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their own T cells. These T cells are administered after 
they have been engineered ex vivo to improve their natu-
ral ability to effectively kill target cells. The versatility of 
CAR T-cell therapy extends beyond hematological malig-
nancies, with ongoing research exploring its application 
in treating solid tumors, advancing HIV research, fibro-
sis, and managing autoimmune diseases [1–4].

Currently, six CAR T-cell products are FDA approved. 
Four of them (tisagenlecleucel, axicabtagene ciloleucel, 
lisocabtagene maraleucel and brexucabtagene autoleu-
cel) target CD19 for the treatment of relapsed and/or 
refractory (R/R) B-cell lymphomas such as diffuse large 
B-cell lymphoma (DLBCL), and B-cell lymphoblastic leu-
kemia (B-ALL) [5–10]. Ciltacabtagene autoleucel (cilta-
cel) and idecabtagene vicleucel (ide-cel) are currently 
the two FDA approved CAR T-cell products targeting 
B-cell maturation antigen (BCMA) for the treatment of 
R/R Multiple Myeloma (MM) [11, 12]. These therapies 
are approved for relapsed patients in ≥ 2nd line for B-cell 
lymphomas, leukemias and Multiple Myeloma. Despite 

Background
Recently, Dr. Carl June of the University of Pennsylvania 
received the prestigious 2024 Breakthrough Prize in Life 
Sciences, one of the largest science awards globally, for 
his groundbreaking contributions to the development of 
chimeric antigen receptor (CAR) T-cell therapy. This rec-
ognition underscores the profound significance of CAR 
T-cell therapies in the landscape of modern medicine. 
CAR T-cell therapy represents a revolutionary approach 
to treat cancer, which is based on killing cancer cells in 
an HLA-independent context by infusing the patient with 
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Abstract
CAR T cells are widely applied for relapsed hematological cancer patients. With six approved cell therapies, for 
Multiple Myeloma and other B-cell malignancies, new insights emerge. Profound evidence shows that patients who 
fail CAR T-cell therapy have, aside from antigen escape, a more glycolytic and weakened metabolism in their CAR 
T cells, accompanied by a short lifespan. Recent advances show that CAR T cells can be metabolically engineered 
towards oxidative phosphorylation, which increases their longevity via epigenetic and phenotypical changes. In 
this review we elucidate various strategies to rewire their metabolism, including the design of the CAR construct, 
co-stimulus choice, genetic modifications of metabolic genes, and pharmacological interventions. We discuss 
their potential to enhance CAR T-cell functioning and persistence through memory imprinting, thereby improving 
outcomes. Furthermore, we link the pharmacological treatments with their anti-cancer properties in hematological 
malignancies to ultimately suggest novel combination strategies.
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overall good response rates, a majority of MM patients 
and a significant number of patients with B-cell lympho-
mas eventually relapse [13]. One major reason for ther-
apy failure includes the loss of CD19 or BCMA, and a 
Darwinian selection of antigen negative clones [14, 15]. 
For instance, 4–33% of MM patients treated with BCMA-
directed CAR T cells, suffer from BCMA loss [11, 16, 17]. 
The most common reason for antigen-positive failure is 
the lack of T-cell persistence and exhaustion [18]. A total 
of 85% of B-ALL patients treated with CD19 CAR T cells 
showed initially remission, however almost half of them 
eventually relapsed, with no detectable CAR T cells in 
their blood [19]. Hence, durable and fit CAR T cells are 
needed for a good response.

After apheresis, T cells are genetically modified and 
reinfused into a patient. Hence, each patient receives 
another composition of T-cell subsets. Studies have 
shown that patients with poor responses to CAR T-cell 
treatment have higher levels of PD-1 and LAG-3 after 
apheresis, suggesting a lower overall T-cell fitness [20]. 
The transcriptional program of responding patient also 
differs from patients with partial response or progres-
sive disease. CAR T cells of non-responders have been 
described as effector T cells, with an exhaustion, glyco-
lytic and apoptotic gene signature, while patients who 
achieved complete responses have a manyfold higher 
frequency of CD8+ CAR T cells with a memory pheno-
type and gene signature [21–25]. Moreover, the percent-
age of memory subsets in the infused CAR T-cell product 
is associated to better clinical responses since they have 
a higher proliferative capacity [21–23, 25, 26]. Memory 
T cells possess a less differentiated phenotype and are 
essential for a durable anti-tumor effect due to their 
superior expansion potential, long-term persistence, and 
ability to become effectors upon encountering antigens. 
Hence the long-term persistence is a feature of a less dif-
ferentiated memory status [27–29]. Another important 
point to stress out is that MM is predominantly a malig-
nancy of elderly. Aged T cells are associated with a range 
of molecular changes, including mitochondrial dysfunc-
tion, alongside genetic and epigenetic alterations. This 
results in senescent T cells and an imbalance of naïve-
memory-effector T cells , which is also the case in MM 
patients [30–32]. Therefore, autologous T cells, collected 
via apheresis and used for CAR T-cell production, could 
lead to an already pre-dysfunctional product.

It has become clear that modulation of (CAR) T-cell 
metabolism leads to an improvement of therapy effec-
tiveness and outcome. In this review, we delve into the 
metabolic profiles of the different T-cell subsets, how 
CAR design shapes T-cell metabolism and fate, and dis-
cuss metabolic strategies – be they genetic interventions 
or pharmacological strategies – to improve therapy. For 
the latter, we also discuss the anti-cancer properties of 

these drugs in hematological malignancies, which may 
potentially exhibit additive or synergistic effects in com-
bination with CAR T cells.

Metabolism and T-cell fate are inextricably linked
T cells comprise a heterogeneous pool of cells with sev-
eral differentiation states. Different T-cell subsets are 
known including naïve T cells (CD25−,CD95−), effector T 
cells (CCR7−,CD62L−, CD45RA+, CD45RO−) and mem-
ory T cells, which can be further subdivided in stem cell 
memory T cells (Tscm, CD95+, CCR7+, CD62L+, CD45R
A+,  CD45RO−), central memory T cells (Tcm, CCR7+, 
CD62L+, CD45RA−, CD45RO+) and effector memory T 
cells (Tem, CCR7−, CD62L−, CD45RA−, CD45RO+). The 
memory-related phenotypic markers CD62L (also known 
as L-selectin) and CCR7 play a crucial role in T-cell hom-
ing and trafficking in lymph nodes [33, 34]. It is impor-
tant to note that T-cell differentiation is not a linear 
process, and precursor-exhausted T cells can originate 
from diverse subsets before ultimately differentiating to 
terminally exhausted T cells [35, 36].

The metabolism of all these subsets is highly differ-
ent, depending on their differentiation status and energy 
demands with effector T cells having increased glycolysis 
and memory T cells relying more on mitochondrial oxi-
dation of nutrients. Glucose and glutamine catabolism is 
upregulated by mammalian target of rapamycin (mTOR) 
signaling to produce rapid and sufficient ATP, while 
mitochondrial oxidation is regulated by AMP-activated 
protein kinase (AMPK) [37–39]. The metabolism of T 
cells is linked to their lifespan. Highly glycolytic cells are 
found to have a short lifespan, whereas long-living prolif-
erating T cells are directly associated with mitochondrial 
oxidative phosphorylation (OXPHOS) [40]. Inhibition 
of OXPHOS is sufficient to induce an exhaustion related 
gene signature, ending in apoptosis [41]. Here we discuss 
in detail how signal transduction and metabolism relate 
to T-cell fate.

Naïve T cells are encouraged to survive via cytokines 
such as IL-7. IL-7 stimulates Akt signaling, which in turn 
sustains GLUT1 expression for glucose uptake. Glucose 
is subsequently metabolized to pyruvate and transported 
into the mitochondria to be used either in the tricar-
boxylic acid (TCA) cycle or for the synthesis of triacyl 
glycerol (TAG), which can be used later for fatty acid 
oxidation (FAO). Hence, naïve T cells depend mainly 
on OXPHOS and FAO to meet their energy demands 
[42]. Upon stimulation of the T-cell receptor (TCR) 
and CD28, the PI3K-Akt-mTOR pathway becomes acti-
vated, promoting glycolysis through upregulation of 
c-Myc and HIF-1α (Fig.  1) [43]. In addition, glutamine 
uptake is upregulated upon T-cell activation to elevate 
ATP production, via mTORC1 [43, 44]. The breakdown 
of glutamine, glutaminolysis, further positively regulates 
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mTORC1 [44, 45]. This metabolic shift allows T cells to 
differentiate from naïve T cells to effector T cells, sup-
porting proliferation and cytokine production by gener-
ating sufficient ATP. The activation of mTORC1 drives 
aerobic glycolysis in effector T cells, while inhibition of 
mTORC1 reduces glucose uptake and impairs effector 
differentiation, thereby retaining memory features [46]. 
Memory T cells exhibit metabolic traits resembling naïve 
T cells, yet they perform higher levels of OXPHOS and 
mitochondrial spare respiratory capacity (SRC), facili-
tating rapid activation upon antigen re-encounter [47]. 
The other mTOR complex, mTORC2, negatively impacts 
memory formation; knock-out of its subunit Rictor leads 
to upregulation of Eomes and TCF-1 (transcription fac-
tors related to memory T cells), mediated via FOXO1 sta-
bilization in the nucleus. FoxO1 stabilization is associated 

with increased SRC and FAO, favoring memory differen-
tiation [48]. Recently, FOXO1 is identified as a master 
regulator of memory imprinting in T cells [49, 50]. Both 
genetic and pharmacological inhibition of FOXO1 in 
CAR T cells results in a more exhausted phenotype and 
weakened anti-tumor responses, while overexpression of 
FOXO1 enhances anti-tumor immunity, increases mito-
chondrial mass and induces more stemness [49, 50].

AMPK is an energy sensor, responding to changes in 
the AMP/ATP ratio. AMPK signaling is inhibited by glu-
tamine uptake, but promotes memory T-cell formation 
by phosphorylating acetyl-CoA carboxylase 2 (ACC2) 
and activation of the peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha (PGC-1α) (Fig.  1) 
[44, 51]. Thereby AMPK enhances FAO and mitochon-
drial biogenesis, respectively [51]. It is essential to keep 

Fig. 1 Signal transduction and its relation to metabolism in effector and memory T cells. Optimal effector T-cell signaling is induced by a combination 
of signals from an activated T-cell receptor (TCR), CD28 co-stimulation, and cytokines such as IL-2. Together, these signals activate the PI3K/Akt/mTORC1 
pathway, leading to the activation of glycolytic genes. Activated Akt inhibits FOXO1. In memory T cells, mTORC1 signaling is downregulated by AMPK and 
cues such as IL-15R signaling. The reduced mTORC1/Akt activity results in the activation of the transcription factor FOXO1, which induces a memory gene 
signature. Memory T cells have an increased mitochondrial mass with more tubular cristae, facilitating close proximity between the different complexes of 
the electron transport chain. In contrast, effector T cells exhibit mitochondria with loose cristae and increased physical distance between the complexes 
of the electron transport chain. (PI3K: Phosphatidylinositol 3-kinases, PGC-1α: Peroxisome proliferator-activated receptor-gamma coactivator 1alpha, 
mTORC1: mammalian target of rapamycin complex 1, HIF1α: hypoxia-inducible factor 1-alpha, ACC2: acetyl-coenzyme A (CoA) carboxylase A, AMPK: 
adenosine monophosphate-activated protein kinase, FAO: fatty acid oxidation, TCR: T-cell receptor, IL-2R: interleukin-2 receptor, IL-15R: interleukin-15 
receptor, FOXO1: Forkhead box protein O1, Akt: protein Kinase B). Created with Biorender.com
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in mind that PGC-1α is a crucial modulator in mitochon-
drial biogenesis. PGC-1α activates the NRF1/2-TFAM 
axis to stimulate mitochondrial DNA replication and 
transcription, thereby increasing mitochondrial content 
[52–55]. Not only AMPK, but also the PI3K/Akt/mTOR-
axis contributes to the regulation of PGC-1α [56]. Studies 
have shown that exhausted T cells experience progres-
sive loss of PGC-1α due to PD-1-mediated Akt signaling, 
while overexpression of PGC-1α enhances mitochondrial 
activity, persistence, memory formation; resulting in 
improved in vivo efficacy [54, 55, 57].

It is evident that energy metabolism and mitochondria 
play a pivotal role during T-cell differentiation. Mito-
chondria undergo significant adaptions during the transi-
tion from naïve T cells to a memory and effector state. In 
naïve T cells mitochondria and the endoplasmic reticu-
lum (ER) reside within the cytosol, without close proxim-
ity to each other [41, 58]. However, in activated T cells, 
mitochondria and ER form physical associations with 
the immune synapse to sustain Ca2+ -dependent T-cell 
activation and signaling [59–62]. Not only does the local-
ization of the mitochondria change, but their morphol-
ogy also undergoes remodeling throughout the course 
of T-cell fate determination. Naïve T cells typically con-
tain round mitochondria, while those of memory T cells 
appear longer, more tubular as a result of Opa-1-medi-
ated fusion. Opa-1 or Optic athrophy-1 is a dynamin-
related GTPase and is located on the inner mitochondrial 
membrane, where it stabilizes and remodels cristae. In 
memory T cells, complexes I-IV of the electron trans-
port chain (ETC) are closely located to each other due 
to the cristae structure, promoting OXPHOS and FAO 
[63]. This efficient proton pumping activity of complex 
I-IV results in a low mitochondrial membrane potential 
(ΔΨM) observed in both Tscm and Tcm. Opa-1 is found 
to be critical for memory function, but not for effector T 
cells [63]. Enhancing mitochondrial fusion in effector T 
cells by overexpressing Opa-1 promotes memory T-cell 
formation [63–65].

On the other hand, effector T cells possess punctuated 
mitochondria orchestrated by dynamin-related protein 
1 (DRP1)-related fission. Fission induces cristae remod-
eling, leading to looser cristae and increased physical 
distance between complexes I-IV. This lowers ETC effi-
ciency, promotes ROS formation and results in a high 
ΔΨM [66]. Consequently, effector T cells rely more on 
aerobic glycolysis [62, 63]. DRP1, located on the outer 
membrane of the mitochondria, is necessary for T-cell 
activation and the translocation of mitochondria towards 
the immune synapse [63, 66].

Mitochondrial dysfunction is an inherent character-
istic of functional exhausted T cells, which undergo 
reprogramming towards glycolysis, albeit their glycolytic 
ability is also reduced, compared to effector T cells [67, 

68]. Single-cell RNA-sequencing reveals impaired mito-
chondrial biogenesis, downregulated Opa-1 expression, 
and enrichment of oxidative stress associated genes in 
exhausted T cells [67]. In conclusion, each T-cell subset 
possesses distinct functional signaling, with a unique 
metabolism, actively influencing its fate.

The metabolic-epigenetic crosstalk
Each T-cell subset has its specific gene signature, partic-
ularly in terms of exhaustion markers, and proliferation 
and effector-related genes. Metabolism appears to play 
an instructing role in altering gene activity to achieve a 
specific status and dictate the fate of T cells. There is evi-
dence suggesting that epigenetic alterations might serve 
as a significant regulatory mechanism connecting mito-
chondrial activity to nuclear reprogramming [69]. Both 
histones and DNA can be modified to alter gene expres-
sion. Alterations are catalyzed by so called epiplayers, 
which require metabolic intermediates as co-factor or 
carbon source, thereby creating a crosstalk between epi-
genetics and the metabolism.

Histones are nuclear proteins that package DNA, and 
which are post-translationally modified by e.g. methyla-
tion or acetylation. Histone acetylation of lysine residues 
is catalyzed by histone acetyltransferases (HATs). Acety-
lation reduces the positive charge of lysine residues, 
resulting in more open DNA [70]. Histone deacetylases 
(HDACs) reverse this open state via chromatin conden-
sation. HATs use acetyl-coenzyme A (acetyl-coA) as pri-
mary acetyl source to exert their function. Acetyl-CoA 
is oxidatively generated by either carboxylation of pyru-
vate, breakdown of long-chain fatty acids or degradation 
of amino acids such as glutamine. A reduction in cellular 
acetyl-coA levels correlates with decreased acetylation of 
histone H3 at lysine 9 (H3K9), leading to reduced tran-
scription of IFN-γ [71]. On the other hand, treatment of 
exhausted or hyporesponsive T cells with acetate leads 
to histone acetylation, increased chromatin accessibility 
of the IFN-γ gene and increased IFN-γ production [72]. 
Inhibition of HDAC8 resulted in increased acetylation 
of H3K27 and induction of memory T cells in a hepa-
tocellular carcinoma mouse model [73]. HDAC class III 
enzymes also known as sirtuins also deacetylates his-
tones. For their function, sirtuins require the co-factor 
NAD+, which is a by-product of the ETC, via lactate fer-
mentation and is de novo synthesized during tryptophan 
catabolism and the salvage pathway [74]. Therefore, the 
NAD+/NADH ratio can influence epigenetic alterations 
via sirtuins (SIRT). SIRT1 expression is downregulated 
in terminally differentiated CD8+ CD28− memory T 
cells and its loss increases FOXO1 degradation and an 
increase in glycolysis [75]. Genetic perturbation of SIRT2 
resulted in hyperreactive effector T cells with an increase 
in glycolysis and OXPHOS. The skew to effector T cells 
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in SIRT2 knock-out T cells is at the expense of naïve and 
memory T cells [76].

The effect of histone methylation is context-depen-
dent. For instance, trimethylation of histone 3 on lysine 
27 (H3K27me3) is characterized by condensed chroma-
tin and represses gene transcription. H3K4me3 on the 
other hand, results in an open chromatin, and is thus 
enriched in actively transcribed genes [70]. In T cells, 
the level of H3K27me3 is the highest in naïve and mem-
ory cells, compared to effector T cells [77]. A family of 
chromatin remodeling enzymes, namely α-ketoglutarate 
(α-KG)-dependent dioxygenases (α-KGDD), consume 
α-KG (intermediate during TCA, and formed during 
glutaminolysis) as co-substrate to exert their function. 
The family of α-KGDD enzymes include enzymes such 
as lysine demethylases (KDMs), ten-eleven transloca-
tion (TET) DNA cytosine-oxidizing enzymes and pro-
lyl hydroxylases (PHDs) [78]. Increased levels of α-KG 
leads to histone H3K27 demethylation, which is associ-
ated with dysfunctional T cells. Succinate and fumarate, 
both TCA metabolites, are competitive inhibitors of 
α-KG and prevent α-KG to exert its function as co-sub-
strate of α-KGDD [79]. A study shows that an increased 
succinate/α-KG ratio leads to increased chromatin acces-
sibility of the regulatory elements of inflammatory genes 
[80]. 2-hydroxyglutarate (2-HG) is another antagonist 
for α-KG, which acts as a competitive inhibitor for TET 
enzymes. 2-HG is produced during TCR signaling and 
enhances memory T-cell formation by inhibition of TET2 
and increased CD62L transcription [77]. The genetic loss 
of TET2 is reported to drive memory differentiation in 
CD8 + T cells and CAR T cells, while IL-12 drives effector 
formation via TET2-mediated DNA demethylation of the 
IFN-γ promotor [81–84].

Histone methyltransferases use S-adenosyl-methio-
nine (SAM) as main source for methyl groups. SAM is 
produced from methionine via the one-carbon metabo-
lism. T cells subject to impaired methionine uptake and 
metabolization have decreased H3K27me3, promoting a 
more stemness memory T-cell status, thereby preventing 
exhaustion [85]. Another study shows that SAM supple-
mentation to activated T cells results in T-cell exhaustion 
by increased chromatin methylation [86]. Not only His-
tone methyltransferases but also DNA methyltransferases 
(DNMTs) use SAM as methyl donor for de novo DNA 
methylation. Exhausted CD19 CAR T cells from an ALL 
patient showed de novo DNA methylation, resulting in 
repression of memory-related genes like those encoding 
for TCF-1, while demethylation occurred in exhaustion-
associated genes such as TOX [87]. Genetic deletion of 
DNMT3A or pharmacological inhibition with decitabine 
prevents de novo DNA methylation and exhaustion in 
CAR T cells, while promoting memory differentiation 
[88]. Dual inhibition of histone methyltransferase G9A 

and DNMTs shows slight improvements in a vaccination 
model [89]. However, its effect on CAR T cells and T-cell 
fate still needs to be studied.

Here we mainly focused on acetylation and methyla-
tion, however, succinylation and lactylation of histones 
also may have epigenetic effects on the memory/effec-
tor/exhaustion balance, but needs to be further studied 
[90, 91]. Overall, metabolites actively dictate epigenetic 
remodeling and thereby the T-cell fate. Not only the pres-
ence of the metabolite, but also the ratio between dif-
ferent metabolites is important in the complex balance 
between acetylation or methylation of histones and DNA.

CAR T-cell generation alters T-cell metabolism
During the CAR T cells’ manufacturing process, periph-
eral blood mononuclear cells (PBMCs) are isolated 
through leukapheresis [92]. To facilitate viral transfer 
of the transgene into T cells, PBMCs are activated with 
anti-CD3/CD28 beads to promote proliferation, and 
transduction [92, 93]. Upon activation, naïve and resting 
T cells metabolically rewire from FAO to glycolysis [94]. 
This metabolic shift leads to differentiation of T cells 
into either highly-glucose dependent effector cells, or 
low-glucose dependent memory T cells. Following acti-
vation, lentiviral or retroviral gene transfer is conducted, 
followed by the cultivation and expansion of CAR T cells 
in cytokine-enriched culture medium. The selection of 
used cytokines impacts the differentiation into distinct 
phenotypical subsets. IL-2 is a lymphocyte growth fac-
tor that stimulates PI3K-Akt-mTOR signaling upon its 
interaction with the IL-2 receptor (IL2R), thus promoting 
glycolysis and effector differentiation [95]. This method is 
for instance used during the cilta-cell and ide-cell expan-
sion processes [96]. However, IL-2 has been implicated 
in inducing exhaustion through an increased trypto-
phan catabolism [97]. IL-7 and IL-15 cytokines promote 
proliferation and differentiation into memory T cells. 
IL-7 enhances cell survival by upregulating GLUT1 and 
facilitate TAG synthesis through upregulation of glyc-
erol channels [42, 98]. On the other hand, IL-15 inhibits 
mTORC1 signaling while enhancing mitochondrial fit-
ness via enhanced SRC, biogenesis and increasing expres-
sion of carnitine palmitoyl transferase 1 A (CPT1A), thus 
favoring a Tscm-phenotype [99]. Lastly, the use of IL-21, 
particularly in combination with lactate dehydrogenase 
A (LDHA) inhibition, has been shown to favor memory 
stemness in T cells [100].

CAR design reprograms T-cell metabolism
CAR constructs typically consist of a single chain vari-
able fragment (scFv) as the extracellular domain, which 
acts as a binder to the target antigen. This scFv is fused 
to a hinge and transmembrane region, often derived 
from CD8α or CD28, along with intracellular signaling 
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elements necessary for T-cell activation. In second-
generation CARs, a co-stimulatory element, commonly 
derived from CD28 or 4-1BB, is included along with 
the CD3ζ chain for TCR signaling. CARs are designated 
based on the components they contain, with a typical 
notation including the antigen, co-stimulatory molecule, 
and zeta element. For example, a CAR targeting CD19 
with CD28 co-stimulation and CD3ζ signaling would be 
denoted as CD19-CD28:ζ.

Comparison between CD19-CD28:ζ and GD2-CD28:ζ 
CARs reveals differences in their CD3ζ phosphorylation 
levels. GD2-CD28:ζ shows some phosphorylation attrib-
uted to CAR clustering, later referred to as tonic signaling 
[17]. In a study by Lakhani et al., the T-cell metabolism of 
seven different CAR T cells, distinguished solely by their 
scFv, was analyzed. Remarkably, even without antigen 
stimulation, CARs containing a rituximab-derived scfv 
for CD20 and 14g2a for GD2 display heightened glucose 
consumption and glycolysis compared to other CD20 
scFv variants [101]. Hence, it seems that it is the antigen 
binding moiety, devoid of signaling function, that rewires 
T-cell metabolism, presumably via CAR clustering. To 
mitigate scFv-induced tonic signaling, the antigen bind-
ing moiety can be replaced by a heavy chain variable frag-
ment, also known as nanobody, to form a nanoCAR [102, 
103].

Extensive research has been conducted for the opti-
mal co-stimulatory domain in CAR design, with CD28 
and 4-1BB as the most widely utilized options. CD28 
and 4-1BB command each a unique signaling pathway 
which consequently regulates other immunometabolic 
pathways to generate sufficient ATP to sustain T-cell acti-
vation and activity [104]. Stimulation of CD28 triggers 
the activation of the PI3K-Akt-mTOR axis, leading to a 
cascade of events, including the upregulation of GLUT1 
expression to enhance glucose uptake. Additionally, it 
drives gene expression of key glycolytic enzymes such 
as Hexokinase II and LDHA, which play crucial roles in 
conserving the intracellular ATP/ADP ratio [105–107].

4-1BB (CD137 or TNFRSF9) belongs to the tumor 
necrosis factor receptor (TNFR) gene family and exhib-
its induced protein expression during T-cell priming, in 
addition to being present on other cell types like NK cells 
and dendritic cells. Within its cytoplasmic tail, interac-
tions with TRAF-1 and TRAF-2 have been shown [108, 
109]. Notably, TRAF-1 levels surge post-T-cell activa-
tion, whereas TRAF-2 is constitutively expressed in rest-
ing T cells. Upon engaging its ligand, 4-1BB employs two 
distinct signaling mechanisms to bolster T-cell survival. 
Through TRAF-2, it orchestrates NF-κB-dependent 
upregulation of pro-survival genes like Bcl-XL, Bcl-2, 
and survivin, and stimulation of p-38 MAPK [108–113]. 
Conversely, TRAF-1 operates in an NF-κB-independent 
manner, activating ERK, thereby contributing to the 

downregulation of the pro-apoptotic factor BIM [109]. 
NF-κB serves as a regulator of cellular metabolism, stim-
ulating aerobic glycolysis and mitochondrial respiration, 
while p-38/MAPK upregulates PGC-1α [113]. Conse-
quently, co-stimulatory signals mediated via NF-κB and 
p38/MAPK tend to rely more heavily on mitochondrial 
metabolism for sustaining cellular functions.

Acknowledging the unique signaling pathways (PI3K/
Akt, MAPK, NF-κB or ERK) associated with the co-stim-
uli CD28 and 4-1BB, each intricately connected to dis-
tinct metabolic pathways, highlights their indispensable 
role in both the design of a CAR construct and the ulti-
mate determination of CAR T-cell fate (Fig. 2).

A direct comparison between CD19-CD28:ζ CARs and 
4-1BB:ζ CARs shows that CD28:ζ CAR T cells have an 
increased glycolytic rate and a glycolytic gene signature 
containing genes such as GLUT1, PDK1 and SLC16A3 
(monocarboxylate transporter 4 or MCT4). In contrast, 
4-1BB:ζ CAR T cells are associated with more mitochon-
dria, higher levels of OXHPOS and FAO. 4-1BB:ζ CAR T 
cells show elevated levels of CPT1A, which (I) is known 
to be a rate-limiting enzyme in the mitochondrial FAO 
and (II) promotes mitochondrial biogenesis [104, 108]. 
These findings illustrate that 28:ζ CAR T cells direct T 
cells towards glycolysis, whereas 4-1BB:ζ CAR T cells 
lean towards OXPHOS and FAO, characteristics of effec-
tor and memory T cells, respectively. When comparing 
both designs, CD28:ζ CAR T cells exhibit higher propor-
tions of effector memory T cells and exhausted T cells, 
whereas 4-1BB promotes the formation of central mem-
ory T cells, heightened proliferation, enhanced survival, 
and reduced exhaustion [104]. The improved persistence 
of 4-1BB:ζ CARs compared to CD28:ζ T cells was also 
observed in multiple clinical trials [114–117]. Intrigu-
ingly, CARs targeting two antigens through split co-
stimulation, providing both CD28 and 4-1BB signaling, 
sustain high OXPHOS while elevating glycolysis, result-
ing in highly metabolic CAR T cells that prove superior 
to single co-stimulus approaches. This highlights that 
mitochondrial fitness is the decisive factor in CAR T-cell 
functionality [118, 119].

While less common than 4-1BB and CD28, OX40 is 
also recognized as a costimulatory factor in CAR design. 
OX40 (CD134) and its ligand (OX40L) belong to the 
TNF(R) superfamily and are expressed across various 
cell types, including activated T cells. The intracellular 
domain of OX40 serves as a binding site for TRAF-2 and 
− 5 upon activation, initiating NF-κB signaling and fos-
tering survival through an anti-apoptotic gene signature 
(e.g., Bcl-xl, Bcl-2) [120, 121]. Additionally, other data 
suggest a role for PI3K/Akt signaling upon OX40 activa-
tion [122].

Zhang et al., investigated the impact of constitutive 
overexpression of different costimulatory signals, parallel 
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with second-generation 4-1BB:ζ CAR T cells. Among 
CD27, TIM-1, GITR and ICOS, OX40 is the most potent 
and can activate NF-κB and the MAPK/ERK pathway, 
leading to enhanced proliferation, persistence, and 
anti-tumor activity. However, no effects on metabolism 
were examined [123]. In a study by Tan et al., BCMA-
targeted OX40:ζ CAR T cells were compared to 4-1BB:ζ 
and CD28:ζ CAR T cells. Regarding exhaustion mark-
ers, memory formation, and IFN-γ production, OX40:ζ 
CAR T cells outperform 4-1BB:ζ CAR T cells, which, in 
turn, outperform CD28:ζ CAR T cells. Gene set enrich-
ment analysis (GSEA) analysis revealed upregulation 
of OXPHOS genes in OX40:ζ CAR T cells compared to 
4-1BB:ζ and CD28:ζ, further underscoring the signifi-
cance of the memory-mitochondrial respiration axis 
[124].

In a comprehensive screening study conducted by 
Goodman and Azimi et al., forty co-stimulatory and 
co-inhibitory domains were assessed within a second-
generation CAR construct and compared against each 
other. These co-signaling domains encompass 4-1BB, 
CD28, CD30, CD40, TACI, BAFF-R, NTB-A, LAG-3, 
TIGIT, PD-1, and TIM-3. Remarkably, only three co-
signaling domains, TACI, NTB-A, and B-cell activating 
factor receptor (BAFF-R), outperform 4-1BB and CD28 
as costimulatory elements in terms of IFN-γ secretion. 
Both BAFF-R:ζ and TACI:ζ exhibit higher NF-κB activity 

compared to 4-1BB:ζ and CD28:ζ. Further analyses reveal 
that BAFF-R as a co-stimulus exerts the most signifi-
cant impact on metabolism by reducing glycolysis and 
enhancing oxidative phosphorylation (OXPHOS) after 
repeated stimulation. Consistent with metabolic rewir-
ing, BAFF-R:ζ CAR T cells demonstrate enhanced cyto-
toxicity, memory-like properties, and reduced exhaustion 
post-CAR stimulation [125]. BAFF has a central role in 
B-cell homeostasis and survival. Upon BAFF-BAFF-R 
interaction, TRAF3 recruitment enables NIK to activate 
the (non-canonical) NF-κB axis, culminating in p52/Relb 
translocation and the activation of survival genes and 
genes associated with mitochondrial biogenesis [126]. 
In addition to the NF-κB pathway, the PI3K-Akt axis is 
also activated. Interestingly, the latter induces an increase 
in glycolysis, which contrasts with the metabolic phe-
notype observed in BAFF-R:ζ CAR T cells [125, 126]. 
However, it can be argued that the activation of T cells 
might be different, using other antigen binding moieties. 
Hence, further investigation into the use of BAFF-R as a 
co-stimulatory domain in alternative CAR constructs is 
warranted.

Glycolytic modulation
The PI3K-Akt-mTOR signaling pathway has a central 
role in instructing glycolysis. PI3K inhibitors have been 
developed as anti-tumor therapy (Fig.  3 & Table  1). 

Fig. 2 (Metabolic) effects of different co-stimuli. Each co-stimulatory domain in CAR T cells engages unique immunometabolic signaling pathways, 
leading to distinct phenotypes. Second-generation CAR T cells incorporating CD28 domains promote effector differentiation and predominantly rely 
on glycolysis. Co-stimulatory domains such as 4-1BB, OX-40, and BAFF-R progressively enhance NF-κB signaling, support mitochondrial metabolism, and 
foster memory cell imprinting. (TCR: T-cell receptor, OXPHOS: oxidative phosphorylation, BAFF-R = B-cell activating factor receptor, Nuclear factor kappa-
light-chain-enhancer of activated B-cells). Created with Biorender.com

 

http://Biorender.com


Page 8 of 17Van der Vreken et al. Experimental Hematology & Oncology           (2024) 13:66 

Employing a combination of CAR T-cell therapy with the 
PI3K inhibitors LY294002 or duvelisib in patients yielded 
notable outcomes, including increased CAR T-cell mito-
chondrial fusion and respiration, and elevated levels 
of stem cell memory T cells – the subset exhibiting the 
highest self-renewal capacity [127, 128]. Duvelisib, an 
approved PI3K-inhibitor for chronic lymphoblastic leu-
kemia (CLL), small lymphocytic lymphomas, and non-
hodgkin lymphoma (NHL), inhibits both gamma and 
delta catalytic units of PI3K, and was later identified to 
be compromising for effector T-cell function [129, 130]. 
On the other hand, Idelalisib, which is also applied in 
CLL and follicular lymphoma treatments, selectively 
blocks PI3Kδ. Combining CAR T cells with Idelalisib 

demonstrates similar results concerning memory for-
mation, without impairing CAR T-cell effector function 
[131]. Furthermore, in vitro treatment of CAR T cells 
with mTOR inhibitor rapamycin, Akt inhibitors MK2206 
or Akt inhibitor VIII (Akti-1/2) enhances their in vivo 
persistence [132–134].

IL-2 is known to promote effector differentiation and 
aerobic glycolysis, resulting in increased lactate produc-
tion [95, 100]. Using the lactate dehydrogenase A (LDHA) 
inhibitor NCI-737 results in a twofold increase of stem 
cell memory T cells and improved anti-tumor responses. 
The effects can be further augmented in combina-
tion with the metabolic quiescent cytokine IL-21 [100]. 
Other preclinical studies show that the LDHA inhibitor 

Fig. 3 Metabolic targets to enhance CAR T-cell function and memory formation. Inhibition of targets are indicated in red, overexpression and stimula-
tors in green. The PI3K/Akt/mTORC1 signaling pathway promotes a glycolytic gene signature, facilitating rapid energy production. Inhibition (e.g. via 
pretreatment of CAR T cells) of this pathway or other glycolytic proteins such as LDHA and MCTs results to increased memory formation in CAR T cells. 
Conversely, CAR T-cell function can be improved through several mechanisms. These include enhancing mitochondrial biogenesis via bezafibrate, over-
expression of PGC-1α, or knockout of Regnase-1; preventing reductive carboxylation through IDH2 inhibition; and stimulating mitochondrial oxidation 
by overexpressing amino acid transporters, urea cycle enzymes, TCA cycle enzymes or inhibiting MPC. Similar beneficial effects are observed by stimulat-
ing AMPK signaling using metformin. (OE: overexpression, KO: knock-out, shRNA: short hairpin RNA, PIP2: Phosphatidylinositol(4,5)-bisphosphate, PIP3: 
Phosphatidylinositol(3,4,5)-trisphosphate, PI3K: Phosphatidylinositol 3-kinases, PGC-1α : Peroxisome proliferator-activated receptor-gamma coactivator 
1alpha, MCT: monocarboxylate transporter, LDHA: Lactate dehydrogenase A, GLUT1: Glucose transporter 1, MPC: mitochondrial pyruvate carrier, ETC: 
electron transport chain, α-KG: alpha-ketoglutarate, IDH2: Isocitrate dehydrogenase 2, P5C: pyrroline-5-carboxylate, OTC: ornithine transcarbamylase, ASS: 
Argininosuccinate synthase or synthetase, mAb: monoclonal antibody, PD-1: programmed death-1 CTLA-4: Cytotoxic T-lymphocyte-associated protein 4, 
Cyt C: cytochrome C, ADP: adenosinediphosphate, ATP: adenosinetriphosphate). Created with Biorender.com
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oxamate and the metabolite transporter monocarbox-
ylate transporter 1 (MCT1) inhibitor AZD3965 both 
synergize effectively with CAR T cells [135, 136]. The 
described mechanisms primarily involve the inhibition 
of tumor-derived lactate, but they may also inhibit CAR 
T-cell glycolysis, thereby improving CAR T-cell function 
and phenotype, which warrants further investigation. 
Syrosingopine, an FDA approved drug for hyperten-
sion, is also a dual inhibitor of MCT1 and MCT4 [137]. 
In contrast to AZD3965, in vitro treatment seems to be 
cytotoxic for CAR T cells [135]. Oxamate, AZD3965 and 
syrosingopine all exhibit promising preclinical anti-MM 
results [137–141]. Notably, AZD3965 has already been 
tested in clinical trial for DLBCL and Burkitt’s lymphoma 
[142].

Mitochondrial modulation
During aerobic glucose respiration, pyruvate undergoes 
importation into the mitochondria, is oxidated to acetyl-
CoA, and subsequently metabolized in the TCA cycle. 
The electrons generated are transferred to the ETC for 

ATP production. In this section, we discuss the known 
targets in these processes and their effect on CAR T-cell 
metabolism and functioning. Although the catabolism of 
amino acids similarly converges on TCA intermediates, 
this aspect will be addressed in a separate section. This 
section ends with the modulation of stimulator PGC-1α 
and mitochondrial inhibitor Regnase-1 (Fig. 3).

The mitochondrial pyruvate carrier (MPC) trans-
ports pyruvate from the cytosol into the mitochondria, 
facilitating the oxidative decarboxylation to acetyl-coA. 
Inhibition of MPC disrupts the importation of pyru-
vate, leading to an increased acetyl-coA production 
from glutaminolysis and FAO, instead of from glucose 
breakdown. This metabolic rewiring induces strong 
H3K27 acetylation resulting in active chromatin regions 
for memory imprinting. While genetic perturbation of 
MPC in T cells results in compromised effector T cells, 
pre-treating CD19 CAR T cells with the MPC inhibitor 
UK5099 demonstrates superior CAR T-cell persistence, 
CD62L expression and anti-tumor activity [143].

Table 1 Drugs with a link to metabolism and their effect on CAR T-cell function and fate
Drug Target Method Effect on metabolism Effect on T-cell fate Ref. FDA approval for
Duvelisib PI3K Ex vivo Pretreatment 

[120]
↑ Mitochondrial fusion
↑ PGC-1α

↑ Memory T cells [128] CLL, small lympho-
cytic lymphoma, NHL

Idelalisib PI3Kδ Ex vivo treatment Not studied ↑ In vivo anti-tumor efficacy
↓ CD27+ CD28+ CAR T cells

[131] CLL, follicular 
lymphoma

Rapamycin mTOR Ex vivo treatment Not studied ↑ In vivo anti-tumor efficacy [132] Immunosuppressant 
for transplants

AKTi-1/2 Akt1, 
Akt2, and 
Akt3

Ex vivo treatment Not studied ↑ Memory
↑ In vivo anti-tumor efficacy

[133] Not approved

MK2206 Akt Ex vivo treatment Not studied ↑ CCR7
↑ Memory subsets
↑ In vivo anti-tumor efficacy

[134] Not approved

NCI-737 LDH Ex vivo treatment 
(with or without 
IL-21)

↓ Glucose consumption
↓ Lactate secretion

↑ Memory
↑ In vivo anti-tumor efficacy

[100] Not approved

UK5099 MPC Ex vivo treatment ↓ Glucose consumption 
↑ Acetyl-coA production 
from glutaminolysis and 
FAO

↑ Memory
↑ In vivo anti-tumor efficacy

[143] Not approved

Enasidenib IDH2 Ex vivo treatment Glucose redirection into 
PPP
↑ Citrate levels

↑ Memory
↑ In vivo anti-tumor efficacy

[145] IDH2-mutated AML 
and MDS

Metformin Complex 
1 of ETC

In vivo treatment ↑ AMPK ↑ Memory
↑ In vivo anti-tumor efficacy

[152] Type 2 diabetes
In clinical trials for 
anti-tumor potential

Panobinostat HDAC In vivo treatment Not studied ↑ Memory
↑ In vivo anti-tumor efficacy

[159] Multiple Myeloma

Bezafibrate PPAR-α 
agonist

In vivo treatment ↑ Glycolysis
↑ OXPHOS
↑ FAO

↑ Effector function
↑ Memory T cells

[156] Hypertriglyceridemia

AZD3965
AR-C155858

MCT1 In vivo treatment ↓ Glycolysis ↑ In vivo anti-tumor efficacy [135] AZD3965: Tested 
in clinical trials for 
DLBCL and Burkitt’s 
lymphoma
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It has been reported by Jaccard et al., that effector T 
cells carboxylate glutamine, thereby forming citrate from 
α-KG via the mitochondrial enzyme isocitrate dehydro-
genase 2 (IDH2) [144]. This leads to a specific ratio of 
metabolites, triggering KDM5 activity, which results in 
demethylation of H3K4 at memory gene regions. Con-
versely, IDH2 inhibition disrupts this ratio, thereby 
increasing chromatin accessibility of memory genes 
encoding for CCR7, TCF1 and CD62L. CAR T cells ex 
vivo treated with inhibitors of IDH2 do not lose their 
effector function and proliferation, but are more stimu-
lated for differentiation towards a memory phenotype 
[144, 145]. IDH2 acts bidirectionally, depending on the 
α-KG/citrate ratio. Therefore, a recent paper demon-
strates that genetic perturbation of IDH2 in CAR T cells 
redirects glucose consumption into the pentose phos-
phate pathway (PPP) to provide antioxidants and rather 
enhances the level of citrate, thereby translocating it into 
the cytosol. This supports acetyl-coA-mediated activa-
tion of memory genes, by increasing histone acetylation, 
which again triggers a memory phenotype. Treatment of 
CAR T cells with the IDH2 inhibitor enasidenib has simi-
lar effects, resulting in more CD62L+ memory T cells, 
with increased survival, and less exhaustion [145]. The 
potential of enasidenib needs to be underscored as it is 
already clinically used for patients with IDH2-mutated 
relapsed/refractory acute myeloid leukemia (AML) [146]. 
Moreover, mutant IDH2 is also observed in 5% of patients 
with myeldysplastic syndrome (MDS) [147]. Enasidenib 
is EMA and FDA approved, which could facilitate its 
repurposing for combination therapy with CAR T-cell 
therapy, in AML, MDS or other malignancies.

The α-KG/citrate ratio is important to prevent demeth-
ylation and retain memory status. On the other hand, 
the addition of α-KG diminishes the differentiation of 
naïve T cells to a regulatory T-cell (Treg) phenotype by 
acting as co-factor for α-KGDD enzymes and promot-
ing OXPHOS. Notably, ex vivo supplementation with 
α-KG reshapes the function of Treg polarized CAR T-cell 
towards a more pro-inflammatory state [148]. Next in the 
TCA cycle, α-KG is converted to succinyl-coA and suc-
cinate. Succinate involves the succinate dehydrogenase 
(SDH) complex, which oxidizes succinate to fumarate – a 
substrate for fumarase. Inhibition of either SDH or fuma-
rase results in impaired proliferation and effector T-cell 
function [80, 149]. Oppositely, the genetic overexpres-
sion of fumarase strongly improves the function of CAR 
T-cells by decreasing fumarate levels and the succination 
of ZAP70 in T-cell signaling [150].

Pre-clinical studies show that metformin upregulates 
oxidative metabolism in CAR T cells, resulting in a long-
living memory phenotypes, via upregulation of AMPK-
Eomes, which suppresses PD-1 [151–153]. Pre-treating 
CD19 CAR T cells with metformin and rapamycin, leads 

to a higher mitochondrial SRC and activation of PGC-1α, 
essential for FAO and mitochondrial biogenesis. The 
combination of metformin and rapamycin promotes 
AMPK and inhibits mTOR, respectively, favoring a meta-
bolic fit memory phenotype [153]. Metformin is an anti-
diabetic drug, which is routinely administered in clinic, 
and activates AMPK by lowering ATP levels via inhibi-
tion of complex I in the mitochondrial ETC. The drug 
is repurposed for its detrimental effects on cancer cells. 
Its anti-tumor effect is being investigated in clinical tri-
als involving both hematological and solid tumors (NCT: 
NCT02978547, NCT04758000, NCT03118128). Epide-
miological studies already demonstrated that the use of 
metformin in diabetic patients with monoclonal gam-
mopathy of undetermined significance (MGUS) is associ-
ated with a reduced risk of progression to MM and the 
outcome for diabetic patients with ALL [154, 155].

As mentioned earlier, mitochondrial biogenesis is 
regulated by PPARPGC-1α signaling. Bezafibrate acts as 
PPAR-α agonist and thereby elevates PGC-1α. In vivo 
treatment with bezafibrate enhances T-cell effector func-
tion in mice by upregulating glycolysis and OXPHOS 
[156]. Bezafibrate treatment results also in upregula-
tion of both CPT1A and FAO. Although bezafibrate is 
not tested in a preclinical CAR T-cell context, it mer-
its investigation. Especially since CAR T cells, geneti-
cally engineered to overexpress PGC-1α, have improved 
mitochondrial respiration, which leads to an increase in 
IFN-γ + and CCR7 + memory T cells in vivo [157]. Bezafi-
brate is an FDA-approved agonist, prescribed for patients 
with hypertriglyceridemia but also tested as cancer agent 
in combination with medroxyprogesterone acetate for 
the treatment of AML, myelodysplastic syndrome (MLS), 
CLL and NHL, without reported toxicities [158].

On another note, when treating CAR T cells with pan-
obinostat, it effectively boosts their functionality through 
overall increases in chromatin accessibility, including 
memory genes such as CD62L, leading to more mem-
ory T-cell formation [159]. Although this study did not 
look into the effects on T-cell metabolism, it is known 
that panobinostat elevates PGC-1α levels, and fosters 
OXPHOS and FAO, all while concurrently suppressing 
glycolysis in malignant MM and glioma cells [160, 161]. 
It is worth to investigate panobinostat, since it is used for 
the treatment of R/R MM [162].

Furthermore, the ribonuclease Regnase-1 is identified 
as inhibitor of mitochondrial metabolism via the tran-
scription factor BATF. Genetic perturbation of BATF 
results in decreased mitochondrial fitness, while Reg-
nase-1 knock-out in T cells demonstrates an increased 
mitochondrial fitness, as reflected by the increased 
mitochondrial mass, volume and ΔΨM. Regnase-1 defi-
cient CAR T cells promote TCF-1 expression, required 
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for memory formation, resulting in long-living T cells 
[163–165].

Amino acid modulation
A genome wide gain of function (GOF) CRISPR screen 
identified PRODH2 as booster of CAR T-cell func-
tion (Fig.  3). PRODH2 metabolizes hydroxyproline to 
pyrroline-3hydroxy-5-carboxylate in the catabolism of 
proline. GOF of PRODH2 reshapes T-cell metabolism 
by triggering an increased OXPHOS, and a larger num-
ber and volume of mitochondria with increased granula. 
PRODH2 overexpression augments effector function and 
improves memory phenotype following long-term co-
cultures [166]. Similar effects are seen with intracellular 
L-arginine, which is involved in both arginine and proline 
metabolism [167]. T cells rely for their arginine synthe-
sis on the low expression of argininosuccinate synthase 
(ASS) and ornithine transcarbamylase (OTC). Another 
study shows that overexpression of ASS and OTC results 
in increased CAR T-cell proliferation, improved in vivo 
persistence and less exhaustion [168]. Arginase catabo-
lizes arginine. Overexpression of arginase or overex-
pression of amino acid transporters SLC7A5/SLC7A11, 
which upregulate arginase, positively impact mitochon-
drial function, resulting in improved proliferation and 
CAR T-cell survival in vivo [169]. Overexpression of the 
tryptophan transporter SLC7A5 in CAR T cells results 
also in more resistance to a TME, in which the amino 
acid availability is limited for T cells due to massive con-
sumption by the tumor cells [169]. Kynurenine is gener-
ated in the catabolism of tryptophan and is produced by 
tumor cells as a so-called onco-metabolite, which affects 
glucose uptake by T cells. Overexpression of kynureni-
nase in CAR T cells results in resistance to the effects of 
kynurenine, but also in an increased killing efficacy and 

memory differentiation [170]. Finally, the uptake of glu-
tamine and its degradation during glutaminolysis is a 
characteristic of effector T cells. Adding the glutamine 
antagonist 6-Diazo-5oxo-I-norleucine in culture medium 
of CAR T cells results in enhanced OXPHOS, FAO, 
reduced in glycolysis and an increased memory T-cell 
phenotype [171].

All drug related interventions and genetic modifica-
tions are summarized in Tables 1 and 2, respectively.

Metabolic role of PD-1 and CTLA-4 blockade
Immune checkpoint molecules serve as pivotal regula-
tors of the immune system, acting to temper overly vigor-
ous T-cell responses. Here, we mainly focus on PD-1 and 
CTLA-4, as they have been extensively studied within the 
context of CAR T-cell therapy.

PD-1 expression in activated or exhausted T cells 
regulates metabolism and represses the transcrip-
tional regulator of mitochondrial biogenesis PGC-1α. 
PD-1 blockade, preventing its interaction with PD-L1, 
induces metabolic reprogramming of PD-1int exhausted 
T cells, but not in PD-1high T cells [68]. Studies have 
demonstrated that genetic disruption of PD-1 in T cells 
enhances anti-myeloma activity of T cells and that PD-1 
knock-out in CAR T cells or combinations of nivolumab 
with CD19 CAR T cells are considered safe in phase 1 
clinical trials [172–174]. Moreover, combining anti-PD-1 
with CAR T cells also improves efficacy and outcome in 
clinical trials involving lymphoma patients, while also 
restoring BCMA CAR T-cell fitness in the treatment of 
MM [173–176].

Regarding CTLA-4, genetic perturbation shows prom-
ise in rescuing T cells from patients with CLL, who pre-
viously failed CAR T-cell treatment. This effect is not 
seen in T cells with a knock-out for both CTLA-4 and 

Table 2 Metabolic genetic alterations in CAR T cells to improve their function and T-cell fate
Target Genetic 

modification
Effect on metabolism Effect on T-cell fate Ref.

Fumarase Overexpression ↓ Fumarate levels ↑ CAR T-cell function [150]
Regnase-1 Knock out ↑ Mitochondrial mass and volume 

↑ ΔΨM
↑ TCF1 expression, ↑ Memory T cells [163–

165]
PRODH2 Overexpression ↑ Number of mitochondria 

↑ Mitochondria granula
↑OXPHOS

↑ Effector function
↑ Memory T cells

[166]

Argininosuccinate syn-
thase (ASS)

Overexpression ↑ Arginine resynthesis ↑ In vivo anti-tumor efficacy
↓ Exhaustion

[168]

Ornithine transcarbamy-
lase (OTC).

Overexpression ↑ Arginine resynthesis ↑ In vivo anti-tumor efficacy
↓ Exhaustion

[168]

SLC7A5/SLC7A11 Overexpression ↑ Amino acid uptake
↑ Intracellular arginase expression and 
activity

↑ CAR T-cell proliferation under low trypto-
phan or cystine conditions

[169]

Arginase Overexpression ↑Arginine catabolism ↑ CAR T-cell proliferation
↑ In vivo anti-tumor efficacy

[169]

Kynureninase Overexpression ↑ Kynunerine catabolism ↑ Killing
↑ Memory formation

[170]
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PD-1. Molecular analysis reveals that disrupting CTLA-4 
enhances CD28 signaling while downregulating glycoly-
sis in these CTLA-4 negative CAR T cells, resulting in an 
increased memory subset [177].

Although TIM-3, LAG-3 and TIGIT all three are asso-
ciated with increased glycolysis, genetic disruption of 
these immune checkpoints and the implications on CAR 
T-cell metabolism and functioning has not studied yet 
[178–181].

Conclusion
CAR T cells exhibit dynamic metabolic activity through-
out their lifespan, playing a decisive role beyond mere 
energy provision. Metabolites actively modulate epigen-
etic changes at both histone and DNA levels in CAR T 
cells, influencing their fate decision. The metabolism 
of CAR T cells is also associated with the outcome of 
patients. CAR T cells reliant on glycolysis are deemed 
short-lived effectors, while those using oxidative phos-
phorylation and fatty acid oxidation display greater per-
sistence and correlate with favorable long-term outcome. 
Metabolic modulation strategies are shown to increase 
the longevity of T cells. However, these pre-clinical stud-
ies mostly use T cells from healthy donors. The metabolic 
plasticity of T cells might be altered because of the health 
status, or age of the patient. Whether or not mitochon-
drial stimulation also can revert the pre-dysfunctional T 
cells in elderly patients still needs to be studied.

We present an overview of strategies that improve CAR 
T-cell persistence during chronic stimulation. The many 
genetic and pharmacological induced alterations are in 
the end all favoring mitochondrial respiration (OXPHOS, 
FAO). Not only the metabolism on its own, but also the 
use of TCA intermediates profoundly changes the acces-
sibility of genes. We further highlight the potential of the 
FDA approved drugs used to rewire CAR T-cell’s metab-
olism and place them in perspective to their anti-tumor 
effects in hematological malignancies (Table 1). Thereby, 
we propose several combination strategies for clinical 
application in hemato-oncology, which may work on 
two fronts, being metabolic rewiring of CAR T cells and 
direct anti-tumor effects.

A potential limitation in translating metabolic com-
pounds to the clinic lies in their off-target effects, as they 
may also affect the metabolism of healthy cells. Repurpos-
ing of approved drugs such as bezafibrate and enasidenib 
could expedite translation, given their well-established 
safety profiles. We feel that the effect of MCT1 or lactate 
dehydrogenase inhibitors should be further investigated, 
as these compounds can work on multiple levels; possibly 
rewiring of CAR T cells towards a favorable metabolism, 
targeting the Warburg effect in malignant cells, and mod-
ulating the tumor micro-environment, since there will be 
a decrease in the immunosuppressive metabolite lactate.

Another strategy relies on genetic engineering of 
CAR T cells to alter metabolic pathways. First of all the 
design of CAR T cells profoundly impacts their metab-
olism and functionality. Extracellular antigen-binding 
scFvs may self-aggregate, leading to unwanted signal-
ing and metabolic reprogramming, whereas nanobodies 
offer a solution to this issue. In addition, the selection of 
co-stimulatory domains significantly influences T-cell 
metabolism and fate. It is worth to explore alternative 
co-stimuli beyond the conventional 4-1BB and CD28 
domains. Especially the co-stimulatory domain of BAFF-
R deserves recognition as co-stimulus and should be fur-
ther studied in a clinical setting, ideally in a nanoCAR.

Finally, since T cells are already isolated for the inser-
tion of the CAR, an additional DNA sequence can be eas-
ily added to the transgene. However, safety concerns such 
as malignant transformation should be further investi-
gated. Alternatively, safety can be increased by including 
a suicide gene, however this further impacts the size of 
the transgene [182].

Altogether, in the popular and evolving field of T-cell 
metabolism, it is worthy to further explore the poten-
tial of metabolic rewiring as a promising approach to 
enhance CAR T-cell therapy.
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