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Abstract 

This paper presents how the magnetosphere–plasmasphere–ionosphere system was affected as a whole during the 
geomagnetic storm peaking on 27 May 2017. The interplanetary conditions, the magnetospheric response in terms of 
the magnetopause motion, and the ionospheric current flow pattern were investigated using data, respectively, from 
the WIND spacecraft, from GOES15, GOES13, THEMIS E, THEMIS D and THEMIS A satellites and from the INTERMAGNET 
magnetometer array. The main objective of the work is to investigate the plasmaspheric dynamics under disturbed 
conditions and its possible relation to the ionospheric one; to reach this goal, the equatorial plasma mass densities 
derived from geomagnetic field line resonance observations at the European quasi-Meridional Magnetometer Array 
(EMMA) and total electron content values obtained through three GPS receivers close to EMMA were jointly consid-
ered. Despite the complexity of physical mechanisms behind them, we found a similarity between the ionospheric 
and plasmaspheric characteristic recovery times. Specifically, the ionospheric characteristic time turned out to be 
~ 1.5 days, ~ 2 days and ~ 3.1 days, respectively, at L ~ 3, L ~ 4 and L ~ 5, while the plasmaspheric one, for similar L val-
ues, ranged from ~ 1 day to more than 4 days.
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Introduction
The coupling among the solar wind (SW), the magne-
tosphere and the ionosphere represents an important 
subject of scientific interest, in particular in the Space 
Weather context. In this process, the SW transfers energy 
to the magnetosphere by means of two principal mecha-
nisms: the magnetic reconnection at the magnetopause 
in the dayside region [originally proposed by Dungey 
(1961)] and the viscous-like interaction generated by 
micro- or macro-instabilities [as suggested by Axford and 

Hines (1961)]. On the other hand, the magnetosphere 
and the ionosphere, strictly connected mainly through 
magnetic field-aligned processes, can exchange energy, 
momentum and particles (Kamide and Baumjohann 
1993; Chappell 2015). Basically, three main processes 
(Blanc 1988) regulate the magnetosphere–ionosphere 
interaction: (1) the transmission of electric fields (Kikuchi 
2014; Kikuchi and Hashimoto 2016), (2) the flows of elec-
tric charges by means of field-aligned currents (FACs; 
Lyons 2013; Baumjohann 1982) and (3) the precipitation 
and/or outflow of particles (Yau and André 1997; Schunk 
2000; Longden et al. 2008; Newell et al. 2009). Additional 
and relevant features arise during geomagnetic storms 
(GSs)  when the injection, transport and loss of charged 
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particles related to the ring current play a major role in 
the dynamics of the circumterrestrial environment.

Concerning the ionosphere, its perturbations due to an 
increased dissipation of the solar wind energy represent 
still a challenging topic. These disturbances, called iono-
spheric storms, affect significantly the global morphology 
of the ionosphere and represent an important feature of 
the complex dynamics characterizing the solar–terres-
trial relations. In addition, from the application point of 
view, they might highly degrade radio communications 
and satellite positioning (Park et  al. 2016). However, in 
spite of the significant effort done so far to study iono-
spheric storms (Prölss 1995; Buonsanto 1999; Förster and 
Jakowski 2000; Mendillo 2006; Alfonsi et al. 2013; Borries 
et al. 2015; Cesaroni et al. 2017; Spogli et al. 2016; Greer 
et  al. 2017; Habarulema et  al. 2017; Heine et  al. 2017), 
many features remain poorly understood as well as there 
are still many open questions, which testifies the com-
plexity of the phenomenon.

Basically, during disturbed conditions, the electron 
density in the ionosphere can either increase or decrease, 
giving rise to positive and negative ionospheric storms, 
respectively. Positive storms can be caused by traveling 
atmospheric disturbances, large-scale changes in the 
wind circulation, magnetospheric convection and an 
expansion of the polar ionization enhancement; instead, 
negative storms can be caused by modifications in the 
composition of the neutral gas and equatorward dis-
placement of the trough region (Prölss 1995; Mendillo 
2006). Furthermore, longitudinal and latitudinal asym-
metries often characterizing ionospheric storms, whose 
effects may vary considerably from one event to another, 
indicate that their global morphology is really complex. 
An additional aspect of interest is the switch from nega-
tive to positive storm effects in the upper F region, which 
makes a description of the disturbed topside ionosphere 
somewhat complicated (Reddy et  al. 1967; Prölss 1995; 
Mendillo 2006; Tam et al. 2017).

An important aspect characterizing the dynam-
ics of the inner magnetosphere is the plasma transport 
between the ionosphere and the plasmasphere. The par-
ticle exchange between the plasmasphere and the under-
lying ionosphere is continuous and controlled by the 
ambipolar diffusion along the field lines (Chappell 2015 
and references therein). During daytime, the plasma den-
sity in the flux tubes gradually increases because of the 
particle diffusion from the ionosphere. After sunset, this 
process rapidly stops due to the decrease in the iono-
spheric charge content, which results in a downward flux 
of particles that causes plasmasphere depletion.

For very prolonged quiet geomagnetic conditions, the 
plasmasphere can reach a condition of saturation deter-
mined by diffusive equilibrium with the ionosphere. 

Anyhow, it is during disturbed geomagnetic conditions 
that the refilling process plays a key role in the dynam-
ics of the inner magnetosphere. Several studies (e.g., 
Sandel et  al. 2003; Spasojević et  al. 2003, 2004; Abe 
et al. 2006; Kim et al. 2007) highlighted that the plasma-
sphere is highly dynamic and that the plasmapause can 
assume very complex configurations during periods of 
high geomagnetic activity, e.g., geomagnetic storms. In 
the aftermath of the disturbance, the outer plasmasphere 
is eroded due to an enhanced convection (e.g., Nishida 
1966). During the recovery phase, the depleted flux tubes 
slowly recover to their initial condition thanks to an 
enhanced refilling from the ionosphere (e.g., Carpenter 
and Lemaire 1997). The contraction of the plasmasphere, 
caused by the enhanced convection, takes place rather 
quickly (on timescales of few hours) (e.g., Goldstein et al. 
2003), while  the refilling process is much longer (of the 
order of days) (e.g., Rasmussen et al. 1993; Reinisch et al. 
2004; Dent et al. 2006; Sandel and Denton 2007; Piersanti 
et al. 2017b).

Another phenomenon occurring during GSs, differ-
ent from the erosion driven by an enhancement of the 
convection, is the plasmasphere depletion (Park 1973; 
Chi et  al. 2000; Clilverd et  al. 2000; Wang et  al. 2013). 
The plasmaspheric depletion (with density reductions 
of the order of a factor ~ 2–3) is often seen concurrently 
with ionospheric negative storms, as highlighted by Vil-
lante et  al. (2006) and Wang et  al. (2013); both works 
suggest that the plasmaspheric depletion is caused by a 
reduced upward flux from the perturbed ionosphere. 
On the other hand, model simulations by Clilverd et  al. 
(2000) show that reasonable storm-time changes in ther-
mospheric parameters, as well as possible E × B (where E 
is the ionospheric electric field and B is the geomagnetic 
field) plasma drifts to higher L-shells, cannot account for 
the observed plasmaspheric depletion. Therefore, this 
aspect definitely needs further investigations and is the 
main focus of the present paper, in the framework of the 
interplanetary coronal mass ejection (ICME) occurred on 
27 May 2017.

Specifically, to analyze the plasmasphere depletion, 
the equatorial plasma mass densities derived from geo-
magnetic field line resonance (FLR) observations at 
the European quasi-Meridional Magnetometer Array 
(EMMA; Lichtenberger et  al. 2013; Del Corpo et  al. 
2018), and vertical total electron content (vTEC) values 
obtained through three GPS receivers close to EMMA, 
are jointly considered with the specific aim to investigate 
whether the variation of ionospheric quantities is related 
somehow to the plasmasphere dynamics. In detail, the 
International Reference Ionosphere UPdate (IRI UP) pro-
cedure, which has been recently developed by Pignalberi 
et al. (2018a, b), is used to get, at the same GPS receiver 
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locations, an estimation of the bottom vTEC (hereafter 
bTEC); in this way, an estimation of the top vTEC (here-
after tTEC) is obtained as the difference between vTEC 
and bTEC. The reason of this discrimination is twofold: 
On the one hand, to investigate the different response of 
these quantities to the ICME under investigation; on the 
other hand, to investigate possible connections between 
their variations and the plasmasphere dynamics.

Moreover, due to the good data coverage in terms of 
both satellites and ground-based observations, we gave a 
global picture of the plasmasphere–magnetosphere–ion-
osphere system response to the ICME: We analyzed the 
interplanetary conditions through data from the WIND 
spacecraft; we evaluated the magnetosphere response 
using measurements from GOES15, GOES13, THEMIS 
E, THEMIS D and THEMIS A satellites; we figured out 
the ionospheric current flow pattern using data from the 
INTERMAGNET ground magnetometer array.

The paper is organized as follows: “Data and methods” 
describes data and methods; “Interplanetary conditions” 
gives an interpretation of the interplanetary condi-
tions; “Magnetospheric response” focuses on the mag-
netospheric and plasmaspheric response; “Ionospheric 
response” focuses on the ionospheric response; discus-
sion and conclusions are finally the subject of “Discussion 
and conclusions”.

Data and methods
The interplanetary medium conditions between 25 May 
and 2 June 2017 have been analyzed using SW param-
eters as measured by WIND–SWE (Ogilvie et  al. 1995) 
and interplanetary magnetic field (IMF) measurements 
as recorded by WIND–MFI (Lepping et al. 1995).

The magnetosphere response, in terms of both the 
magnetopause motion and the response at geostation-
ary orbit, is investigated by using magnetic field meas-
urements recorded by different spacecrafts: GOES15, 
GOES13, THEMIS E, THEMIS D and THEMIS A.

The properties and the dynamics of the plasmasphere 
have been investigated by studying the spatial–tem-
poral variation of the equatorial plasma mass den-
sity as deduced from ground-based measurements of 
geomagnetic FLR frequencies (Menk et  al. 2014). The 
method compares the amplitude and phase spectra of 
ultra-low-frequency (ULF) measurements at pairs of 
magnetometer stations slightly separated in latitude to 
identify the resonance frequency of the field line mid-
way between the two stations (Baransky et  al. 1985; 
Waters et  al. 1991). Once the FLR frequency is deter-
mined, the plasma mass density at the equatorial point 
of the field line can be inferred by solving the govern-
ing magnetohydrodynamic wave equation (Singer et al. 
1981; Vellante et  al. 2014a) and using proper models 

of both the magnetic field (Berube et  al. 2006; Vel-
lante et  al. 2014a, b) and the plasma density distribu-
tion along the field line (Menk et  al. 1999; Takahashi 
et al. 2004; Vellante and Förster 2006). Having available 
an array of ULF station pairs at different latitudes, the 
radial variation of the equatorial density can be derived. 
In this study, we applied the semi-automated proce-
dure proposed by Del Corpo et  al. (2018) to the 1-s 
data from the EMMA array, which allows to monitor 
the plasma mass density in the L-range 1.5–6.5. In this 
procedure, the magnetospheric field is described by the 
TS05 model (Tsyganenko and Sitnov 2005), and the 
plasma mass density ρ along the field line is assumed to 
vary as ρ = ρ0 (r0/r) (Vellante and Förster 2006), where r 
is the geocentric distance and the subscript “0” identi-
fies values at the magnetic equator. Resonance frequen-
cies are determined through the fast Fourier transform 
using a sliding time window of 2 h advanced at half an 
hour time step. The event presented in this study is part 
of the data set analyzed by Del Corpo et al. (2018), and 
more details about the method can be found in that 
paper. The location of the considered magnetic stations 
is shown in Fig.  1, and Table  1 gives additional infor-
mation about the corrected geomagnetic coordinates 

Fig. 1  Map of the EMMA stations (square markers) used for the 
plasmasphere analysis. Green squares identify the station pairs used 
to describe in detail the plasmasphere dynamics at three different 
latitudes. Red circles are the positions of the global navigation 
satellite system receivers nearest to the considered station pairs and 
used for the ionospheric analysis described in “Ionospheric response 
in terms of vertical, top, and bottom TEC.” Coordinates are geographic. 
See Table 1 for additional info about the EMMA stations used in the 
analysis
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and the associated L value evaluated at an altitude of 
120 km for 1 January 2017.

A GS is typically initiated by a sudden impulse (SI), 
caused by an interplanetary shock (IS) impinging on the 
magnetopause and compressing the magnetosphere. The 
ionospheric response to the ICME impact into the magne-
tosphere is studied by reconstructing the ionospheric cur-
rent flow pattern produced during the SI, the so-called DP 
2-type current systems. They consist in a double-cell struc-
ture, induced by the SW pressure enhancement (Araki 
1994; Piersanti and Villante 2016; Carter et al. 2016). The 
current understanding proposes that the total disturbance 
field (DSI), observed during an SI, can be divided into two 
different contributions: DSI = DL + DP (Araki 1994), where 
DL is a contribute of magnetospheric origin dominant at 
low latitudes (L stands right for low latitudes), while DP is 
a contribute of ionospheric origin prevailing at high lati-
tudes (P stands right for polar latitudes). At low latitudes, 
the DP field shows positive variations along the north–
south magnetic component (H) and almost negligible vari-
ations along the east–west magnetic component (D). In 
addition, the amplitudes along H are greater around local 
noon. Araki (1994) showed that the DP field is constituted 

by a double-pulse structure: a preliminary impulse (PI) 
and a main impulse (MI), both generated by the coupling 
between FACs and ionospheric currents (Araki et  al. 
2009). Recently, a new model to infer the DP 2-cell iono-
spheric current for both PI and MI has been developed 
by Piersanti and Villante (2016), who derived the DL field 
by comparing the magnetospheric field observations with 
the TS05 model previsions. They showed that the DP field 
is the residual part between ground observations and the 
estimated DL field. To evaluate the PIIC and MIIC current 
flow pattern of ionospheric origin (the subscript IC stands 
right for ionospheric contribution) associated with the SI 
occurred on 27 May 2017, we applied the Piersanti and Vil-
lante (2016) method to 75 ground magnetic INTERMAG-
NET observatories in the northern hemisphere (Fig. 2). We 
evaluated the DL field as the BCF+R field output by the TS05 
model (the subscript CF standing for the Chapman–Fer-
raro current and the subscript R standing for the ring cur-
rent) and then the DP field as the residual between ground 
magnetic observations and the estimated DL field along 
both H and D components.

The ionospheric response is also investigated by ana-
lyzing the vTEC, tTEC and bTEC during the entire mag-
netic disturbed period. Receiver-independent exchange 
(RINEX) files from the EUREF Permanent GNSS Network 
(http://www.epncb​.oma.be/) containing GPS code and 
carrier-phase observables acquired every 15  min (from 
00:00 to 23:45 UT of each day), from 26 May to 2 June 
2017, were used to obtain calibrated vTEC values at SODA 
(67.4°N, 26.4°E), JOEN (62.4°N, 30.1°E) and RIGA (56.9°N, 
24.1°E), by applying the Ciraolo et al. (2007) and Cesaroni 
et al. (2015) method. We focused right on these receivers 
because they are the closest ones to the pairs of magnetom-
eters MUO–RAN, RAN–HAN and TAR–BRZ of the 
EMMA array, respectively, which are used to describe the 
latitudinal dependence of the plasmasphere dynamics. The 
single-station method proposed by Ciraolo et  al. (2007) 
and Cesaroni et al. (2015) tries to estimate both the phase 
ambiguity by applying the so-called leveling procedure and, 
for each arc of observation (i.e., for each satellite–receiver 
pair), biases and all nonzero mean errors (e.g., multipath) 
that can affect slant TEC (sTEC) values along the satellite–
receiver line of sight:

where L̃arc represents the “levelled” carrier-phase observ-
able along each arc of observation and βarc is the error 
associated with the same arc including all biases intro-
duced by both the satellite and the receiver. In order 
to estimate sTEC, a least-square method is applied by 
defining:

(1)L̃arc = sTEC + βarc,

(2)sTEC = vTEC(modip, LT) cosχ

Table 1  List of  EMMA geomagnetic stations used 
for the plasmaspheric analysis

The corrected geomagnetic (CGM) coordinates and L values are evaluated at an 
altitude of 120 km for 1 January 2017

Station Code CGM 
longitude (°)

CGM latitude (°) L

Kevo KEV 108.3 66.7 6.5

Masi MAS 105.4 66.5 6.4

Kilpisjärvi KIL 102.3 66.2 6.3

Ivalo IVA 107.7 65.5 5.9

Muonio MUO 104.3 65.0 5.7

Sodankylä SOD 106.5 64.3 5.4

Pello PEL 104.1 63.9 5.3

Raniu RAN 105.5 62.8 4.9

Olujärvi OUJ 105.6 61.3 4.4

Hankasalmi HAN 104.1 59.0 3.8

Nurmijärvi NUR 101.8 57.2 3.5

Tartu TAR​ 102.6 54.8 3.1

Birzai BRZ 100.5 52.6 2.8

Suwalki SUW 98.6 50.1 2.5

Belsk BEL 95.6 47.7 2.3

Zagorzyce ZAG 95.4 45.9 2.1

Vyhne VYH 93.5 43.8 2.0

Tihany THY 92.4 41.9 1.8

Lonjsko Polje LOP 91.1 40.0 1.7

Ranchio RNC 86.7 38.1 1.7

L’Aquila AQU 87.5 36.2 1.6

http://www.epncb.oma.be/
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where modip is the modified dip latitude (Rawer et  al. 
1981), LT is the local time and cos(χ) represents the map-
ping function described in Mannucci et  al. (1998). This 
allows to calculate the value of vTEC associated with 
every couple (modip, LT), including the one represent-
ing the Ionospheric Pierce Point at the vertical of the 
receiver. Values of bTEC at the same locations were cal-
culated through the IRI UP method proposed by Pignal-
beri et al. (2018a, b). The purpose of IRI UP is to update 
the IRI model (Bilitza et  al. 2014) through the assimila-
tion of the ionospheric characteristics foF2 (the F2-layer 
critical frequency) and M(3000)F2 (the propagation fac-
tor), registered by a European ionosonde network. First, 
such measurements are used to evaluate, at each iono-
sonde location, the updated (effective) values of both the 
ionospheric index IG12 (Liu et al. 1983) and the sunspot 
number R12, identified as IG12eff and R12eff (Houminer and 
Soicher 1996). Secondly, this discrete dataset of effective 
indices is used to generate two-dimensional European 
maps of these indices by applying the Universal Krig-
ing method (Kitanidis 1997). Computed maps of effec-
tive indices are then used as input for the IRI model to 
obtain over the European region a three-dimensional 
updated representation of the electron density (Pietrella 
et al. 2018; Pignalberi et al. 2018c). bTEC values are then 
calculated over the three considered locations, SODA, 

JOEN and RIGA, by numerically integrating the follow-
ing equation:

where hb is the height of the base of the ionosphere and 
Ne(h)bottom is the bottom side electron density profile cal-
culated by the IRI UP method. To accomplish this task, 
ionospheric characteristics recorded by the following 
European ionospheric stations were considered: Athens 
(Greece, 38.0°N, 23.5°E), Chilton (UK, 51.5°N, 0.6°W), 
Dourbes (Belgium, 50.1°N, 4.6°E), Fairford (UK, 51.7°N, 
1.5°W), Juliusruh (Germany, 54.6°N, 13.4°E), Moscow 
(Russia, 55.5°N, 37.3°E), Nicosia (Cyprus, 35.0°N, 33.2°E), 
Pruhonice (Czech Republic, 50.0°N, 14.6°E), Rome (Italy, 
41.8°N, 12.5°E), Roquetes (Spain, 40.8°N, 0.5°E), San Vito 
(Italy, 40.6°N, 17.8°E), Tromso (Norway, 69.6°N, 19.2°E) 
and Warsaw (Poland, 52.2°N, 21.1°E). Since the sounding 
repetition rate of most of ionosondes was set to 15 min, 
ionograms recorded every 15 min (at minutes 00, 15, 30 
and 45 of each hour) have been used. This is why only 
vTEC values every 15 min, from 00:00 to 23:45 UT, were 
considered as well. Ionosonde data come from the Digital 
Ionogram DataBASE (Reinisch and Galkin 2011) through 
the SAO Explorer software (https​://ulcar​.uml.edu/

(3)bTEC =

hmF2∫

hb

Ne(h)bottomdh,

Fig. 2  Name and location (red dots), in terms of geographical coordinates, of the 75 INTERMAGNET stations used for the evaluation of the 
ionospheric current pattern associated with the SI

https://ulcar.uml.edu/SAO-X/SAO-X.html
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SAO-X/SAO-X.html). All the considered ionospheric 
stations are equipped with a DPS4 digisonde (Bibl and 
Reinisch 1978), except Rome, for which data recorded by 
an AIS-INGV ionosonde (Zuccheretti et  al. 2003) were 
considered, and Warsaw, equipped with a VISRC2 iono-
sonde (Pezzopane et  al. 2010). Even though ionograms 
recorded by digisondes are autoscaled by the Automatic 
Real-Time Ionogram Scaler with True height system 
(Reinisch and Huang 1983; Reinisch et  al. 2005), and 
ionograms recorded at Rome and Warsaw are autoscaled 
by the Autoscala system (Pezzopane and Scotto 2005, 
2007; Scotto et al. 2012), the whole ionogram dataset of 

each station was visually inspected and validated. Once 
vTEC and bTEC had been calculated, tTEC over SODA, 
JOEN and RIGA was obtained as the difference between 
vTEC and bTEC.

Interplanetary conditions
Figure 3 shows that an IS (black dashed line), identified 
by a clear jump in the SW proton density (∆Np ~ 14 cm−3, 
panel a), proton velocity (∆Vp ~ 70  km/s, panel b), pro-
ton temperature (∆Tp ~ 4  ×  104  K, panel c), pressure 
(∆PSW ~ 3.5  nPa, panel d) and IMF (∆BIMF ~ 5  nT, panel 
e), associated also with a southward IMF component 

Fig. 3  Solar wind parameters between 25 May and 2 June 2017 observed by WIND (at first Lagrangian point), in UT: a proton density, b proton 
velocity, c proton temperature, d pressure, e IMF intensity, f–h IMF x, y, z components in the GSE coordinate system. The vertical black dashed 
line indicates the arrival of the interplanetary shock, on 27 May 2017 at 14:41 UT. The green area beyond is the ICME sheath, while the red area 
corresponds to the magnetic cloud (ejecta interval)

https://ulcar.uml.edu/SAO-X/SAO-X.html
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(Bz,IMF ~ −4  nT, panel h), passed the WIND spacecraft 
(XGSE ~ 204 RE, YGSE ~ − 53.0 RE, and ZGSE ~ −5 RE, where 
GSE stands for the geocentric solar ecliptic system and RE 
is the Earth radius) at 14:41 Universal Time (UT) on 27 
May 2017. A sheath region (highlighted in green in Fig. 3) 
follows until ~ 20:46 UT, when Np reaches the highest 
value of ~ 84 cm−3, and when the passage of an ICME is 
recognized. Using the Rankine–Hugoniot relations (Vias 
and Scudder 1986; Szabo 1994), we estimated the shock 
normal orientation, with ΦGSE ~ 162° (the angle measured 
from the XGSE direction to the projection of the shock 
normal to the XYGSE plane) and ΘGSE ~ 25.5° (the eleva-
tion with respect to the XYGSE plane), and a value of the 
shock speed Vsh of about 349  km/s. Then, the decrease 
in the proton density and temperature (shown, respec-
tively, in panels a and c of Fig.  3), in conjunction with 
the increase in the strength of the IMF (panel e), coupled 
with its smooth rotation (panels f, g, and h), is the sig-
nature of a magnetic cloud (Zurbuchen and Richardson 
2006). The boundaries of this structure (highlighted in 
red in Fig. 3) have been determined by the sharp varia-
tions in the IMF strength at ~ 20:46 UT on 27 May 2017 
and at ~ 9:50 UT on 29 May 2017, respectively.

Magnetospheric response
Magnetospheric sudden impulse
Figure 4 shows the magnetopause profile and the magne-
tospheric field lines configuration during the IS passage 

as expected by the TS05 model, which predicts an inward 
motion of the magnetopause nose from ~ 10.2 RE (black 
dotted curve) to ~ 7.2 RE (red dotted curve). The solar 
wind parameters input to the TS05 model are reported 
in Table 2.

Figure  5 shows the magnetospheric response, as 
recorded by GOES15, GOES13, THEMIS E and THEMIS 
D, compared with that predicted by the TS05 model, 
considering only the magnetopause and ring current 
contributions. Panels from (a) to (d) display GOES15, 
GOES13, THEMIS E and THEMIS D measurements, 
respectively. To give the reader an overall picture of the 
situation, the bottom panel of Fig. 5 shows also the posi-
tion of each satellite, the model-calculated magnetopause 
before the IS passage and the direction of the IS front. 
Both GOES15 and GOES13, located, respectively, at 
XGSE ~ 0.9 RE, YGSE ~ −6.5 RE, ZGSE ~ 0.8 RE and XGSE ~ 5.7 
RE, YGSE ~ −2.7 RE, ZGSE ~ −1.8 RE, corresponding to 6:30 
LT and 10:30 LT, observed an SI characterized by a slow 
rise in the magnetic field components.

In the post-noon magnetosphere, THEMIS E, located 
at XGSE ~ 4 RE, YGSE ~ 6 RE and ZGSE ~ −3 RE, observed 
the SI almost at the same GOES time, while THEMIS D, 
located at XGSE ~ −0.23 RE, YGSE ~ 11 RE and ZGSE ~ −2 
RE, after a persistent wave activity in each magnetic field 
component interrupted by the shock impact, shows a 
clear jump at 15:36 UT three minutes later than other 
satellites. This can be related to the disturbance that, 
according to the estimated impact point, propagates from 
the pre-noon region to the post-noon region.

Indeed, the jump in the Bz component of the mag-
netospheric field is greater (∆BzGSM ~ 29  nT, where 
GSM stands for the geocentric solar magnetic system) 
at GOES13 (the nearest to the shock impact point in 
the pre-noon region) than at GOES15 (dawn region, 
∆BzGSM ~ 16  nT) and THEMIS E (post-noon region, 
∆BzGSM ~ 12  nT) and assumes the lowest value at 
THEMIS D (dusk region, ∆BzGSM ~ 8 nT). These observa-
tions are in agreement with the results shown by Villante 
and Piersanti (2008) when analyzing disturbed periods 
between 2000 and 2004.

Fig. 4  Magnetospheric field lines configuration as evaluated by the 
TS05 model before (black lines) and after (red lines) the IS impact. 
Black and red thick curves represent the magnetopause configuration 
before and after the IS passage, respectively

Table 2  Solar wind parameters input to  the  TS05 model 
to obtain Fig. 4

SW 
pressure 
(nPa)

Sym-H (nT) By,IMF (nT) Bz,IMF (nT)

Before the IS 0.5 8.1 − 0.02 − 1.8

After the IS 8.5 20.5 1.40 − 5.2
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Magnetopause crossings
Figure  6a shows, from the top, the dynamic pressure, 
the strength and the three components of the IMF as 
recorded by WIND (these data have been temporally 
moved forward of ~ 62  min), in comparison with the 

magnetospheric field as recorded by THEMIS A and 
THEMIS E 24  h beyond the SI. (THEMIS D data were 
not available for this time window.)

After the IS impact, during the period from ~ 17:29 
UT on 27 May 2017 to ~ 05:44 UT on 28 May 2017, the 

Fig. 5  Comparison between BxGSM (upper panels; GSM stands for the geocentric solar magnetic system), ByGSM (middle panels) and BzGSM (lower 
panels) observations (blue lines) and the BCF+R field output by the TS05 model (red lines; the subscript CF + R means that the TS05 model has been 
run by considering only the magnetopause and ring current contributions), for GOES15 (column a), GOES13 (column b), THEMIS E (column c) 
and THEMIS D (column d) on 27 May 2017 between 15:00 and 16:15 UT. The bottom panel shows the position of GOES13, GOES15, THEMIS D and 
THEMIS E (black full circles), the model-calculated magnetopause location before the IS passage (black thick line) and the direction of the IS front 
(black dashed lines) impinging the magnetopause. Black empty circle represents the Earth’s position
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magnetic field measured by THEMIS A and THEMIS E 
manifests sharp southward rotations of the Bz component 
(whose amplitude is of the order of the magnetic field 
strength) and strong variations of the other components. 
These features, as highlighted by Suvorova et  al. (2005) 
and Dmitriev et al. (2005), are signature of multiple mag-
netopause crossings. This is strictly confirmed by a direct 
correspondence between the behavior of the magnetic 
field components and the behavior of the IMF. Table  3 
reports the time and the position of both THEMIS A and 
THEMIS E for each identified magnetopause crossing.

Figure  6a highlights also that, after the IS signature, 
during the continuous increase in the dynamic pres-
sure of the SW, THEMIS E and THEMIS A show large 
fluctuations in the magnetic field that identify their get 
in through the magnetosheath (at ~ 17:29 UT and at 
~ 19:26 UT, respectively). On the other hand, at ~ 21:00 
UT and at ~ 21:47 UT, when a sudden southward rota-
tion of Bz,IMF is observed by WIND, both THEMIS A 
and THEMIS E measure simultaneously a jump of the 
magnetic field strength. This suggests that both satel-
lites were in the transition region, despite a huge drop 
characterizing the PSW. In fact, the erosion process due 

to the southward IMF rotation balances the negative 
PSW variation and the consequent outward motion of 
the magnetopause.

Fig. 6  a From the top: the dynamic pressure of the solar wind as measured by WIND, the strength and the three components of IMF at WIND and 
of the magnetospheric field at THEMIS A (THA) and THEMIS E (THE), from 15:00 UT on 27 May 2017 to 15:00 UT on 28 May 2017. b The black curve 
shows the Shue et al. (1998) magnetopause profile for PSW ~ 2 nPa and Bz,IMF ~ −18 nT. Red and blue curves show the trajectories of THA and THE 
respectively, from ~ 17:00 UT on 27 May 2017 to ~ 13:00 UT on 28 May 2017 (full circles identify the magnetopause crossings)

Table 3  Magnetopause crossings for  THEMIS 
A  and  THEMIS E: occurrence time (from 27 May 2017 
at 17:29 UT to 28 May 2017 at 05:44 UT), GSE coordinates 
and distance from the Earth

Satellite Date 
and Universal Time

(XGSE, YGSE, ZGSE) (RE) r (RE)

THEMIS A 27 May 2017 19:26 (4.9, − 5.3, − 3.9) 8.2

27 May 2017 23:27 (4.7, 9.5, − 4.9) 11.7

27 May 2017 23:51 (4.6, 9.8, − 4.9) 11.9

28 May 2017 02:28 (3.8, 11.2, − 5.0) 12.8

28 May 2017 02:56 (3.7, 11.5, − 4.9) 13.0

28 May 2017 05:44 (2.5, 12.2, − 4.6) 13.3

THEMIS E 27 May 2017 17:29 (3.7, 8.3, − 3.5) 9.7

27 May 2017 23:18 (1.7, 12.4, − 3.5) 13.0

27 May 2017 23:50 (1.5, 12.6, − 3.4) 13.1

28 May 2017 00:36 (1.1, 12.7, − 3.3) 13.2

28 May 2017 00:52 (1.0, 12.8, − 3.1) 13.2

28 May 2017 01:28 (0.7, 12.9, − 3.1) 13.3
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At ~ 23:16 UT, a second fall of the PSW, coupled with 
a constant negative Bz,IMF, determines an outward 
motion of the magnetopause. In fact, both THEMIS E 
and THEMIS A observe new magnetopause crossings 
at ~ 23:18 UT and ~ 23:27 UT, respectively. In the fol-
lowing hours, the interplanetary parameters remain 
almost stable with PSW ~ 2 nPa and Bz,IMF ~ −18 nT, and 
the next crossings experimented by both THEMIS A 
and THEMIS E are the consequence of their outward 
orbital motion through the new stable magnetopause.

After the last magnetopause crossing, both THEMIS 
A (beyond ~ 05:44 UT on 28 May 2017) and THEMIS 
E (beyond ~ 01:28 UT on 28 May 2017) observations 
become highly dynamic. This may be related to a com-
bined effect of their vicinity to the magnetosphere 
boundary and their orbital motion.

To summarize, Fig. 6b shows the magnetopause profile 
(black curve), as obtained by the Shue et al. (1998) model, 
the trajectories of THEMIS A (red curve) and THEMIS 
E (blue curve), and the corresponding magnetopause 

satellites crossings (identified by full circles). It is worth 
highlighting the good agreement between the magneto-
pause identified in the THEMIS E data and the one mod-
eled by the Shue et al. (1998) model.

Plasmasphere analysis
Figure  7 shows the plasma mass density variations 
between 26 May and 2 June 2017 as inferred from three 
different station pairs (green squares in Fig. 1) at L = 2.9, 
4.3, 5.3. We limited our analysis to hours when the field 
line footprints at 120  km altitude in both hemispheres 
were sunlit (approximately 03–13 UT). This condition 
ensures that the detected FLR frequencies correspond 
to half-wave standing field line oscillations, leading to a 
correct estimation of the mass density (Obana et al. 2015; 
Del Corpo et  al. 2018). The same figure shows also the 
behavior of the geomagnetic Dst and kp indices.

The storm under investigation was preceded by a 
period of very quiet geomagnetic activity conditions 
resulting in kp ≤ 1 and |Dst| < 10  nT for at least 3  days 

Fig. 7  From the top: the Dst index, the kp index and the equatorial plasma mass density at L = 5.3, 4.3 and 2.9, respectively, estimated from ULF 
frequencies obtained from the three EMMA station pairs MUO–RAN, RAN–HAN and TAR–BRZ. Values are in UT



Page 11 of 21Pezzopane et al. Earth, Planets and Space           (2019) 71:77 

before the SI, which is clearly visible on 27 May 2017 at 
around 15:30 UT as a simultaneous increase of both indi-
ces. This prolonged quiet condition, only partially vis-
ible in Fig. 7, allows the plasmasphere to reach a state of 
quasi-saturation. As a result, the average densities at dif-
ferent L on 26 and 27 May 2017 show approximately the 
same values, with the notable exception at L = 2.9 where 
a density drop of about 30% is observed on 27 May 2017. 
This feature cannot be the result of an enhanced convec-
tion electric field and needs a further investigation to be 
explained which is out the scope of this work. In what 
follows, we use the 26 May 2017 to refer to saturated 
plasmasphere conditions for the period under study.

The main phase of the storm starts at the end of 27 
May 2017 and the effects of the plasmasphere erosion are 
clearly visible on 28 May 2017. The density falls by a fac-
tor ranging between 5 and 10, although only few points 
are available for the station pairs at the highest latitudes.

During the recovery phase, the effects of both the refill-
ing from the ionosphere and the convection electric field 
enhancement are visible. The former process produces 
the typical diurnal pattern in which the density mono-
tonically increases during the day. Such trend is clearly 
visible on 29 May 2017 and is relatively more pronounced 
as the latitude increases. The latter process generally 
causes a decrease in the average level of the plasma den-
sity. An example is the density drop on 30 May 2017 at 
L = 4.3 and L = 5.3 following the enhanced convection as 
indicated by an increase in the kp index between 29 and 
30 May 2017. A similar effect is also visible on 2 June 
2017 at L = 5.3. In general, the recovery of the plasmas-
phere to pre-storm conditions depends on both the lati-
tude and the local time (e.g., Dent et  al. 2006; Piersanti 
et al. 2017b). At L = 2.9, the recovery time is of the order 
of ~ 1 day, while at L = 4.3 is ~ 4 days and possibly even 
more at L = 5.3.

This latitudinal dependence can be more conveni-
ently described by analyzing the radial profiles of the 
plasma mass density at different local times as pre-
sented in Figs. 8 and 9. These profiles are derived using 
plasma mass densities inferred from a total of 20 sta-
tion pairs,  namely KEV-IVA, KIL-MUO, MAS-SOD, 
MUO-PEL, MUO-RAN, PEL-RAN, PEL-OUJ, RAN-
OUJ, RAN-HAN, OUJ-HAN, HAN-NUR, NUR-TAR, 
TAR-BRZ, BRZ-SUW, SUW-BEL, BEL-ZAG, ZAG-VYH, 
VYH-THY, THY-LOP and RNC-AQU. They repre-
sent the equatorial density variation along the direction 
identified by the average local time of the EMMA sta-
tions at a given time (LT ~ UT + 2). The radial variation 
of the plasma density, shown for LT = 08:30 (Fig. 8) and 
LT = 14:00 (Fig. 9), is representative of the pre- and post-
noon sectors, respectively. Panels from (a) to (f ) of each 
figure show the radial profiles from 27 May to 1 June 

2017. The radial profile of 26 May 2017 is superimposed 
on each panel to highlight deviations from the pre-storm 
conditions. Open circles are the experimental points, 
while solid lines are smoothing splines drawn to guide 
the reader’s eye. The radial profiles show similar behav-
iors for both LT sectors. The main difference is in the 
density magnitude that is generally higher in the post-
noon sector. 

We focus on Fig. 9, which has better data coverage, to 
describe the plasmasphere dynamics. On 27 May 2017, 
the profile is approximately similar to that of 26 May 
2017 confirming the idea that the plasmasphere is satu-
rated. Nonetheless, some deviations at low and high lati-
tude occur. The results for 28 May 2017 clearly disclose 
the effects of the storm-enhanced convection. The plas-
masphere erosion is visible at all geocentric distances ≥ 3 
RE and is particularly pronounced for r0 < 4 RE. This 
behavior suggests that a plasmapause occurs at geocen-
tric distance lower than 3 RE. On 29 May 2017, the plas-
masphere apparently recovers to pre-storm conditions 
up to ~ 3.5 RE, while the erosion persists for r0 > 5 RE. It 
is worth noting that in the morning sector of the same 
day (panel c of Fig.  8), the recovery seems to be even 
more pronounced at 4.3 RE (see the red circle just below 
the black curve), although the proximity of the plasma-
pause to the region mapped by that station pair might 
produce a larger error in the estimated density (Milling 
et  al. 2001; Menk et  al. 2004). Anyhow, the almost full 
recovery observed on 29 May 2017 at 3–4 RE seems to 
be too quick to be due to a refilling from the ionosphere 
(Rasmussen et al. 1993; Reinisch et al. 2004). It is instead 
more plausible that during 29 May 2017 EMMA was 
partially aligned with a corotating plasmaspheric drain-
age plume which developed during the storm (Goldstein 
and Sandel 2005). This idea is confirmed by the plas-
mapause test particle (PTP) simulation (Goldstein et al. 
2014), which is available online at http://enarc​.space​
.swri.edu/PTP/.

On 30 May 2017 (panel d of Figs. 8, 9), a new density 
decrease is observed for r0 > ~3.5 RE, possibly due to a re-
enhancement of the magnetospheric convection occur-
ring between 29 May and 30 May 2017, in agreement 
with the kp increase (Fig. 7).

Lastly, the 31 May and 1 June 2017 profiles show a pro-
gressive recovery of the plasmasphere at all geocentric 
distances.

Ionospheric response
Ionospheric current system during the sudden impulse
Figure  10 shows the ionospheric current directions as 
obtained on 27 May 2017, for PIIC (panel a) at 15:33 UT 
and for MIIC (panel b) at 15:42 UT, versus the geomag-
netic latitude (λ) and LT. The behavior of PIIC is consistent 

http://enarc.space.swri.edu/PTP/
http://enarc.space.swri.edu/PTP/
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with a morning counterclockwise vortex and an after-
noon clockwise vortex, while that of MIIC with a morn-
ing clockwise vortex and an afternoon counterclockwise 
vortex. The locations of the vortex foci are at (λ ~ 56°, 
LT ~ 05:40) and at (λ ~ 58°, LT ~ 16:40). At low latitudes, 
PIIC currents are mostly oriented toward west, while 
MIIC currents toward east, in accordance with Araki 
(1994) and with Piersanti and Villante (2016). In addi-
tion, in the dayside sector, both PIIC and MIIC field ampli-
tudes (panels c and d in Fig.  10) increase exponentially 
with λ; red dashed lines represent the exponential func-
tion with the following characteristics: PIIC(λ) = PI0·eA·λ, 

MIIC(λ) = MI0·eB·λ, with PI0 = 0.14 nT, A = 0.077  deg−1 
and MI0 = 0.91 nT, B = 0.046 deg−1. Here, PI0 and MI0 are 
the PIIC and MIIC amplitudes derived at λ = 0°.

Ionospheric response in terms of vertical, top and bottom 
TEC
Figure  11 shows the patterns obtained for bTEC, tTEC 
and vTEC at SODA, JOEN and RIGA, from 26 May to 
2 June 2017. tTEC and bTEC are characterized by a lack 
of data on 28 May 2017, from about 06:00 UT to about 
15:00 UT; this is due to the fact that corresponding iono-
grams are characterized by the G condition, namely a 

Fig. 8  Radial profile of the equatorial plasma mass density (red curve in a–f) observed at 06:30 UT (~ 08:30 LT) between 27 May and 1 June 2017. 
For comparison, each panel shows also the density profile of 26 May 2017 (black curve). Solid lines are smoothed spline fits of experimental points 
(open circles)
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condition for which the critical frequency of the F2 layer, 
foF2, is equal or lower than the critical frequency of the 
F1 layer, foF1 (Lobzin and Pavlov 2002; Deminov et  al. 
2011).

Figure 11 shows that, after the SI, the most important 
feature is the significant depletion of vTEC occurring in 
the first half of 28 May 2017 (gray shaded rectangle in 
Fig. 11). Negative phases like these at F-layer heights are 
thought to be caused by neutral composition changes 
(Buonsanto 1999; Fuller-Rowell et  al. 2013; Olwendo 
et  al. 2017; Piersanti et  al. 2017a), specifically, by a 
decrease in the [O]/[N2] ratio, which results in a strong 
enhancement of the ion loss rate (Prölss 1995). In fact, 

the SW dissipation energy affects the density structure 
of the polar upper atmosphere by increasing the heavier 
gases (especially the molecular nitrogen N2) and decreas-
ing the lighter gases (especially the atomic oxygen O). 
Anomalous increases in the [N2]/[O] density ratio are a 
permanent feature of the polar thermosphere, but during 
more active conditions, these composition perturbations 
intensify and expand toward lower latitudes. This initial 
negative phase is then followed by a sudden increase in 
vTEC values, which is attributable to the “dusk effect,” 
a characteristic of the dusk sector at latitudes where 
the plasmasphere–ionosphere coupling is more pro-
nounced (Prölss 1995; Buonsanto 1999; Mendillo 2006). 

Fig. 9  The same as Fig. 8 but at 12:00 UT (~ 14:00 LT)



Page 14 of 21Pezzopane et al. Earth, Planets and Space           (2019) 71:77 

Interpretations of this effect are summarized by Prölss 
(1995) and Buonsanto (1999), and, as they highlighted, 
competing theories related to neutral winds (sudden 
onset of strong equatorward winds from auroral heat-
ing) and electrodynamics (prompt appearance of elec-
tric fields of magnetospheric origin) can each give the 
necessary plasma uplift to regions of reduced loss, even 
though the magnetospheric convection seems to play the 
most important role. The positive phase related to the 
dusk effect is terminated by the F-layer trough (Moffett 
and Quegan 1983; Rodger et al. 1992; Krankowski et al. 
2009) movement to lower L values after sunset, caused by 
the plasmasphere contraction. These dynamical reasons 
of vTEC negative phases are rather different than those 
related to an enhanced loss via chemistry, which are 
dominant during daytime. The fact that the ionospheric 
trough moves to lower latitudes and then to lower L is 

supported by the very low values of vTEC recorded dur-
ing the nights between 28 and 29 May 2017 and between 
29 and 30 May 2017 (green shaded rectangles in Fig. 11). 
Since our plasmasphere observations are limited to day-
time hours, it is not possible to directly compare the plas-
mapause location with the nighttime ionospheric trough; 
nonetheless, the plasmasphere observations in the post-
noon sector on 28 May 2017 (panel b of Fig. 9) indicate 
indeed an earthward motion of the plasmapause to L < 3, 
which maps to a latitude lower than that of RIGA station.

The daytime vTEC values recorded on 29 May 2017 at 
SODA and JOEN are comparable with those recorded on 
26 May 2017, which is considered here as the quiet ref-
erence day; on the contrary, vTEC values recorded on 29 
May 2017 at RIGA are instead higher than those recorded 
on 26 May 2017. This is likely due to an enhanced foun-
tain effect, which gives rise to a poleward expansion of 

Fig. 10  a, b The ionospheric current directions (blue arrows) as obtained on 27 May 2017 for PIIC at 15:33 UT and for MIIC at 15:42 UT, versus 
geomagnetic latitude (λ) and LT, after a 90° rotation of the DP fields. Red circles correspond to the geomagnetic location of the INTERMAGNET 
stations. Corresponding amplitudes (blue circles) in the dayside sector (06 < LT < 18) are shown in c, d versus λ, with corresponding exponential fits 
as red dashed curves. The local enhancement observed around the magnetic equator, which is particularly evident in the PIIC amplitude, is probably 
due to the equatorial electrojet effect (Carter et al. 2015, 2016)
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the northern crest of the equatorial ionization anomaly 
(Liu et al. 2008; Balan et al. 2010; Zong et al. 2010; Cesa-
roni et al. 2017; Piersanti et al. 2017a), which prevails the 
plasma decrease caused by neutral composition changes. 
This means that instead at SODA and JOEN, where day-
time vTEC values are comparable to those recorded on 
26 May 2017, the two mechanisms counterbalance. 
In the next 4  days, between the 30 May and the 2 June 
2017, SODA, JOEN and RIGA are characterized each 
by a daytime vTEC negative phase, which means that 
during these days the daytime plasma decrease caused 
by the neutral composition change is prevailing. Fig-
ure 11 shows that tTEC and bTEC trends are similar to 
that of vTEC, while the corresponding ratio tTEC/bTEC 

shown in Fig.  12 is somewhat different, the higher the 
latitude, the greater the ratio. This is understandable on 
the basis that the F-layer neutral composition changes 
are more effective at higher latitudes, where the dissipa-
tion of solar wind energy occurs. This means that going 
from lower to higher latitudes the negative phase char-
acterizing the F-layer, and hence the bottomside part of 
the vertical electron density profile, is more pronounced 
and consequently the ratio tTEC/bTEC is higher. This is 
even clearer looking at the red curve of Fig. 12, which is a 
two hours and half running mean of the tTEC/bTEC time 
series to which the mean value of 26 May 2017, consid-
ered as the quiet time reference, has been subtracted.

Fig. 11  vTEC (in black) as measured at SODA (67.4°N, 26.4°E), JOEN (62.4°N, 30.1°E) and RIGA (56.9°N, 24.1°E), from 26 May to 2 June 2017, in UT. 
SODA, JOEN and RIGA are the closest GNSS receivers to the pairs of magnetometers MUO–RAN, RAN–HAN and TAR–BRZ of the EMMA array, 
respectively, used to describe the latitudinal dependence of the plasmasphere dynamics as shown in Fig. 7. Corresponding values of bTEC (in red), 
as calculated through the IRI UP method, and tTEC = vTEC − bTEC (in blue), are also displayed. The gray shaded rectangle highlights the significant 
depletion of vTEC occurring in the first half of 28 May 2017, while the green ones highlight the very low values of vTEC, recorded during the nights 
between 28 and 29 May 2017 and between 29 and 30 May 2017, supporting the ionospheric trough movement to lower latitudes, then to lower L 
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In order to evaluate a characteristic time of the recov-
ery phase of the ionospheric plasma, the daily standard 
deviations related to these red curves, from 28 May to 
2 June 2017, are calculated and fitted through an expo-
nential function y = A·e(−t/τ), where τ is the ionospheric 
characteristic time we are looking for (see right pan-
els of Fig. 12). Going from higher to lower latitudes, the 
value of τ decreases from 3.1 to 1.5  days, giving a sim-
ple quantitative evidence that, during the recovery phase, 
the redistribution of the ionospheric plasma between the 
bottomside and the topside part of the vertical electron 
density profile is slower at higher latitudes.

Discussion and conclusions
In this work, it has been investigated how the ICME 
occurred on 27 May 2017 affected the ionosphere–mag-
netosphere–plasmasphere system. Even though the 
main declared intention of the paper is to investigate 
the plasmaspheric depletion and see whether and how 
is related to the ionospheric dynamics, to have a com-
prehensive view of the phenomenon, the interplanetary 
conditions, the magnetosphere response in terms of the 

magnetopause motion, and the ionospheric current flow 
pattern have been also analyzed.

According to the estimated shock characteristics, the 
IS front of the event under investigation is expected to 
impact the magnetopause at 15:38 UT (~ 57  min after 
WIND observations) first in the pre-noon region. The SI 
onset starts instead five minutes earlier (at ~ 15:33 UT). 
This feature, as well as the slow rise in the magnetic field 
components corresponding to the SI as recorded by 
GOES satellites, could depend on both the inclination of 
the IS front (Wang et al. 2006) and a value of VSh higher 
than the one estimated (~ 349 km/s).

In the post-noon region, THEMIS E observed the 
SI almost simultaneously to GOES, while THEMIS D, 
located closer than THEMIS E to the magnetopause 
boundary, detected a clear jump 3  min later than the 
other satellites. This behavior can be explained consider-
ing a propagation of the disturbance from the pre-noon 
region to the post-noon region according to the estimated 
impact point. In fact, the jump in the Bz component of 
the magnetospheric field is greater at GOES13 (the near-
est to the shock impact point), decreases at similar values 

Fig. 12  The ratio tTEC/bTEC (in blue) as calculated at SODA (67.4°N, 26.4°E), JOEN (62.4°N, 30.1°E), and RIGA (56.9°N, 24.1°E), from 26 May to 2 June 
2017, in UT. SODA, JOEN and RIGA are the closest GNSS receivers to the pairs of magnetometers MUO–RAN, RAN–HAN and TAR–BRZ of the EMMA 
array, respectively, used to describe the latitudinal dependence of the plasmasphere dynamics as shown in Fig. 7. Corresponding 2 h and half 
running means to which the mean value of 26 May 2017, considered as the quiet time reference, has been subtracted, are also displayed in red. In 
the right panels, the daily standard deviations related to the red curves, from 28 May to 2 June 2017, are plotted and fitted through an exponential 
function y = A·e(−t/τ), where τ is a characteristic time typifying the recovery phase of the ionospheric plasma
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at both GOES15 (dawn region) and THEMIS E (post-
noon region) and assumes the lowest value at THEMIS 
D (dusk region). These magnetospheric field variations 
are quite well represented by the TS05 model for each 
spacecraft in terms of the coupling between the mag-
netopause current and the ring current. Typically, the 
expected result for a magnetospheric sudden impulse, in 
terms of a magnetospheric currents ignition, is the turn-
ing on of the magnetopause current alone (Araki 1994; 
Villante and Piersanti 2008; Piersanti and Villante 2016). 
In this case, the combined effect of the strong magneto-
spheric compression, driven by the SW dynamic pressure 
enhancement (and testified by the signature of multiple 
magnetopause crossings recorded by THEMIS A and 
THEMIS E), and of the southward turning of the IMF, 
which consequently increased the ion energy density of 
the ring current (Roeder et  al. 1999; Kane 1974), gives 
rise to the activation of both the magnetopause and the 
ring currents.

The principal effect of the magnetospheric SI is the 
generation of an ionospheric DP-2 cell current, which 
completely modifies the dynamics and the geometry of 
the ionospheric current flows observed during a solar 
quiet period (Chapman 1929; Matsushita and Maeda 
1965; De Michelis et al. 2010; Alberti et al. 2016; Piersanti 
and Villante 2016, 2017a). Our results show a DP-2 cell 
current characterized by: a PIIC current vortex flowing 
counterclockwise in the morning and clockwise in the 
afternoon; a MIIC current vortex flowing clockwise in the 
morning and counterclockwise in the afternoon. These 
results are in agreement with Araki (1994) and Piersanti 
and Villante (2016).

The GS related to the ICME was preceded by a period 
of very quiet geomagnetic activity that lasted for at least 
3 days. This prolonged quiet condition allowed the plas-
masphere to reach a state of quasi-saturation. The effects 
of the main phase of the storm are clearly visible on 28 
May 2017, when the observed plasma density generally 
falls by a factor of ~ 5–10. A definite estimation of the 
magnitude of the erosion was not possible due to the 
lack of data in the morning sector and in general at low 
latitudes, although an upper limit of 3 RE for the plasma-
pause position can be deduced from the post-noon radial 
density profile of 28 May 2017. An analysis of observa-
tions from Swarm satellites (Friis-Christensen et  al. 
2006), using the technique by Heilig and Lühr (2018), 
also indicates a midnight location of the plasmapause at 
L ~ 2.5 at the beginning of 28 May 2017 (not shown).

During the recovery phase, the plasmasphere shows 
the typical latitudinal dependent features resulting by the 
concurring processes of magnetospheric convection and 
refilling from the ionosphere. At low geocentric distances 
(up to ~ 3.5 RE), the plasmasphere reached the pre-storm 

conditions in ~ 1 day, while at higher distances the recov-
ery stood for at least ~ 4  days. However, the fast recov-
ery at L < 3.5 is probably not due to a refilling from the 
ionosphere. Both theoretical predictions (e.g., Rasmussen 
et al. 1993) and previous experimental observations (Park 
1974; Obana et al. 2010) evidence indeed that the process 
of flux tube refilling from the ionosphere takes at least 
3  days at L = 3. As pointed out by Denton et  al. (2016), 
the observed density variation from day to day may not 
refer to the same flux tube because the action of the con-
vection electric field between two successive measure-
ments may cause strong departures from a pure plasma 
corotation. For example, the convection of a plasmas-
pheric drainage plume into the viewing area of EMMA 
during 29 May 2017 might well account for the observed 
density increase.

A second minor enhancement of the geomagnetic 
activity, and therefore of the magnetospheric convec-
tion, occurred on the night between 29 and 30 May 2017, 
causing further erosion for r0 > 4.5 RE.

The ionospheric response shows the typical latitudinal 
behavior characterized by greater variations at higher lat-
itudes. The tTEC/bTEC ratio shows a significant increase 
during the very beginning of the main phase of the GS, 
mainly due to a decrease in bTEC caused by neutral com-
position changes. During the recovery phase, this ratio 
comes back to the pre-storm conditions with a charac-
teristic time showing a direct dependence on latitude. At 
L ~ 3, the characteristic time is ~ 1.5  days and increases 
to ~ 2 days at L ~ 4 and to ~ 3.1 days at L ~ 5. This feature 
is comparable to the one observed for the plasmasphere 
recovery which, for similar L values, varies from ~ 1 to 
more than 4  days. It is, however, not possible to iden-
tify a direct relation between the plasmaspheric refilling 
and the ionospheric top/bottom recovery to pre-storm 
conditions. In fact, while the ionospheric recovery time 
is mainly driven by the reestablishment of the bottom 
side neutral composition to pre-storm conditions, the 
plasmaspheric recovery time, as pointed out above, is 
strongly affected by the convection electric field varia-
tion, especially for flux tubes mapping at high latitudes. 
Nonetheless, a reduction of vTEC, as observed between 
30 May and 2 June 2017 at each latitude, could signifi-
cantly influence a slower plasmaspheric refilling rate 
due to a reduction of the supplied plasma (Villante et al. 
2006). This is, however, a feature that deserves to be fur-
ther and more deeply investigated by considering a data-
set of GSs of different intensity for which there is the 
same wealth of available data.
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