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Abstract

Outliers and influential observations are a frequent concern in all kind of statistics, data
analysis and survey data. Especially, if the data is asymmetrically distributed or heavy-
tailed, outlier detection turns out to be difficult as most of the already introduced methods
are not optimal in this case. In this paper we examine various non-parametric outlier detec-
tion approaches for (size-)weighted growth rates from quantitative surveys and propose new
respectively modified methods which can account better for skewed and long-tailed data.
We apply empirical influence functions to compare these methods under different data spec-

ifications.
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1 Introduction

Outliers are usually considered to be extreme values which are far away from the other data
points (see, e.g., Barnett and Lewis (1994)). Chambers (1986) was first to differentiate between
representative and non-representative outliers. The former are observations with correct values
and are not considered to be unique, whereas non-representative outliers are elements with
incorrect values or are for some other reasons considered to be unique. Most of the outlier
analysis focuses on the representative outliers as non-representatives values should be taken care
of already in (survey) data editing.

The main reason to be concerned about the possible outliers is, that whether or not they
are included into the sample, the estimates might differ considerably. The data points with

substantial influence on the estimates are called influential observations and they should be
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identified and treated in order to ensure unbiased results. Quantitative data, especially from non-
probability sample surveys, is often being weighted by size-weights. In this manner, unweighted
observations may not itself be outliers (in the sense that they are not extreme values), but they
might become influential through their weighting.

If the data generating process (DGP) is unknown, as it is usually the case with survey
data, parametric outlier detection methods are not applicable. In this paper we investigate
non-parametric methods of influential observation detection in univariate data from quantitative
surveys, especially in size-weighted growth rates respectively ratios. This kind of data sources
could be, for example, retail trade and investment surveys. As survey data is often skewed,
we examine outlier detection in case of asymmetrically distributed data and data from heavy-
tailed distributions. Further speciality of survey data is, that there are usually much more
smaller units than bigger ones, and those are also more volatile. Yet, as the outlier detection
(and treatment) involves in general lot of subjectivity, we pursue an approach in which no (or
hardly any) parameters need to be defined but which would still be able to deal with data from
different non-symmetric and fat-tailed distributions. We present some new respectively modified
outlier detection methods to address these topics. We compare the presented outlier detection
approaches using the empirical influence functions and analyse how they perform compared to
the approach of Hidiroglou and Berthelot (1986). Furthermore, we focus on analysing influential
observations in (sub)samples with only small number of observations. Moreover, as many surveys
are periodic, a dynamic and effective procedure is pursued.

This is paper is organized as follows. In the next section, we describe the most relevant
outlier detection approaches and discuss the location and scale estimates. In the third section we
present the outlier detection methods and in the fifth section we analyse them with the empirical

influence functions. Finally, the sixth section concludes.

2 Overview of outlier detection approaches

Various non-parametric as well as parametric techniques to detect outliers have already been
introduced. A further distinction between the procedures is if it is applied only once (block pro-
cedure) or consecutively/sequentially. Sequential methods are sometimes preferred if multiple
outliers are excepted as in some block approaches the masking effect (explained later) could hin-
der to recognize multiple outliers. However, sequential approaches are usually computationally
intensive and therefore, more time-consuming.

Commonly applied non-parametric approaches include rule-based methods like those based
on the relative distance. The relative distance of the observation is defined in general as the

absolute value of the distance to a location estimate [ divided by a scale estimate s:
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If this test statistic exceeds some value k, which is defined by the researcher/data analyst,



then the observation is considered to be an outlier. Also a tolerance interval of | — kjs,l + kps
can be applied where k; and kj, can also differ in order to be able to account for the skewness of
the data.

A further outlier detection method has been developed by Hidiroglou and Berthelot (1986)
(the HB-method). Their method is applied to data transformed as a ratio from the previous
period to the current one, which is then transformed to access the possible skewness of the data.
According to this method outliers will be those observations whose period-to-period growth
rates diverge significantly from the general trend of other observations of the same subset. This
method is based on the idea having an acceptance boundary that differs according to the size
of the observation as the change ratios tend to be more volatile for smaller observations and
therefore, the smaller units are more probable to be identified as an outlier. This is the so called
size masking effect. However, the selection of the values for the parameters can be difficult.

The parametric approaches underlie distributional assumption and are therefore rather sel-
dom applied to survey data, as an assumption of specific DGP is generally unrealistic. However,
if the data can be transformed to be approximately normally distributed, some of these methods
might be then useful. Grubbs (1950) introduce an outlier test which assumes that the data is

normally distributed. The test statistic is defined as follows:

o _ max(lul ~9)
s

where ¢ is the sample mean and s is the standard deviation of the sample. However, for the
Grubbs test the number of outliers must be defined beforehand and it works only in cases of one
outlier, two outliers on one side or one outlier on each side. The Grubbs test is also not suitable
for small samples as the test statistic can per definition not be larger than (n —1)//n where n is
the sample size. A generalized version of the Grubbs test was introduced by Tietjen and Moore
(1972) which can be used to test for multiple outliers. However, also here the exact number of
outliers need to chosen beforehand.

As the efficiency of standard deviation as an estimator of scale might be poor for samples
containing only few observations, alternative measures have being examined. Dean and Dixon
(1951) show that the range is a highly efficient measure of the dispersion for ten or fewer obser-
vations. They introduce a simple Q-test for outliers in samples with 3-30 observations, where

the test statistics @ can be written as:

Q= (Yn —Yn-1)/(Yn —y1)

If @ exceeds the critical value, the observation is considered to be an outlier. However, the
range is sensitive to outliers and therefore, in case of multiple outliers this test is not optimal.

Also the distance to nearest neighbour is not a suitable measure in that case.



2.1 Estimators for location and scale

Mean and standard deviation are the mostly used estimators for location and scale. Yet, if
multiple outliers exits, one should be careful using mean and standard deviation as estimates of
sample location and scale in the outlier detection techniques as they are very sensitive to extreme
data points and could thus hinder the identification of outliers. This is called the masking effect.
Both mean and standard deviation have a breakdown point of zero, what means that they
”break” down already if only one outlying observation is in the sample.

An alternative is to apply more robust measures of location and scale, which are less sensitive
to outliers. For example, median has a breakdown point of 50 percent and is therefore a good
measure of location even if the data is skewed. A further robust estimators for location include
the Hodges-Lehmann estimator (HL) (Hodges and Lehmann (1963)), trimmed mean, Winzorized
mean as well as Huber M-estimator of a location parameter.

An alternative scale measure is Median absolute deviation (MAD) which is defined as
MAD = median;|y; — median;(y;)|

and it has the highest possible breakdown point of 50 percent. However, MAD is based on
the idea of symmetrically distributed data as it corresponds the symmetric interval around the
median containing 50 percent of the observations. A further alternative for a scale estimator
is the interquartile range (IQR), i.e. the difference between upper and lower quantiles. The
interquartile range is not based on a symmetric assumption, however it has a lower breakdown
point of 25 percent. In addition, Rousseeuw and Croux (1993) introduce two alternatives for
MAD, which are similar to it but do not assume symmetrically distributed data. They propose

a scale estimator based on different order statistics. Their estimator is defined as

@Qn = d{lz; — 2;];1 < j}) (1)

") ~ (%)/4 whereas h = [n/2] + 1 corresponds about the

half of the number of observations. This estimator is also suitable for asymmetrically distributed

where d is a constant and k = (

data and has a breakdown point of 50 percent.

3 Methods

Let y; be the (year-on-year) growth rate of a company ¢ and w; be its size weight. Then the

simple point estimator for the weighted mean of the sample with n observations is as follows

N szyz
Hn S w;

Our goal is the detect outliers, which have considerable influence on this estimator. As in

(2)

this context size weights are being used, we need to analyse both unweighted and weighted



observations. Furthermore, we take into account that the observations might be asymmetrically
distributed as it is often the case with survey data and/or the distribution of the data exhibits
heavy tails. However, no specific distribution assumption can and will be made.

In general we have different possibilities to deal with skewness of the data in outlier detection:
transform observations to be approximately symmetrically distributed, to use different scale
measure each side of the median (based on skewness-adjusted acceptance interval) or apply an

estimator of scale which is robust also in the case of asymmetric data.

3.1 Baseline approach

We use the method of Hidiroglou and Berthelot (1986) as our baseline approach. They use
in their method the following transformation technique

1 —qos/ri if0<r; <qos
ri/qos — 1 if r; > qos

where 7; = y; 1+1/Yi and ¢o5 is the median of r values. Thus, one half of the transformed
values are less than zero and the other half greater than zero. However, this transformation
does not ensure symmetric distribution of the observations. In the second step the size of the

observations is taken into account:

E; = si{max([y:(t), ys(t + 1)]}Y

where 0 < U < 1. The parameter U controls the importance of the magnitude of the data.
The acceptance interval of Hidiroglou and Berthelot (1986) is as follows

{Em,ed - CDQla Emed + CDQ3}

where Dg1 = maz{Emeqs — Eg1,|aFmedl} and Dgs = maz{Eqgs — Emedian, |0Emeq|} and
Epeq is the median of the HB-statistics E, Eg: and Egs are the first and third quartile and a
is a parameter, which takes usually the value of 0.05. The idea of the term |aFE,,q| is to hinder
that the interval becomes very small in the case that the observations are clustered around some
value. The constant ¢ defines the width of the acceptance interval. However, for this approach
the parameters U, a and especially ¢ need to be more or less arbitrarily chosen or estimated.
We use this method as baseline approach with following parameter values: a = 0.05, ¢ = 7 and
U = 1. The parameter ¢ could also take different values for each side of the interval and thus,

account better for asymmetric data.

3.2 Transformation approach

One way to deal with asymmetric data is to use transformation which produces then (approx-

imately) symmetrically distributed observations. Then, in general, methods assuming normally



distributed data could be applied. In this approach we transform the data to be approximately
symmetrically distributed. For this, we apply a transformation based on Yeo and Johnson (2000)

work:

((ys + D} = 1)/2 for y; > 0,A # 0

t; =
(g + DA =1)/(2=)N)  fory; <0,\#2

where y; are growth rates in our case. However, we apply the same \ parameter for positive
as well as negative values. This ensures that positive and negative observations are treated same
way. We choose following parameter value: A = 0.8. The transformed values are then multiplied
by their size weight w;:

w _ 4V
t; = tyw;

The parameter 0 < V < 1 controls the importance of the weights like in the approach
of Hidiroglou and Berthelot (1986). A tolerance interval based on the interquartile range is
then applied as these transformed values ¢}’ should be approximately symmetrically distributed:

Go.25— 3 IQR, qo.75+ 3IQR. We refer to this approach as tr-approach.

3.3 Right-left scale approach

In this approach we apply different scale measures for each side of the median to account
for the skewness of the data. Hubert and Van Der Veeken (2008) propose adjusted outlyingness

(AO) measure based on different scale measures on both sides of the median:

Yi—4go.5 3
- if yi > qos
AO’L — Wu—qo.5
q0.5 —Yi 3 .
90.5—w; if yi <qos

where w; and w,, are the lower and upper whisker of the adjusted boxplot as in Hubert and
Vandervieren (2008):

w; = Q.25 — 1.5_4MCIQR; Wy = qo.75 + 1.53MCIQR for MC >0
w; = qo.25 — 1.5 3MCIQR; wy, = qors + 1.5*MCIQR  for MC < 0

where MC equals to the medcouple, a measure of skewness, introduced by Brys et al. (2004):

MC(Y,) = med  h(y;,y;)

yi<medn, <y;
where med,, is the sample median and

(xj —medy) — (med,, — x;)

h<ylax3): T — I
7 4



However, the denominator in AO can become quite small if the values are clustered near to
each other (on one side), and then, more observations could be recognized as outliers as actually
the case is. On the other hand, the denominator can also become very large, if, for example,
one (or more) clear outlier is in the data and thus, other observations may not be declared as
outliers but are kind of masked by this effect. Therefore, we adjust the denominator to account

for these cases where it could become relatively low or high as follows:

Yi—4go.5 3 .
"l — min(maz(wy—qo.5,7ange(y)/ny-¢),rangey /n9-6) if Yi 2 qos
i =
Yi—do.5 1 .
min(max(qo.5s—wi,range(y)/nS-6),range, /nY-6) if Yi < 4qos

In the second step, this measure is also multiplied by the size weight:

Y = rl; xw)
where the parameter 0 < V' < 1 again controls the importance of the weights. The interquar-
tile range interval gp.o5— 3 IQR, qo.75+ 3 IQR is applied to identify the outliers. We refer to

this approach as ri-approach.

3.4 (@,-approach

This approach is based on the measure of relative distance. We use the @,, estimator of
Rousseeuw and Croux (1993) as scale estimate, which is more robust scale estimator than MAD
for asymmetrically distributed data. In the first step the distance to median divided by @, is

calculated for unweighted values:

y; — median(y)
@n(y)

This value is then multiplied by the size weight of the observation and the parameter 0 <

Qi =

V <1 is introduced to control the influence of the weights:

14

We apply the following interquartile interval for Q}’: go.25— 3 IQR, qo.75+ 3IQR. We refer
to this approach as Qn-approach.

4 Empirical influence function analysis

With the empirical influence function (EIF) the influence of a single observation on the esti-
mator can be studied. To examine how an additional observation respectively multiple additional

observations affect the different estimators, we make use of the empirical influence functions. In



this way, we can compare how the considered outlier detection approaches behave in different
data sets. We define the EIF as follows:

ETF;(woyo) = f(wiyt, -, Wpn—1Yn—1, Wolo)

where yq is the additional observation.

For this analysis we use randomly generated data to examine how these methods work for
data with different levels of skewness/asymmetry and heavy-tailness in various sample sizes.
First, the weights of the observations w; are drawn from exponential distribution with A = 1/4
truncated at 20 and round up to make sure no zero values are possible. Therefore, we have
more smaller companies and 1 to 20 is the range of the size weight classes we take into account.
Thereafter, the actual observations yi, ..., yn,—1, which are in this case growth rates respectively
ratios, are randomly generated from normal distribution with mean = 0 and standard deviation
= 3. In the following figures we present the EIFs of the estimators figg, fitr, fir; and fign, for
various sample sizes. The [i,,_1 denotes the weighted mean of the original sample without the
additional observation. In the following figures the x-axis denotes the unweighted values (yo).

We let the additional observation yy to take values between -50 and 50. To analyse the
effect of the additional observation first in the simplest possible case, we first examine the effect
among unweighted observations i.e. we adjust all size weights w; to be one, also for the added
observation. As long as the EIF is horizontal, it means that there is no change in the estimator
for those yo values, i.e. the additional observation is considered to be an outlier (and deleted)
and therefore, there is no effect on the estimator. The results are presented in Figure 1. The
methods seem to behave quite similarly expect the case of sample size equal to 20. In this case
the HB-method seems to detect also an other or different outlier as the estimator figp do not

correspond the original estimate fi,,—1 in the horizontal areas.
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Figure 1: Influence of one additional observation on the estimators in case of unweighted obser-
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Figure 2: Influence of one additional observation on the estimators

In Figure 2 the same plots are presented for the standard case with the size weights. Here,
we assume wo = 5 so that the weighted values lie between -250 and 250. We can observe that
the estimators behave quite similarly as long as the sample size is small but are affected by the
one additional observation wgyyy quite differently as the sample size gets bigger. For all, some
methods tend to identify also other outliers besides the additional one, as they divers from the
[n—1 in the horizontal areas, like tr-approach for sample sizes n = 20 and n = 30 and HB-method
for sample sizes n = 50 and n = 80.

Furthermore, also the effect of multiple increasing replacements can be studied with EIF. In

10



this case, the EIF can be written as follows:

EIF; = p(woyo, ..., wo(Yo * J + 1), Wjt1Yjt1,s s Wn—1Yn—1),J = 1,..., (n/2)

where j denotes the number of replacements. Here, we assume that yo = 5 and wg = 5.
Otherwise, the same data is used as in the previous case of single additional observation. This
exercise demonstrates the case of right skewed data. In Figure 3, the number of replacements j
is on the x-axis. The vertical ticks mark the weighted mean ji of each sample. If the curves are
beneath those ticks, this indicates that some of the positive observations are being considered
as outliers and therefore, the estimator is lower than the original one. On the other hand, if
the curve is above the ticks, then this shows that this method is labelling some negative or low
observations as outliers. This seems to be the case for the HB-method for samples sizes n = 20
or greater, what implies that the HB-method tends to be in some cases too sensitive if the data

is (very) right skewed.

11



5.0
2.5

0.0

15+

10+

40
30
20

104

empirical influence function analysis for randomly generated data from truncated non-standard
t-distribution (mean = 0, standard deviation = 3, lower bound = -100, upper bound = 1000,
degrees of freedom = 3). In Figure 4 the EIFs for the considered estimators are presented. In
this case, the EIFs of the estimators tend to divers more from each other than in the case of
normally distributed data. There is no clear picture, how the estimators behave for this data
sets, but the HB-method seems to work well for big samples size (n = 80), whereas one of the
other estimators (depending on the sample size which one) seems to work more appropriate for

smaller sample sizes. In Figure 5 the plots for the case of replacements by increasing outliers are
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Figure 3: Effect of multiple (positive) replacements on the estimators

To analyse the various outlier detection approaches in case of long-tailed data, we repeat the

12



presented. Also here, the the HB-method appears to be sensitive with the right skewed data for

some sample sizes, however it is less pronounced than in the case of normally distributed data.
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Figure 4: Influence of one additional observation on the estimators in case of fat-tailed data
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Figure 5: Effect of multiple (positive) replacements on the estimators in case of fat-tailed data

5 Simulation analysis

In this section we conduct a simulation study. To examine how these methods work for
data with different levels of skewness/asymmetry and heavy-tailness, we analyse the methods
for data sets generated from two different distributions with varying parameters. Within each
simulation, we generate 1000 samples of sizes 15, 30, 50 and 100 observations. Again, the
weights of the observations w; are drawn from exponential distribution with A = 1/6 truncated

at 20 and round up to make sure no zero values are possible. The weight categories are usually

14



derived form turnover or employees of a company. Thereafter, to generate data with fat tails,
the actual observations y; are generated from truncated non-standard t-distribution distribution
with varying values for degrees of freedom (lower bound -, 100, upper bound 1000, mean equal to
5, standard deviation equal to 20). For observation with smaller weight (1 to 9) higher standard
deviation (+10) is applied in order to be able to account for the fact that the smaller observations
tend to have more volatile growth rates.

To get a better view how these methods work depending on the tail heaviness of the data
distribution, we compare the percentage of observations declared as outliers by each method over
the different levels of heavy-tails, i.e number of degrees of freedom. In Figure 6 we can observe
that the HB-method identifies the most outliers across all sample sizes as well as numbers of
degrees of freedom whereas the tr-approach finds always the fewest outliers. Furthermore, all
the methods tend to identify more outliers when the data has heavier tails across all the sample
sizes, otherwise the average percentages seem to be quite constant for all methods across all
sample sizes.
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Figure 6: Average percentage of observation declared as outliers depending on the heavy-tailness
of the data

To produce asymmetric data sets (of ratios), we generated data as a sum of two random vari-
ables drawn from at zero truncated normal (standard deviation equal to 0.01 for big companies,

and 0.02 for smaller companies) and exponential distribution where as the mean of the normal
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distribution was set to between 0.6 and 1.0 and the mean of the exponential distribution was
adjusted so that the total mean stays constant at 1.05 or respectively 5% . Therefore, the data
is the more skewed the lower the mean of the normal distribution. In the following plots, the
x-axis denotes the mean of the normal distribution and therefore, at very left is the data point
with highest level of skewness.

Again, the average percentage of outliers labelled as outliers by the four methods are compared
over the level of skewness of the data. In Figure 7 we can see that the tr-approach detects also
here the fewest outliers over all the sample sizes. For the smallest sample size, the HB-method
finds the most outliers, whereas for the biggest sample size the rl- and Qn-approaches detect the

most outlying observations.
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Figure 7: Average percentage of observation declared as outliers depending on the skewness of
the data

All together, it seems that in case of asymmetric data, the HB-approach do not necessarily
detect more outliers than rl- or Qn-approach but rather labels different observations as outliers,

as these methods lead partly to different estimates as shown in Figure 3 and 5.
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6 Conclusions

In this paper we analyse outlier detection in size-weighted quantitative univariate (survey)
data. We pursue to find a non-parametric method with predefined parameter values which
can account for asymmetrically distributed data as well as data from heavy-tailed distributions.
New respectively modified outlier detection approaches are being introduced for this purpose.
We analyse these methods and compare them to each other and to the method of Hidiroglou
and Berthelot (1986) with help empirical influence functions. In general, all the studied methods
seem to work well both in case of asymmetric as well long-tailed data. We find some evidence
that the HB-method (with fixed parameter ¢ value) can be too sensitive in case of asymmetric
respectively right-skewed data and detecting too many outliers in the left tail of the data. The
other methods seem to be able deal better with right-skewed data.
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