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Abstract




t0 t−1 t−2 · · · t−(n−1)
t1 t0 t−1

t2 t1 t0
...

...
. . .

tn−1 · · · t0




The fundamental theorems on the asymptotic behavior of eigenvalues,
inverses, and products of banded Toeplitz matrices and Toeplitz matri-
ces with absolutely summable elements are derived in a tutorial man-
ner. Mathematical elegance and generality are sacrificed for conceptual
simplicity and insight in the hope of making these results available
to engineers lacking either the background or endurance to attack the
mathematical literature on the subject. By limiting the generality of the
matrices considered, the essential ideas and results can be conveyed in
a more intuitive manner without the mathematical machinery required
for the most general cases. As an application the results are applied to
the study of the covariance matrices and their factors of linear models
of discrete time random processes.



1
Introduction

1.1 Toeplitz and Circulant Matrices

A Toeplitz matrix is an n × n matrix Tn = [tk,j ; k,j = 0,1, . . . ,n − 1]
where tk,j = tk−j , i.e., a matrix of the form

Tn =




t0 t−1 t−2 · · · t−(n−1)
t1 t0 t−1

t2 t1 t0
...

...
. . .

tn−1 · · · t0



. (1.1)

Such matrices arise in many applications. For example, suppose that

x = (x0,x1, . . . ,xn−1)′ =




x0

x1
...

xn−1




is a column vector (the prime denotes transpose) denoting an “input”
and that tk is zero for k < 0. Then the vector
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y = Tnx =




t0 0 0 · · · 0
t1 t0 0

t2 t1 t0
...

...
. . .

tn−1 · · · t0







x0

x1

x2
...

xn−1




=




x0t0
t1x0 + t0x1∑2

i=0 t2−ixi
...∑n−1

i=0 tn−1−ixi




with entries

yk =
k∑

i=0

tk−ixi

represents the the output of the discrete time causal time-invariant filter
h with “impulse response” tk. Equivalently, this is a matrix and vector
formulation of a discrete-time convolution of a discrete time input with
a discrete time filter.

As another example, suppose that {Xn} is a discrete time ran-
dom process with mean function given by the expectations mk =
E(Xk) and covariance function given by the expectations KX(k,j) =
E[(Xk − mk)(Xj − mj)]. Signal processing theory such as prediction,
estimation, detection, classification, regression, and communcations
and information theory are most thoroughly developed under the
assumption that the mean is constant and that the covariance is
Toeplitz, i.e., KX(k,j) = KX(k − j), in which case the process is said
to be weakly stationary. (The terms “covariance stationary” and “sec-
ond order stationary” also are used when the covariance is assumed
to be Toeplitz.) In this case the n × n covariance matrices Kn =
[KX(k,j); k,j = 0,1, . . . ,n − 1] are Toeplitz matrices. Much of the the-
ory of weakly stationary processes involves applications of Toeplitz
matrices. Toeplitz matrices also arise in solutions to differential and
integral equations, spline functions, and problems and methods in
physics, mathematics, statistics, and signal processing.
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A common special case of Toeplitz matrices – which will result in
significant simplification and play a fundamental role in developing
more general results – results when every row of the matrix is a right
cyclic shift of the row above it so that tk = t−(n−k) = tk−n for k =
1,2, . . . ,n − 1. In this case the picture becomes

Cn =




t0 t−1 t−2 · · · t−(n−1)
t−(n−1) t0 t−1

t−(n−2) t−(n−1) t0
...

...
. . .

t−1 t−2 · · · t0



. (1.2)

A matrix of this form is called a circulant matrix. Circulant matrices
arise, for example, in applications involving the discrete Fourier trans-
form (DFT) and the study of cyclic codes for error correction.

A great deal is known about the behavior of Toeplitz matrices – the
most common and complete references being Grenander and Szegö [15]
and Widom [33]. A more recent text devoted to the subject is Böttcher
and Silbermann [5]. Unfortunately, however, the necessary level of
mathematical sophistication for understanding reference [15] is fre-
quently beyond that of one species of applied mathematician for whom
the theory can be quite useful but is relatively little understood. This
caste consists of engineers doing relatively mathematical (for an engi-
neering background) work in any of the areas mentioned. This apparent
dilemma provides the motivation for attempting a tutorial introduc-
tion on Toeplitz matrices that proves the essential theorems using the
simplest possible and most intuitive mathematics. Some simple and
fundamental methods that are deeply buried (at least to the untrained
mathematician) in [15] are here made explicit.

The most famous and arguably the most important result describing
Toeplitz matrices is Szegö’s theorem for sequences of Toeplitz matrices
{Tn} which deals with the behavior of the eigenvalues as n goes to
infinity. A complex scalar α is an eigenvalue of a matrix A if there is a
nonzero vector x such that

Ax = αx, (1.3)
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in which case we say that x is a (right) eigenvector of A. If A is Hermi-
tian, that is, if A∗ = A, where the asterisk denotes conjugate transpose,
then the eigenvalues of the matrix are real and hence α∗ = α, where
the asterisk denotes the conjugate in the case of a complex scalar.
When this is the case we assume that the eigenvalues {αi} are ordered
in a nondecreasing manner so that α0 ≥ α1 ≥ α2 · · · . This eases the
approximation of sums by integrals and entails no loss of generality.
Szegö’s theorem deals with the asymptotic behavior of the eigenvalues
{τn,i; i = 0,1, . . . ,n − 1} of a sequence of Hermitian Toeplitz matrices
Tn = [tk−j ;k,j = 0,1,2, . . . ,n − 1]. The theorem requires that several
technical conditions be satisfied, including the existence of the Fourier
series with coefficients tk related to each other by

f(λ) =
∞∑

k=−∞
tke

ikλ; λ ∈ [0,2π] (1.4)

tk =
1
2π

∫ 2π

0
f(λ)e−ikλ dλ. (1.5)

Thus the sequence {tk} determines the function f and vice versa,
hence the sequence of matrices is often denoted as Tn(f). If Tn(f)
is Hermitian, that is, if Tn(f)∗ = Tn(f), then t−k = t∗k and f is real-
valued.

Under suitable assumptions the Szegö theorem states that

lim
n→∞

1
n

n−1∑
k=0

F (τn,k) =
1
2π

∫ 2π

0
F (f(λ))dλ (1.6)

for any function F that is continuous on the range of f . Thus, for
example, choosing F (x) = x results in

lim
n→∞

1
n

n−1∑
k=0

τn,k =
1
2π

∫ 2π

0
f(λ)dλ, (1.7)

so that the arithmetic mean of the eigenvalues of Tn(f) converges to
the integral of f . The trace Tr(A) of a matrix A is the sum of its
diagonal elements, which in turn from linear algebra is the sum of the
eigenvalues of A if the matrix A is Hermitian. Thus (1.7) implies that

lim
n→∞

1
n

Tr(Tn(f)) =
1
2π

∫ 2π

0
f(λ)dλ. (1.8)
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Similarly, for any power s

lim
n→∞

1
n

n−1∑
k=0

τ s
n,k =

1
2π

∫ 2π

0
f(λ)s dλ. (1.9)

If f is real and such that the eigenvalues τn,k ≥ m > 0 for all n,k,
then F (x) = lnx is a continuous function on [m,∞) and the Szegö
theorem can be applied to show that

lim
n→∞

1
n

n−1∑
i=0

lnτn,i =
1
2π

∫ 2π

0
lnf(λ)dλ. (1.10)

From linear algebra, however, the determinant of a matrix Tn(f) is
given by the product of its eigenvalues,

det(Tn(f)) =
n−1∏
i=0

τn,i,

so that (1.10) becomes

lim
n→∞ lndet(Tn(f))1/n = lim

n→∞
1
n

n−1∑
i=0

lnτn,i

=
1
2π

∫ 2π

0
lnf(λ)dλ. (1.11)

As we shall later see, if f has a lower bound m > 0, than indeed all the
eigenvalues will share the lower bound and the above derivation applies.
Determinants of Toeplitz matrices are called Toeplitz determinants and
(1.11) describes their limiting behavior.

1.2 Examples

A few examples from statistical signal processing and information
theory illustrate the the application of the theorem. These are described
with a minimum of background in order to highlight how the asymp-
totic eigenvalue distribution theorem allows one to evaluate results for
processes using results from finite-dimensional vectors.
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The differential entropy rate of a Gaussian process

Suppose that {Xn; n = 0,1, . . .} is a random process described by
probability density functions fXn(xn) for the random vectors Xn =
(X0,X1, . . . ,Xn−1) defined for all n = 0,1,2, . . . . The Shannon differen-
tial entropy h(Xn) is defined by the integral

h(Xn) = −
∫
fXn(xn) lnfXn(xn)dxn

and the differential entropy rate of the random process is defined by
the limit

h(X) = lim
n→∞

1
n
h(Xn)

if the limit exists. (See, for example, Cover and Thomas[7].)
A stationary zero mean Gaussian random process is completely

described by its mean correlation function rk,j = rk−j = E[XkXj ] or,
equivalently, by its power spectral density function f , the Fourier trans-
form of the covariance function:

f(λ) =
∞∑

n=−∞
rne

inλ,

rk =
1
2π

∫ 2π

0
f(λ)e−iλk dλ

For a fixed positive integer n, the probability density function is

fXn(xn) =
e−

1
2xn′R−1

n xn

(2π)n/2det(Rn)1/2 ,

where Rn is the n × n covariance matrix with entries rk−j . A straight-
forward multidimensional integration using the properties of Gaussian
random vectors yields the differential entropy

h(Xn) =
1
2

ln(2πe)ndetRn.

The problem at hand is to evaluate the entropy rate

h(X) = lim
n→∞

1
n
h(Xn) =

1
2

ln(2πe) + lim
n→∞

1
n

lndet(Rn).
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The matrix Rn is the Toeplitz matrix Tn generated by the power spec-
tral density f and det(Rn) is a Toeplitz determinant and we have imme-
diately from (1.11) that

h(X) =
1
2

log
(

2πe
1
2π

∫ 2π

0
lnf(λ)dλ

)
. (1.12)

This is a typical use of (1.6) to evaluate the limit of a sequence of finite-
dimensional qualities, in this case specified by the determinants of of a
sequence of Toeplitz matrices.

The Shannon rate-distortion function of a Gaussian process

As a another example of the application of (1.6), consider the eval-
uation of the rate-distortion function of Shannon information theory
for a stationary discrete time Gaussian random process with 0 mean,
covariance KX(k,j) = tk−j , and power spectral density f(λ) given by
(1.4). The rate-distortion function characterizes the optimal tradeoff of
distortion and bit rate in data compression or source coding systems.
The derivation details can be found, e.g., in Berger [3], Section 4.5,
but the point here is simply to provide an example of an application of
(1.6). The result is found by solving an n-dimensional optimization in
terms of the eigenvalues τn,k of Tn(f) and then taking limits to obtain
parametric expressions for distortion and rate:

Dθ = lim
n→∞

1
n

n−1∑
k=0

min(θ,τn,k)

Rθ = lim
n→∞

1
n

n−1∑
k=0

max(0,
1
2

ln
τn,k

θ
).

The theorem can be applied to turn this limiting sum involving eigen-
values into an integral involving the power spectral density:

Dθ =
∫ 2π

0
min(θ,f(λ))dλ

Rθ =
∫ 2π

0
max

(
0,

1
2

ln
f(λ)
θ

)
dλ.
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Again an infinite dimensional problem is solved by first solving a finite
dimensional problem involving the eigenvalues of matrices, and then
using the asymptotic eigenvalue theorem to find an integral expression
for the limiting result.

One-step prediction error

Another application with a similar development is the one-step predic-
tion error problem. Suppose that Xn is a weakly stationary random
process with covariance tk−j . A classic problem in estimation theory is
to find the best linear predictor based on the previous n values of Xi,
i = 0,1,2, . . . ,n − 1,

X̂n =
n∑

i=1

aiXn−i,

in the sense of minimizing the mean squared error E[(Xn − X̂n)2]
over all choices of coefficients ai. It is well known (see, e.g., [10])
that the minimum is given by the ratio of Toeplitz determinants
detTn+1/detTn. The question is to what this ratio converges in the
limit as n goes to ∞. This is not quite in a form suitable for applica-
tion of the theorem, but we have already evaluated the limit of detT 1/n

n

in (1.11) and for large n we have that

(detTn)1/n ≈ exp
(

1
2π

∫ 2π

0
lnf(λ)dλ

)
≈ (detTn+1)1/(n+1)

and hence in particular that

(detTn+1)1/(n+1) ≈ (detTn)1/n

so that

detTn+1

detTn
≈ (detTn)1/n → exp

(
1
2π

∫ 2π

0
lnf(λ)dλ

)
,

providing the desired limit. These arguments can be made exact, but
it is hoped they make the point that the asymptotic eigenvalue distri-
bution theorem for Hermitian Toeplitz matrices can be quite useful for
evaluating limits of solutions to finite-dimensional problems.
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Further examples

The Toeplitz distribution theorems have also found application in more
complicated information theoretic evaluations, including the channel
capacity of Gaussian channels [30, 29] and the rate-distortion functions
of autoregressive sources [12]. The examples described here were chosen
because they were in the author’s area of competence, but similar appli-
cations crop up in a variety of areas. A Google

TM
search using the title

of this document shows diverse applications of the eigenvalue distribu-
tion theorem and related results, including such areas of coding, spec-
tral estimation, watermarking, harmonic analysis, speech enhancement,
interference cancellation, image restoration, sensor networks for detec-
tion, adaptive filtering, graphical models, noise reduction, and blind
equalization.

1.3 Goals and Prerequisites

The primary goal of this work is to prove a special case of Szegö’s
asymptotic eigenvalue distribution theorem in Theorem 9. The assump-
tions used here are less general than Szegö’s, but this permits more
straightforward proofs which require far less mathematical background.
In addition to the fundamental theorems, several related results that
naturally follow but do not appear to be collected together anywhere
are presented. We do not attempt to survey the fields of applications of
these results, as such a survey would be far beyond the author’s stamina
and competence. A few applications are noted by way of examples.

The essential prerequisites are a knowledge of matrix theory, an
engineer’s knowledge of Fourier series and random processes, and cal-
culus (Riemann integration). A first course in analysis would be help-
ful, but it is not assumed. Several of the occasional results required of
analysis are usually contained in one or more courses in the usual engi-
neering curriculum, e.g., the Cauchy-Schwarz and triangle inequalities.
Hopefully the only unfamiliar results are a corollary to the Courant-
Fischer theorem and the Weierstrass approximation theorem. The lat-
ter is an intuitive result which is easily believed even if not formally
proved. More advanced results from Lebesgue integration, measure the-
ory, functional analysis, and harmonic analysis are not used.
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Our approach is to relate the properties of Toeplitz matrices to those
of their simpler, more structured special case – the circulant or cyclic
matrix. These two matrices are shown to be asymptotically equivalent
in a certain sense and this is shown to imply that eigenvalues, inverses,
products, and determinants behave similarly. This approach provides
a simplified and direct path to the basic eigenvalue distribution and
related theorems. This method is implicit but not immediately appar-
ent in the more complicated and more general results of Grenander in
Chapter 7 of [15]. The basic results for the special case of a banded
Toeplitz matrix appeared in [13], a tutorial treatment of the simplest
case which was in turn based on the first draft of this work. The results
were subsequently generalized using essentially the same simple meth-
ods, but they remain less general than those of [15].

As an application several of the results are applied to study certain
models of discrete time random processes. Two common linear models
are studied and some intuitively satisfying results on covariance matri-
ces and their factors are given.

We sacrifice mathematical elegance and generality for conceptual
simplicity in the hope that this will bring an understanding of the
interesting and useful properties of Toeplitz matrices to a wider audi-
ence, specifically to those who have lacked either the background or the
patience to tackle the mathematical literature on the subject.



2
The Asymptotic Behavior of Matrices

We begin with relevant definitions and a prerequisite theorem and pro-
ceed to a discussion of the asymptotic eigenvalue, product, and inverse
behavior of sequences of matrices. The major use of the theorems of
this section is to relate the asymptotic behavior of a sequence of compli-
cated matrices to that of a simpler asymptotically equivalent sequence
of matrices.

2.1 Eigenvalues

Any complex matrix A can be written as

A = URU∗, (2.1)

where the asterisk ∗ denotes conjugate transpose, U is unitary, i.e.,
U−1 = U∗, and R = {rk,j} is an upper triangular matrix ([18, p.
79]). The eigenvalues of A are the principal diagonal elements of R.
If A is normal, i.e., if A∗A = AA∗, then R is a diagonal matrix,
which we denote as R = diag(αk; k = 0,1, . . . ,n − 1) or, more simply,
R = diag(αk). If A is Hermitian, then it is also normal and its eigen-
values are real.

166
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A matrix A is nonnegative definite if x∗Ax ≥ 0 for all nonzero vec-
tors x. The matrix is positive definite if the inequality is strict for
all nonzero vectors x. (Some books refer to these properties as posi-
tive definite and strictly positive definite, respectively.) If a Hermitian
matrix is nonnegative definite, then its eigenvalues are all nonnegative.
If the matrix is positive definite, then the eigenvalues are all (strictly)
positive.

The extreme values of the eigenvalues of a Hermitian matrix H can
be characterized in terms of the Rayleigh quotient RH(x) of the matrix
and a complex-valued vector x defined by

RH(x) = (x∗Hx)/(x∗x). (2.2)

As the result is both important and simple to prove, we state and prove
it formally. The result will be useful in specifying the interval containing
the eigenvalues of a Hermitian matrix.

Usually in books on matrix theory it is proved as a corollary to
the variational description of eigenvalues given by the Courant-Fischer
theorem (see, e.g., [18, p. 116], for the case of real symmetric matrices),
but the following result is easily demonstrated directly.

Lemma 1. Given a Hermitian matrix H, let ηM and ηm be the max-
imum and minimum eigenvalues of H, respectively. Then

ηm = min
x

RH(x) = min
z:z∗z=1

z∗Hz (2.3)

ηM = max
x

RH(x) = max
z:z∗z=1

z∗Hz. (2.4)

Proof. Suppose that em and eM are eigenvectors corresponding to the
minimum and maximum eigenvalues ηm and ηM , respectively. Then
RH(em) = ηm and RH(eM ) = ηM and therefore

ηm ≥ min
x

RH(x) (2.5)

ηM ≤ max
x

RH(x). (2.6)
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Since H is Hermitian we can write H = UAU∗, where U is unitary and
A is the diagonal matrix of the eigenvalues ηk, and therefore

x∗Hx
x∗x

=
x∗UAU∗x

x∗x

=
y∗Ay
y∗y

=
∑n

k=1 |yk|2ηk∑n
k=1 |yk|2 ,

where y = U∗x and we have taken advantage of the fact that U is
unitary so that x∗x = y∗y. But for all vectors y, this ratio is bound
below by ηm and above by ηM and hence for all vectors x

ηm ≤ RH(x) ≤ ηM (2.7)

which with (2.5–2.6) completes the proof of the left-hand equalities of
the lemma. The right-hand equalities are easily seen to hold since if x
minimizes (maximizes) the Rayleigh quotient, then the normalized vec-
tor x/x∗x satisfies the constraint of the minimization (maximization) to
the right, hence the minimum (maximum) of the Rayleigh quotion must
be bigger (smaller) than the constrained minimum (maximum) to the
right. Conversely, if x achieves the rightmost optimization, then the same
x yields a Rayleigh quotient of the the same optimum value.

The following lemma is useful when studying non-Hermitian matri-
ces and products of Hermitian matrices. First note that if A is an
arbitrary complex matrix, then the matrix A∗A is both Hermitian and
nonnegative definite. It is Hermitian because (A∗A)∗ = A∗A and it is
nonnegative definite since if for any complex vector x we define the
complex vector y = Ax, then

x∗(A∗A)x = y∗y =
n∑

k=1

|yk|2 ≥ 0.

Lemma 2. Let A be a matrix with eigenvalues αk. Define the eigenval-
ues of the Hermitian nonnegative definite matrixA∗A to be λk ≥ 0. Then

n−1∑
k=0

λk ≥
n−1∑
k=0

|αk|2, (2.8)

with equality iff (if and only if) A is normal.
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Proof. The trace of a matrix is the sum of the diagonal elements of a
matrix. The trace is invariant to unitary operations so that it also is
equal to the sum of the eigenvalues of a matrix, i.e.,

Tr{A∗A} =
n−1∑
k=0

(A∗A)k,k =
n−1∑
k=0

λk. (2.9)

From (2.1), A = URU∗ and hence

Tr{A∗A} = Tr{R∗R} =
n−1∑
k=0

n−1∑
j=0

|rj,k|2

=
n−1∑
k=0

|αk|2 +
∑
k �=j

|rj,k|2

≥
n−1∑
k=0

|αk|2 (2.10)

Equation (2.10) will hold with equality iff R is diagonal and hence iff
A is normal.

Lemma 2 is a direct consequence of Shur’s theorem ([18, pp. 229–
231]) and is also proved in [15, p. 106].

2.2 Matrix Norms

To study the asymptotic equivalence of matrices we require a metric
on the space of linear space of matrices. A convenient metric for our
purposes is a norm of the difference of two matrices. A norm N(A) on
the space of n × n matrices satisfies the following properties:

(1) N(A) ≥ 0 with equality if and only if A = 0, is the all zero
matrix.

(2) For any two matrices A and B,

N(A + B) ≤ N(A) + N(B). (2.11)

(3) For any scalar c and matrix A, N(cA) = |c|N(A).
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The triangle inequality in (2.11) will be used often as is the following
direct consequence:

N(A − B) ≥ |N(A) − N(B)|. (2.12)

Two norms – the operator or strong norm and the Hilbert-Schmidt
or weak norm (also called the Frobenius norm or Euclidean norm when
the scaling term is removed) – will be used here ([15, pp. 102–103]).

Let A be a matrix with eigenvalues αk and let λk ≥ 0 be the eigen-
values of the Hermitian nonnegative definite matrix A∗A. The strong
norm ‖ A ‖ is defined by

‖ A ‖ = max
x
RA∗A(x)1/2 = max

z:z∗z=1
[z∗A∗Az]1/2. (2.13)

From Lemma 1

‖ A ‖2 = max
k
λk

∆= λM . (2.14)

The strong norm of A can be bound below by letting eM be the normal-
ized eigenvector of A corresponding to αM , the eigenvalue of A having
largest absolute value:

‖ A ‖2 = max
z:z∗z=1

z∗A∗Az ≥ (e∗MA
∗)(AeM ) = |αM |2. (2.15)

If A is itself Hermitian, then its eigenvalues αk are real and the eigen-
values λk of A∗A are simply λk = α2

k. This follows since if e(k) is an
eigenvector of A with eigenvalue αk, then A∗Ae(k) = αkA

∗e(k) = α2
ke

(k).
Thus, in particular, if A is Hermitian then

‖ A ‖ = max
k

|αk| = |αM |. (2.16)

The weak norm (or Hilbert-Schmidt norm) of an n × n matrix
A = [ak,j ] is defined by

|A| =


 1
n

n−1∑
k=0

n−1∑
j=0

|ak,j |2



1/2

= (
1
n

Tr[A∗A])1/2 =

(
1
n

n−1∑
k=0

λk

)1/2

. (2.17)
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The quantity
√
n|A| is sometimes called the Frobenius norm or

Euclidean norm. From Lemma 2 we have

|A|2 ≥ 1
n

n−1∑
k=0

|αk|2,with equality iff A is normal. (2.18)

The Hilbert-Schmidt norm is the “weaker” of the two norms since

‖ A ‖2= max
k
λk ≥ 1

n

n−1∑
k=0

λk = |A|2. (2.19)

A matrix is said to be bounded if it is bounded in both norms.
The weak norm is usually the most useful and easiest to handle of

the two, but the strong norm provides a useful bound for the product
of two matrices as shown in the next lemma.

Lemma 3. Given two n × nmatrices G = {gk,j} andH = {hk,j}, then

|GH| ≤‖ G ‖ |H|. (2.20)

Proof. Expanding terms yields

|GH|2 =
1
n

∑
i

∑
j

|
∑

k

gi,khk,j |2

=
1
n

∑
i

∑
j

∑
k

∑
m

gi,kg
∗
i,mhk,jh

∗
m,j

=
1
n

∑
j

h∗
jG

∗Ghj , (2.21)

where hj is the jth column of H. From (2.13),

h∗
jG

∗Ghj

h∗
jhj

≤‖ G ‖2

and therefore

|GH|2 ≤ 1
n

‖ G ‖2
∑

j

h∗
jhj =‖ G ‖2 |H|2.

Lemma 3 is the matrix equivalent of (7.3a) of ([15, p. 103]). Note
that the lemma does not require that G or H be Hermitian.
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2.3 Asymptotically Equivalent Sequences of Matrices

We will be considering sequences of n × n matrices that approximate
each other as n becomes large. As might be expected, we will use the
weak norm of the difference of two matrices as a measure of the “dis-
tance” between them. Two sequences of n × n matrices {An} and {Bn}
are said to be asymptotically equivalent if

(1) An and Bn are uniformly bounded in strong (and hence in
weak) norm:

‖ An ‖,‖ Bn ‖≤ M < ∞,n = 1,2, . . . (2.22)

and
(2) An − Bn = Dn goes to zero in weak norm as n → ∞:

lim
n→∞ |An − Bn| = lim

n→∞ |Dn| = 0.

Asymptotic equivalence of the sequences {An} and {Bn} will be abbre-
viated An ∼ Bn.

We can immediately prove several properties of asymptotic equiva-
lence which are collected in the following theorem.

Theorem 1. Let {An} and {Bn} be sequences of matrices with eigen-
values {αn, i} and {βn, i}, respectively.

(1) If An ∼ Bn, then

lim
n→∞ |An| = lim

n→∞ |Bn|. (2.23)

(2) If An ∼ Bn and Bn ∼ Cn, then An ∼ Cn.
(3) If An ∼ Bn and Cn ∼ Dn, then AnCn ∼ BnDn.
(4) If An ∼ Bn and ‖ A−1

n ‖, ‖ B−1
n ‖≤ K < ∞, all n, then A−1

n ∼
B−1

n .
(5) If AnBn ∼ Cn and ‖ A−1

n ‖≤ K < ∞, then Bn ∼ A−1
n Cn.

(6) IfAn ∼ Bn, then there are finite constantsm andM such that

m ≤ αn,k,βn,k ≤ M , n = 1,2, . . . k = 0,1, . . . ,n − 1.
(2.24)



2.3. Asymptotically Equivalent Sequences of Matrices 173

Proof.
(1) Eq. (2.23) follows directly from (2.12).
(2) |An − Cn| = |An − Bn + Bn − Cn| ≤ |An − Bn| + |Bn −

Cn| −→
n→∞ 0.

(3) Applying Lemma 3 yields

|AnCn − BnDn| = |AnCn − AnDn + AnDn − BnDn|
≤ ‖ An ‖ |Cn − Dn|+ ‖ Dn ‖ |An − Bn|
−→

n→∞ 0.

(4)

|A−1
n − B−1

n | = |B−1
n BnA

−1
n − B−1

n AnA
−1
n |

≤ ‖ B−1
n ‖ · ‖ A−1

n ‖ ·|Bn − An|
−→

n→∞ 0.

(5)

Bn − A−1
n Cn = A−1

n AnBn − A−1
n Cn

≤ ‖ A−1
n ‖ |AnBn − Cn|

−→
n→∞ 0.

(6) If An ∼ Bn then they are uniformly bounded in strong norm
by some finite number M and hence from (2.15), |αn,k| ≤
M and |βn,k| ≤ M and hence −M ≤ αn,k,βn,k ≤ M . So the
result holds for m = −M and it may hold for larger m, e.g.,
m = 0 if the matrices are all nonnegative definite.

The above results will be useful in several of the later proofs. Asymp-
totic equality of matrices will be shown to imply that eigenvalues, prod-
ucts, and inverses behave similarly. The following lemma provides a
prelude of the type of result obtainable for eigenvalues and will itself
serve as the essential part of the more general results to follow. It shows
that if the weak norm of the difference of the two matrices is small, then
the sums of the eigenvalues of each must be close.
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Lemma 4. Given two matrices A and B with eigenvalues {αk} and
{βk}, respectively, then

| 1
n

n−1∑
k=0

αk − 1
n

n−1∑
k=0

βk| ≤ |A − B|.

Proof. Define the difference matrix D = A − B = {dk,j} so that

n−1∑
k=0

αk −
n−1∑
k=0

βk = Tr(A) − Tr(B)

= Tr(D).

Applying the Cauchy-Schwarz inequality (see, e.g., [22, p. 17]) to Tr(D)
yields

|Tr(D)|2 =

∣∣∣∣∣
n−1∑
k=0

dk,k

∣∣∣∣∣
2

≤ n

n−1∑
k=0

|dk,k|2

≤ n

n−1∑
k=0

n−1∑
j=0

|dk,j |2 = n2|D|2. (2.25)

Taking the square root and dividing by n proves the lemma.

An immediate consequence of the lemma is the following corollary.

Corollary 1. Given two sequences of asymptotically equivalent matri-
ces {An} and {Bn} with eigenvalues {αn,k} and {βn,k}, respectively,
then

lim
n→∞

1
n

n−1∑
k=0

(αn,k − βn,k) = 0, (2.26)

and hence if either limit exists individually,

lim
n→∞

1
n

n−1∑
k=0

αn,k = lim
n→∞

1
n

n−1∑
k=0

βn,k. (2.27)
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Proof. Let Dn = {dk,j} = An − Bn. Eq. (2.27) is equivalent to

lim
n→∞

1
n

Tr(Dn) = 0. (2.28)

Dividing by n2, and taking the limit, results in

0 ≤ | 1
n

Tr(Dn)|2 ≤ |Dn|2 −→
n→∞ 0 (2.29)

from the lemma, which implies (2.28) and hence (2.27).

The previous corollary can be interpreted as saying the sample or
arithmetic means of the eigenvalues of two matrices are asymptotically
equal if the matrices are asymptotically equivalent. It is easy to see
that if the matrices are Hermitian, a similar result holds for the means
of the squared eigenvalues. From (2.12) and (2.18),

|Dn| ≥ | |An| − |Bn| |

=

∣∣∣∣∣∣
√√√√ 1
n

n−1∑
k=0

α2
n,k −

√√√√ 1
n

n−1∑
k=0

β2
n,k

∣∣∣∣∣∣
−→

n→∞ 0

if |Dn| −→
n→∞ 0, yielding the following corollary.

Corollary 2. Given two sequences of asymptotically equivalent Her-
mitian matrices {An} and {Bn} with eigenvalues {αn,k} and {βn,k},
respectively, then

lim
n→∞

1
n

n−1∑
k=0

(α2
n,k − β2

n,k) = 0, (2.30)

and hence if either limit exists individually,

lim
n→∞

1
n

n−1∑
k=0

α2
n,k = lim

n→∞
1
n

n−1∑
k=0

β2
n,k. (2.31)

Both corollaries relate limiting sample (arithmetic) averages of
eigenvalues or moments of an eigenvalue distribution rather than indi-
vidual eigenvalues. Equations (2.27) and (2.31) are special cases of the
following fundamental theorem of asymptotic eigenvalue distribution.
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Theorem 2. Let {An} and {Bn} be asymptotically equivalent
sequences of matrices with eigenvalues {αn,k} and {βn,k}, respectively.
Then for any positive integer s the sequences of matrices {As

n} and
{Bs

n} are also asymptotically equivalent,

lim
n→∞

1
n

n−1∑
k=0

(αs
n,k − βs

n,k) = 0, (2.32)

and hence if either separate limit exists,

lim
n→∞

1
n

n−1∑
k=0

αs
n,k = lim

n→∞
1
n

n−1∑
k=0

βs
n,k. (2.33)

Proof. Let An = Bn + Dn as in the proof of Corollary 1 and consider
As

n − Bs
n

∆= ∆n. Since the eigenvalues of As
n are αs

n,k, (2.32) can be
written in terms of ∆n as

lim
n→∞

1
n

Tr(∆n) = 0. (2.34)

The matrix ∆n is a sum of several terms each being a product of Dn’s
and Bn’s, but containing at least one Dn (to see this use the binomial
theorem applied to matrices to expand As

n). Repeated application of
Lemma 3 thus gives

|∆n| ≤ K|Dn| −→
n→∞ 0, (2.35)

where K does not depend on n. Equation (2.35) allows us to apply
Corollary 1 to the matrices As

n and Ds
n to obtain (2.34) and hence

(2.32).

Theorem 2 is the fundamental theorem concerning asymptotic
eigenvalue behavior of asymptotically equivalent sequences of matri-
ces. Most of the succeeding results on eigenvalues will be applications
or specializations of (2.33).

Since (2.33) holds for any positive integer s we can add sums corre-
sponding to different values of s to each side of (2.33). This observation
leads to the following corollary.
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Corollary 3. Suppose that {An} and {Bn} are asymptotically equiv-
alent sequences of matrices with eigenvalues {αn,k} and {βn,k}, respec-
tively, and let f(x) be any polynomial. Then

lim
n→∞

1
n

n−1∑
k=0

(f (αn,k) − f (βn,k)) = 0 (2.36)

and hence if either limit exists separately,

lim
n→∞

1
n

n−1∑
k=0

f (αn,k) = lim
n→∞

1
n

n−1∑
k=0

f (βn,k) . (2.37)

Proof. Suppose that f(x) =
∑m

s=0asx
s. Then summing (2.32) over s

yields (2.36). If either of the two limits exists, then (2.36) implies that
both exist and that they are equal.

Corollary 3 can be used to show that (2.37) can hold for any ana-
lytic function f(x) since such functions can be expanded into complex
Taylor series, which can be viewed as polynomials with a possibly infi-
nite number of terms. Some effort is needed, however, to justify the
interchange of limits, which can be accomplished if the Taylor series
converges uniformly. If An and Bn are Hermitian, however, then a much
stronger result is possible. In this case the eigenvalues of both matrices
are real and we can invoke the Weierstrass approximation theorem ([6,
p. 66]) to immediately generalize Corollary 3. This theorem, our one
real excursion into analysis, is stated below for reference.

Theorem 3. (Weierstrass) If F (x) is a continuous complex function
on [a,b], there exists a sequence of polynomials pn(x) such that

lim
n→∞pn(x) = F (x)

uniformly on [a,b].

Stated simply, any continuous function defined on a real inter-
val can be approximated arbitrarily closely and uniformly by a poly-
nomial. Applying Theorem 3 to Corollary 3 immediately yields the
following theorem:
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Theorem 4. Let {An} and {Bn} be asymptotically equivalent
sequences of Hermitian matrices with eigenvalues {αn,k} and {βn,k},
respectively. From Theorem 1 there exist finite numbers m and M

such that

m ≤ αn,k,βn,k ≤ M , n = 1,2, . . . k = 0,1, . . . ,n − 1. (2.38)

Let F (x) be an arbitrary function continuous on [m,M ]. Then

lim
n→∞

1
n

n−1∑
k=0

(F (αn,k) − F (βn,k)) = 0, (2.39)

and hence if either of the limits exists separately,

lim
n→∞

1
n

n−1∑
k=0

F (αn,k) = lim
n→∞

1
n

n−1∑
k=0

F (βn,k) (2.40)

Theorem 4 is the matrix equivalent of Theorem 7.4a of [15]. When
two real sequences {αn,k;k = 0,1, . . . ,n − 1} and {βn,k;k = 0,1, . . . ,n −
1} satisfy (2.38) and (2.39), they are said to be asymptotically equally
distributed ([15, p. 62], where the definition is attributed to Weyl).

As an example of the use of Theorem 4 we prove the following
corollary on the determinants of asymptotically equivalent sequences
of matrices.

Corollary 4. Let {An} and {Bn} be asymptotically equivalent
sequences of Hermitian matrices with eigenvalues {αn,k} and {βn,k},
respectively, such that αn,k,βn,k ≥ m > 0. Then if either limit exists,

lim
n→∞(detAn)1/n = lim

n→∞(detBn)1/n. (2.41)

Proof. From Theorem 4 we have for F (x) = lnx

lim
n→∞

1
n

n−1∑
k=0

lnαn,k = lim
n→∞

1
n

n−1∑
k=0

lnβn,k
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and hence

lim
n→∞exp

[
1
n

ln
n−1∏
k=0

αn,k

]
= lim

n→∞exp

[
1
n

ln
n−1∏
k=0

βn,k

]

or equivalently

lim
n→∞exp[

1
n

lndetAn] = lim
n→∞exp[

1
n

lndetBn],

from which (2.41) follows.

With suitable mathematical care the above corollary can be
extended to cases where αn,k,βn,k > 0 provided additional constraints
are imposed on the matrices. For example, if the matrices are assumed
to be Toeplitz matrices, then the result holds even if the eigenvalues
can get arbitrarily small but remain strictly positive. (See the discus-
sion on p. 66 and in Section 3.1 of [15] for the required technical condi-
tions.) The difficulty with allowing the eigenvalues to approach 0 is that
their logarithms are not bounded. Furthermore, the function lnx is not
continuous at x = 0, so Theorem 4 does not apply. Nonetheless, it is
possible to say something about the asymptotic eigenvalue distribution
in such cases and this issue is revisited in Theorem 11(d).

In this section the concept of asymptotic equivalence of matrices was
defined and its implications studied. The main consequences are the
behavior of inverses and products (Theorem 1) and eigenvalues (Theo-
rems 2 and 4). These theorems do not concern individual entries in the
matrices or individual eigenvalues, rather they describe an “average”
behavior. Thus saying A−1

n ∼ B−1
n means that |A−1

n − B−1
n | −→

n→∞ 0 and
says nothing about convergence of individual entries in the matrix. In
certain cases stronger results on a type of elementwise convergence are
possible using the stronger norm of Baxter [2, 1]. Baxter’s results are
beyond the scope of this work.

2.4 Asymptotically Absolutely Equal Distributions

It is possible to strengthen Theorem 4 and some of the interim results
used in its derivation using reasonably elementary methods. The key
additional idea required is the Wielandt-Hoffman theorem [16], a result
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from matrix theory that is of independent interest. The theorem is
stated and a proof following Wilkinson [34] is presented for complete-
ness. This section can be skipped by readers not interested in the
stronger notion of equal eigenvalue distributions as it is not needed in
the sequel. The bounds of Lemmas 5 and 5 are of interest in their own
right and are included as they strengthen the the traditional bounds.

Theorem 5. (Wielandt-Hoffman theorem) Given two Hermitian
matrices A and B with eigenvalues αk and βk, respectively, then

1
n

n−1∑
k=0

|αk − βk|2 ≤ |A − B|2.

Proof. Since A and B are Hermitian, we can write them as A =
Udiag(αk)U∗, B = Wdiag(βk)W ∗, where U and W are unitary. Since
the weak norm is not effected by multiplication by a unitary matrix,

|A − B| = |Udiag(αk)U∗ − Wdiag(βk)W ∗|
= |diag(αk)U∗ − U∗Wdiag(βk)W ∗|
= |diag(αk)U∗W − U∗Wdiag(βk)|
= |diag(αk)Q − Qdiag(βk)|,

where Q = U∗W = {qi,j} is also unitary. The (i, j) entry in the matrix
diag(αk)Q − Qdiag(βk) is (αi − βj)qi,j and hence

|A − B|2 =
1
n

n−1∑
i=0

n−1∑
j=0

|αi − βj |2|qi,j |2 ∆=
n−1∑
i=0

n−1∑
j=0

|αi − βj |2pi,j (2.42)

where we have defined pi,j = (1/n)|qi,j |2. Since Q is unitary, we also
have that

n−1∑
i=0

|qi,j |2 =
n−1∑
j=0

|qi,j |2 = 1 (2.43)

or
n−1∑
i=0

pi,j =
n−1∑
j=0

pi,j =
1
n
. (2.44)
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This can be interpreted in probability terms: pi,j = (1/n)|qi,j |2 is a
probability mass function or pmf on {0,1, . . . ,n − 1}2 with uniform
marginal probability mass functions. Recall that it is assumed that
the eigenvalues are ordered so that α0 ≥ α1 ≥ α2 ≥ ·· · and β0 ≥ β1 ≥
β2 ≥ ·· · .

We claim that for all such matrices P satisfying (2.44), the right-
hand side of (2.42) is minimized by P = (1/n)I, where I is the identity
matrix, so that

n−1∑
i=0

n−1∑
j=0

|αi − βj |2pi,j ≥
n−1∑
i=0

|αi − βi|2,

which will prove the result. To see this suppose the contrary. Let �
be the smallest integer in {0,1, . . . ,n − 1} such that P has a nonzero
element off the diagonal in either row � or in column �. If there is a
nonzero element in row � off the diagonal, say p�,a then there must also
be a nonzero element in column � off the diagonal, say pb,� in order
for the constraints (2.44) to be satisfied. Since � is the smallest such
value, � < a and � < b. Let x be the smaller of pl,a and pb,l. Form a new
matrix P ′ by adding x to p�,� and pb,a and subtracting x from pb,� and
p�,a. The new matrix still satisfies the constraints and it has a zero in
either position (b,�) or (�,a). Furthermore the norm of P ′ has changed
from that of P by an amount

x
(
(α� − β�)2 + (αb − βa)2 − (α� − βa)2 − (αb − β�)2

)
= −x(α� − αb)(β� − βa) ≤ 0

since � > b, � > a, the eigenvalues are nonincreasing, and x is posi-
tive. Continuing in this fashion all nonzero offdiagonal elements can be
zeroed out without increasing the norm, proving the result.

From the Cauchy-Schwarz inequality

n−1∑
k=0

|αk − βk| ≤
√√√√n−1∑

k=0

(αk − βk)2

√√√√n−1∑
k=0

12 =

√√√√n

n−1∑
k=0

(αk − βk)2,
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which with the Wielandt-Hoffman theorem yields the following
strengthening of Lemma 4,

1
n

n−1∑
k=0

|αk − βk| ≤
√√√√ 1
n

n−1∑
k=0

(αk − βk)2 ≤ |An − Bn|,

which we formalize as the following lemma.

Lemma 5. Given two Hermitian matrices A and B with eigenvalues
αn and βn in nonincreasing order, respectively, then

1
n

n−1∑
k=0

|αk − βk| ≤ |A − B|.

Note in particular that the absolute values are outside the sum in
Lemma 4 and inside the sum in Lemma 5. As was done in the weaker
case, the result can be used to prove a stronger version of Theo-
rem 4. This line of reasoning, using the Wielandt-Hoffman theorem,
was pointed out by William F. Trench who used special cases in his
paper [23]. Similar arguments have become standard for treating eigen-
value distributions for Toeplitz and Hankel matrices. See, for example,
[32, 9, 4]. The following theorem provides the derivation. The specific
statement result and its proof follow from a private communication
from William F. Trench. See also [31, 25, 24, 26, 27, 28].

Theorem 6. Let An and Bn be asymptotically equivalent sequences
of Hermitian matrices with eigenvalues αn,k and βn,k in nonincreasing
order, respectively. From Theorem 1 there exist finite numbers m and
M such that

m ≤ αn,k,βn,k ≤ M , n = 1,2, . . . k = 0,1, . . . ,n − 1. (2.45)

Let F (x) be an arbitrary function continuous on [m,M ]. Then

lim
n→∞

1
n

n−1∑
k=0

|F (αn,k) − F (βn,k)| = 0. (2.46)
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The theorem strengthens the result of Theorem 4 because of the
magnitude inside the sum. Following Trench [25] in this case the eigen-
values are said to be asymptotically absolutely equally distributed.

Proof. From Lemma 5

1
n

∑
k=0

|αn,k − βn,k| ≤ |An − Bn|, (2.47)

which implies (2.46) for the case F (r) = r. For any nonnegative
integer j

|αj
n,k − βj

n,k| ≤ jmax(|m|, |M |)j−1|αn,k − βn,k|. (2.48)

By way of explanation consider a,b ∈ [m,M ]. Simple long division
shows that

aj − bj

a − b
=

j∑
l=1

aj−lbl−1

so that

|a
j − bj

a − b
| =

|aj − bj |
|a − b|

= |
j∑

l=1

aj−lbl−1|

≤
j∑

l=1

|aj−lbl−1|

=
j∑

l=1

|a|j−l|b|l−1

≤ jmax(|m|, |M |)j−1,

which proves (2.48). This immediately implies that (2.46) holds for
functions of the form F (r) = rj for positive integers j, which in
turn means the result holds for any polynomial. If F is an arbitrary
continuous function on [m,M ], then from Theorem 3 given ε > 0 there
is a polynomial P such that

|P (u) − F (u)| ≤ ε,u ∈ [m,M ].
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Using the triangle inequality,

1
n

n−1∑
k=0

|F (αn,k) − F (βn,k)|

=
1
n

n−1∑
k=0

|F (αn,k) −P (αn,k) +P (αn,k) −P (βn,k) +P (βn,k) −F (βn,k)|

≤ 1
n

n−1∑
k=0

|F (αn,k) − P (αn,k)| +
1
n

n−1∑
k=0

|P (αn,k) − P (βn,k)|

+
1
n

n−1∑
k=0

|P (βn,k) − F (βn,k)|

≤ 2ε +
1
n

n−1∑
k=0

|P (αn,k) − P (βn,k)|

As n → ∞ the remaining sum goes to 0, which proves the theorem
since ε can be made arbitrarily small.



3
Circulant Matrices

A circulant matrix C is a Toeplitz matrix having the form

C =




c0 c1 c2 · · · cn−1

cn−1 c0 c1 c2
...

cn−1 c0 c1
. . .

...
. . . . . . . . . c2

c1
c1 · · · cn−1 c0



, (3.1)

where each row is a cyclic shift of the row above it. The structure can
also be characterized by noting that the (k,j) entry of C, Ck,j , is given
by

Ck,j = c(j−k) mod n.

The properties of circulant matrices are well known and easily derived
([18, p. 267], [8]). Since these matrices are used both to approximate
and explain the behavior of Toeplitz matrices, it is instructive to present
one version of the relevant derivations here.
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3.1 Eigenvalues and Eigenvectors

The eigenvalues ψk and the eigenvectors y(k) of C are the solutions of

Cy = ψ y (3.2)

or, equivalently, of the n difference equations

m−1∑
k=0

cn−m+kyk +
n−1∑
k=m

ck−myk = ψ ym; m = 0,1, . . . ,n − 1. (3.3)

Changing the summation dummy variable results in

n−1−m∑
k=0

ckyk+m +
n−1∑

k=n−m

ckyk−(n−m) = ψ ym; m = 0,1, . . . ,n − 1. (3.4)

One can solve difference equations as one solves differential equations –
by guessing an intuitive solution and then proving that it works. Since
the equation is linear with constant coefficients a reasonable guess is
yk = ρk (analogous to y(t) = esτ in linear time invariant differential
equations). Substitution into (3.4) and cancellation of ρm yields

n−1−m∑
k=0

ckρ
k + ρ−n

n−1∑
k=n−m

ckρ
k = ψ.

Thus if we choose ρ−n = 1, i.e., ρ is one of the n distinct complex nth

roots of unity, then we have an eigenvalue

ψ =
n−1∑
k=0

ckρ
k (3.5)

with corresponding eigenvector

y = n−1/2 (1,ρ,ρ2, . . . ,ρn−1)′ , (3.6)

where the prime denotes transpose and the normalization is chosen to
give the eigenvector unit energy. Choosing ρm as the complex nth root
of unity, ρm = e−2πim/n, we have eigenvalue

ψm =
n−1∑
k=0

cke
−2πimk/n (3.7)
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and eigenvector

y(m) =
1√
n

(
1,e−2πim/n, · · · ,e−2πi(n−1)/n

)′
.

Thus from the definition of eigenvalues and eigenvectors,

Cy(m) = ψmy
(m),m = 0,1, . . . ,n − 1. (3.8)

Equation (3.7) should be familiar to those with standard engineering
backgrounds as simply the discrete Fourier transform (DFT) of the
sequence {ck}. Thus we can recover the sequence {ck} from the ψk by
the Fourier inversion formula. In particular,

1
n

n−1∑
m=0

ψme
2πi�m =

1
n

n−1∑
m=0

n−1∑
k=0

(
cke

−2πimk/n
)
e2πi�m

=
n−1∑
k=0

ck
1
n

n−1∑
m=0

e2πi(�−k)m/n = c�, (3.9)

where we have used the orthogonality of the complex exponentials:

n−1∑
m=0

e2πimk/n = nδk mod n =

{
n k mod n = 0

0 otherwise
, (3.10)

where δ is the Kronecker delta,

δm =

{
1 m = 0

0 otherwise
.

Thus the eigenvalues of a circulant matrix comprise the DFT of the
first row of the circulant matrix, and conversely first row of a circulant
matrix is the inverse DFT of the eigenvalues.

Eq. (3.8) can be written as a single matrix equation

CU = UΨ, (3.11)

where

U = [y(0)|y(1)| · · · |y(n−1)]

= n−1/2[e−2πimk/n; m,k = 0,1, . . . ,n − 1]
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is the matrix composed of the eigenvectors as columns, and
Ψ = diag(ψk) is the diagonal matrix with diagonal elements
ψ0,ψ1, . . . ,ψn−1. Furthermore, (3.10) implies that U is unitary. By
way of details, denote that the (k,j)th element of UU∗ by ak,j and
observe that ak,j will be the product of the kth row of U , which is
{e−2πimk/n/

√
n;m = 0,1, . . . ,n − 1}, times the jth column of U∗, which

is {e2πimj/n/
√
n;m = 0,1, . . . ,n − 1} so that

ak,j =
1
n

n−1∑
m=0

e2πim(j−k)/n = δ(k−j) mod n

and hence UU∗ = I. Similarly, U∗U = I. Thus (3.11) implies that

C = UΨU∗ (3.12)

Ψ = U∗CU. (3.13)

Since C is unitarily similar to a diagonal matrix it is normal.

3.2 Matrix Operations on Circulant Matrices

The following theorem summarizes the properties derived in the previ-
ous section regarding eigenvalues and eigenvectors of circulant matrices
and provides some easy implications.

Theorem 7. Every circulant matrix C has eigenvectors y(m) =
1√
n

(
1,e−2πim/n, · · · ,e−2πi(n−1)/n

)′
, m = 0,1, . . . ,n − 1, and correspond-

ing eigenvalues

ψm =
n−1∑
k=0

cke
−2πimk/n

and can be expressed in the form C = UΨU∗, where U has the eigen-
vectors as columns in order and Ψ is diag(ψk). In particular all circulant
matrices share the same eigenvectors, the same matrix U works for all
circulant matrices, and any matrix of the form C = UΨU∗ is circulant.

Let C = {ck−j} and B = {bk−j} be circulant n × n matrices with
eigenvalues

ψm =
n−1∑
k=0

cke
−2πimk/n, βm =

n−1∑
k=0

bke
−2πimk/n,
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respectively. Then

(1) C and B commute and

CB = BC = UγU∗ ,

where γ = diag(ψmβm), and CB is also a circulant matrix.
(2) C + B is a circulant matrix and

C + B = UΩU∗,

where Ω = {(ψm + βm)δk−m}
(3) If ψm �= 0; m = 0,1, . . . ,n − 1, then C is nonsingular and

C−1 = UΨ−1U∗.

Proof. We have C = UΨU∗ and B = UΦU∗ where Ψ = diag(ψm) and
Φ = diag(βm).

(1) CB = UΨU∗UΦU∗ = UΨΦU∗ = UΦΨU∗ = BC. Since ΨΦ
is diagonal, the first part of the theorem implies that CB
is circulant.

(2) C + B = U(Ψ + Φ)U∗.
(3) If Ψ is nonsingular, then

CUΨ−1U∗ = UΨU∗UΨ−1U∗ = UΨΨ−1U∗

= UU∗ = I.

Circulant matrices are an especially tractable class of matrices since
inverses, products, and sums are also circulant matrices and hence both
straightforward to construct and normal. In addition the eigenvalues
of such matrices can easily be found exactly and the same eigenvectors
work for all circulant matrices.

We shall see that suitably chosen sequences of circulant matrices
asymptotically approximate sequences of Toeplitz matrices and hence
results similar to those in Theorem 7 will hold asymptotically for
sequences of Toeplitz matrices.



4
Toeplitz Matrices

4.1 Sequences of Toeplitz Matrices

Given the simplicity of sums, products, eigenvalues,, inverses, and
determinants of circulant matrices, an obvious approach to the study of
asymptotic properties of sequences of Toeplitz matrices is to approxi-
mate them by sequences asymptotically equivalent of circulant matrices
and then applying the results developed thus far. Such results are most
easily derived when strong assumptions are placed on the sequence of
Toeplitz matrices which keep the structure of the matrices simple and
allow them to be well approximated by a natural and simple sequence
of related circulant matrices. Increasingly general results require corre-
sponding increasingly complicated constructions and proofs.

Consider the infinite sequence {tk} and define the corresponding
sequence of n × n Toeplitz matrices Tn = [tk−j ; k,j = 0,1, . . . ,n − 1] as
in (1.1). Toeplitz matrices can be classified by the restrictions placed on
the sequence tk. The simplest class results if there is a finitem for which
tk = 0, |k| > m, in which case Tn is said to be a banded Toeplitz matrix.
A banded Toeplitz matrix has the appearance of the of (4.1), possessing
a finite number of diagonals with nonzero entries and zeros everywhere

190
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else, so that the nonzero entries lie within a “band” including the main
diagonal:

Tn =




t0 t−1 · · · t−m

t1 t0
... 0

. . . . . .
tm

. . .
tm · · · t1 t0 t−1 · · · t−m

. . .
. . . . . . t−m

...
0 t0 t−1

tm · · · t1 t0




.

(4.1)
In the more general case where the tk are not assumed to be zero

for large k, there are two common constraints placed on the infinite
sequence {tk; k = . . . ,−2,−1,0,1,2, . . .} which defines all of the matrices
Tn in the sequence. The most general is to assume that the tk are square
summable, i.e., that

∞∑
k=−∞

|tk|2 < ∞. (4.2)

Unfortunately this case requires mathematical machinery beyond that
assumed here; i.e., Lebesgue integration and a relatively advanced
knowledge of Fourier series. We will make the stronger assumption that
the tk are absolutely summable, i.e., that

∞∑
k=−∞

|tk| < ∞. (4.3)

Note that (4.3) is indeed a stronger constraint than (4.2) since
∞∑

k=−∞
|tk|2 ≤

{ ∞∑
k=−∞

|tk|
}2

. (4.4)
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The assumption of absolute summability greatly simplifies the
mathematics, but does not alter the fundamental concepts of Toeplitz
and circulant matrices involved. As the main purpose here is tutorial
and we wish chiefly to relay the flavor and an intuitive feel for the
results, we will confine interest to the absolutely summable case. The
main advantage of (4.3) over (4.2) is that it ensures the existence and
of the Fourier series f(λ) defined by

f(λ) =
∞∑

k=−∞
tke

ikλ = lim
n→∞

n∑
k=−n

tke
ikλ. (4.5)

Not only does the limit in (4.5) converge if (4.3) holds, it converges
uniformly for all λ, that is, we have that∣∣∣∣∣f(λ) −

n∑
k=−n

tke
ikλ

∣∣∣∣∣ =

∣∣∣∣∣
−n−1∑
k=−∞

tke
ikλ +

∞∑
k=n+1

tke
ikλ

∣∣∣∣∣

≤
∣∣∣∣∣

−n−1∑
k=−∞

tke
ikλ

∣∣∣∣∣ +
∣∣∣∣∣

∞∑
k=n+1

tke
ikλ

∣∣∣∣∣

≤
−n−1∑
k=−∞

|tk| +
∞∑

k=n+1

|tk|

,

where the right-hand side does not depend on λ and it goes to zero as
n → ∞ from (4.3). Thus given ε there is a single N , not depending on
λ, such that∣∣∣∣∣f(λ) −

n∑
k=−n

tke
ikλ

∣∣∣∣∣ ≤ ε , all λ ∈ [0,2π] , if n ≥ N. (4.6)

Furthermore, if (4.3) holds, then f(λ) is Riemann integrable and the tk
can be recovered from f from the ordinary Fourier inversion formula:

tk =
1
2π

∫ 2π

0
f(λ)e−ikλ dλ. (4.7)

As a final useful property of this case, f(λ) is a continuous function of
λ ∈ [0,2π] except possibly at a countable number of points.
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A sequence of Toeplitz matrices Tn = [tk−j ] for which the tk are
absolutely summable is said to be in the Wiener class,. Similarly, a
function f(λ) defined on [0,2π] is said to be in the Wiener class if it
has a Fourier series with absolutely summable Fourier coefficients. It
will often be of interest to begin with a function f in the Wiener class
and then define the sequence of of n × n Toeplitz matrices

Tn(f) =
[

1
2π

∫ 2π

0
f(λ)e−i(k−j)λdλ ; k,j = 0,1, · · · ,n − 1

]
, (4.8)

which will then also be in the Wiener class. The Toeplitz matrix Tn(f)
will be Hermitian if and only if f is real. More specifically, Tn(f) =
T ∗

n(f) if and only if tk−j = t∗j−k for all k,j or, equivalently, t∗k = t−k all
k. If t∗k = t−k, however,

f∗(λ) =
∞∑

k=−∞
t∗ke

−ikλ =
∞∑

k=−∞
t−ke

−ikλ

=
∞∑

k=−∞
tke

ikλ = f(λ),

so that f is real. Conversely, if f is real, then

t∗k =
1
2π

∫ 2π

0
f∗(λ)eikλ dλ

=
1
2π

∫ 2π

0
f(λ)eikλ dλ = t−k.

It will be of interest to characterize the maximum and minimum
magnitude of the eigenvalues of Toeplitz matrices and how these relate
to the maximum and minimum values of the corresponding functions f .
Problems arise, however, if the function f has a maximum or minimum
at an isolated point. To avoid such difficulties we define the essential
supremum Mf = ess supf of a real valued function f as the smallest
number a for which f(x) ≤ a except on a set of total length or mea-
sure 0. In particular, if f(x) > a only at isolated points x and not on
any interval of nonzero length, then Mf ≤ a. Similarly, the essential
infimum mf = ess inff is defined as the largest value of a for which
f(x) ≥ a except on a set of total length or measure 0. The key idea
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here is to view Mf and mf as the maximum and minimum values of f ,
where the extra verbiage is to avoid technical difficulties arising from
the values of f on sets that do not effect the integrals. Functions f in
the Wiener class are bounded since

|f(λ)| ≤
∞∑

k=−∞
|tkeikλ| ≤

∞∑
k=−∞

|tk| (4.9)

so that

m|f |,M|f | ≤
∞∑

k=−∞
|tk|. (4.10)

4.2 Bounds on Eigenvalues of Toeplitz Matrices

In this section Lemma 1 is used to obtain bounds on the eigenvalues of
Hermitian Toeplitz matrices and an upper bound bound to the strong
norm for general Toeplitz matrices.

Lemma 6. Let τn,k be the eigenvalues of a Toeplitz matrix Tn(f). If
Tn(f) is Hermitian, then

mf ≤ τn,k ≤ Mf . (4.11)

Whether or not Tn(f) is Hermitian,

‖ Tn(f) ‖≤ 2M|f |, (4.12)

so that the sequence of Toeplitz matrices {Tn(f)} is uniformly bounded
over n if the essential supremum of |f | is finite.

Proof. From Lemma 1,

max
k

τn,k = max
x

(x∗Tn(f)x)/(x∗x) (4.13)

min
k

τn,k = min
x

(x∗Tn(f)x)/(x∗x)
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so that

x∗Tn(f)x =
n−1∑
k=0

n−1∑
j=0

tk−jxkx
∗
j

=
n−1∑
k=0

n−1∑
j=0

[
1
2π

∫ 2π

0
f(λ)ei(k−j)λ dλ

]
xkx

∗
j

= 1
2π

∫ 2π

0

∣∣∣∣∣
n−1∑
k=0

xke
ikλ

∣∣∣∣∣
2

f(λ)dλ

(4.14)

and likewise

x∗x =
n−1∑
k=0

|xk|2 =
1
2π

∫ 2π

0
|
n−1∑
k=0

xke
ikλ|2 dλ. (4.15)

Combining (4.14)–(4.15) results in

mf ≤

∫ 2π

0
f(λ)

∣∣∣∣∣
n−1∑
k=0

xke
ikλ

∣∣∣∣∣
2

dλ

∫ 2π

0

∣∣∣∣∣
n−1∑
k=0

xkeikλ

∣∣∣∣∣
2

dλ

=
x∗Tn(f)x
x∗x

≤ Mf , (4.16)

which with (4.13) yields (4.11).
We have already seen in (2.16) that if Tn(f) is Hermitian, then

‖ Tn(f) ‖= maxk |τn,k| ∆= |τn,M |. Since |τn,M | ≤ max(|Mf |, |mf |) ≤
M|f |, (4.12) holds for Hermitian matrices. Suppose that Tn(f) is not
Hermitian or, equivalently, that f is not real. Any function f can
be written in terms of its real and imaginary parts, f = fr + ifi,
where both fr and fi are real. In particular, fr = (f + f∗)/2 and
fi = (f − f∗)/2i. From the triangle inequality for norms,

‖ Tn(f) ‖ = ‖ Tn(fr + ifi) ‖
= ‖ Tn(fr) + iTn(fi) ‖
≤ ‖ Tn(fr) ‖ + ‖ Tn(fi) ‖
≤ M|fr| + M|fi|.
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Since |(f ± f∗)/2 ≤ (|f | + |f∗|)/2 ≤ M|f |, M|fr| + M|fi| ≤ 2M|f |,
proving (4.12).

Note for later use that the weak norm of a Toeplitz matrix takes a
particularly simple form. Let Tn(f) = {tk−j}, then by collecting equal
terms we have

|Tn(f)|2 =
1
n

n−1∑
k=0

n−1∑
j=0

|tk−j |2

=
1
n

n−1∑
k=−(n−1)

(n − |k|)|tk|2

=
n−1∑

k=−(n−1)

(1 − |k|/n)|tk|2. (4.17)

We are now ready to put all the pieces together to study the asymp-
totic behavior of Tn(f). If we can find an asymptotically equivalent
sequence of circulant matrices, then all of the results regarding cir-
culant matrices and asymptotically equivalent sequences of matrices
apply. The main difference between the derivations for simple sequence
of banded Toeplitz matrices and the more general case is the sequence
of circulant matrices chosen. Hence to gain some feel for the matrix
chosen, we first consider the simpler banded case where the answer is
obvious. The results are then generalized in a natural way.

4.3 Banded Toeplitz Matrices

Let Tn be a sequence of banded Toeplitz matrices of order m + 1, that
is, ti = 0 unless |i| ≤ m. Since we are interested in the behavior or Tn

for large n we choose n >> m. As is easily seen from (4.1), Tn looks
like a circulant matrix except for the upper left and lower right-hand
corners, i.e., each row is the row above shifted to the right one place.
We can make a banded Toeplitz matrix exactly into a circulant if we fill
in the upper right and lower left corners with the appropriate entries.
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Define the circulant matrix Cn in just this way, i.e.,

Cn =




t0 t−1 · · · t−m tm · · · t1

t1
. . .

...
tm

...
. . .

tm 0

. . .
tm · · · t1 t0 t−1 · · · t−m

. . .
. . .

0 t−m

t−m

...
. . .

...
t0 t−1

t−1 · · · t−m tm · · · t1 t0




=




c
(n)
0 · · · c

(n)
n−1

c
(n)
n−1 c

(n)
0 · · ·

...
. . .

...

c
(n)
1 · · · c

(n)
n−1 c

(n)
0



. (4.18)

Equivalently, C, consists of cyclic shifts of (c(n)
0 , · · · , c(n)

n−1) where

c
(n)
k =



t−k k = 0,1, · · · ,m
tn−k k = n − m, · · · ,n − 1

0 otherwise

(4.19)

If a Toeplitz matrix is specified by a function f and hence denoted
by Tn(f), then the circulant matrix defined by (4.18–4.19) is similarly
denoted Cn(f). The function f will be explicitly shown when it is useful



198 Toeplitz Matrices

to do so, for example when the results being developed specifically
involve f .

The matrix Cn is intuitively a candidate for a simple matrix asymp-
totically equivalent to Tn – we need only demonstrate that it is indeed
both asymptotically equivalent and simple.

Lemma 7. The matrices Tn and Cn defined in (4.1) and (4.18) are
asymptotically equivalent, i.e., both are bounded in the strong norm
and

lim
n→∞ |Tn − Cn| = 0. (4.20)

Proof. The tk are obviously absolutely summable, so Tn are uniformly
bounded by 2M|f | from Lemma 6. The matrices Cn are also uni-
formly bounded since C∗

nCn is a circulant matrix with eigenvalues
|f(2πk/n)|2 ≤ 4M2

|f |. The weak norm of the difference is

|Tn − Cn|2 = 1
n

m∑
k=0

k(|tk|2 + |t−k|2)

≤ m 1
n

m∑
k=0

(|tk|2 + |t−k|2) −→
n→∞ 0

.

The above lemma is almost trivial since the matrix Tn − Cn has
fewer than m2 non-zero entries and hence the 1/n in the weak norm
drives |Tn − Cn| to zero.

From Lemma 7 and Theorem 2 we have the following lemma.

Lemma 8. Let Tn and Cn be as in (4.1) and (4.18) and let their eigen-
values be τn,k and ψn,k, respectively, then for any positive integer s

lim
n→∞

1
n

n−1∑
k=0

(
τ s
n,k − ψs

n,k

)
= 0. (4.21)
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In fact, for finite n,∣∣∣∣∣ 1n
n−1∑
k=0

(
τ s
n,k − ψs

n,k

)∣∣∣∣∣ ≤ Kn−1/2, (4.22)

where K is not a function of n.

Proof. Equation (4.21) is direct from Lemma 7 and Theorem 2. Equa-
tion (4.22) follows from Corollary 1 and Lemma 7.

The lemma implies that if either of the separate limits converges,
then both will and

lim
n→∞

1
n

n−1∑
k=0

τ s
n,k = lim

n→∞
1
n

n−1∑
k=0

ψs
n,k. (4.23)

The next lemma shows that the second limit indeed converges, and in
fact provides an evaluation for the limit.

Lemma 9. Let Cn(f) be constructed from Tn(f) as in (4.18) and let
ψn,k be the eigenvalues of Cn(f), then for any positive integer s we
have

lim
n→∞

1
n

n−1∑
k=0

ψs
n,k =

1
2π

∫ 2π

0
fs(λ)dλ. (4.24)

If Tn(f) is Hermitian, then for any function F (x) continuous on
[mf ,Mf ] we have

lim
n→∞

1
n

n−1∑
k=0

F (ψn,k) =
1
2π

∫ 2π

0
F (f(λ))dλ. (4.25)

Proof. From Theorem 7 we have exactly

ψn,j =
n−1∑
k=0

c
(n)
k e−2πijk/n

=
m∑

k=0

t−ke
−2πijk/n +

n−1∑
k=n−m

tn−ke
−2πijk/n

=
m∑

k=−m

tke
−2πijk/n = f(

2πj
n

). (4.26)
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Note that the eigenvalues of Cn(f) are simply the values of f(λ) with λ
uniformly spaced between 0 and 2π. Defining 2πk/n = λk and 2π/n =
∆λ we have

lim
n→∞

1
n

n−1∑
k=0

ψs
n,k = lim

n→∞
1
n

n−1∑
k=0

f(2πk/n)s

= lim
n→∞

n−1∑
k=0

f(λk)s∆λ/(2π)

=
1
2π

∫ 2π

0
f(λ)sdλ, (4.27)

where the continuity of f(λ) guarantees the existence of the limit of
(4.27) as a Riemann integral. If Tn(f) and Cn(f) are Hermitian, than
the ψn,k and f(λ) are real and application of the Weierstrass theorem
to (4.27) yields (4.25). Lemma 7 and (4.26) ensure that ψn,k and τn,k

are in the interval [mf ,Mf ].

Combining Lemmas 7–9 and Theorem 2 we have the following spe-
cial case of the fundamental eigenvalue distribution theorem.

Theorem 8. If Tn(f) is a banded Toeplitz matrix with eigenvalues
τn,k, then for any positive integer s

lim
n→∞

1
n

n−1∑
k=0

τ s
n,k =

1
2π

∫ 2π

0
f(λ)s dλ. (4.28)

Furthermore, if f is real, then for any function F (x) continuous on
[mf ,Mf ]

lim
n→∞

1
n

n−1∑
k=0

F (τn,k) =
1
2π

∫ 2π

0
F (f(λ))dλ; (4.29)

i.e., the sequences {τn,k} and {f(2πk/n)} are asymptotically equally
distributed.

This behavior should seem reasonable since the equations Tn(f)x =
τx and Cn(f)x = ψx, n > 2m + 1, are essentially the same nth order
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difference equation with different boundary conditions. It is in fact the
“nice” boundary conditions that make ψ easy to find exactly while
exact solutions for τ are usually intractable.

With the eigenvalue problem in hand we could next write down the-
orems on inverses and products of Toeplitz matrices using Lemma 7 and
results for circulant matrices and asymptotically equivalent sequences
of matrices. Since these theorems are identical in statement and proof
with the more general case of functions f in the Wiener class, we defer
these theorems momentarily and generalize Theorem 8 to more general
Toeplitz matrices with no assumption of bandedeness.

4.4 Wiener Class Toeplitz Matrices

Next consider the case of f in the Wiener class, i.e., the case where
the sequence {tk} is absolutely summable. As in the case of sequences
of banded Toeplitz matrices, the basic approach is to find a sequence
of circulant matrices Cn(f) that is asymptotically equivalent to the
sequence of Toeplitz matrices Tn(f). In the more general case under
consideration, the construction of Cn(f) is necessarily more compli-
cated. Obviously the choice of an appropriate sequence of circulant
matrices to approximate a sequence of Toeplitz matrices is not unique,
so we are free to choose a construction with the most desirable prop-
erties. It will, in fact, prove useful to consider two slightly different
circulant approximations. Since f is assumed to be in the Wiener class,
we have the Fourier series representation

f(λ) =
∞∑

k=−∞
tke

ikλ (4.30)

tk =
1
2π

∫ 2π

0
f(λ)e−ikλ dλ. (4.31)

Define Cn(f) to be the circulant matrix with top row
(c(n)

0 , c
(n)
1 , · · · , c(n)

n−1) where

c
(n)
k =

1
n

n−1∑
j=0

f(2πj/n)e2πijk/n. (4.32)
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Since f(λ) is Riemann integrable, we have that for fixed k

lim
n→∞c

(n)
k = lim

n→∞
1
n

n−1∑
j=0

f(2πj/n)e2πijk/n

= 1
2π

∫ 2π

0
f(λ)eikλdλ = t−k

(4.33)

and hence the c(n)
k are simply the sum approximations to the Riemann

integrals giving t−k. Equations (4.32), (3.7), and (3.9) show that the
eigenvalues ψn,m of Cn(f) are simply f(2πm/n); that is, from (3.7) and
(3.9)

ψn,m =
n−1∑
k=0

c
(n)
k e−2πimk/n

=
n−1∑
k=0


 1
n

n−1∑
j=0

f(2πj/n)e2πijk/n


e−2πimk/n

=
n−1∑
j=0

f(2πj/n)

{
1
n

n−1∑
k=0

e2πik(j−m)/n

}

= f(2πm/n). (4.34)

Thus, Cn(f) has the useful property (4.26) of the circulant approxi-
mation (4.19) used in the banded case. As a result, the conclusions
of Lemma 9 hold for the more general case with Cn(f) constructed
as in (4.32). Equation (4.34) in turn defines Cn(f) since, if we are
told that Cn(f) is a circulant matrix with eigenvalues f(2πm/n),m =
0,1, · · · ,n − 1, then from (3.9)

c
(n)
k =

1
n

n−1∑
m=0

ψn,me
2πimk/n

=
1
n

n−1∑
m=0

f(2πm/n)e2πimk/n, (4.35)

as in (4.32). Thus, either (4.32) or (4.34) can be used to define Cn(f).
The fact that Lemma 9 holds for Cn(f) yields several useful prop-

erties as summarized by the following lemma.
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Lemma 10. Given a function f satisfying (4.30–4.31) and define the
circulant matrix Cn(f) by (4.32).

(1) Then

c
(n)
k =

∞∑
m=−∞

t−k+mn , k = 0,1, · · · ,n − 1. (4.36)

(Note, the sum exists since the tk are absolutely summable.)
(2) If f(λ) is real and mf = ess inf f > 0, then

Cn(f)−1 = Cn(1/f).

(3) Given two functions f(λ) and g(λ), then

Cn(f)Cn(g) = Cn(fg).

Proof.

(1) Applying (4.31) to λ = 2πj/n gives

f(2π
j

n
) =

∞∑
�=−∞

t�e
i�2πj/n

which when inserted in (4.32) yields

c
(n)
k =

1
n

n−1∑
j=0

f(2π
j

n
)e2πijk/n

=
1
n

n−1∑
j=0

( ∞∑
�=−∞

t�e
i�2πj/n

)
e2πijk/n (4.37)

=
∞∑

�=−∞
t�

1
n

n−1∑
j=0

ei2π(k+�)j/n =
∞∑

�=−∞
t�δ(k+�) mod n,

where the final step uses (3.10). The term δ(k+�) mod n will
be 1 whenever � = −k plus a multiple mn of n, which yields
(4.36).
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(2) Since Cn(f) has eigenvalues f(2πk/n) > 0, by Theorem 7
Cn(f)−1 has eigenvalues 1/f(2πk/n), and hence from (4.35)
and the fact that Cn(f)−1 is circulant we have Cn(f)−1 =
Cn(1/f).

(3) Follows immediately from Theorem 7 and the fact that, if
f(λ) and g(λ) are Riemann integrable, so is f(λ)g(λ).

Equation (4.36) points out a shortcoming of Cn(f) for applica-
tions as a circulant approximation to Tn(f) – it depends on the entire
sequence {tk;k = 0,±1,±2, · · ·} and not just on the finite collection of
elements {tk;k = 0,±1, · · · ,±(n − 1)} of Tn(f). This can cause prob-
lems in practical situations where we wish a circulant approximation
to a Toeplitz matrix Tn when we only know Tn and not f . Pearl [19]
discusses several coding and filtering applications where this restriction
is necessary for practical reasons. A natural such approximation is to
form the truncated Fourier series

f̂n(λ) =
n−1∑

m=−(n−1)

tme
imλ, (4.38)

which depends only on {tm;m = 0,±1, · · · ,±n − 1}, and then define
the circulant matrix Cn(f̂n); that is, the circulant matrix having as top
row (ĉ(n)

0 , · · · , ĉ(n)
n−1) where analogous to the derivation of (4.37)

ĉ
(n)
k =

1
n

n−1∑
j=0

f̂n(
2πj
n

)e2πijk/n

=
1
n

n−1∑
j=0


 n−1∑

�=−(n−1)

t�e
i�2πj/n


e2πijk/n

=
n−1∑

�=−(n−1)

t�
1
n

n−1∑
j=0

ei2π(k+�)j/n

=
n−1∑

�=−(n−1)

t�δ(k+�) mod n.
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Now, however, we are only interested in values of � which have the form
−k plus a multiple mn of n for which −(n − 1) ≤ −k + mn ≤ n − 1.
This will always include the m = 0 term for which � = −k. If k = 0,
then only the m = 0 term lies within the range. If k = 1,2, . . . ,n − 1,
then m = −1 results in −k + n which is between 1 and n − 1. No other
multiples lie within the range, so we end up with

ĉ
(n)
k =

{
t0 k = 0

t−k + tn−k k = 1,2, . . . ,n − 1
. (4.39)

Since Cn(f̂n) is also a Toeplitz matrix, define Cn(f̂n) = T ′
n = {t′k−j}

with

t′k =



ĉ
(n)
−k = tk + tn+k k = −(n − 1), . . . ,−1

ĉ
(n)
0 = t0 k = 0

ĉ
(n)
n−k = t−(n−k) + tk k = 1,2, . . . ,n − 1

, (4.40)

which can be pictured as

T ′
n =


t0 t−1 + tn−1 t−2 + tn−2 · · · t−(n−1) + t1
t1 + t−(n−1) t0 t−1 + tn−1

t2 + t−(n−2) t1 + t−(n−1) t0
...

...
. . .

tn−1 + t1 · · · t0




(4.41)

Like the original approximation Cn(f), the approximation Cn(f̂n)
reduces to the Cn(f) of (4.19) for a banded Toeplitz matrix of order m
if n > 2m + 1. The following lemma shows that these circulant matrices
are asymptotically equivalent to each other and to Tm.

Lemma 11. Let Tn(f) = {tk−j} where

∞∑
k=−∞

|tk| < ∞,
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and

f(λ) =
∞∑

k=−∞
tke

ikλ, f̂n(λ) =
n−1∑

k=−(n−1)

tke
ikλ.

Define the circulant matrices Cn(f) and Cn(f̂n) as in (4.32) and (4.38)–
(4.39). Then,

Cn(f) ∼ Cn(f̂n) ∼ Tn. (4.42)

Proof. Since both Cn(f) and Cn(f̂n) are circulant matrices with the
same eigenvectors (Theorem 7), we have from part 2 of Theorem 7 and
(2.17) that

|Cn(f) − Cn(f̂n)|2 =
1
n

n−1∑
k=0

|f(2πk/n) − f̂n(2πk/n)|2.

Recall from (4.6) and the related discussion that f̂n(λ) uniformly con-
verges to f(λ), and hence given ε > 0 there is an N such that for n ≥ N

we have for all k,n that

|f(2πk/n) − f̂n(2πk/n)|2 ≤ ε

and hence for n ≥ N

|Cn(f) − Cn(f̂n)|2 ≤ 1
n

n−1∑
i=0

ε = ε.

Since ε is arbitrary,

lim
n→∞ |Cn(f) − Cn(f̂n)| = 0

proving that

Cn(f) ∼ Cn(f̂n). (4.43)
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Application of (4.40) and (4.17) results in

|Tn(f) − Cn(f̂n)|2 =
n−1∑

k=−(n−1)

(1 − |k|/n)|tk − t′k|2

=
−1∑

k=−(n−1)

n + k

n
|tn+k|2 +

n−1∑
k=1

n − k

n
|t−(n−k)|2

=
−1∑

k=−(n−1)

k

n
|tk|2 +

n−1∑
k=1

k

n
|t−k|2

=
n−1∑
k=1

k

n

(|tk|2 + |t−k|2
)

(4.44)

Since the {tk} are absolutely summable, they are also square summable
from (4.4) and hence given ε > 0 we can choose an N large enough so
that

∞∑
k=N

|tk|2 + |t−k|2 ≤ ε.

Therefore

lim
n→∞|Tn(f) − Cn(f̂n)|

= lim
n→∞

n−1∑
k=0

(k/n)(|tk|2 + |t−k|2)

= lim
n→∞

{
N−1∑
k=0

(k/n)(|tk|2 + |t−k|2) +
n−1∑
k=N

(k/n)(|tk|2 + |t−k|2)
}

≤ lim
n→∞

1
n

(
N−1∑
k=0

k(|tk|2 + |t−k|2)
)

+
∞∑

k=N

(|tk|2 + |t−k|2) ≤ ε

Since ε is arbitrary,

lim
n→∞ |Tn(f) − Cn(f̂n)| = 0

and hence

Tn(f) ∼ Cn(f̂n), (4.45)
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which with (4.43) and Theorem 1 proves (4.42).

Pearl [19] develops a circulant matrix similar to Cn(f̂n) (depending
only on the entries of Tn(f)) such that (4.45) holds in the more general
case where (4.2) instead of (4.3) holds.

We now have a sequence of circulant matrices {Cn(f)} asymptoti-
cally equivalent to the sequence {Tn(f)} and the eigenvalues, inverses
and products of the circulant matrices are known exactly. There-
fore Lemmas 7–9 and Theorems 2–2.2 can be applied to generalize
Theorem 8.

Theorem 9. Let Tn(f) be a sequence of Toeplitz matrices such that
f(λ) is in the Wiener class or, equivalently, that {tk} is absolutely
summable. Let τn,k be the eigenvalues of Tn(f) and s be any positive
integer. Then

lim
n→∞

1
n

n−1∑
k=0

τ s
n,k =

1
2π

∫ 2π

0
f(λ)s dλ. (4.46)

Furthermore, if f(λ) is real or, equivalently, the matrices Tn(f) are all
Hermitian, then for any function F (x) continuous on [mf ,Mf ]

lim
n→∞

1
n

n−1∑
k=0

F (τn,k) =
1
2π

∫ 2π

0
F (f(λ))dλ. (4.47)

Theorem 9 is the fundamental eigenvalue distribution theorem of
Szegö (see [15]). The approach used here is essentially a specialization
of Grenander and Szegö ([15], ch. 7).

Theorem 9 yields the following two corollaries.

Corollary 5. Given the assumptions of the theorem, define the eigen-
value distribution function Dn(x) = (number of τn,k ≤ x)/n. Assume
that ∫

λ:f(λ)=x
dλ = 0.
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Then the limiting distribution D(x) = limn→∞Dn(x) exists and is
given by

D(x) =
1
2π

∫
f(λ)≤x

dλ.

The technical condition of a zero integral over the region of the set of
λ for which f(λ) = x is needed to ensure that x is a point of continuity
of the limiting distribution. It can be interpreted as not allowing f(λ)
to have a flat region around the point x. The limiting distribution
function evaluated at x describes the fraction of the eigenvalues that
smaller than x in the limit as n → ∞, which in turn implies that the
fraction of eigenvalues between two values a and b > a is D(b) − D(a).
This is similar to the role of a cumulative distribution function (cdf)
in probability theory.

Proof. Define the indicator function

1x(α) =

{
1 mf ≤ α ≤ x

0 otherwise

We have

D(x) = lim
n→∞

1
n

n−1∑
k=0

1x(τn,k).

Unfortunately, 1x(α) is not a continuous function and hence Theorem 9
cannot be immediately applied. To get around this problem we mimic
Grenander and Szegö p. 115 and define two continuous functions that
provide upper and lower bounds to 1x and will converge to it in the
limit. Define

1+
x (α) =




1 α ≤ x

1 − α−x
ε x < α ≤ x + ε

0 x + ε < α
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1−
x (α) =




1 α ≤ x − ε

1 − α−x+ε
ε x − ε < α ≤ x

0 x < α

The idea here is that the upper bound has an output of 1 everywhere
1x does, but then it drops in a continuous linear fashion to zero at x + ε

instead of immediately at x. The lower bound has a 0 everywhere 1x

does and it rises linearly from x to x − ε to the value of 1 instead of
instantaneously as does 1x. Clearly 1−

x (α) < 1x(α) < 1+
x (α) for all α.

Since both 1+
x and 1−

x are continuous, Theorem 9 can be used to
conclude that

lim
n→∞

1
n

n−1∑
k=0

1+
x (τn,k)

=
1
2π

∫
1+

x (f(λ))dλ

=
1
2π

∫
f(λ)≤x

dλ +
1
2π

∫
x<f(λ)≤x+ε

(1 − f(λ) − x

ε
)dλ

≤ 1
2π

∫
f(λ)≤x

dλ +
1
2π

∫
x<f(λ)≤x+ε

dλ

and

lim
n→∞

1
n

n−1∑
k=0

1−
x (τn,k)

=
1
2π

∫
1−

x (f(λ))dλ

=
1
2π

∫
f(λ)≤x−ε

dλ +
1
2π

∫
x−ε<f(λ)≤x

(1 − f(λ) − (x − ε)
ε

)dλ

=
1
2π

∫
f(λ)≤x−ε

dλ +
1
2π

∫
x−ε<f(λ)≤x

(x − f(λ))dλ

≥ 1
2π

∫
f(λ)≤x−ε

dλ

=
1
2π

∫
f(λ)≤x

dλ − 1
2π

∫
x−ε<f(λ)≤x

dλ
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These inequalities imply that for any ε > 0, as n grows the sample
average (1/n)

∑n−1
k=0 1x(τn,k) will be sandwiched between

1
2π

∫
f(λ)≤x

dλ +
1
2π

∫
x<f(λ)≤x+ε

dλ

and
1
2π

∫
f(λ)≤x

dλ − 1
2π

∫
x−ε<f(λ)≤x

dλ.

Since ε can be made arbitrarily small, this means the sum will be
sandwiched between

1
2π

∫
f(λ)≤x

dλ

and
1
2π

∫
f(λ)≤x

dλ − 1
2π

∫
f(λ)=x

dλ.

Thus if ∫
f(λ)=x

dλ = 0,

then

D(x) = 1
2π

∫ 2π

0
1x[f(λ)]dλ

= 1
2πv

∫
f(λ)≤x

dλ

.

Corollary 6. Assume that the conditions of Theorem 9 hold and let
mf and Mf denote the essential infimum and the essential supremum
of f , respectively. Then

lim
n→∞max

k
τn,k = Mf

lim
n→∞min

k
τn,k = mf .
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Proof. From Corollary 4.1 we have for any ε > 0

D(mf + ε) =
∫

f(λ)≤mf+ε
dλ > 0.

The strict inequality follows from the continuity of f(λ). Since

lim
n→∞

1
n

{number of τn,k in [mf ,mf + ε]} > 0

there must be eigenvalues in the interval [mf ,mf + ε] for arbitrarily
small ε. Since τn,k ≥ mf by Lemma 6, the minimum result is proved.
The maximum result is proved similarly.



5
Matrix Operations on Toeplitz Matrices

Applications of Toeplitz matrices like those of matrices in general
involve matrix operations such as addition, inversion, products and
the computation of eigenvalues, eigenvectors, and determinants. The
properties of Toeplitz matrices particular to these operations are
based primarily on three fundamental results that have been described
earlier:

(1) matrix operations are simple when dealing with circulant
matrices,

(2) given a sequence of Toeplitz matrices, we can instruct asymp-
totically equivalent sequences of circulant matrices, and

(3) asymptotically equivalent sequences of matrices have equal
asymptotic eigenvalue distributions and other related
properties.

In the next few sections some of these operations are explored in
more depth for sequences of Toeplitz matrices. Generalizations and
related results can be found in Tyrtyshnikov [31].

213
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5.1 Inverses of Toeplitz Matrices

In some applications we wish to study the asymptotic distribution of a
function F (τn,k) of the eigenvalues that is not continuous at the min-
imum or maximum value of f . For example, in order for the results
derived thus far to apply to the function F (f(λ)) = 1/f(λ) which arises
when treating inverses of Toeplitz matrices, it has so far been neces-
sary to require that the essential infimum mf > 0 because the function
F (1/x) is not continuous at x = 0. If mf = 0, the basic asymptotic
eigenvalue distribution Theorem 9 breaks down and the limits and the
integrals involved might not exist. The limits might exist and equal
something else, or they might simply fail to exist. In order to treat the
inverses of Toeplitz matrices when f has zeros, we state without proof
an intuitive extension of the fundamental Toeplitz result that shows
how to find asymptotic distributions of suitably truncated functions.
To state the result, define the mid function

mid(x,y,z) ∆=



z y ≥ z

y x ≤ y ≤ z

x y ≤ z

(5.1)

x < z. This function can be thought of as having input y and thresholds
z and X and it puts out y if y is between z and x, z if y is smaller than
z, and x if y is greater than x. The following result was proved in [11]
and extended in [24]. See also [26, 27, 28].

Theorem 10. Suppose that f is in the Wiener class. Then for any
function F (x) continuous on [ψ,θ] ⊂ [mf ,Mf ]

lim
n→∞

1
n

n−1∑
k=0

F (mid(ψ,τn,k,θ) =
1
2π

∫ 2π

0
F (mid(ψ,f(λ),θ)dλ. (5.2)

Unlike Theorem 9 we pick arbitrary points ψ and θ such that F is
continuous on the closed interval [ψ,θ]. These need not be the minimum
and maximum of f .
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Theorem 11. Assume that f is in the Wiener class and is real and
that f(λ) ≥ 0 with equality holding at most at a countable number of
points. Then (a) Tn(f) is nonsingular
(b) If f(λ) ≥ mf > 0, then

Tn(f)−1 ∼ Cn(f)−1, (5.3)

where Cn(f) is defined in (4.35). Furthermore, if we define Tn(f) −
Cn(f) = Dn then Tn(f)−1 has the expansion

Tn(f)−1

= [Cn(f) + Dn]−1

= Cn(f)−1 [I + DnCn(f)−1]−1

= Cn(f)−1
[
I + DnCn(f)−1 +

(
DnCn(f)−1)2 + · · ·

]
, (5.4)

and the expansion converges (in weak norm) for sufficiently large n.
(c) If f(λ) ≥ mf > 0, then

Tn(f)−1 ∼ Tn(1/f) =

[
1
2π

∫ π

−π

ei(k−j)λ

f(λ)
dλ

]
; (5.5)

that is, if the spectrum is strictly positive, then the inverse of a sequence
of Toeplitz matrices is asymptotically Toeplitz. Furthermore if ρn,k are
the eigenvalues of Tn(f)−1 and F (x) is any continuous function on
[1/Mf ,1/mf ], then

lim
n→∞

1
n

n−1∑
k=0

F (ρn,k) =
1
2π

∫ π

−π
F ((1/f(λ))dλ. (5.6)

(d) Suppose that mf = 0 and that the derivative of f(λ) exists and is
bounded for all λ. Then Tn(f)−1 is not bounded, 1/f(λ) is not inte-
grable and hence Tn(1/f) is not defined and the integrals of (5.2) may
not exist. For any finite θ, however, the following similar fact is true:
If F (x) is a continuous function on [1/Mf ,θ], then

lim
n→∞

1
n

n−1∑
k=0

F (min(ρn,k,θ)) =
1
2π

∫ 2π

0
F (min(1/f(λ),θ))dλ. (5.7)
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Proof. (a) Since f(λ) > 0 except at possibly countably many points,
we have from (4.14)

x∗Tn(f)x =
1
2π

∫ π

−π

∣∣∣∣∣
n−1∑
k=0

xke
ikλ

∣∣∣∣∣
2

f(λ)dλ > 0.

Thus for all n

min
k
τn,k > 0

and hence

detTn(f) =
n−1∏
k=0

τn,k �= 0

so that Tn(f) is nonsingular.
(b) From Lemma 11, Tn ∼ Cn and hence (5.1) follows from Theorem 1
since f(λ) ≥ mf > 0 ensures that

‖ Tn(f)−1 ‖,‖ Cn(f)−1 ‖ ≤ 1/mf < ∞.

The series of (5.4) will converge in weak norm if

|DnCn(f)−1| < 1. (5.8)

Since

|DnCn(f)−1| ≤‖ Cn(f)−1 ‖ |Dn| ≤ (1/mf )|Dn| −→
n→∞ 0,

Eq. (5.8) must hold for large enough n.
(c) We have from the triangle inequality that

|Tn(f)−1 − Tn(1/f)| ≤ |Tn(f)−1 − Cn(f)−1| + |Cn(f)−1 − Tn(1/f)|.
From (b) for any ε > 0 we can choose an n large enough so that

|Tn(f)−1 − Cn(f)−1| ≤ ε

2
. (5.9)

From Theorem 7 and Lemma 10, Cn(f)−1 = Cn(1/f) and from
Lemma 11 Cn(1/f) ∼ Tn(1/f). Thus again we can choose n large
enough to ensure that

|Cn(f)−1 − Tn(1/f)| ≤ ε/2 (5.10)



5.1. Inverses of Toeplitz Matrices 217

so that for any ε > 0 from (5.7)–(5.8) can choose n such that

|Tn(f)−1 − Tn(1/f)| ≤ ε,

which implies (5.5). Equation (5.6) follows from (5.5) and Theorem 4.
Alternatively, if G(x) is any continuous function on [1/Mf ,1/mf ] and
(5.4) follows directly from Lemma 11 and Theorem 2.3 applied to
G(1/x).
(d) When f(λ) has zeros (mf = 0), then from Corollary 6 lim

n→∞min
k

τn,k = 0 and hence

‖ T−1
n ‖= max

k
ρn,k = 1/min

k
τn,k (5.11)

is unbounded as n → ∞. To prove that 1/f(λ) is not integrable and
hence that Tn(1/f) does not exist, consider the disjoint sets

Ek = {λ : 1/k ≥ f(λ)/Mf > 1/(k + 1)}
= {λ : k ≤ Mf/f(λ) < k + 1} (5.12)

and let |Ek| denote the length of the set Ek, that is,

|Ek| =
∫

λ:Mf /k≥f(λ)>Mf /(k+1)
dλ.

From (5.12)
∫ π

−π

1
f(λ)

dλ =
∞∑

k=1

∫
Ek

1
f(λ)

dλ

≥
∞∑

k=1

|Ek|k
Mf

. (5.13)

For a given k, Ek will comprise a union of disjoint intervals of the form
(a,b) where for all λ ∈ (a,b) we have that 1/k ≥ f(λ)/Mf > 1/(k + 1).
There must be at least one such nonempty interval, so |Ek| will be
bound below by the length of this interval, b − a. Then for any x,y ∈
(a,b)

|f(y) − f(x)| = |
∫ y

x

df

dλ
dλ| ≤ η|y − x|.
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By assumption there is some finite value η such that∣∣∣∣ dfdλ
∣∣∣∣ ≤ η, (5.14)

so that

|f(y) − f(x)| =≤ η|y − x|.
Pick x and y so that f(x) = Mf/(k + 1) and f(y) = Mf/k (since
f is continuous at almost all points, this argument works almost
everywhere – it needs more work if these end points are not points
of continuity of f), then

b − a ≥ |y − x| ≥ Mf (
1
k

− 1
k + 1

) =
Mf

k + 1
.

Combining this with (5.13) yields∫ π

−π
dλ/f(λ) ≥

∞∑
k=1

(k/Mf )(
Mf

k(k + 1
))/η (5.15)

=
∞∑

k=1

1
k + 1

, (5.16)

which diverges so that 1/f(λ) is not integrable. To prove (5.5) let F (x)
be continuous on [1/Mf ,θ], then F (min(1/x,θ)) is continuous on [0,Mf ]
and hence Theorem 4 yields (5.5). Note that (5.5) implies that the
eigenvalues of Tn(f)−1 are asymptotically equally distributed up to any
finite θ as the eigenvalues of the sequence of matrices Tn[min(1/f,θ)].

A special case of (d) is when Tn(f) is banded and f(λ) has at least
one zero. Then the derivative exists and is bounded since

df/dλ =

∣∣∣∣∣
m∑

k=−m

iktke
ikλ

∣∣∣∣∣
≤

m∑
k=−m

|k||tk| < ∞
.
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The series expansion of (b) is due to Rino [20]. The proof of (d) is
motivated by one of Widom [33]. Further results along the lines of (d)
regarding unbounded Toeplitz matrices may be found in [11]. Related
results considering asymptotically equal distributions of unbounded
sequences can be found in Tyrtyshnikov [32] and Trench [24]. These
works extend Weyl’s definition of asymptotically equal distributions to
unbounded sequences using the mid function used here to treat inverses.
This leads to conditions for equal distributions and their implications.

Extending (a) to the case of non-Hermitian matrices can be some-
what difficult, i.e., finding conditions on f(λ) to ensure that Tn(f) is
invertible. Parts (a)-(d) can be straightforwardly extended if f(λ) is
continuous. For a more general discussion of inverses the interested
reader is referred to Widom [33] and the cited references. The results
of Baxter [2] can also be applied to consider the asymptotic behavior
of inverses in quite general cases.

5.2 Products of Toeplitz Matrices

We next combine Theorem 1 and Lemma 11 to obtain the asymptotic
behavior of products of Toeplitz matrices. The case of only two matrices
is considered first since it is simpler. A key point is that while the
product of Toeplitz matrices is not Toeplitz, a sequence of products
of Toeplitz matrices {Tn(f)Tn(g)} is asymptotically equivalent to a
sequence of Toeplitz matrices {Tn(fg)}.

Theorem 12. Let Tn(f) and Tn(g) be defined as in (4.8) where f(λ)
and g(λ) are two functions in the Wiener class. Define Cn(f) and Cn(g)
as in (4.35) and let ρn,k be the eigenvalues of Tn(f)Tn(g)
(a)

Tn(f)Tn(g) ∼ Cn(f)Cn(g) = Cn(fg). (5.17)

Tn(f)Tn(g) ∼ Tn(g)Tn(f). (5.18)

lim
n→∞n−1

n−1∑
k=0

ρs
n,k =

1
2π

∫ 2π

0
[f(λ)g(λ)]s dλ s = 1,2, . . . . (5.19)
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(b) If Tn(f) and Tn(g) are Hermitian, then for any F (x) continuous on
[mfmg,MfMg]

lim
n→∞n−1

n−1∑
k=0

F (ρn,k) =
1
2π

∫ 2π

0
F (f(λ)g(λ))dλ. (5.20)

(c)

Tn(f)Tn(g) ∼ Tn(fg). (5.21)

(d) Let f1(λ), .,fm(λ) be in the Wiener class. Then if the Cn(fi) are
defined as in (4.35)

m∏
i=1

Tn(fi) ∼ Cn

(
m∏

i=1

fi

)
∼ Tn

(
m∏

i=1

fi

)
. (5.22)

(e) If ρn,k are the eigenvalues of
m∏

i=1

Tn(fi), then for any positive

integer s

lim
n→∞n−1

n−1∑
k=0

ρs
n,k =

1
2π

∫ 2π

0

(
m∏

i=1

fi(λ)

)s

dλ (5.23)

If the Tn(fi) are Hermitian, then the ρn,k are asymptotically real,
i.e., the imaginary part converges to a distribution at zero, so that

lim
n→∞

1
n

n−1∑
k=0

(Re[ρn,k])
s =

1
2π

∫ 2π

0

(
m∏

i=1

fi(λ)

)s

dλ. (5.24)

lim
n→∞

1
n

n−1∑
k=0

(
[ρn,k])
2 = 0. (5.25)

Proof. (a) Equation (5.14) follows from Lemmas 10 and 11 and
Theorems 1 and 3. Equation (5.16) follows from (5.14). Note that while
Toeplitz matrices do not in general commute, asymptotically they do.
Equation (5.17) follows from (5.14), Theorem 2, and Lemma 9.
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(b) Proof follows from (5.14) and Theorem 4. Note that the eigenvalues
of the product of two Hermitian matrices are real ([18, p. 105]).
(c) Applying Lemmas 10 and 11 and Theorem 1

|Tn(f)Tn(g) − Tn(fg)|
= |Tn(f)Tn(g) − Cn(f)Cn(g) + Cn(f)Cn(g) − Tn(fg)|
≤ |Tn(f)Tn(g) − Cn(f)Cn(g)| + |Cn(fg) − Tn(fg)|
−→

n→∞ 0.

(d) Follows from repeated application of (5.14) and part (c).
(e) Equation (5.22) follows from (d) and Theorem 1. For the Hermitian
case, however, we cannot simply apply Theorem 4 since the eigenvalues
ρn,k of

∏
iTn(fi) may not be real. We can show, however, that they are

asymptotically real in the sense that the imaginary part vanishes in the
limit. Let ρn,k = αn,k + iβn,k where αn,k and βn,k are real. Then from
Theorem 2 we have for any positive integer s

lim
n→∞n

−1
n−1∑
k=0

(αn,k + iβn,k)s = lim
n→∞n

−1
n−1∑
k=0

ψs
n,k

=
1
2π

∫ 2π

0

[
m∏

i=1

fi(λ)

]s

dλ, (5.26)

where ψn,k are the eigenvalues of Cn

(
m∏

i=1

fi

)
. From (2.17)

n−1
n−1∑
k=0

|ρn,k|2 = n−1
n−1∑
k=0

(
α2

n,k + β2
n,k

) ≤
∣∣∣∣∣

m∏
i=i

Tn(fi)

∣∣∣∣∣
2

.

From (4.57), Theorem 1 and Lemma 9

lim
n→∞

∣∣∣∣∣
m∏

i=1

Tn(fi)

∣∣∣∣∣
2

= lim
n→∞

∣∣∣∣∣Cn

(
m∏

i=1

fi

)∣∣∣∣∣
2

= (2π)−1
∫ 2π

0

(
m∏

i=1

fi(λ)

)2

dλ. (5.27)
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Subtracting (5.26) for s = 2 from (5.27) yields

lim
n→∞

1
n

n−1∑
k=1

β2
n,k ≤ 0.

Thus the distribution of the imaginary parts tends to the origin and
hence

lim
n→∞

1
n

n−1∑
k=0

αs
n,k =

1
2π

∫ 2π

0

[
m∏

i=1

fi(λ)

]s

dλ.

Parts (d) and (e) are here proved as in Grenander and Szegö ([15,
pp. 105-106])

We have developed theorems on the asymptotic behavior of eigenval-
ues, inverses, and products of Toeplitz matrices. The basic method has
been to find an asymptotically equivalent circulant matrix whose spe-
cial simple structure could be directly related to the Toeplitz matrices
using the results for asymptotically equivalent sequences of matrices.
We began with the banded case since the appropriate circulant matrix
is there obvious and yields certain desirable properties that suggest the
corresponding circulant matrix in the infinite case. We have limited
our consideration of the infinite order case functions f(λ) or Toeplitz
matrices in the Wiener class and hence to absolutely summable coef-
ficients for simplicity. The more general case of square summable tk is
treated in Chapter 7 of [15] and requires significantly more mathemat-
ical care, but can be interpreted as an extension of the approach taken
here.

We did not treat sums of Toeplitz matrices as no additional con-
sideration is needed: a sum of Toeplitz matrices of equal size is also a
Toeplitz matrix, so the results immediately apply. We also did not con-
sider the asymptotic behavior of eigenvectors for the simple reason that
there do not exist results along the lines that intuition suggests, that
is, that show that in some sense the eigenvectors for circulant matrices
also work for Toeplitz matrices.
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5.3 Toeplitz Determinants

We close the consideration of matrix operations on Toeplitz matrices by
returning to a problem mentioned in the introduction and formalize the
behavior of limits of Toeplitz determinants. Suppose now that Tn(f) is a
sequence of Hermitian Toeplitz matrices such that that f(λ) ≥ mf > 0.
Let Cn(f) denote the sequence of circulant matrices constructed from
f as in (4.32). Then from (4.34) the eigenvalues of Cn(f) are f(2πm/n)
for m = 0,1, . . . ,n − 1 and hence det(Cn(f)) =

∏n−1
m=0 f(2πm/n). This

in turn implies that

ln(det (Cn(f)))
1
n =

1
n

lndetCn(f) =
1
n

n−1∑
m=0

lnf(2π
m

n
).

These sums are the Riemann approximations to the limiting integral,
whence

lim
n→∞ ln(det(Cn(f)))

1
n =

∫ 1

0
lnf(2πλ)dλ.

Exponentiating, using the continuity of the logarithm for strictly
positive arguments, and changing the variables of integration yields

lim
n→∞(det(Cn(f)))

1
n = exp

(
1
2π

∫ 2π

0
lnf(λ)dλ.

)

This integral, the asymptotic equivalence of Cn(f) and Tn(f)
(Lemma 11), and Corollary 4 together yield the following result ([15,
p. 65]).

Theorem 13. Let Tn(f) be a sequence of Hermitian Toeplitz matrices
in the Wiener class such that lnf(λ) is Riemann integrable and f(λ) ≥
mf > 0. Then

lim
n→∞(det(Tn(f)))

1
n = exp

(
1
2π

∫ 2π

0
lnf(λ)dλ

)
. (5.28)



6
Applications to Stochastic Time Series

Toeplitz matrices arise quite naturally in the study of discrete time
random processes. Covariance matrices of weakly stationary processes
are Toeplitz and triangular Toeplitz matrices provide a matrix repre-
sentation of causal linear time invariant filters. As is well known and
as we shall show, these two types of Toeplitz matrices are intimately
related. We shall take two viewpoints in the first subsection to show
how they are related. In the first part we shall consider two common
linear models of random time series and study the asymptotic behav-
ior of the covariance matrix, its inverse and its eigenvalues. The well
known equivalence of moving average processes and weakly stationary
processes will be pointed out. The lesser known fact that we can define
something like a power spectral density for autoregressive processes
even if they are nonstationary is discussed. In the second part of the first
section we take the opposite tack – we start with a Toeplitz covariance
matrix and consider the asymptotic behavior of its triangular factors.
This simple result provides some insight into the asymptotic behavior
of system identification algorithms and Wiener-Hopf factorization.

224
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Let {Xk; k ∈ I} be a discrete time random process. Generally we
take I = Z, the space of all integers, in which case we say that the
process is two-sided, or I = Z+, the space of all nonnegative integers,
in which case we say that the process is one-sided. We will be interested
in vector representations of the process so we define the column vector
(n−tuple) Xn = (X0,X1, . . . ,Xn−1)′, that is, Xn is an n-dimensional
column vector. The mean vector is defined by mn = E(Xn), which we
usually assume is zero for convenience. The n × n covariance matrix
Rn = {rj,k} is defined by

Rn = E[(Xn − mn)(Xn − mn)∗]. (6.1)

Covariance matrices are Hermitian since

R∗
n = E[(Xn − mn)(Xn − mn)∗]∗ = E[(Xn − mn)(Xn − mn)∗].

(6.2)
Setting m = 0 yields the This is the autocorrelation matrix. Subscripts
will be dropped when they are clear from context. If the matrix Rn is
Toeplitz for all n, say Rn = Tn(f), then rk,j = rk−j and the process is
said to be weakly stationary. In this case f(λ) =

∑∞
k=−∞rke

ikλ is the
power spectral density of the process. If the matrix Rn is not Toeplitz
but is asymptotically Toeplitz, i.e., Rn ∼ Tn(f), then we say that the
process is asymptotically weakly stationary and f(λ) is the power
spectral density. The latter situation arises, for example, if an otherwise
stationary process is initialized with Xk = 0, k ≤ 0. This will cause a
transient and hence the process is strictly speaking nonstationary. The
transient dies out, however, and the statistics of the process approach
those of a weakly stationary process as n grows.

We now proceed to investigate the behavior of two common linear
models for random processes, both of which model a complicated pro-
cess as the result of passing a simple process through a linear filter. For
simplicity we will assume the process means are zero.

6.1 Moving Average Processes

By a linear model of a random process we mean a model wherein we
pass a zero mean, independent identically distributed (iid) sequence of
random variables Wk with variance σ2 through a linear time invariant
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discrete time filtered to obtain the desired process. The process Wk is
discrete time “white” noise. The most common such model is called a
moving average process and is defined by the difference equation

Un =

{∑n
k=0 bkWn−k =

∑n
k=0 bn−kWk n = 0,1, . . .

0 n < 0
. (6.3)

We assume that b0 = 1 with no loss of generality since otherwise we
can incorporate b0 into σ2. Note that (6.3) is a discrete time convolu-
tion, i.e., Un is the output of a filter with “impulse response” (actually
Kronecker δ response) bk and input Wk. We could be more general by
allowing the filter bk to be noncausal and hence act on future Wk’s.
We could also allow the Wk’s and Uk’s to extend into the infinite past
rather than being initialized. This would lead to replacing of (6.3) by

Un =
∞∑

k=−∞
bkWn−k =

∞∑
k=−∞

bn−kWk. (6.4)

We will restrict ourselves to causal filters for simplicity and keep the
initial conditions since we are interested in limiting behavior. In addi-
tion, since stationary distributions may not exist for some models it
would be difficult to handle them unless we start at some fixed time.
For these reasons we take (6.3) as the definition of a moving average.

Since we will be studying the statistical behavior of Un as n gets
arbitrarily large, some assumption must be placed on the sequence bk
to ensure that (6.3) converges in the mean-squared sense. The weakest
possible assumption that will guarantee convergence of (6.3) is that

∞∑
k=0

|bk|2 < ∞. (6.5)

In keeping with the previous sections, however, we will make the
stronger assumption

∞∑
k=0

|bk| < ∞. (6.6)

As previously this will result in simpler mathematics.
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Equation (6.3) can be rewritten as a matrix equation by defining
the lower triangular Toeplitz matrix

Bn =




1 0
b1 1
b2 b1
... b2

. . . . . .

bn−1 . . . b2 b1 1




(6.7)

so that

Un = BnW
n. (6.8)

If the filter bn were not causal, then Bn would not be triangular. If in
addition (6.4) held, i.e., we looked at the entire process at each time
instant, then (6.8) would require infinite vectors and matrices as in
Grenander and Rosenblatt [14]. Since the covariance matrix of Wk is
simply σ2In, where In is the n × n identity matrix, we have for the
covariance of Un:

R
(n)
U = EUn(Un)∗ = EBnW

n(Wn)∗B∗
n

= σ2BnB
∗
n

=


σ2

min(k,j)∑
�=0

b�−kb
∗
�−j




The matrix R
(n)
U = [rk,j ] is not Toeplitz. For example, the upper left

entry is 1 and the second diagonal entry is 1 + b21. However, as we next
show, the sequence R(n)

U becomes asymptotically Toeplitz as n → ∞. If
we define

b(λ) =
∞∑

k=0

bke
ikλ (6.9)

then

Bn = Tn(b) (6.10)
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so that

R
(n)
U = σ2Tn(b)Tn(b)∗. (6.11)

Observe that R(n)
U is Hermitian, as all covariance matrices must be.

We can now apply the results of the previous sections to obtain the
following theorem.

Theorem 14. Let Un be a moving average process with covariance
matrix RUn(n) given by (6.9)–(6.11). Let ρn,k be the eigenvalues of
R

(n)
U . Then

R
(n)
U ∼ σ2Tn(|b|2) = Tn(σ2|b|2) (6.12)

so that Un is asymptotically stationary. If m = ess inf σ2|b(λ)|2 and
M = ess sup σ2|b(λ)|2 and F (x) is any continuous function on [m,M ],
then

lim
n→∞

1
n

n−1∑
k=0

F (ρn,k) =
1
2π

∫ 2π

0
F (σ2|b(λ)|2)dλ. (6.13)

If σ2|b(λ)|2 ≥ m > 0, then

R
(n)
U

−1 ∼ σ−2Tn(1/|b|2). (6.14)

Proof. Since R(n)
U is Hermitian, the results follow from Theorems 9 and

11 and (2.3).

If the process Un had been initiated with its stationary distribution
then we would have had exactly

R
(n)
U = σ2Tn(|b|2).

More knowledge of the inverse R(n)
U

−1
can be gained from Theorem 11,

e.g., circulant approximations. Note that the spectral density of the
moving average process is σ2|b(λ)|2 and that sums of functions of eigen-
values tend to an integral of a function of the spectral density. In effect
the spectral density determines the asymptotic density function for the
eigenvalues of R(n)

U and σ2Tn(|b|2).
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6.2 Autoregressive Processes

Let Wk be as previously defined, then an autoregressive process Xn is
defined by

Xn =

{
−∑n

k=1akXn−k + Wn n = 0,1, . . .

0 n < 0.
(6.15)

Autoregressive process include nonstationary processes such as the
Wiener process. Equation (6.15) can be rewritten as a vector equation
by defining the lower triangular matrix.

An =




1
a1 1 0

a1 1
. . . . . .

an−1 a1 1




(6.16)

so that

AnX
n = Wn.

Since

R
(n)
W = AnR

(n)
X A∗

n (6.17)

and det An = 1 �= 0, An is nonsingular. Hence

R
(n)
X = σ2A−1

n A−1∗
n (6.18)

or

(R(n)
X )−1 = σ−2A∗

nAn. (6.19)

Equivalently, if (R(n)
X )−1 = {tk,j} then

tk,j =
min(k,j)∑

m=0

a∗
m−kam−j .
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Unlike the moving average process, we have that the inverse covariance
matrix is the product of Toeplitz triangular matrices. Defining

a(λ) =
∞∑

k=0

ake
ikλ (6.20)

we have that

(R(n)
X )−1 = σ−2Tn(a)∗Tn(a). (6.21)

Observe that (R(n)
X )−1 is Hermitian.

Theorem 15. Let Xn be an autoregressive process with absolutely
summable {ak} and covariance matrix R(n)

X with eigenvalues ρn,k. Then

(R(n)
X )−1 ∼ σ−2Tn(|a|2). (6.22)

If m = ess inf σ−2|a(λ)|2 and M = ess sup σ−2|a(λ)|2, then for any
function F (x) on [m,M ] we have

lim
n→∞

1
n

n−1∑
k=0

F (1/ρn,k) =
1
2π

∫ 2π

0
F (σ2|a(λ)|2)dλ, (6.23)

where 1/ρn,k are the eigenvalues of (R(n)
X )−1. If |a(λ)|2 ≥ m > 0, then

R
(n)
X ∼ σ2Tn(1/|a|2) (6.24)

so that the process is asymptotically stationary.

Proof. Theorem 12.

Note that if |a(λ)|2 > 0, then 1/|a(λ)|2 is the spectral density of Xn.
If |a(λ)|2 has a zero, then R(n)

X may not be even asymptotically Toeplitz
and hence Xn may not be asymptotically stationary (since 1/|a(λ)|2
may not be integrable) so that strictly speaking xk will not have a
spectral density. It is often convenient, however, to define σ2/|a(λ)|2 as
the spectral density and it often is useful for studying the eigenvalue
distribution of Rn. We can relate σ2/|a(λ)|2 to the eigenvalues of R(n)

X

even in this case by using Theorem 11 (d).
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Corollary 7. Given the assumptions of the theorem, then for any
finite θ and any function F (x) continuous on [1/m,θ]

lim
n→∞

1
n

n−1∑
k=0

F (min(ρn,k,θ)) =
1
2π

∫ 2π

0
F (min(1/|a(γ)|2,θ))dλ. (6.25)

Proof. Theorems 15 and 10.

If we consider two models of a random process to be asymptotically
equivalent if their covariances are asymptotically equivalent, then from
Theorems 14 and 15 we have the following corollary.

Corollary 8. Given the assumptions of Theorems 14 and 15, consider
the moving average process defined by

Un = Tn(b)Wn

and the autoregressive process defined by

Tn(a)Xn = Wn.

Then the processes Un and Xn are asymptotically equivalent if

a(λ) = 1/b(λ).

Proof. Follows from Theorems 11 and 12 and

R
(n)
X = σ2Tn(a)−1T−1

n (a)∗

∼ σ2Tn(1/a)Tn(1/a)∗

∼ σ2Tn(1/a)∗Tn(1/a). (6.26)

Comparison of (6.26) with (6.11) completes the proof.

The methods above can also easily be applied to study the mixed
autoregressive-moving average linear models [33].
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6.3 Factorization

Consider the problem of the asymptotic behavior of triangular factors
of a sequence of Hermitian covariance matrices Tn(f) in the Wiener
class. It is well known that any such matrix can be factored into the
product of a lower triangular matrix and its conjugate transpose ([14,
p. 37]), in particular

Tn(f) = {tk,j} = BnB
∗
n, (6.27)

where Bn is a lower triangular matrix with entries

b
(n)
k,j = {(detTk)det(Tk−1)}−1/2γ(j,k), (6.28)

where γ(j,k) is the determinant of the matrix Tk with the right-hand
column replaced by (tj,0, tj,1, . . . , tj,k−1)′. Note in particular that the
diagonal elements are given by

b
(n)
k,k = {(detTk)/(detTk−1)}1/2. (6.29)

Equation (6.28) is the result of a Gaussian elimination or a Gram-
Schmidt procedure. The factorization of Tn allows the construction of a
linear model of a random process and is useful in system identification
and other recursive procedures. Our question is how Bn behaves for
large n; specifically is Bn asymptotically Toeplitz?

Suppose that f(λ) has the form

f(λ) = σ2|b(λ)|2 (6.30)

b∗(λ) = b(−λ)

b(λ) =
∞∑

k=0

bke
ikλ

b0 = 1.

The decomposition of a nonnegative function into a product with this
form is known as a Wiener-Hopf factorization. For a current survey
see the discussion and references in Kailath et al. [17] We have already
constructed functions of this form when considering moving average
and autoregressive models. It is a classic result that a necessary and
sufficient condition for f to have such a factorization is that lnf have
a finite integral.
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From (6.27) and Theorem 11 we have

BnB
∗
n = Tn(f) ∼ Tn(σb)Tn(σb)∗. (6.31)

We wish to show that (6.31) implies that

Bn ∼ Tn(σb). (6.32)

Proof. Since detTn(σb) = σn �= 0, Tn(σb) is invertible. Likewise, since
detBn = [detTn(f)]1/2 we have from Theorem 11 (a) that detTn(f) �= 0
so that Bn is invertible. Thus from Theorem 1 (e) and (6.31) we have

T−1
n Bn = [B−1

n Tn]−1 ∼ T ∗
nB

∗−1
n = [B−1

n Tn]∗. (6.33)

Since Bn and Tn are both lower triangular matrices, so is B−1
n and

hence BnTn and [B−1
n Tn]−1. Thus (6.33) states that a lower triangular

matrix is asymptotically equivalent to an upper triangular matrix. This
is only possible if both matrices are asymptotically equivalent to a
diagonal matrix, say Gn = {g(n)

k,kδk,j}. Furthermore from (6.33) we have
Gn ∼ G∗−1

n {
|g(n)

k,k |2δk,j

}
∼ In. (6.34)

Since Tn(σb) is lower triangular with main diagonal element σ, Tn(σb)−1

is lower triangular with all its main diagonal elements equal to 1/σ even
though the matrix Tn(σb)−1 is not Toeplitz. Thus g(n)

k,k = b
(n)
k,k/σ. Since

Tn(f) is Hermitian, bk,k is real so that taking the trace in (6.34) yields

lim
n→∞σ−2 1

n

n−1∑
k=0

(
b
(n)
k,k

)2
= 1. (6.35)

From (6.29) and Corollary 4, and the fact that Tn(σb) is triangular
we have that

lim
n→∞σ

−1 1
n

n−1∑
k=0

b
(n)
k,k = σ−1 lim

n→∞{(detTn(f))/(detTn−1(f))}1/2

= σ−1 lim
n→∞{detTn(f)}1/2nσ−1 lim

n→∞{detTn(σb)}1/n

= σ−1σ = 1. (6.36)
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Combining (6.35) and (6.36) yields

lim
n→∞ |B−1

n Tn − In| = 0. (6.37)

Applying Theorem 1 yields (6.32).

Since the only real requirements for the proof were the existence of
the Wiener-Hopf factorization and the limiting behavior of the deter-
minant, this result could easily be extended to the more general case
that lnf(λ) is integrable. The theorem can also be derived as a special
case of more general results of Baxter [2] and is similar to a result of
Rissanen and Barbosa [21].
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