As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Machine learning methods are becoming increasingly popular to anticipate critical risks in patients under surveillance reducing the burden on caregivers. In this paper, we propose an original modeling that benefits of recent developments in Graph Convolutional Networks: a patient’s journey is seen as a graph, where each node is an event and temporal proximities are represented by weighted directed edges. We evaluated this model to predict death at 24 hours on a real dataset and successfully compared our results with the state of the art.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.