As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this work, we propose a multi-task learning-based approach towards the localization of optic disc and fovea from human retinal fundus images using a deep learning-based approach. Formulating the task as an image-based regression problem, we propose a Densenet121-based architecture through an extensive set of experiments with a variety of CNN architectures. Our proposed approach achieved an average mean absolute error of only 13pixels (0.04%), mean squared error of 11 pixels (0.005%), and a root mean square error of only 0.02 (13%) on the IDRiD dataset.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.