
Li et al. Ecological Processes           (2024) 13:63  
https://doi.org/10.1186/s13717-024-00545-1

RESEARCH

Insights into the biodegradation process 
of 2,4,5‑trichlorophenoxyacetic acid 
under anaerobic condition
Xiuying Li1   , Yan Lv2, Yuanzhi Wang3, Zhipeng Zhang4, Jingjing Wang1, Huijuan Jin1, Tongyue Zhou1,5, 
Yiru Cui1, Yi Yang1    and Jun Yan1*    

Abstract 

Background  Chlorophenoxy compounds represent a group of selective herbicides widely used around the world. 
Chlorophenoxy herbicides are toxic, chemically stable, and can migrate into groundwater through soil leaching, pos-
ing a significant threat to drinking water safety and human health. Chlorophenoxy herbicides in groundwater aquifers 
are subject to anaerobic processes; however, the pathway and microbiology involved in the attenuation of chlo-
rophenoxy herbicides under anaerobic condition are largely unknown. Here, the anaerobic degradation process 
of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), a typical chlorophenoxy herbicide, was investigated.

Results  The initial 52.5 ± 2.3 μM 2,4,5-T was completely degraded by a sediment-derived microbial consortium, 
with 3,4-dichlorophenol, 2,5-dichlorophenol, 3-chlorophenol (3-CP) and phenol being identified as the intermedi-
ate products. Reductive dechlorination of 3-CP to phenol and the subsequent elimination of phenol were the key 
transformation steps in the overall degradation process of 2,4,5-T. Amplicon sequencing suggested that Dehalobacter, 
Sulfuricurvum, Bacteroides, Acetobacterium, and Clostridium sensu stricto 7 might contribute to the transformation 
of 2,4,5-T to phenol, and Smithella, Syntrophorhabdus, Methanofollis and Methanosaeta likely cooperated to accom-
plish the complete mineralization of phenol.

Conclusions  This study reported the anaerobic degradation of 2,4,5-T via reductive dechlorination and the subse-
quent syntrophic metabolization of phenol, an intermediate product transformed from 2,4,5-T. Dehalobacter was iden-
tified as the organohalide-respiring population catalyzing the reductive dechlorination reaction. Syntrophorhabdus 
and methanogenic populations were likely involved in anaerobic phenol oxidation and facilitated the complete 
mineralization of 2,4,5-T.
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Introduction
2,4,5-Trichlorophenoxyacetic acid (2,4,5-T), a herbi-
cide developed in the late 1940s, has been extensively 
used in agriculture for the selective control of broadleaf 
weeds (Maharana et al. 2015). Concentrations of residue 
2,4,5-T typically range from 10 to 80 μg/kg in agricultural 
areas where 2,4,5-T was heavily applied (Fox et al. 2012). 
The half-life of 2,4,5-T in soils has been reported to vary 
between 12 and 59  days, depending on environmental 
conditions such as soil type, temperature, moisture, and 
microbial activity (Smith 1978). Due to the carcinogenic 
and mutagenic potentials to human beings (Hoffman and 
Eastin 1982; Bukowska 2004; Michalowicz 2010; Wag-
goner et al. 2013), the production and use of 2,4,5-T was 
restricted by the 1998 Rotterdam Convention (Hough 
2000). Despite 2,4,5-T has been banned in many coun-
tries for years, it remains as one of the contaminants most 
frequently detected in soils, surface water and groundwa-
ter after a long period of usage (Nakamura et  al. 2008; 
Brodsky et al. 2009; Xiong et al. 2014; Zazou et al. 2017). 
The natural attenuation of 2,4,5-T in various environ-
mental matrices has been reported, and this observation 
has attracted a lot of attentions to study the microbiology 
and transformation mechanisms involved in 2,4,5-T deg-
radation under different biogeochemical conditions (Itoh 
et al. 2013; Itoh 2014; Lechner et al. 2018).

The aerobic biodegradation of 2,4,5-T had been 
intensively studied in the last 40  years (Cho et  al. 2002; 
Hayashi et al. 2016). The overall transformation process 
starts with ether bond cleavage followed by oxidative 
dechlorination and ring breakage, of which the latter 
reaction breaks the benzene ring into some metabolites 
common to the tricarboxylic acid (TCA) cycle such as 
acetyl CoA, pyruvate, succinate and oxaloacetate (Har-
wood and Parales 1996; Fuchs et al. 2011; Chenprakhon 
et  al. 2019). A diverse array of bacterial strains, which 
belong to the genera Cellulosimicrobium, Burkholde-
ria, Bradyrhizobium, Sphingomonas, Nocardioides, and 
Raoultella, have been identified and characterized for 
their abilities to utilize 2,4,5-T as carbon substrate and/
or energy source (Kitagawa et al. 2002; Huong et al. 2007; 
Korobov et al. 2018).

The anaerobic biodegradation of 2,4,5-T has been 
explored using a variety of environmental samples, 
including soils, sediments, municipal sewage sludge 
and aquifer materials (Suflita et  al. 1984; Mikesell 1985; 
Gibson and Suflita 1986, 1990; Al-Fathi et al. 2019). The 
transformation pathway involved in the degradation 
of 2,4,5-T varies, depending on the initialization steps 
and the sequence in which the chlorine substituents 
are removed from the benzene ring (Gibson and Suflita 
1990). The degradation of 2,4,5-T can be initiated with 
two types of reactions, ether bond cleavage and reductive 

dechlorination. In some studies, ether bond cleavage 
is observed as the primary initiation reaction, whereas 
other studies have reported that reductive dechlorination 
takes place before ether cleavage. Nevertheless, reduc-
tive dechlorination of the monochlorophenol isomers 
(e.g., 3-chlorophenol, 4-chlorophenol), which are com-
mon intermediates during the transformation of 2,4,5-
T, is often recognized as the rate-limiting step in the 
overall degradation process (Suflita et  al. 1984). Subse-
quent conversion of a monochlorophenol to phenol and 
the mineralization of phenol to CO2 and/or CH4 were 
barely observed. Several populations, such as Desulfito-
bacterium, Dehalobacter, Dehalococcoides, have been 
implicated in the reductive dechlorination of various 
chlorophenols, but their participations in the degrada-
tion of 2,4,5-T remain unclear (Wang et  al. 2014; Lech-
ner et al. 2018). To date, the microbiology involved in the 
2,4,5-T degradation is largely unknown, and no pure cul-
ture able to thrive on 2,4,5-T under anaerobic condition 
has been reported.

Here, we investigated the biodegradability of 2,4,5-T 
in an anaerobic consortium originated from a freshwa-
ter sediment microbiota. This study is aiming to (i) iden-
tify the intermediates produced during the anaerobic 
metabolism of 2,4,5-T and elucidate the pathway lead-
ing to the decomposition of this compound, (ii) unravel 
the microbial community responsible for the anaerobic 
degradation of 2,4,5-T, (iii) reveal the microbial popula-
tions mediating the key steps in the degradation process 
of 2,4,5-T.

Materials and methods
Chemicals
2,4,5-T (> 97.0%) was purchased from Dr. Ehrenstor-
fer GmbH (Augsburg, Germany). 2,4,5-Trichlorophenol 
(2,4,5-TCP), 3,4-dichlorophenol (3,4-DCP), 2,5-dichlo-
rophenol (2,5-DCP), 2,4-dichlorophenol (2,4-DCP), 
3-chlorophenol (3-CP), 2-chlorophenol (2-CP), 4-chlo-
rophenol (4-CP) and phenol (all > 98.0%) were obtained 
from Sigma-Aldrich (St. Louis, MO, USA). All other 
chemicals used in this study were analytical or higher 
grade.

Construction of the 2,4,5‑T‑degrading microbial 
consortium
Freshwater sediment sample was collected from a loca-
tion (latitude 41° 39′ 46″, longitude 123° 6′ 20″) at the Xi 
River (Shenyang, Liaoning, China) as described (Li et al. 
2019). Inside an anaerobic chamber (Coy Laboratory, 
Ann Arbor, MI, USA), approximately 2  mL of homoge-
nized sediment slurry was dispensed into 160 mL serum 
bottles each containing 100  mL bicarbonate-buffered 
(pH 7.2) mineral salts medium and a headspace of N2/
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CO2 (80:20, v/v) (Löffler et al. 2005). Lactate (5 mM) and 
hydrogen (10 mL, ca. 413 µmol) were provided as carbon 
source and electron donor, respectively. Filter-sterilized 
(0.22  µm pore size) 2,4,5-T stock solution (19  mM dis-
solved in 20 mM NaOH) was prepared and amended to 
each vessel to reach an initial concentration of 50  µM. 
Following the complete consumption of 2,4,5-T and its 
intermediate products (e.g., 3-CP, phenol), the sediment 
microcosm was repeatedly transferred (3%, v/v) under 
the same cultivation conditions to obtain the solid-free, 
2,4,5-T-degrading consortium designated as XR/245T. 
The first and second generations of the XR/245T con-
sortium were abbreviated as the 1st XR/245T and 2nd 
XR/245T, respectively. Inoculated from the 2nd XR/245T 
consortium, a 3-CP-degradating subculture designated 
as the XR/3CP was established and transferred with H2 
(10 mL) as electron donor and 3-CP (50 μM) as carbon 
substrate/electron accepter. Extra sediment microcosm 
vessels were established as described above, autoclaved 
and amended with the same amount of 2,4,5-T to serve 
as abiotic controls. All vessels were incubated in the dark 
at 30 °C without shaking.

Analytical methods
Culture supernatants (0.5 mL each sample) were filtrated 
(0.22  μm pore size) and stored at 4  °C prior to analy-
sis. 2,4,5-T, chlorophenols and phenol were analyzed 
using an Agilent 1260 high performance liquid chro-
matography (HPLC) system equipped with an Agilent 
Hypersil reverse-phase C18 column (4.6  mm in diam-
eter × 250 mm in length, 5 μm particle size) and a diode-
array-detector set at 280 nm. Samples were separated at 
a flow rate of 1.0 mL min−1 at 35 °C using 2% acetic acid 
in deionized water (eluent A) and 100% acetonitrile (elu-
ent B) as mobile phases. The initial mobile phase compo-
sition of 45% A and 55% B was held for 9  min, linearly 
changed to 80% A and 20% B over 3  min, and changed 
back to 60% A and 40% B over 1 min followed by a 2 min 
hold for column re-equilibration. Structures of the deg-
radation products were confirmed using UPLC-Q-
Exactive Orbitrap mass spectrometry (Thermo Fisher 
Scientific, Waltham, MA, USA) equipped with a C18 
column (2.1 mm in diameter × 100 mm in length, 1.9 µm 
particle size, Thermo Fisher Scientific). The analysis was 
performed using a Dionex UltiMate™ 3000 RSLC sys-
tem (Thermo Fisher Scientific) in negative electrospray 
ionization mode. The mobile phase was 0.1% (v/v) acetic 
acid and 100% acetonitrile (40:60, v/v; isocratic, 8.0 min) 
at a flow rate of 0.3 mL min−1. The column temperature 
was 25 °C and the injection volume was 3 μL. For the MS 
analysis, the Q-Orbitrap mass spectrometer (Thermo 
Fisher Scientific, USA) was coupled with the heat electro-
spray ionization (HESI). The auxiliary gas, sheath gas and 

sweep gas were set to flow rates of 22, 2 and 0 (arbitrary 
units), respectively. The spray voltage was set at 2.8  kV 
under negative mode and the S-lens RF level was set at 
50 V. The auxiliary gas heater temperature and capillary 
temperature were both set to 300 °C. Nitrogen was used 
for spray stabilization and the damping gas in the C-trap. 
The analysis was performed in the full scan mode with a 
negative ion swing. The resolution was 70,000 (FWHM 
at 200 m/z). The automatic gain control target was set at 
3.0 × 106 with a maximum injection time of 200 ms. The 
full MS scan ranges were set from 100 to 500  m/z. The 
acquired mass spectrometric data were processed using 
Thermo Xcalibur 3.0 software (Thermo Fisher Scientific).

DNA isolation and 16S rRNA gene amplicon sequencing
Samples collected from the sediment microcosm, the 
1st and 2nd XR/245T consortium were used for 16S 
rRNA gene amplicon sequencing. Cells were harvested 
from 1  mL culture suspensions by vacuum filtration 
onto 0.22  µm membrane filters. Genomic DNA was 
isolated from the filters using the TIANamp Soil DNA 
Kit (TIANGEN Biotech, Beijing, China) following the 
manufacturer’s instructions. DNA concentration was 
estimated using a Qubit 4 fluorometer (Thermo Fisher 
Scientific), and DNA quality was assessed using 0.8% 
agarose gel electrophoresis. Amplification of the hyper-
variable V3-V4 region of the bacterial 16S rRNA gene 
was performed using barcoded-primers U431F (5ʹ-ACT​
CCT​ACG​GGA​GGC​AGC​AG-3ʹ) and 806R (5ʹ-GGA​
CTA​CHVGGG​TWT​CTAAT-3ʹ) (Teng et  al. 2018). 
Amplicon sequencing and analysis were performed by 
GENEWIZ Inc. (Suzhou, Jiangsu, China). Briefly, the 
purified amplicons (10  nM) were pooled in equimo-
lar and paired-end sequencing was performed using an 
Illumina MiSeq PE250 platform (Illumina, San Diego, 
CA, USA) as described (Kozich et  al. 2013). High-qual-
ity sequences were clustered into operational taxonomic 
units (OTUs) at a 97% identity threshold using Vsearch 
clustering (1.9.6) (Rognes et  al. 2016). The classification 
of OTUs was performed using the SILVAngs server with 
default settings (Quast et al. 2013). Ace, Chao1, Shannon 
and Simpson indices were calculated using QIIME (1.9.1) 
pipeline as described (Bolger et  al. 2014). The relative 
abundances of the OTUs were calculated and clustered 
at the genus-level using the complete group clustering 
method embedded in R (package vegan).

Results
Degradation of 2,4,5‑T in the sediment microcosm 
and the XR/245T consortium
Four compounds (designated as M1, M2, M3 and M4) 
were detected as the potential products transformed from 
2,4,5-T. Compounds M1 and M2, which exhibited HPLC 
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retention times of 11.83 min and 11.68 min, respectively, 
were produced at the early stage of the entire incubation 
period. At day 20, compound M3 was detected at a HPLC 
retention time of 7.70 min. Compound M4 with a HPLC 
retention time of 4.74 min emerged at day 60. The accu-
mulation of compound M4 was accompanied by a sig-
nificant decrease in the peak area of compound M3 (Fig. 
S1). By matching retention times with authentic stand-
ards, compounds M1, M2, M3 and M4 were preliminarily 
identified as 3,4-DCP, 2,5-DCP, 3-CP and phenol, respec-
tively (Fig. S1).

The initial 52.5 ± 2.3  μM 2,4,5-T was depleted within 
14 days in the sediment microcosm (Fig. 1A). In contrast, 
2,4,5-T concentrations remained essentially unchanged 
in the abiotic controls (Fig. S2), indicating that the 
observed 2,4,5-T-degrading activity was mediated by 
the sediment microbiota. It took an incubation period 
of 48  days for 2,4,5-T and its transformation products 
(e.g., 3-CP, phenol) to disappear in the sediment micro-
cosm. In the 1st XR/245T consortium, the amended 
51.0 ± 1.1  μM 2,4,5-T decreased to 18.5 ± 1.6  μM over 
a period of 10  days. Meanwhile, 3,4-DCP reached to a 
maximum concentration of 21.3 ± 2.1  μM, and a minor 
amount of 3-CP (3.2 ± 0.2  μM) was produced. Subse-
quently, 3-CP was accumulated to 48.6 ± 3.2  μM by day 
22 and then dechlorinated to phenol, which was slowly 
consumed and eventually disappeared at day 66 (Fig. 1B). 
In the 2nd XR/245T consortium, 2,5-DCP and 3,4-DCP 
were the first intermediates produced from 2,4,5-T 
and both compounds were subsequently dechlorin-
ated to 3-CP, which reached a maximum concentration 
of 49.5 ± 1.2 μM at day 31. After a lag period of 18 days, 
the accumulated 3-CP underwent further transfor-
mation to phenol and the generated phenol gradually 
disappeared in the incubation system within the next 
50 days (Fig. 1C). The XR/245T consortium maintained 
the 2,4,5-T-degrading ability, but the incubation times 

required for the complete elimination of 2,4,5-T and its 
transformation products (e.g., 3-CP, phenol) extended to 
70 and 90 days in the 1st and 2nd XR/245T consortium, 
respectively. 3-CP and phenol accumulated to concentra-
tions nearly equal to the initially amended 2,4,5-T and 
their transformations occurred at rates much slower than 
those of 3,4-DCP and 2,5-DCP (Fig. 1B, C). These obser-
vations suggest that the reductive dechlorination of 3-CP 
to phenol and the subsequent transformation of phe-
nol are the key steps in the overall degradation process 
of 2,4,5-T. Notably, accumulation of a transformation 
product beyond phenol was not observed in the aqueous 
phase. We speculated that the disappeared phenol was 
eventually mineralized to CO2 and/or CH4 (Fig. 2), a deg-
radation mechanism that had been proposed in previous 
studies (Qiu et al. 2008; Nobu et al. 2015; Harindintwali 
et al. 2022). 

Mass spectrometric identification of the intermediate 
products
Mass spectrometric analysis was performed to confirm 
the identities of compounds M1, M2 and M3. Compound 
M1 was eluted at 2.82 min as shown in the extracted ion 
chromatogram (EIC) (Fig.  3A) and the deprotonated 
M1 ion was represented by two adducts at m/z 160.96 
and m/z 162.95 (Fig.  3B). The retention time and pri-
mary mass spectrum of compound M1 matched with 
those of the 3,4-DCP standard (Fig. 3A, B, S3). Similarly, 
compound M2 exhibited identical retention time (i.e., 
2.75 min) and mass characteristics to the 2,5-DCP stand-
ard (Fig. 3C, D, S3). Despite 3,4-DCP and 2,5-DCP dis-
played highly similar mass spectrometric patterns, these 
two compounds could be distinguished from each other 
based on their EIC retention times (i.e., 2.82 min for 3,4-
DCP and 2.75  min for 2,5-DCP). The retention time of 
compound M3 was identical (i.e., 1.50 min) as that of the 
3-CP standard (Fig. 3E, S3). In addition, the deprotonated 
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Fig. 2  The proposed biodegradation pathway of 2,4,5-T under anaerobic condition. Solid lines indicate the processes observed in this study, 
and dashed lines indicate potential transformation process in which the speculated products were not analyzed. Note, a potential degradation 
product of phenol was not detected under the HPLC settings used in this study
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ions generated from compound M3 and 3-CP were iden-
tical and represented by two adducts at m/z 126.99 and 
m/z 128.99 (Fig.  3F, S3). Collectively, mass spectromet-
ric analysis provided additional evidence to confirm 
the identities of the intermediate products transformed 
from 2,4,5-T. These results corroborate that anaerobic 
degradation of 2,4,5-T proceeded via sequential reduc-
tive dechlorination. The overall degradation pathway 
observed in this study was illustrated in Fig. 2.

Biodiversity and microbial composition 
of the 2,4,5‑T‑degrading community
The rarefaction curves of the total sequenced amplicons 
reached the plateau (Fig. S4), indicating the sequencing 
depth was sufficient to unravel the composition of the 
2,4,5-T-degrading community. The sediment microcosm 
contained the highest OTUs number (i.e., 594). Follow-
ing consecutive transfer events, the total OTUs numbers 
decreased to 391 and 100 in the 1st and 2nd XR/245T 
consortium, respectively (Fig. S4). As listed in Table S1, 
the Ace and Chao1 indices were calculated as 660.8 and 
674.0 for the sediment microcosm and decreased to 
101.6 and 100.8 in the 2nd XR/245T consortium. The 
Shannon and Simpson indices, which reflect the abun-
dance and diversity of species, were the highest (6.9 and 
1.0) in the sediment microcosm. After two transfers, the 
Shannon and Simpson indices decreased to 4.6 and 0.9, 
respectively, in the 2nd XR/245T consortium.

The OTUs obtained from the 2,4,5-T-degrading com-
munity could be assigned to 31 phyla, 103 families, and 
131 genera. The dominant phyla in the sediment micro-
cosm were Firmicutes (29.8%), Bacteroidetes (28.4%) and 
Proteobacteria (15.3%) (Fig. S5A). Firmicutes remained 
as the most abundant one (33.9%) in the 1st XR/245T 
consortium, but its abundance decreased to 19.6% in 
the 2nd XR/245T consortium. The relative abundances 
of Bacteroidetes and Proteobacteria decreased to 19.1% 
and 10.7%, respectively, in the 2nd XR/245T consor-
tium. Sequences affiliated with Epsilonbacteraeota 
only accounted for 1.6% of the total sequenced ampli-
cons in the sediment microcosm. The relative abun-
dance of Epsilonbacteraeota significantly increased to 
25.8% in the 2nd XR/245T consortium. At the family 
level, Bacteroidetes_vadinHA17 (20.2%), Peptococ-
caceae (13.9%), Syntrophaceae (9.6%), Clostridiaceae 
(7.7%) and Rikenellaceae (5.5%) were the most abundant 
ones in the sediment microcosm (Fig. S5B). In the 2nd 
XR/245T consortium, sequences belonging to Bacteroi-
detes_vadinHA17 nearly disappeared and the relative 
abundances of Syntrophaceae and Clostridiaceae also 
dropped to 1.2% and 2.4%, respectively. Thiovulaceae 
only represented a minor fraction (1.2%) in the sediment 
microcosm, but its relative abundance increased to 25.6% 

in the 2nd XR/245T consortium. Rikenellaceae and Pep-
tococcaceae were consistently present in the sediment 
microcosm and the 1st and 2nd XR/245T consortium, 
with relative abundances ranging from 5.5 to 6.8% and 
9.8 to 13.9%, respectively.

The top 30 most abundant OTUs in the 2,4,5-T-degrad-
ing community at the genus level were shown in the 
clustering heatmap (Fig.  4). The sediment microcosm 
was dominated by the unclassified “vadinHA17” within 
the phylum Bacteroidetes, as well as the genera Smith-
ella, Clostridium sensu stricto 7, Cryptanaerobacter 
and Dehalobacter; however, the relative abundances of 
Smithella and “vadinHA17” significantly decreased in 
the 2nd XR/245T consortium. Following two consecutive 
transfers, the dominant OTUs in the 2nd XR/245T con-
sortium were changed to Sulfuricurvum, Dehalobacter, 
Lentimicrobium, Syntrophorhabdus and Methanosaeta.

Identification of the key microbial populations involved 
in the degradation of 3‑CP
Degradation of 3-CP is the critical step for the complete 
decomposition of 2,4,5-T. To investigate the microbial 
populations responsible for 3-CP degradation, a sub-
culture (i.e., XR/3CP consortium) was established and 
supplied with 3-CP as carbon source/electron accep-
tor (Fig. 5). Following a lag period of 15 days, the initial 
40.5 ± 2.2 μM 3-CP was completely degraded within the 
next 25  days. Phenol was accumulated to a maximum 
concentration of 30.5 ± 3.1  μM at day 40 and gradually 
disappeared in the next 23  days. The composition and 
abundant genera (i.e., with a relative abundance ≥ 1%) in 
the XR/3CP consortium was shown in Fig.  6. The most 
abundant bacterial genera belonged to Sulfuricurvum 
(29.3%), Acetobacterium (13.7%), Smithella (5.1%), Len-
timicrobium (4.0%), Dehalobacter (3.8%), Bacteroides 
(3.6%), Syntrophorhabdus (3.5%) and Clostridium sensu 
stricto 7 (3.2%). The methanogenic genera Methanofol-
lis (3.9%) and Methanosaeta (2.3%) were also detected in 
the XR/3CP consortium, suggesting that methanogenesis 
occurred concurrently during the degradation of 3-CP.

Discussion
The degradation pathway of 2,4,5‑T
Here, we investigated the degradation process and 
environmental fate of 2,4,5-T using a microbial con-
sortium established from freshwater river sediment. 
Ether cleavage and reductive dechlorination are the 
main reactions driving the transformation and degra-
dation of 2,4,5-T under anaerobic condition. The com-
plete removal of the generated phenol suggested that 
further transformation process took place in the incu-
bation system, likely the mineralization reactions that 
converted phenol to CO2 and/or CH4 (Chenprakhon 
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et  al. 2019). Ether bond cleavage as the initializa-
tion reaction for the degradation of 2,4,5-T has been 
reported in several anaerobic cultures derived from 
soils (Chang et al. 1998a, b; Lechner et al. 2018), sedi-
ments (Gibson  and  Suflita 1990; Bryant 1992; Al-
Fathi et  al. 2019), sewage sludge (Suflita et  al. 1984; 
Mikesell 1985). In this reaction, the acetyl group was 
removed from the aromatic ring and 2,4,5-TCP was 

formed as the first degradation product of 2,4,5-T. In 
addition, the initialization of 2,4,5-T degradation via 
reductive dechlorination also has been described in 
cultures derived from methanogenic aquifer slurries 
(Gibson and Suflita 1990), soil (Chang et  al. 1998a, 
b) and sediment (Al-Fathi et  al. 2019). The removal 
of the para-, meta- or ortho-chlorine substituent in 
the benzene ring of 2,4,5-T can produce a variety of 
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Fig. 4  Heatmap of the top 30 most abundant genera in the sediment microcosm and the XR/245T consortium. The color code represents 
the relative abundance value of each taxon displayed in the heatmap, ranging from light blue (low abundance) to dark blue (high abundance). The 
tree scale bar indicates nucleotide substitutions per site
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dichlorophenoxyacetic acids such as 2,5-dichlorophe-
noxyacetic acid (2,5-D), 2,4-dichlorophenoxyacetic acid 
(2,4-D) and 3,4-dichlorophenoxyacetic acid (3,4-D) as 
the initial products. In the follow-up reactions, 2,5-D, 
2,4-D and 3,4-D are subject to ether cleavage and can 
further undergo reductive dechlorination reaction to 
form 3-CP or 4-CP. Neither a dichlorophenoxyacetic 
acid nor 2,4,5-trichlorophenol was detected during the 
entire incubation period; therefore, it can be concluded 

that the anaerobic degradation of 2,4,5-T primarily 
involves reductive dechlorination reaction followed by 
the further degradation of phenol (e.g., mineralization).

Microbial diversity is essential for the rapid degradation 
of 2,4,5‑T
The major microbial components in the 2,4,5-T-degrad-
ing community were largely the same between the sedi-
ment microcosm and the XR/245T consortium. Alpha 
diversity indices showed that a dramatic reduction in 
microbial richness and diversity, which might result 
in the prolonged incubation time to accomplish the 
complete breakdown of 2,4,5-T following the transfer 
events. The reduction in biodiversity might be due to 
the inability of certain taxa to utilize 2,4,5-T as car-
bon substrate and/or energy source or their suscep-
tibility to the toxicity of 2,4,5-T. It has been reported 
that the function and activity of a community largely 
depend on the succession of the microbial diversity in 
the original sample (Ahmad et  al. 2019). Transferring 
cultures using a small inoculum size may lead to the 
loss of minor taxa with a low relative abundance (Jung 
et al. 2016). Overall, microbial diversity is a crucial fac-
tor in shaping community structure and is essential for 
ecosystem functioning, particularly in the utilization 
and degradation of complex substances such as 2,4,5-T 
(Xu et  al. 2024). Understanding the dynamics of the 
2,4,5-T-degrading community is essential for optimiz-
ing bioremediation strategies and leveraging microbial 
communities for environmental cleanup efforts.
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Fig. 5  Anaerobic transformation of 3-CP in the XR/3CP consortium. 
The error bars represent the standard deviations of triplicate samples 
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degradation product of phenol was not detected under the HPLC 
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The involvement of reductive dechlorination 
in the degradation process
The formation and subsequent elimination of 3,4-DCP, 
2,5-DCP and 3-CP evidence that reductive dechlorina-
tion is a key reaction facilitating the overall degradation 
process of 2,4,5-T. Reductive dechlorination is the sig-
nature biochemical reaction catalyzed by organohalide-
respiring bacteria (OHRB), which utilize organohalogens 
as electron acceptors for energy conservation (Li et  al. 
2022). The ability to grow with chlorophenols had been 
demonstrated in a variety of OHRB phylotypes, includ-
ing Dehalobacter, Dehalococcoides, and Desulfitobacte-
rium (Tront et  al. 2006; Adrian et  al. 2007; Wang et  al. 
2014). Among them, Desulfitobacterium is the only 
known OHRB phylotype capable of reductive dechlo-
rination of 2,4,5-T (Lechner et  al. 2018). In this study, 
Dehalobacter was the only OHRB phylotype present in 
the 2,4,5-T-degrading community. Some members of 
this genus are capable of metabolizing certain chlorin-
ated aromatic compounds, including chlorobenzenes and 
chlorophenols (Wang et al. 2014; Al-Fathi et al. 2019). For 
example, Dehalobacter sp. strain TCP1, strain 12DCB1 
and strain 13DCB1 have been implicated in the reductive 
dechlorination of 2,4,6-trichlorophenol, 1,2-dichloroben-
zene or 1,3-dichlorobenzene (Nelson et  al. 2011; Wang 
et  al. 2014). A Dehalobacter-containing enrichment 
culture, which was obtained from contaminated sandy 
soil, was able to dechlorinate β-hexachlorocyclohexane 
(van Doesburg et al. 2005). In addition to Dehalobacter, 
Sulfuricurvum and Clostridium sensu stricto 7 are also 
likely involved in the reductive dechlorination of 2,4,5-T. 
Although Sulfuricurvum has not yet to be described as 
a chlorophenol-dechlorinating phylotype, several stud-
ies have documented the increase of Sulfuricurvum-like 
sequences during the reductive dechlorination of poly-
chlorinated biphenyls and in  situ biostimulation for the 
remediation of chlorinated compounds (Yu et  al. 2017). 
Previous studies indicated that Clostridium sensu stricto 
7 was frequently present in microbial communities 
involved in the degradation of chlorophenols. Certain 
Clostridium spp. strains have the potential to utilize ace-
tate or lactate, generating H2 that can serve as electron 
donor for reductive dechlorination reactions (Freeborn 
et  al. 2005; Behrens et  al. 2008). The uncharacterized 
Clostridium sensu stricto 7 may play a supporting role 
in the anaerobic biodegradation of 2,4,5-T (Li et al. 2010; 
Xu et al. 2018).

Elimination of 3‑CP is the key process for the anaerobic 
degradation of 2,4,5‑T
3-CP has been identified as an intermediate product 
during the degradation of 2,4,5-T, but there is limited 

research demonstrating its complete degradation under 
anaerobic condition. The degradation of 3-CP observed 
in this study can be divided into two phases: the removal 
of the meta-chlorine substituent via reductive dechlorin-
ation and the further degradation of phenol. The micro-
bial composition in the 3-CP-degrdading community was 
similar to that of the 2,4,5-T-degrdading community. In 
addition to potential dechlorinators (e.g., Dehalobacter), 
syntrophic fermenters such as Syntrophorhabdus, Syntro-
phobacter and Syntrophomonas, as well as methanogens 
such as Methanofollis and Methanosaeta were also pre-
sent in the XR/3CP consortium. Previous studies showed 
that cooperation of Syntrophorhabdus with hydrogeno-
trophic or acetoclastic methanogens facilitate the anaero-
bic mineralization of phenol via the benzoate degradation 
pathway (Qiu et  al. 2008). Syntrophobacter and Syn-
trophomonas are also hydrogen- and acetate-producing 
bacteria that can metabolize aromatic compounds into 
small molecules for methanogens to utilize and there-
fore sustain the methanogenesis process in a syntrophic 
manner (Chellapandi et al. 2018). The microbial compo-
sition of the 3-CP-degrading community suggests that 
phenol generated from 3-CP can undergo decomposition 
through syntrophic metabolism. In summary, our results 
demonstrate that dechlorinators, syntrophic fermenters 
and methanogens work cooperatively to accomplish the 
complete breakdown of 2,4,5-T and its degradation inter-
mediates under anaerobic condition.

Conclusion
We show that, under anaerobic condition, 2,4,5-T is pri-
marily transformed through sequential reductive dechlo-
rination, followed by the subsequent degradation of 
phenol. Dehalobacter is identified as the OHRB popula-
tion responsible for the removal of chlorine substituents 
from 2,4,5-T. In addition, Syntrophorhabdus and methe-
nogens such as Methanofollis and Methanosaeta likely 
play syntrophic roles in the anaerobic phenol oxidation. 
This study explores the anaerobic degradation process 
of chlorophenoxy herbicides and provides insights into 
microbial determinants controlling the environmental 
fate of these toxins.
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