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Abstract: We present a pilot demonstration of an optical fiber based 

refractive index (RI) sensor involving the deposition of graphene onto the 

surface of a segment of a photonic crystal fiber (PCF) in a fiber-based 

Mach-Zehnder Interferometer (MZI). The fabrication process is relatively 

simple and only involves the fusion splicing of a PCF between two single 

mode fibers. The deposition process relies only on the cold transfer of 

graphene onto the PCF segment, without the need for further physical or 

chemical treatment. The graphene overlay modified the sensing scheme of 

the MZI RI sensor, allowing the sensor to overcome limitations to its 

detectable RI range due to free spectral range issues. This modification also 

allows for continuous measurements to be obtained without the need for 

reference values for the range of RIs studied and brings to light the potential 

for simultaneous dual parameter sensing. The sensor was able to achieve a 

RI sensitivity of 9.4 dB/RIU for the RIs of 1.33-1.38 and a sensitivity of 

17.5 dB/RIU for the RIs of 1.38-1.43. It also displayed good repeatability 

and the results obtained were consistent with the modeling. 

OCIS codes: (060.2370) Fiber optic sensors; (160.4236) Nanomaterials. 
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1. Introduction 

Many studies into utilizing specialty fibers as sensing elements have been conducted 

over the years, resulting in highly sensitive sensors to perturbations in the refractive index 

(RI), strain and temperature of the external environment of the sensing elements. Of these, the 
more commonly used specialty fiber is that of the photonic crystal fiber (PCF). Many of these 

sensing elements involve the use of PCFs in an interferometric configuration [1-7], inscription 

of long period fiber gratings (LPFGs) into PCFs [8-12], tapering the PCFs [13, 14] or filling 

the microstructure defects in the PCF with the analyte to be measured [15, 16]. In recent 

years, new types of sensing elements involving the deposition of specific materials to form 

thin overlays over specialty fibers for sensitivity enhancement have been proposed [17-23]. 

The choice of material for the overlays, apart from being compatible with silica fibers, would 

also depend on the material’s ability to respond to the analyte being measured [17-19, 21] 

and/or its ability to further enhance the sensing capabilities of the particular sensing element 

[20, 22, 23]. The typical sensing schemes for these sensors would usually involve the 

monitoring of variations in wavelength or intensity level of the output spectral pattern in 

response to the aforementioned perturbations in the external environment. 

More recently, it has been suggested that carbon-based compounds would be a good 

choice of material due to its relative ease of manipulability. Also, an optical fiber sensor with 

a carbon-based overlay to enhance its sensing capabilities would, from an industrial 

perspective, be more attractive in terms of its cost effectiveness and scalability [24]. This 

coupled with its unique properties have led to the development of several carbon-based fiber 

sensors [25-30]. Recently, we have proposed and investigated some specialty fiber sensors 

deposited with carbon nanomaterials [22, 23, 31] and in this paper, we present a pilot 

demonstration of an optical fiber RI sensor with a graphene overlay deposited over a bare PCF 

sensing element for continuous RI sensing. The graphene were deposited onto the bare PCF 

through a simple cold transfer method and did not require any additional physical or chemical 

treatment. It was found that the graphene had large surface areas which allowed them to 

adhere strongly to the PCF. The high RI of the resulting overlay altered the effective RI of the 

fiber cladding and consequently, the reflectance of the evanescent waves of the excited higher 

order cladding modes in the PCF segment. Hence, the graphene overlay modified the 

conventional sensing scheme of the sensor to that of variations in intensity as the RI of the 

external environment varied, which consequently allowed it to measure a wide range of RIs 

without the need for any reference measurements or limitations from its free spectral range 

(FSR).   The   sensor   also   demonstrated   good   repeatability   and   exhibited   continuous 

measurement of RI with sensitivities of 9.4 dB/RIU and 17.5 dB/RIU for the RI ranges of 

1.33-1.38 and 1.38-1.43, respectively. 
 

2. Sensing principle 
 

In this work, the sensing principle relies mainly on the behavior of light propagating 

through a PCF in a Mach-Zehnder Interferometer (MZI) configuration as well as the graphene 

overlay deposited onto the bare PCF segment in the MZI. A schematic of the conventional 

PCF MZI made from the splicing of a SMF to each end of a short segment of a PCF is shown 

in Fig. 1(a). As the fundamental mode from the SMF (solid line) enters the first collapsed 

region, it would be diffracted and excite some of the higher order cladding modes (dashed 



clad ,i 

 

 
Fig. 1. Schematic illustration of the (a) photonic crystal fiber (PCF) spliced between two single mode fibers (SMFs) 

to form a PCF Mach-Zehnder Interferometer (MZI) and (b) the refractive index (RI) sensing element formed by the 

deposition of a graphene overlay onto the PCF segment. 
 

line). These excited cladding modes would propagate along the cladding of the PCF and 

interfere and recombine with the fundamental mode at the second collapsed region. The 

intensity of the transmitted light monitored through the output SMF can thus be expressed as 

[2, 7]: 
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are the magnitudes of the electric fields of the excited ith
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 order cladding modes, 

respectively. N  is the total number of excited cladding modes. n
core   

is the effective RI of the 

core mode while that of the ith    and jth  order cladding modes are represented by n and 

nclad , j  , respectively. The length of the PCF segment in the MZI is denoted by L while λ 

represents the wavelength of light coupled into the MZI. As can be seen from Fig. 1(a), the 

evanescent waves of the cladding modes (dotted line) would   be able to interact with the 

external  environment.  Due  to  this  interaction  with  the  external  environment, nclad ,i 
and 

nclad , j 
would vary with a variation in RI of the external environment. Hence it can be seen 

from Eq. (1), and also previously experimentally verified in [1], that a variation in RI of the 

external environment would result in a blue or red shift of the interference peaks or dips in the 

output spectrum. 

Fig. 1(b) shows a schematic of the PCF segment of the MZI with the deposited graphene 

overlay. The deposition of graphene onto the bare PCF segment would result in the 

modification of the sensing scheme of the sensing element. Graphene, like other carbon 

nanomaterials, are a carbon nanomaterial which also has a high RI and exhibits unique optical 

properties [32]. From Eq. (1), it can be seen that the high RI of the graphene would increase 

the effective index of the fiber cladding and due to this increase, a variation in RI of the 

external environment would lead to minimal variations in the cosine terms. Hence, little 

variation in the wavelength of the interference peaks or dips in the output spectrum would be 

expected. The evanescent waves of the excited cladding modes would, on the other hand, 

experience a variation in reflectance which would result in a variation in the extinction ratio 

observable in the output spectrum and this reflectance can be expressed as [33]: 
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represent  the  amplitude  reflection  coefficients  of  the  interface 

between the fiber cladding and the graphene overlay and the interface between the graphene 

overlay and the external environment, respectively. a = 4π k / λ and d
G are the absorption 

coefficients and the thickness of the graphene overlay, respectively. The RIs of the graphene, 

fiber cladding and  that of  the  external environment are denoted by n
G ,  n

clad and n
env    

, 

respectively. It can be seen from Eqs. (2) to (5) that the reflectance R is dependent on the RI 

of  the  external  environment n
env   

.  This  would  indicate  that  as  the  RI  of  the  external 

environment varied, so would the intensities of the evanescent waves of the excited cladding 

modes, leading to a variation in the intensities of the excited cladding modes, and thus cause a 

variation in amplitude of any interference peaks or dips present in the output spectrum. 
 

3. Fabrication of sensing element 
 

Fig. 2(a) shows the experimental setup used for the fabrication of the proposed sensing 

element. A PCF (NKT photonics LMA-10) was first stripped off its polymer coating and 

spliced between two SMFs to form a MZI. The length of the PCF segment was measured to 

be  30  mm.  A  graphene  solution  was  prepared  by  mixing  Kish  Graphite  (Graphene 

Laboratories Inc.) with dimethylformamide (DMF) [34]. The resulting solution was then 

sonicated in an ultrasonic water bath to ensure that the graphene were separated and evenly 

dispersed throughout the solution. 

A broadband light source (Optical Link Limited CL 15-16 ASE) with a wavelength 

range of 1510-1630 nm was coupled into the SMF at one end of the MZI. At the other end, the 

transmitted light was coupled into an Optical Spectrum Analyzer (OSA, Ando AQ6317B) and 

monitored with a resolution of 0.1 nm as shown in Fig. 2(a). To fabricate the sensing element 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Experimental setups for (a) the deposition of the graphene overlay onto the PCF segment using a spray gun 

and (b) for RI measurements with various test solutions of different RIs. 



 

 
Fig. 3. (a) Raman spectra of the graphene solution and (b) Scanning electron microscope (SEM) image of the 

graphene deposited on a silicon wafer. 

 
 

 
Fig. 4. Optical microscope images of the PCF segment before (above) and after (below) the deposition of the 

graphene overlay under the same magnification and (b) output spectrum before (dotted line) and after (solid line) the 
deposition of the graphene overlay. 

 

shown in Fig. 1(b), the PCF segment was held straight over a silicon wafer. A portion of the 

graphene solution was then extracted and deposited into the solution cup of a spray gun 

(Harder and Steenbeck, Evolution Two in One), which was connected to a nitrogen gas 

supply, and deposited for a duration of 1 s over the bare PCF segment and silicon wafer at the 

same time. The PCF segment was then rotated 90 degrees after the first deposition and 

deposited with graphene over the same spray duration. The process was repeated two more 

times to ensure that graphene was evenly deposited over the entire PCF. The adherence of the 

graphene onto the PCF depends only on the van der Waal’s forces between the graphene 

overlay and the PCF segment. The resulting output spectrum was monitored throughout the 

deposition  process  to  ensure  that  an  interference  spectrum  with  interference  dips  of 

sufficiently high extinction ratio were still present. The Raman spectra of the graphene 

deposited on the silicon wafer is shown in Fig. 3 (a). The presence of the D, G and G’ bands at 

1349 cm-1, 1578 cm-1  and 2719 cm-1  show that the graphene are similar to that of bulk 

graphite or multilayer graphene [35]. The presence of the D band is to be expected due to 

defects in the graphene during the sonication process.  The morphology of the deposited 

graphene on the silicon wafer was then observed by a scanning electron microscope (SEM) as 

shown in Fig. 3(b). It is observed that graphene are evenly and randomly deposited over the 



wafer and this can be assumed to be the case for the deposited graphene on the PCF segment 

as  well.  Similarly,  the  thickness  of  the  graphene  deposited  onto  the  silicon  wafer  was 

measured by a surface profiler (Dektak3) and from there the thickness of the graphene 

deposited onto the PCF segment was calculated to be approximately 40 nm. Fig. 4(a) shows 

the optical microscope images of the PCF segment before (above) and after (below) the 

deposition of the graphene overlay. As can be observed, the entire surface of the PCF was 

considerably darkened by the graphene, and the graphene were evenly deposited over the 

PCF. The output spectrum (monitored by the OSA) before and after the deposition of the 

graphene overlay is shown in Fig. 4(b). For sensing purposes, the interference dip at a 

wavelength of 1579.24 nm before deposition (dotted line) was chosen. The choice of this 

interference   dip   is   due   to   its   high   extinction   ratio,   its   close   proximity   to   the 

telecommunications wavelength of 1550 nm, and that this interference dip would be the result 

of interference with a higher order mode and thus be more sensitive to changes in the RI of 

the external environment. As can be seen, there was a blue shift of the interference dip to a 

wavelength of 1577.68 nm with an approximately 9 dB decrease in magnitude after the 

deposition (solid line) of the graphene overlay. The exact cause of this effect is still unknown 

and is currently under investigation. As the deposition only involves the cold transfer of 

graphene onto the surface of the PCF without any additional physical or chemical treatment, 

such a deposition technique will be relatively cost effective compared to other deposition 

methods. 
 

4. Experiment and discussion of results 
 

Fig. 2(b) shows the experimental setup used for RI measurements. Solutions of different 

RI values were prepared by first continuously dissolving sugar in a fixed volume of de- 

ionized (DI) water to obtain a saturated sucrose solution. The saturated solution was then 

divided equally into smaller portions and each portion was diluted with a different amount of 

DI water to obtain sucrose solutions of different concentrations and hence different RIs. A 

commercially available digital refractometer (Kruss DR201-95) with a resolution of 0.0001 

refractive index units (RIUs) was used to measure the RI of each solution. To characterize the 

behavior  of  the  sensor  to  different  RIs,  the  sensing  element  was  held  straight  over  a 

rectangular glass slide and completely immersed in approximately 1 ml of the individual 

sucrose solutions which were dropped over the glass slide. The same broadband light source 

and OSA, as mentioned in the previous section, were used to couple light into the sensing 

element and  monitor  the  output  spectrum, respectively. The glass  slide  and  the  sensing 

element were rinsed thoroughly with DI water and left to dry after each RI measurement was 
 

 
Fig. 5. (a) Output spectra of the sensing element, focusing particularly on the variation of the selected interference dip 

at 1577.68 nm when the sensing element was immersed in various solutions of different RIs. (b) Plot of the change in 
intensity of the interference dip shown in (a) against the RI of the various solutions for two separate trials (diamonds 

and triangles) conducted one week apart. The nonlinear behavior of the sensing element to variations in RI is 

illustrated by the single fitting curve (solid line). 



carried out. It was ensured that the spectral pattern for the sensing element in air, as shown in 

Fig. 4(b) (solid line), was recovered before the next measurement was carried out. The entire 

trial was carried out at an ambient temperature of 22.8 ± 0.1 °C to ensure that there were no 

temperature induced perturbations in the external environment which would affect the RI 

measurements in any way. 

Fig. 5(a) shows the output spectrum of the sensing element when it was immersed in 

various solutions of different RI, focusing in particular on the selected interference dip at 

1577.68 nm. As can be seen, distinguishable variations in the amount of attenuation of the 

interference dip can be observed as the RI of the external environment varied. The magnitude 

of the intensity of the interference dip decreased as the RI of the external environment 

increased. On the other hand, there was little observable variation in the wavelength of the 

monitored interference dip. The observed behavior of the intensity and wavelength of the 
interference dip is consistent with that of Eqs. (1) to (5) where, for this range of RIs, the 

amount of reflectance would decrease due to the increasing RI of the external environment. 

Hence, a portion of the energy of the evanescent waves is coupled out of the excited cladding 

modes near the external surface of the fiber cladding, resulting in an observable decrease in 

the magnitude of the interference dip in the output spectra. The high RI of the graphene 

overlay would increase the effective index of the cladding, leading to minimal variations in 

the cosine terms in Eq. (1) as the RI of the external environment varies. This would result in 

little variation in the wavelengths of the interference peaks and dips in the output spectrum, 

which has been experimentally verified from the results shown in Fig. 5(a). The experiment 

was repeated a week later, under similar experimental conditions and procedures as that 

described above, to test the repeatability of the sensing element. A similar result was obtained 

and the variation in magnitude of the intensities of the interference dips to various RIs from 

both trials for the sensing element is shown in Fig. 5(b). For each trial, the difference in 

intensity of the interference dip at each RI value was plotted relative to the intensity value of 

the point corresponding to the lowest RI value for that trial. A single fitting curve (solid line) 

was then plotted through the data points (diamonds for the first trial and triangles for the 

second trial) for the two trials. From there, the maximum error due to the repeatability of the 

sensing element can be calculated to be 0.1 dB. This error can be attributed to fluctuations in 

the output power of the broadband source as well as measurement errors from the OSA. As 

can be seen from Fig. 5(b), there is a nonlinear relationship between the intensity of the 

interference dip and the RI, which is consistent with Eqs. (2) to (5). The results show that the 

sensor demonstrates good repeatability and also exhibits consistency in its behavior with 

respect to variations in RI of the external environment. Based on the obtained results, the 

sensing element was able to achieve a sensitivity of 9.4 dB/RIU and 17.5 dB/RIU for the RIs 

of  1.33-1.38  and  1.38-1.43,  respectively.  From  here,  the  maximum  resolution  can  be 

calculated to be approximately 5 x 10-4  which an order of magnitude above that of 

refractometers based on a fiber Bragg grating [36] and a tilted fiber Bragg grating [37]. On the 

other hand, it is not as sensitive as some of the other reported fiber sensors that use surface 

plasmon resonance [20, 26] or precision fabrication of a Fabry-Pérot cavity in the sensing 

element [38, 39]. However, the current sensor has certain advantages in that it does not show 

any signs of degradation in performance as compared to that in [20], and also in its relative 

fabrication simplicity as compared to that of [26, 38, 39]. 

It should be pointed out that as the sensing scheme was modified, the sensor was not 

limited by its FSR. Hence there was no need for any reference measurements to be taken 

during the experimental process as it was possible for the sensing element to measure a wide 

range of RIs (1.0 to 1.43) continuously. Also, as can be seen from Eqs. (2) to (5), the amount 

of  reflectance  from  the  graphene  overlay  depends  mostly  on  the  RI  of  the  external 

environment and is minimally affected by other factors like strain and temperature. Hence, the 

behavior  of  the  sensing  element  to  perturbations  like  temperature  and  strain  would  be 

expected to be similar to that described in [40]. It would then be possible to measure a second 



perturbation to the sensor, like strain for example, simultaneously through variations in 

wavelength  in  the  output  spectrum,  and  thus  enhance  the  sensor’s  potential  as  a  dual 

parameter sensor. As the current work serves only as a pilot demonstration of a graphene- 

deposited PCF sensing element, a further exploration into methods for enhancing the 

sensitivity and the reproducibility of the sensing element would be carried out. Future work 

will also focus on the effects of the morphology of the graphene overlay, as well as the 

influence of polarization and pH and the robustness of the graphene overlay under different 

environmental stresses. Also, as RI measurement of the external environment depends on the 

change in intensity in the output spectrum, fluctuations in the output of the broadband source 

would result in errors in the measurements. Hence possible ways to overcome these 

fluctuations, including modifying the experimental setup to include a reference arm to offset 

these errors, will be explored as part of the future work as well. 
 

 
5. Conclusion 

 

In conclusion, we have presented a pilot demonstration of a refractive index (RI) sensor 

based on the deposition of a graphene overlay onto the surface of a photonic crystal fiber 

(PCF) segment in a Mach-Zehnder Interferometer (MZI) configuration. The sensing element 

was fabricated through the fusion splicing of a single mode fiber (SMF) to each end of a short 

segment of a photonic crystal fiber (PCF) and thereafter depositing graphene onto the bare 

PCF segment using a spray gun. The high RI of the graphene overlay modified the sensing 

scheme of the MZI RI sensor allowing for continuous RI measurements and also brings to 

light the possibility for further studies into dual parameter sensing, where a second parameter 

which would cause a variation in the wavelength of the spectral peaks or dips can be 

characterized. Apart from that, the modification also allowed the sensor to overcome any 

limitations in its detectable range arising from its free spectral range. The sensor was also able 

to display observable and resolvable variations in the intensity of the selected interference 

dips as the RI of the external environment varied and has also demonstrated good repeatability 

with regards to its sensing behavior. Overall, the achieved sensitivity of the fabricated sensor 

was 9.4 dB/RIU for the RIs of 1.33-1.38 and 17.5 dB/RIU for the RIs of 1.38-1.43. 
 

Acknowledgements 
 

This work was partially supported by Academic Research Fund Tier 2 Grant (ARC26/14) of 

Ministry of Education (MOE), Singapore. 


