pixels multilooking window. Finally, after

the inversion, a median filter with a square window

of four pixels was applied, producing a final ground

resolution of about 540 meters in range and azimuth.

This resolution is limited by our ability to recover sta-

ble moisture ordering: there are chances that it can

still be improved. The mean coherence of the 66 in-

terferograms spans from 0.11 to 0.67 with an average

of 0.3.
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Figure 6. Example of different closure phases in the area of Kumamoto,
Japan. A good correlation with the ground coverage is clearly visible,
forested areas generally present larger phase levels. The closure phase is
also higher in zones where a rain event occurred (bottom right image, blue
areas).

From 12 images, 55 independent closure phases

have been produced and used for the inversion. The

results are presented in Figure 7. Moisture values for

the first SAR image are missing as it has been used as

a reference for the other dates. The bottom right pic-

ture in Figure 7 indicates the index of the image with

the highest moisture level, according to the algorithm

outcome. It can be seen that, in forested areas, the

maximum is mostly either in the sixth of tenth image,

but, randomly, also in other images. These local in-

homogeneities might be due to incorrect estimation

of the maxima. The presence of salt and pepper noise

in the estimated moisture likely indicates the picking

of a wrong maximum.

The offset and the scale of the results were cali-

brated to best fit the ASCAT data: the closure phase

is only little sensitive to offset changes, and errors in

the assumed porosity or mismodeling on our side can

influence the scaling factor.

Unfortunately we were not able to find moisture

probes in the area, the validation is therefore only
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18/4/2016 2/5/2016 16/5/2016 13/6/2016

11/7/2016 25/7/2016 8/8/2016 5/9/2016

19/9/2016 3/10/2016 31/10/2016

Figure 7. Inverted moisture values of the Kumamoto area, linearly scaled to fit ASCAT data. Bottom right: index of the image with the highest moisture level.

done with remote sensing and global reanalysis prod-

ucts. Figure 8 shows a good agreement especially

between the moisture evolution from ALOS-2 closure

phases and the ASCAT product. Both are based on ac-

tive sensors, but the measurement concepts are rather

different, one being incoherent and the other coher-

ent. The correlation with ESA CCI, ECMWF and SMAP

is less pronounced but some common features are rec-

ognizable. One cannot avoid noticing the discrepan-

cies among the different products.
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Figure 8. Comparison of Kumamoto inversion results with other available
moisture products. The ASCAT product has been scaled to volumetric mois-
ture assuming a porosity of 50%.

We have analysed our inversion results for different

classes of land cover: crop fields, grassland and forest.

The results are reported in Figure 9. The forest class

presents the largest excursion, in line with the fact

that the observed closure phases are larger in magni-

tude over forests. It appears that a single scaling law

is not enough to yield comparable soil moisture evo-

lutions for all land covers. In our case the image is

dominated by the forest and the scaling would there-

fore be appropriate only for this class.

Figure 9. Kumamoto inversion results for different land cover classes. The
scaling factor, appropriate for the average of the whole image, is probably
too small for non-forest classes, resulting is a compressed evolution.

The average brightness of the SAR images also

present a trend similar to the one in Figure 8. This can

be see in Figure 10 for different land-cover classes.

Here the backscatter variations, in dB scale, are less

pronounced for the forest class.

Figure 10. Kumamoto backscatter (σ0) for different land cover classes
(colour coding and classes as in Figure9).

The particular high closure phase areas in Figure 5f

are most probably due to a rain event, as ground radar

images from the Japan Meteorological Agency also

show similar patterns during July, 25th. Most of the

closure phases and coherence maps produced using

the image of July, 25th present such pattern. On the

contrary, it is not possible to recognize it from bright-

ness images. Finally, the estimated moisture for the

same date shows the signs of the rain event, as it can

be seen in Figure 7.

5. Interferometric Corrections

The estimation of the moisture sequence allows

compensating the interferometric phase and coher-

ence on any interferogram generated with the same

data set. Such corrections might be important to In-

SAR applications aimed at retrieving actual surface

motion, to which the moisture signal is a nuisance.

The interferometric phase caused by moisture varia-

tions will be in the order of a few centimeters (for

L-band) and affect large areas. Fig. 11 shows the cor-

rection suggested by the forward models using the

inverted moisture for an interferogram of the Ku-

mamoto data set affected by a localized rain event.

The phase variation in the scene is about 2 cm. The

coherence compensation shows that the model is not

able to predict fully the coherence loss, whereas it

explains well the observed closure phases. A possi-

ble explanation is that the rain event and moisture

change induce an additional loss of coherence which

is different in nature compared to the one modelled

in conjunction with closure phases. Similar observa-

tions can be done for a second example reported here

in Fig. 12.

6. Discussion

The performance of the inversion is influenced by

different factors. The statistical noise affecting phase

estimation is not the main concern here, since it is

possible to average sufficiently the interferograms in

space. The main issues reside with the choice of the

model and model parameter mismatch.

For the inversion we have chosen a specific law

ε = ε(θ), derived from Hallikainen et al. (1985).

Deviations from the correct model will affect the in-

verted moisture. Our simulations show that in many

cases a simple stretch of the moisture axis is enough

to compensate for the model mismatch, even when

the loss tangent is wrong, i.e. the ratio between the

real and imaginary part of the dielectric constant. The

9



25/7/2016 - 8/8/2016

a) b)

c) d)

Figure 11. Original coherence (a), modeled coherence (b), compensated
coherence (c) and modeled interferometric phase (d).

possibility to identify the correct dielectric law from

the data is still to be investigated.

An unexpected finding is that the inversion yields

consistent results over forested areas: The closure

phase signal is actually very clean over forests and the

inversion is stable, even if the model was developed

for bare soils, and soil visibility is partially blocked

over forests at L-band. A possible explanation is that

the vegetation itself is contributing to the closure

phase signal and the inverted moisture reflects the

water status of the plants. The variation of the dielec-

tric constant of trees has been demonstrated and stud-

ied in the past (see McDonald et al. (2002)) so that a

similar model to the one proposed for soils could also

apply. After all the model in De Zan et al. (2014) is

built on very simple assumptions: a semi-transparent

medium, scatterers at all depths, phase and amplitude

dependent on the moisture level through the effect of

the dielectric contant. Considering that the dielectric

behaviour of soils and wood is not so different can

explain why the two media can share the same inter-

ferometric modeling. Another important points con-

11/7/2016 - 8/8/2016

a) b)

c) d)

e) f)

Figure 12. Original coherence (a), modeled coherence (b), compensated
coherence (c), modeled interferometric phase (d), original interferogram (f)
and compensated interferogram (e).

cerns the dielectric constants which are generally very

large compared to air or vacuum. This implies a prop-

agation in the denser medium (soil or wood) which is

almost aligned with the normal to the surface, i.e. al-

most independent of the incidence angle. We expect

similar effect of surfaces oriented vertically, horizon-

tally or anything in between.

We should consider that it might be difficult to tell
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from our experiment whether closure phases are sen-

sitive to soil or vegetation moisture, as vegetation

moisture is correlated to soil moisture, possibly to soil

moisture in the root zone rather than the first few cen-

timeters of soil that L-band radar is able to sense un-

der normal circumstances.

Indeed the closure phases measured over non-

forested areas, including agricultural fields and grass-

lands, are typically very small (together with the in-

verted moisture variation). This could be an indica-

tion of an actual difference in the dynamics of mois-

ture over fields and forests, or as an inadequacy of the

model to describe both scatterers.

We notice that double-bounce scattering in the for-

est could even enhance the closure-phase signal ob-

served in the data. Each bounce contributes a phase

delay so that the final phase is the sum of all contribu-

tions. Assuming two bounces with equal effect on the

interferometric phase, the interferogram would show

a doubled phase effect, and the closure phase would

also double. Fortunately the inversion is robust to a

moderate increase of the closure phases. By looking

at Eq. (9) one can see that a linear scaling in the mois-

ture has a cubic effect on the closure phases: this gives

some robustness to scaling in the closure phases.

If the acquisitions display a significant normal base-

line variation, the interpretation of closure phases

over forests would be more difficult, as volumetric ef-

fects could contribute to closure phases, beside mois-

ture variations. In this case one should develop a

method to estimate, along with the moisture contribu-

tion, also the volumetric effect. Luckily, ALOS-2 has a

good orbit control and such effects are irrelevant.

It is worth mentioning that our inversion is not par-

ticularly efficient, but we have also not devoted much

effort in making it so, considering that other limita-

tions prevent from declaring it an operational tool.

7. Conclusions

This work has illustrated a novel method to retrieve

moisture levels from SAR closure phases, overcom-

ing the difficulties posed by ambiguities in the in-

verse problem. The inversion appears to work at sub-

kilometer scale, but validation is still difficult. In gen-

eral we have not found suitable ALOS-2/PALSAR-2

data sets over areas where large networks of mois-

ture probes have been deployed. There are actually

limited places in the world with stacks of coherent

PALSAR-2 acquisitions. To confirm that we are ob-

serving a moisture signal we have resorted to remote

sensing, in particular a good agreement was found

with EUMETSAT ASCAT moisture products. Unfortu-

nately radiometric measurements were not available

on our Kumamoto test site because of radio-frequency

interference.

The proposed inversion is not able to give absolute

moisture values, a starting point needs to be provided.

At the moment we believe that a calibration is needed

also for a scaling factor, if the dielectric law is not

known, since different dielectric laws will be almost

equivalent to a linear transformation of the moisture

axis. Whether the data themselves can tell us some-

thing about the local dielectric constant and which

is the impact of a spatially varying dielectric law are

still topics open for investigation. We observed differ-

ent behaviours for different land cover types. Future

work could also be directed at providing more effi-

cient implementations of the algorithm and at reduc-

ing the spatial averaging to a minimum.

From the fact that the inversion works well over

forests we have speculated that closure phases are

sensitive to tree moisture level variations. This should

be investigated more and might be interesting for for-

est studies. Future work should also be directed into

validation with a network of moisture probes, to as-

sess the quality of the inverse product and the need

for external calibration.

Additional interesting research questions involve

the possibility to include backscatter and polarimet-

ric information in the inversion, the feasibility of the

inversion for shorter wavelengths, the applicability of

the inversion to different types of land cover.

Apart from all difficulties working towards a mois-

ture product, the inversion allows a straightforward

correction of interferometric phases, which is inter-

esting for InSAR deformation applications, especially

to remove long-term trends.
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