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THE POWER OF COINTEGRATION TESTS 

Jeroen J. M. Kremers, Neil R. Ericsson and Juan J. Dolado I 

1. INTRODUCTION 

Contrasting inferences about the presence of cointegration often appear in 
empirical investigations. For example, in applying the cornmonly used 'two­
step' procedure proposed by Engle and Granger (1987), the Dickey-Fuller 
unit-root test may only marginally reject the null hypothesis of no cointegra­
tion, if it rejects at all. By contrast, the coefficient on the error-correction 
term in the corresponding dynamic model of the same data may be 'highly 
statistically significant', strongly supporting cointegration; cf. Kremers 
(1989), Hendry and Ericsson (1991a), and Campos and Ericsson (1988). 
Both procedures are tests of cointegration, so why should there be such a 
contrast? A plausible explanation centers on an implicit common factor 
restriction imposed when using the Dickey-Fuller statistic to test for cointe­
gration. If that restriction is invalid, the Dickey-Fuller test remains consist­
ent, but loses power relative to cointegration tests that do not impose a 
common factor restriction, such as those based upon the estimated error­
correction coefficient. 

This paper examines the asymptotic and finite sample properties of the 
two procedures for a simple, single-lag, bivariate process. Even with more 
lags and more variables, the reason for the low power of the Dickey-Fuller 
test remains. The error-correction-based test is preferable because it uses 
available information more efficiently than the Dickey-Fuller test. 

Section II describes the process of interest and derives the relationship 
between the error-correction mechanism and the equation from which the 
Dickey-Fuller statistic is calculated. Section III presents the asymptotic 
distribution of each test statistic under the null hypothesis of no cointegra-

I This paper represents the views of the authors and should not be interpreted as reflecting 
those of the Dutch Ministry of Finance, the Board of Govemors of the Federal Reserve System, 
the Bank of Spain, or other members of their staff. This paper was prepared in part while the 
second and third authors were visiting INSEE and CEPREMAP, who we thank for generous 
hospitality. We are grateful to Javier Andrés, Anindya Banerjee, Julia Campos, Christian 
Gourieroux, David Hendry, S0ren Johansen, Augustín Maravall, A1ain Monfort, Mark Salmon, 
Jim Stock, and Hong-Anh Tran for helpful discussions, and to Lisa Barrow and Rafael 
Domenech for research assistance. AH numerical results were obtained using PC-NAIVE ~._ ... ~. 
PC-GIVE Version 6.01; cf. Hendry and Neale (1990) and Hendry (1989). /.~., 00 

325 1

Cita bibliográfica
Published in: Oxford Bulletin of Economics and Statistics, 54, 3(1992)



326 BULLETIN 

tion, while Section IV gives the corresponding asymptotic distributions under 
the altemative hypothesis of cointegration, using fixed and 'near non­
cointegrated' altematives. Section V generalizes the results for testing in 
multivariate, multiple-Iag systems. Section VI interprets sorne Monte Cario 
finite sample evidence in light of the asymptotic formulae. Section VII 
empirically illustrates the two testing procedures with Hendry and Ericsson's 
(1991 b) quarterly data on UK narrow money demando Derivations of all new 
results appear in the Appendix. 

n. A SIMPLE BIVARIATE PROCESS 

Using a simple dynamic bivariate process, this paper focuses on the relative 
merits of the two-step Engle-Granger and single-step dynamic-model 
procedures for testing for the existence of cointegration. See Engle and 
Granger (1987) on the former and Banerjee, Dolado, Hendry and Smith 
(1986) in ter alia on the latter. The former is characterized by a Dickey-Fuller 
(DF) statistic used to test for the existence of a unit root in the residuals of a 
static cointegrating regression. The latter is based upon the t-ratio of the 
coefficient on the error-correction term in a dynamic model reparameterized 
as an error-correction mechanism (ECM), noting that cointegration implies 
and is implied by an ECM. This t-ratio is denoted the ECM statistic. This 
section describes the data generation process (DGP) and derives the 
analytical relationship between the ECM and the equation for the DF 
statistic. 

The bivariate process- considered is one of the simplest imaginable, and 
has been used elsewhere for expository purposes; cf. Davidson, Hendry, Srba 
and Yeo (1978) and Banerjee, Dolado, Hendry and Smith (1986). It is a 
linear first-order vector autoregression with normal disturbances, at least one 
unít root, and Granger-causality in only one direction. For expositional 
convenience, this DGP is written as a conditional ECM (1) and a m~rginal 
unít-root process (2): 

~y¡ =a~z¡+ b(y -zL-, + e¡ 
~z¡=u¡ 

(1) 
t= 1, ... , T, (2) 

where ~ is the first-difference operator 1 - L, L is the lag operator, and T is 
the sample size. The variables y¡ and Z¡ are integrated of order one [denoted 
I( 1)] and are possibly cointegrated. For y = In Y and z = In Z, a is the short­
run elasticity of Y with respect to Z. The parameter b is the error-correction 
coefficient in the conditional model of y¡, given lagged y and current and 
lagged z; and e¡ and U¡ are the disturbances in this conditional/marginal fac­
torization. Without los s of generality, the cointegrating vector for (YI z¡)' is 
(1, - 1) if YI and z¡ are cointegrated. 

For simplicity, the (hypothesized) cointegrating vector is assumed known. 
Such a priori knowledge of the cointegrating vector anses frequently in 
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economic models of long-run behavior, as in modeling (logs of) consumers' 
expenditure and disposable income, wages and prices, money and income, or 
the exchange rate and foreign and domes tic price levels.2 AIso, Z¡ is assumed 
weakly exogenous for the parameters in the conditional model ( 1); see Engle, 
Hendry and Richard (1983) and Johansen (1992a). 

As Section V shows, the logical issues arising from cornmon factor restric­
tions apply to processes more general than (1 )-( 2). Specifically, the cointe­
grating vector or vectors may be estimated and may enter more than one 
equation (e.g., no weak exogeneity); and a constant term, seasonal dummies, 
additional variables, and additional lags may be included. However, sorne 
statistics' distributions are more complicated with such generalizations, so we 
focus on this bivariate case. 

The parameter space is restricted to {O~a~l, -l<b~O}. In many 
empirical studies, a'" 0.5 and b'" - 0.1, with a~ > a;. That is, the short-run 
elasticity (a) is smaller than the long-run elasticity (unity), adjustment to 
remaining disequilibria is slow, and the innovation error variance for the 
regressor process is larger than that of the conditional ECM. 

The variables y¡ and z¡ are cointegrated or not, depending upon whether 
b < O or b = O. Thus, tests of cointegration rely upon sorne estimate of b. In 
the ECM approach, equation (1) itself is estimated by OLS (denoted by a 
circumflex A): 

~y¡ = á~z¡ + bw¡_, + tI' 
where the putative disequilibrium is: 

(3) 

(4) 

The t-ratio based upon b is the ECM statistic, denoted tECM ' It is used to test 
the null hypothesis that b = O, i.e., that y and z are not cointegrated with a 
cointegrating vector (1, - 1). 

The DF statistic derives from a different regression, so it is helpful to 
establish the relationship between the DF regression equation and the ECM 
in ( 1). Specifically, subtract ~z¡ from both sides of (1) and re-arrange: 

~(y-zL=b(y-zL_, +[(a-1)~z¡+eJ (5) 

N oting (4), equation (5) may be rewritten as: 

(6) 

where the disturbance e¡ is: 
e¡=(a-1)~z¡+e¡. (7) 

2See Davidson, Hendry, Srba and Yeo (1978), Hendry, Muellbauer and Murphy (1990), 
Sargan (1964), Nymoen (1992), Hendry and Ericsson (1991a, 1991b), and Johansen and 
Juselius (1990a, 1990b) ínter alía. 
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OLS estimation of (6) (denoted by a tilde ~) generates: 

dw,=bw,_1 +el· (8) 

The t~ratio based upon b is the DF statistic, denoted tOF here [i in Dickey 
and Fuller, 1979]. This t~ratio is also used to test whether or not YI and ZI are 
cointegrated with cointegrating vector (1, -1). See Dickey and Fuller (1979, 
1981) and Engle and Granger ( 1987). 

In contrast to the estimated ECM in (3), the estimated DF equation (8) 
ignores potential information contained in dz,. Equivalently, (6) imposes the 
restriction that a equals unity. That is, the short~run elasticity (a) equals the 
long~run elasticity (unity). More generally, (6) imposes a common factor, as 
follows from rewriting (4) and (6): 

(9) 

or 

[1- (1 + b) L] YI = [1- (1 + b) L] ZI + e" (10) 

where [1- (1 + b) L] is the factor common to YI and ZI in (10).3 
The transformation of (1) to (6), (9), and (10) provides several insights. 

First, (1), (6), (9), and (10) are equivalent representations, given the rela­
tionship between the errors El and el in (7); but the two errors are not equal 
unless a = 1 or dZ, = O. Second, and relatedly, the common factor restriction 
in ( 10) [and so in (6) and (9)] is invalid unless a = 1, noting that: 

[l-(l+b)L]y,=[a-(a+b)L]z,+E" (11) 
from (1). Interestingly, even if the common factor restriction is invalid, el 
remains white noise for this DGP. Nonetheless, el is not an innovation with 
respect to current and lagged Z and lagged y; cf. Granger (1983) and Hendry 
and Richard (1982) on the distinction between white noise and innovations. 
Since empirically estimated short- and long-run elasticities often differ 
markedly (as noted aboye), imposing their equality in the DF statistic is rather 
arbitrary. Third, (9) motivates the use of unit-root statistics in testing for 
cointegration. If wl has a unit root, then wl is non-stationary, b = O, and YI and 
Z I are not cointegrated with the cointegrating vector (1, - 1). Conversely, if WI 

has its root inside the unit circle, then wl is stationary, b < O, and YI and ZI are 
cointegrated. 

III. DISTRIBUTION OF THE STATISTICS UNDER THE NULL HYPOTHESIS 
(NO COINTEGRATION) 

The null hypothesis is no cointegration: that is, b= O in (1)-(2). Because W I _ 1 
[in (3) and (8)] is not stationary under this hypothesis, distributional results 

3 See Hendry and Mizon (1978) and Sargan (1964, 1980) on commo~ factors. 

THE POWER OF COINTEGRATION TESTS 329 

from 'standard' asymptotic theory do not apply. This section describes the 
asymptotic distributions of the DF and ECM statistics under that null 
hypothesis, and obtains a normal approximation to the distribution of the 
ECM t~ratio when a ~ 1. 

For expositional convenience, we adopt certain notational conventions 
conceming Brownian motion (or Wiener) processes. Consider a normal, 
independently and identically distributed variable r¡ l' t = 1, ... , T: that is, 
r¡,-1N(0, a~). In this paper, r¡1 is usually either el' El' or UI. Define BT. '1(r) as 
the partial sum ~Itrlr¡'/J( Ta~), where r lies in [0,1], and [Tr] is the integer part 
of Tr. As discussed in Phillips (1987b), BT.'1(r) converges weakly to a 
standardized Wiener process, denoted B'1(r). Frequently, the argument r is 
suppressed, as is the range of integration over r, when that range is lO, 1J. 
Thus, integrals such as fóB'1(r)2 dr are written as f B~. The symbol ,~' 
denotes weak convergence of the associated probability measures as the 
sample size T -+ oo. See Banerjee, Dolado, Galbraith and Hendry ( 1992) for a 
detailed discussion of Wiener processes. 

The DF statistic [from (8)] is: 

tOF = bjese(b) 

= [(~W¡_I)-I(~W'_ldW/)]IJ[ü; '(~W¡_I)-I] 
= (~W¡_I)-I/2(~WI_1 el)jüe , (12) 

where ese(') is the estimated standard error of its argument, ü; is the 
estimated residual variance in (8), and all summations ~ are from 1 to T 
unless otherwise noted. Dickey and Fuller ( 1979) show that: 

(13) 

under the null hypothesis. Dickey lin Fuller, 1976, p. 373] tabulates by Monte 
Cario the finite sample distribution for tOF, from whichcritical values may be 
taken for constructing a unit-root test. 

The DF statistic has several important properties. First, its distribution is 
skewed to the left, and it has a negative median. In part because of these 
characteristics, the use of (negative) one-sided normal critical values may 
result in over-rejection under the null hypothesis. Second, the distribution of 
the DF statistic is invariant to au , a t , and a, even in finite samples; cf. (12). 

Banerjee, Dolado, Hendry and Smith (1986, Theorem 4) derive the 
asymptotic distribution of the t-ratio on b in the ECM (3). Our Appendix 
corrects their formula and obtains a simpler normal approximation for a ~ 1. 
Since ~dzlwl_l.is Op( T) and E(UIE/)=O, the ECM t-ratio is: 

tECM = bjese(b) 

(14) 

where a~ is the estimated residual variance in (3), and Mann and Wald's 
(1943) order notation is used. Ignoring the term of Op( T -1/2), (14) is identical 
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to the DF statistic in (12), except that el appears rather than el' Using 
properties of independent Brownian motion, the lirniting distribution of tECM 

is: 

tECM ~ (f Be dB,)!J(f B;) 

(a-1)fB"dB,+s-lfB,dB, 
~ 2 2 1 2 2' J[(a-1)fB,,+2(a-1)s fB"B,+s fB,] 

where s is the ratio aja, (assumed strictly positive). 

(15) 

As will be discussed below, the distribution of tECM depends on the relative 
importance of the two terms comprising e, in (7), which are (a - 1) I:!z, and e,. 
Specifically, it is useful to define a 'signal-to-noise' ratio: 

q = -(a-1) s, (16) 

where q2 is the variance of (a - 1) I:!ZI relative to that of e l' Equally, q2 is 
g¡ 2/( 1 - g¡ 2), where g¡ 2 is the population R 2 with b = O for I:! w, regressed on 
wl _ 1 and I:!ZI' as in (28) below. 

The asymptotic distribution of the ECM statistic has several unusual 
properties. First, because I:!z, is observed and is conditioned upon in estimat­
ing (3), q measures the amount of information present on the invalidity of the 
common factor restriction (for a given T). Second, and relatedly, when a = 1 
(and so q = O), (15) simplifies to the D F distribution (13), noting that el = el 
(and hence Be = B,) for a = 1. Third, for a #- 1, ( 15) can be reparameterized in 
terms of q exclusively, rather than a and s separately: 

tECM ~ I 2 - 1 2f 2]' .¡[fB,,-2q fB"B,+q B, 
(17) 

The asymptotic distribution of tECM is sensitive to a and s only insofar as they 
enter q. 

Fourth, for large q, (17) is approximately a standardized normal distribu­
tion: 

(18) 

This second approximation is 'small-a' in nature or, equivalently, assumes the 
signal-to-noise ratio for (3) to be large; cf. Kadane (1970, 1971 ).4 As q varies 
from small to large, the asymptotic distribution of tECM shifts from the DF 
distribution to the normal distribution. To obtain ( 18), note that ( 17) is: 

(19) 

4 Complementary interpretations exist. From (1) and (2) with b = O and a ~ O, YI and ZI are 
virtuaIly identicaI series for large q (a constant term and factor of proportic:mality aside! ~eca~se 
the variance of aL!.ZI is large relative to that of f l . Thus, YI and ZI appear comtegrated, gIVmg .n~e 
to 'standard' inferentiaI procedures for b. This reasoning does not apply to the DF staUstIc 
because it is invariant to the variance of el' 
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Since Bu and B, are independent Brownian motions, the ratio in (19) is 
normally distributed; see Phillips and Park (1988). 

Thus, when the common factor restriction in (9) is invalid and I:!ZI con­
tributes substantively to the determination of I:! YI' the t-ratio on the error­
correction term in (3) is approximately normal, even when the 
error-correction coefficient is zero and so YI and ZI are not cointegrated. That 
simplifies conducting inference with tECM when q is large.5 The distribution of 
tOF is independent of a, au' and a, (and thus of s and q), even in finite 
samples, so no parallel approximation exists for tOFo 

To summarize, in so far as distributions under the null are concerned, tECM 
has a distinct advantage over tOF when q is known to be large because of the 
former's approximate normality under that condition. The next section 
considers distributions under the alternative hypothesis of cointegration, and 
so the issue of power. 

IV. DISTRIBUTION OF THE STATISTICS UNDER THE ALTERNATIVE 

HYPOTHESIS (COINTEGRATION) 

The alternative hypothesis is cointegration: namely, b < O in (1 H 2). This 
section examines the asymptotic distributions of the DF and ECM statistics 
under both fixed and local alterna ti ves. A priori, the distributions derived 
undér either alternative could approximate the underlying finite sample 
distributions well, so both altematives are of interest. Under a fixed alterna­
tive, W,_ 1 in (3) and (8) is stationary, so distributional results foUow from con­
ventional central limit theorems. Under a local alternative, the 
non-conventional asymptotic theory developed by Phillips (1988) for near­
integrated series can be applied. 

Section 4.1 compares the asymptotic distributions of the DF and ECM 
statistics under a fixed alterna ti ve; Section 4.2 compares them under a local 
alternative. When a = 1, the two statistics are asymptotically equivalent. 
When a #- 1, the ECM test can be arbitrarily more powerful than the DF test. 

4.1. Distributions under a Fixed Alternative 

Under a fixed altemative, this subsection analyzes the components of the DF 
and ECM statistics, from which the properties of the statistics themselves can 
be compared. 

For the DF statistic, the numerator is: 

b= (~W~-'-l)-l(~WI_lI:!W,) 
= b +(~W~_l)-l(~W'_l eJ, (20) 

51f no information is available on the magnitude of q, then it appears advisable to use the DF 
criticaI values for the ECM statistic because they are larger in absolute value than the critical 
vaIues for the normal. This choice follows from the definition of statistical size involving the 
supremum over the appropriate parameter space, here, being over the range of a and S. 
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from which it follows that: 

TI/2 '(b - b)=> N(O, a;/a~), 

where a~ = a;/[ 1 - (1 + b)2]. The denominator of the DF statistic is: 

ese(b)= T-I/2ae/aw + Op( T-I). 

For the ECM statistic, the numerator is: 

0= b +(l:W~_I¡-I(l:Wt_1 Et)+ Op(T -1), 

which implies: 

TI/2 '(0 - b)=> N(O, a;/a~). 

The denominator of the ECM statistic is: 

ese(o)= T-I/2 a.law + Op( T-I). 

(21) 

(22) 

(23) 

(24) 

(25) 

Combining these results obtains a relationship between the two statistics: 

tECM o/ese(o) 
tDF b /ese( b) 

= a./a, + Op( T-I/2). (26) 

That is, the ECM statistic isapproximately ae/a, times the DF statistic. That 
factor of proportionality is at least unity,and in general is greater thanunity, 
noting that: 

a;/a; =[(a-1)2a;' + aWa; 

=(1 + q2)~ 1 (27) 

from (7). The degree ofinequality depends upon q. Relative power is likewise 
affected, as illustrated in Section VI via Monte Cario. 

Intuition for the differences between the statistics is as follows. The ECM 
regression conditions on both 6.z t and W t - l' whereas the DF regression 
conditions on only wt - I , thereby losing potentially valuable information from 
6.zt • Rewriting (5) helps clarify: 

(28) 

where, as an extreme example, Et "" O, a oF 1, and Var(6.zt) is 'substantial' (and 
so q is large). The ECM (28) has a near perfect fit, a and b are estimated with 
near exact precision, and the ECM t-ratio for b is (arbitrarily) large. 
However, the DF statistic is invariant to the variance of et (and so to the 
values of a and s), and the distribution of the DF statistic depends upon only 
b and T. For a suitably small (but nonzero) value of b and a given T, the DF 
statistic has Httle power (e.g., approximating its size) while the ECM statistic 
has power close to unity. This arises because the DF stat~stic ignores valuable 
information about 6.zt that is present in et' Nevertheless, both statistics are 
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Op( TI /2) under a fixed alternative, so motivating a local alternative to obtain 
statistics of O p( 1 ). 

4.2. Distributions under a Local Alternative 

To formalize the previous intuition, we apply Phillips's (1988) noncentral 
distribution theory to analyze the local asymptotic properties of the test 
statistics. The DGP is (1 )-(2) with the local alternative: 

b = ec/T - 1 "" c /T, (29) 

where c is a negative fixed scalar. The local alternative (29) parallels the usual 
Pitman-type local alterna ti ve, except that, in order to obtain statistics of 
O p( 1), (29) differs from the null by O p( T - 1 ), rather than by O p( T - 1/2). 

To proceed, we follow Phillips (198 7b) and use the diffusion process: 

K~(r)=f" ér-j)c dB~(j) 
() 

(30) 

where K~(r) is an implicit function of c. If c=O, then K~(r) is B~(r). As with 
B~, the argument r and the limits of integration are dropped if no ambiguity 
arises from doing so. 

Under the local alternative (29), the DF statistic is distributed as: 

(31) 

see Phillips (198 7b, p. 541; 1988, (26)). As shown in the Appendix, the ECM 
statistic is distributed as: 

t =>C(1+q2)1/2(fK2)1/2+ (a-1)fKll dB,+s-lfK,dB, 
ECM e J[(a-1)2fK~+2(a-1)s IfKIIK,+s 2fK;]' 

(32) 

Properties of the asymptotic distributiorts in (31) and (32) are closely 
related to results under the null hypothesis. First, when c=O, (32) simplifies 
to the distribution under the null, (17). Likewise, the asymptotic distribution 
(31) for the DF statistic reduces to (13) under the null. Second, when a= 1, 
(32) simplifies to the DF distribution (31). Third, for aoF 1, (32) can be 
reparameterized in terms of c and q exclusively: 

t => c( 1 + 2)1/2(fK2)1/2 + f KII dB, - q - I f K, dB, (33) 
ECM q e J[fK2 - 2 - IfK K + -2fK~l' 

11 q 11 E q E 
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Fourth, for large q, (33) is approximately a standardized normal distribution: 

tECM~ N(c(1 + q2)1/2(f K~)1/2, 1)+ Op(q-I), (34) 

conditional on the process for UI • Fifth, the unconditional mean of tECM can 
be approximated as: 

(35) 

where y =c(1 + q2)1/2. 
The powers of the DF and ECM statistics can be summarized, as follows. 

For a given pair of values for e and T, the DF statistic has an associated 
asymptotic power, derivable from (31) and its critical value. For the same 
(e, T) pair and sorne comparable critical value, q can be arbitrarily large, in 
which case the ECM statistic is conditionally approximately normally dis­
tributed with unit variance. Further, its unconditional mean is negative and 
arbitrarily large, so its power can be arbitrarily elose to unity. Thus, the ECM 
test has greater power than the DF test when q is sufficiently large, and the 
two tests have the same power when q = O. 

V. GENERALlZATIONS 

The common factor 'problem' of the DF statistic remains when (1) ineludes 
additional variables, additional lag~ of variables, a constant term, seasonal 
dummies, and/or a more complicated cointegrating vector. Furthermore, 
augmented versions of the DF statistic [such as Dickey and Fuller's, 1981 
ADF statistic) and non-parametric corrections [such as in Phillips, 1987a, and 
Phillips and Perron, 1988) do not resol ve this problem. This section examines 
the common factor problem for a more general structure. It then shows how 
common factors can appear in systems procedures, as illustrated by Stock 
and Watson's (1988) test for common trends and avoided by Johansen's 
(1988) procedure. 

Consider three generalizations of (1): lagged as well as current values of 
IlYI and Ilz 1 may appear, ZI is a vector rather than a scalar, and the cointegrat­
ing vector is (1, - A')', being normalized on y but being otherwise unrestricted. 
Letting d(L) and a(L) be suitable scalar and vector polynomials in the lag 
operator L, ( 1 ) becomes: 

(36) 

Subtracting d(L )A' Ilz , from both sides (rather than Ilz 1 as in Section II) 
obtains: 

d(L) Il( Y- A'Z), =b(y - A'Z ),-1 + ([a(L)' - d(L) A') Ilz , + E,} (37) 
or 

(38) 
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where 

(39) 

and 

(40) 

Equations (38), (39), and (40) generalize (6), (4), and (7).When el is not white 
noise, (38) is not a regression equation, and below we comment on that case. 

The ADF statistic is based upon (38), and so imposes the common factor 
restriction: 

a(L)=d(L)).. (41) 

If invalid, that restriction implies a loss of information (and so a loss of 
power) for the ADF test relative to the ECM test from (36). The caveat about 
common fadors applies to other single-equation unit-root-type cointegration 
tests constructed from a static relationship between YI and ZI' ineluding 
Phillips's (1987a) Za and ZI statistics, Phillips and Perron's (1988) generaliza­
tions thereon, and Sargan and Bhargava's (1983) statistic. The problem is 
not with the unit root tests per se: they may be quite useful for determining an 
individual series's order of integration. Rather, the difficulty arises from 
testing for cointegration via testing for a unit root (or the lack thereof) in the 
purported disequilibrium measure YI- A' ZI' 

The ADF tests applied to (38) may encounter an additional difficulty. 
Whereas el is white noise in the simple example (6), it need not be in (38); cf. 
(7) and (40). If not, then, in order to generate white noise errors, the ADF 
regression would need a lag length longer than that required in the ECM. 
Conversely, choosing too short a lag length for the ADF statistic can create 
misleading inferences; cf. Kremers (1988). 

System analysis of cointegration faces similar problems. In a system 
notation following Johansen (1988), let XI denote the entire vector of 1(1) 
variables under study, of dimension p x 1. One interesting and commonly 
used representation for XI is the Gaussian, finite-order vector autoregressive 
process: 

(42) 

or 

(43) 

where n(L) is the [th order, pxp matrix polynomial 'L;=on¡V, r(L) is a 
related p x p matrix polynomial, and n = n( 1). But for the normalization 
no = Ip , n(L) is unrestricted; so n and r(L) are also unrestricted. Cointegra­
tion of variables in XI implies that n is of reduced rank (r, say), so n can be 
factorized as: 

n = af3', (44) 

6
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where a and pare full-rank p x r matrices. The rows of p' are cointegrating 
vectors, and the coefficients in a are the weights on the cointegrating vectors 
in each equation. 

Sorne 'systems' procedures focus on the roots of P'xl rather than on the 
properties of XI itself. Such procedures impose 'system common factors', as 
can be seen by pre-multiplying (43) by P': 

(45) 

or 

[Ir - G(L) L] ~WI =(P' a) w l - 1 + tfJl' (46) 

where wl is now the vector P'x l , G(L) is an r x r matrix polynomial in L, and 
tfJl is: 

tfJ, = [p'r(L) - G(L) PI] ~X,-l + P' V,. (47) 

Equations (46 )-(47) parallel (38) and (40) for a single equation. 
The disturbance tfJ, may contain valuable, predictable information for two 

reasons. First, unless the restriction G(L) P' = PT(L) holds, lags of ~x, enter 
tfJl" Second, if z, is weakly exogenous, then P' VI may be explained in part by 
current z [as in (1 )]. Both reasons imply a loss of information from analyzing 
wl rather than XI when testing for cointegration. 

As an example, Stock and Watson's (1988) test for common trends 
imposes common factors, except when the maintained hypothesis is p 
common trends (i.e., no cointegration). Stock and Watson's statistic is derived 
from a vector autoregression in the hypothesized common trends P'1. XI [their 
equation (3.1 )], which is an autoregression 'complementing' (46). Unless P 1. is 
square, their autoregression omits lags in P'xl , and so ignores potentially 
valuable information. 

Johansen (1988, 1991) and Johansen and Juselius (1990a) derive a Iikeli­
hood-based method for testing the rank of ¡r and, conditional upon a given 
rank, conducting inference about a and p. Because (43) is the basis for 
inference, this method avoids common factor problems. AII short-run 
dynamics in r(L) are unrestricted, and so are 'structural' rather than 'error' 
dynamics: the Johansen procedure parallels the ECM procedure, but with the 
system complete. Conversely, the ECM procedure is a special case of 
Johansen's for a system in which the cointegrating vectors appear in only the 
equation of interest. Under that condition, it is valid to analyze only the 
equation of interest, as a conditional equation; cf. Dolado, Ericsson and 
Kremers (1989) and Johansen (1992a). 

VI. FINITE SAMPLE EVIDENCE 

To analyze the size and power of the DF and ECM tests, a set of Monte Cario 
experiments were conducted with (1) and (2) as the DGP. Without loss of 
generality, a; = 1. That leaves the parameters (s, a, b) and the sample size T 

THE POWER OF COINTEGRATION TESTS 337 

as experimental design variables, noting that s now is al/' This Monte CarIo 
study is solely meant to iIIustrate the common factor issue, so we chose a full 
factorial design of: 

(a, s)=[(1.0, 1), (0.5, 6), (0.5,16)] 

b = (0.0 [no cointegration], - 0.05 [cointegrationJ) 

T=20, (48) 

resulting in six experiments. The number of replications per experiment was 
N = 10,000, the first 20 observations of each replication were discarded in 
order to attenuate the effect of initial values, and new z's were generated for 
each replication. 

The parameter values were chosen with the following in mind. For a = 1.0 
(and so q = O), only s = 1 is considered, since the analytical resuIts in Sections 
III and IV imply exact or asymptotic inváriance of the statistics to s when the 
common factor restriction is val id. For a = 0.5, the values s = 6 and s = 16 
imply q = 3 and q = 8 respectively, with the latter very 'strongly' violating the 
common factor restriction. The two values of b, 0.0 and - 0.05, imply lack of 
and existence of cointegration respectively, although, in the latter case, the 
stationary root of the system is still large: 0.95. Finally, the sample size is 
small by most econometric standards, and implies a low power of the DF 
statistic for the nonzero value of b. 

Table 1 Iists rejection frequencies of the DF and ECM statistics under the 
hypotheses of no cointegration and cointegration. These rejection fre­
quencies correspond to size and power, provided the correct critical values 
are used. Panel s A and B of the table report rejection frequencies for one­
sided tests at two nominal sizes, 5 percent and 1 percent. For each, three criti­
cal values are examined: those from Dickey in Fuller (1976, Table 8.5.2, p. 
373) for T= 25, those of the normal distribution, and (for power) those esti­
mated from our Monte CarIo with b = O. The values of b and q appear at the 
top of the table: they define the experiments, and q in particular is important 
for the ECM statistic. 

In Panel A (5 percent critical values) under 'no cointegration', rejection 
frequencies for tOF are virtually unchanged as q varies, in line with the 
invariance result. With the Dickey-Fuller critical value, the rejection 
frequency for tECM matches that of tOF for q = O, and shrinks to well below the 
nominal rejection frequency for large q (e.g., 3.5 percent for q = 8). With the 
Gaussian critical value, the rejection frequency for tECM is 9.5 percent for 
q = O, approximately double the nominal value, and tends toward the nominal 
value for large q. Such over-rejection Iimits the use of Gaussian critical values 
in practice. 

In Panel A under 'cointegration', the power of the DF statistic is approxi­
mately 10 percent, whether with Dickey-Fuller or estimated critical values. 
As expected, its power is insensitive to q and to the choice of critical value. 
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TABLE 1 
Rejection Frequencies and Estimated Means Of the Statistics 

No cointegration: b = 0.0 Cointegration: b = - 0.05 

q q 
Critical value 
and statistic O 3 8 O 3 8 

A. Rejection frequency at the 5 percent critical value (in percent) 

Dickey-Fuller ( -1.95) 
DF 5.4 5.6 5.4 9.6 10.3 10.1 
ECM 5.4 4.1 3.5 9.9 50.2 91.6 

Gaussian (-1.645) 
DF 9.4 9.5 9.7 17.3 18.1 17.4 
ECM 9.5 7.2 6.4 17.3 60.6 94.3 

Estimated l 

DF [-2.01] [-2.03] [-2.02] 8.2 8.9 8.8 
ECM [ -2.02] [ -1.88] [ -1.80] 8.6 52.4 92.9 

B. Rejection frequency at the 1 percent critica! va!ue (in percent) 

Dickey-Fuller ( - 2.66) 
DF 1.1 1.3 1.2 2.1 2.1 2.3 
ECM 1.3 1.2 0.9 2.3 30.2 82.8 

Gaussian ( - 2.3 26 ) 
DF 2.5 2.7 2.4 4.5 4.7 4.6 
ECM 2.6 2.1 1.7 4.5 39.2 87.3 

Estimated l 

DF [-2.76] [ -2.80] [-2.77] 1.6 1.6 1.7 
ECM [ -2.80] [ -2.76] [-2.62] 1.7 27.9 83.4 

C. Estimated means of the statistics2 

mean(tDF ) -0.34 -0.38 -0.37 -0.95 -0.96 -0.95 

mean(tECM ) -0.34 -0.13 -0.04 -0.93 -2.09 -5.08 

r/J2 0.0 0.0 0.0 -0.71 -2.24 -5.70 

Notes: 
I Under the null of no cointegration, Monte Cario estimates of the critica! values are 

reported, in square brackets. Under the alternative, rejection frequencies are reported. The 
estimated critica! values used for the DF statistic are the averages of those obtained under the 
null: - 2.02 for 5 percent and - 2.78 for 1 percent. The estimated critical values used for the 
ECM statistic are those obtained under the null, and they vary with q. 

2 Monte Cario standard errors on the estimated mean s are approximately 0.0 l. 
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The power of the ECM statistic for q = O is virtually identical to that of the 
DF statistic. However, as q increases, so does the power of the ECM statistic. 
At q = 8, its power is over 90 percent. The common factor restriction is 
disastrous for the Dickey-Fuller procedure in such instances. Conversely, the 
ECM procedure can gain markedly in power because it allows more flexible 
dynamics than the DF procedure. Panel B reports similar results at the 1 
percent critical value. 

Panel C lists the estimated means of tDF and tECM across experiments, and 
the approximate asymptotic mean of tECM ' which is y/J2. The estimated 
mean of the DF statistic appears invariant to q, as implied by Sections III and 
IV. Its estimated mean is more negative with cointegration than without 
cointegration, reflecting inter afia the negative noncentrality c(f K;)1 /2 in (31 ). 
The estimated mean of tECM is not invariant to q. Under the null of no 
cointegration, it tends to zero as q increases. With cointegration, the 
estimated mean of tECM is approximately y / J2, and becomes large and nega­
tiv~ as q increases. In these experiments, q = 3 and q = 8 appear quite 'large' 
for the mean of tECM ' but not for tail properties. That suggests using the 
Dickey-Fuller or related critical values for tECM rather than Gaussian critical 
values, in order to control size. 

VII. EMPIRICAL EVIDENCE 

This section tests for cointegration in Hendry and Ericsson's (1991 b) 
quarterly data on UK money demand to show how the DF and ECM 
statistics can differ empirically. The data are nominal MI (M), 1985 price total 
final expenditure (Y), the corresponding deflator (P), the three-month local 
authority interest rate (R3), and the (learning-adjusted) retail sight deposit 
interest rate (Rra). Below, lower case denotes logarithms. Hendry and 
Ericsson (1991b) describe the data in their appendix. Johansen (1992b) finds 
that m and P appear I( 2), and are cointegrated as m - p, which is I( 1). Thus, 
to avoid possible inferential complexities with I( 2) variables, we consider 
whether or not m - p, y, !J.p, R3, and Rra are cointegrated. 

The static regression of these variables obtains: -(m - p)t= -0.07 Yt+ 0.94 !J.Pt- 2.1 R3t+6.9 Rrat+ 11.8 (49) 

T=100[1964(3)-1989(2)) 0=9.646% dw=0.18. 

While direct statistical inference on the estimated coefficients in (49) is 
difficult, note that the income elasticity is negative, not positive; and the 
inflation elasticity is positive, not negative. Neither property is 'economically 
sensible'. Additionally, the two interest rate semi-elasticities are numerically 
quite different in absolute magnitud e, so an interest rate differential does not 
seem plausible as a measure of the opportunity cost. 
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The augmented Dickey-Fuller regression ADF(4) for the residuals w, 
from (49) is: 

4 

~W,= -0.182 W'-l + ¿ ~i~W'-i (50) 
(0.053) i=l 

T= 95 [1965(4)-1989(2)] a= 3.690% tADF = - 3.41. 

Here and in equations below, 'i denotes a generic coefficient, and standard 
errors are in parentheses. MacKinnon's (1991) 10 percent critical value for 
the DF statistic is - 4.25 for T= 95, so the variables do not appear 
cointegrated by this measure. Even so, the coefficient on W,_ 1 is negative and 
large numerically, implying a root of approximately 0.8. 

In the error-correction framework, the long-run relationship between the 
variables may be obtained by estimating an autoregressive distributed lag in 
the variables and solving numerically for that long-run solution. Estimating 
the fifth-order autoregressive distributed lag for m - p, y, ~p, R3, and Rra 
obtains this long-run solution: 

(m -p),= 1.10 y,-7.4 ~p,-7.3 R3, + 7.2 Rra,-0.8 (51) 
(0.27) (1.8) (1.2) (0.7) (2.9) 

T= 100 [1964(3)-1989(2)]. 

The long-run income elasticity is near unity, and inflation has a strong 
negative long-run effect. Further, the interest-rate coefficients are nearly 
equal in magnitude, opposite in sign, so in the long run, interest rates appear 
to matter only through the net interest rate (R3 - Rra, denoted R*). 

Re-estimating the autoregressive distributed lag as an error-correction 
model obtains: 

~ 4 

~(m-pL= -0.149 W'-l + ¿ ~i~(m-pL-i 
(0.023) i=l 

4 

+ ¿ ~¡'(~Y'-i' ~2 P'-i' ~R3'_i' ~Rrat-i) (52) 
i=O 

T= 100 [1964(3)-1989(2)] a= 1.320% tECM = - 6.39, 

where the lagged residual from (51) is now W,_ 1, the error-correction termo 
Even in this highly over-parameterized model, the ECM statistic exceeds 
MacKinnon's (1991) DF 1 percent critical value of - 5.18. The equation 
standard error in (52) is far smaller than that in (50), implying that the 
common factor restriction in (50) is invalid [COMFAC X2(20) = 64.6]. 

The contrast between the DF and ECM statistics is robust to the choice of 
lag length and to whether or not long-run price homogeneity is imposed. 
Further, results from system analysis match the ECM results aboye. For a 
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corresponding vector autoregression, Ericsson, Campos and Tran ( 1991 ) test 
and strongly reject the null of no cointegration in favor of one cointegrating 
vector, using Johansen's (1988, 1991) procedure. The system estimate of the 
first cointegrating vectoris (1, - 0.77,5.67,5.82, -7.72), close to that in (51), 
noting that signs on unnormalized coefficients reverse. The first column in 
the estimated weighting matrix a is ( - 0.22,0.00,0.04,0.07,0.01)', consistent 
with weak exogeneity of ~p, y, R3, and Rra in the money equation for the 
cointegrating vector. That exogeneity permits valid conditional inference in 
the money equation, such as with the autoregressive distributed lag aboye. 

The ECM statistic in (52) contains an estimated cointegrating vector, so 
the appropriateness of MacKinnon's tables for this tECM is as yet a conjecture, 
albeit a natural one. As an alternative, consider Hendry and Ericsson's 
(1991b) equation (6) - a constant, parsimonious simplification of an auto­
regressive distributed lag in the money demand variables: 

....----...... 
~(m -p),= -0.69 ~p,-0.17 ~(m -p-Y)'-l -0.630 Ri (53) 

(0.13) (0.06) (0.060) 

- 0.093 (m - p - Y)'-l + 0.023 
(0.009) (0.004) 

T=100[1964(3)-1989(2)] a=1.313% tEcM =-1O.87. 

This equation imposes the long-run coefficients on prices and income, thus 
mirroring the analysis in Sections U-IV. While the error correction coefficient 
is somewhat smaller than before, the ECM statistic is even more highly 
significant than in (52). Prices and income have short-run elasticities of 0.31 
and zero respectively, which contrast with their unit long-run elasticities and 
imply substantial violation of the common factor restriction in (50). Hendry 
and Ericsson ( 1991 b, Section 4) further discuss the economic and statistical 
merits of (53). 

VIII. SUMMARY 

Over the last several years, testing for cointegration has become an important 
facet of the empirical analysis of economic time series, and various tests have 
been proposed and widely applied. This paper illustrates how a statistic 
based upon the estimation of an ECM can be approximately normally dis­
tributed when no cointegration is present, even though the equivalent DF 
statistic has a non-normal asymptotic distribution. With cointegration, the 
ECM statistic can genera te more powerful tests than those based upon the 
DF statistic applied lO the residuals of a static cointegrating relationship. 
These differences arise because the DF statistic ignores potentially valuable 
information - specifically, it imposes a possibly invalid common factor 
restriction. Phrased somewhat differently, a loss of information can occur 
from assuming error dynamics rather than structural dynamics. Both 
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empirical and Monte CarIo finite sample evidence support these analytical 
results. 
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APPENDIX: ASYMPTOTIC DISTRIBUTIONS 

This Appendix derives asymptotic distributions under a local altemative of 
cointegration, following (e.g.) Phillips (1987b) and Johansen (1989). The 
DGP is (1 H 2) with b = ec / T - 1. The proofs proceed by rescaling summations 
to be O p( 1), applying the functionallimit results in Table A.1, and dropping 
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TABLEA.! 
Asymptotic Distributions of Sample Moments Under the Nul/ Hypothesis of 

No Cointegration 

Sample 
moment 

T-2~(y~)2 

T-2~Z~ 

T-2~z,y~ 

T-l~y~_le, 

T-l~Z'_IU, 

T-l~w'_le, 

T-l~y~_IU, 

T-l~Z'_le, 

T-1/2~~Z,_1 e, 

T-l~W'_le, 

T-2~W~ 

Brownian motion Altemative 
representation representation 

Basic relationships 

a 2f B2 , , 
a~f B~ 

a,auf B,B" 
a;fB,dB, (a;/2}[B,(I)L 1] 

a~f B"dBu (aU2}[B,,(1)2-1] 

a;f Be dB" (a;/2) [B,(l)2 -1] 

a,aufB,dB" 

a,aufB"dB, 

a,auf dBu dB, N(O, a;a~) 

Implied auxiliary relationships 

a,a,fB,dB, or (a-l) a,aufBudB, + a;fB,dB, 
a 2fB2 or (a-1)2a 2fB2+2(a-1)aafB B +a2fB2 el' uu EUUE fE 

Notes: ' 
1. The variable Yiis defined as: Y7 = I E¡. 

¡=o 
2. Because u, and E, are independent and e,=(a-l)u,+E" it follows that a,B,= 

(a - 1) a"B" + acB, and a, dB, =(a - 1) a" dB" + a f dB,. Likewise, under the local alternative, 
a"K, =(a -1) a"K" + a,K, and a, dK, =(a -1) a" dK" + a, dK,. 

3. Under the local alternative, three of the formulae in the table change: T-I~w'_le,~ 
a;f K, dB" T-l~W'_1 E,~ a,a,f K, dB" and T-2~W~ ~ a;f K;, with corresponding adjustments 
for their decompositions. 

terms of op( 1). Setting e = O obtains the distributions under the null hypo­
thesis of no cointegration. Distributions under the fixed alternative follow 
from Section 4.1. See Kremers, Ericsson and Dolado (1992, Appendix) for 
further details. 

Section I1l's notation for Brownian motion is used throughout. As a 
reference for the building blocks of the proofs, Table A.1 lists cor­
respondences between sample moments and limiting distributions under the 
null hypothesis. Correspondences under the local altemative follow from 
suitable replacement of 'B' by 'K'. See Billingsley (1968, Chapters 2 and 4), 
White (1984), Phillips (1986, Appendix; 1987a; 1987b; 1988), Phillips and 
Durlauf (1986), Phillips and Park (1988), Banerjee, Dolado, Hendry and 
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Smith (1986, Appendix), and Banerjee, Dolado, Galbraith and Hendry 
(1992) for derivation of the results in the tableo 

The DF Statistic. The DF statistic is: 

tOF = (l:w7_1 t 1/2 '(l:W'_ld w,/ae ) 

= c( T - 2l:w7_l/a;)I/2 + (T- 2l: w7_l/a;t 1/2.( T-1l:W,_1 e,/ a;)+ Op( T-1/2) 

(Al) 

See Dickey and Fuller (1979) and Phillips (1987a, 1987b) for details. From 
(Al), the (exact) distribution of tOF is invariant to the scaling of w" and so to 
the choice of a, aU. and a,. With no cointegration, the last line of (Al) 
simplifies to (f Be dBe)/J(f B;), the 'Dickey-Fuller' distribution. 

The ECM Statistic. The OLS estimator (a by in (3) is: 

(A2) 

Substituting the definition of dy, into (A2) and pre-multiplying by the matrix 
diag( T 1/2, T) obtains: 

(A3) 

The rates of convergence for a and b imply that: 

a; = l:i;¡( T - 2). 

= a; + Op( T-1 /2). (A4) 

By partitioned inversion of the matrices involved in calculating tECM ' and 
applying the limit results in Table A.1 under the local alternative, the ECM 
statistic is: 

tECM = blese(b) 

= c( ael aE ) (T - 2l:w7_11 a;)l/2 + (T - 2l:w7_1 )-1/2( T-1l:w,_1 e,/ a
E

) 

THE POWER OF COINTEGRATION TESTS 

~ c( 1 + q2)1/2(f K;)I/2 + (f Ke dB,)/J(f K;) 
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21/2(f 2)1/2+ (a-1)fK"dB,+s-lfK,dB, 
~ c(l + q) Ke J[(a-1)2f K~ + 2(a-1) S -If K"K, +s 2f K;]' 

noting (16) and the relation between e" u" and e, (and so between K" Ku, 
andK.). 

U nder the null hypothesis, (A5) simplifies to (15), which itself can be 
written as (17) when a~ 1 and as the Dickey-Fuller distribution (13) when 
a = 1. Equations (A3) and (15) correct Banerjee, Dolado, Hendry and Smith 
( 1986, Theorem 4). 

Under the local alternative, (A5) simplifies to (Al) when a= 1. When 
a ~ 1, (A5) can be reparameterized in terms of e and q alone, rather than in 
terms of e, a, and s: 

tECM ~ c( 1 + q2)1/2([q2/( 1 + q2)]f K~ - 2[q I( 1 + q2)]f KuK, +( 1 + q2)-1 f K;)l/2 

f K" dB,- q-If K, dB, 
+J[f 2 2 -lfK K + 2fK2) , K,,- q '" q , 

(A6) 

noting that (1 + q2) K; = q2 K~ - 2qKuK, + K;. In order to obtain a 'large-q' 
approximation without having tECM -+ - 00, we hold c( 1 + q2)1/2 constant 
while expanding in q. Thus, we define a new parameter y, which is: 

y=c(1+q2)1/2. (A7) 

For large q and constant y, (A6) simplifies to: 

tECM~ y(f K~)1/2 +(f Ku dB,)/J(fK~) + Op(q-I). (A8) 

Derivation of the distribution of (A8) parallels Phillips and Park (1988, p. 
114, Proof of Theorem 2.3). The bivariate Brownian motion (B" KJ' is 
defined on a probability space, denoted (Q, F, P). Let Fu denote the sub a-
field of F generated by Ku. Then the second term on the right-hand side of 
(A8) is a standardized normal distribution, conditional on Fu (and also 
unconditionally). Thus, tECM is itself approximately conditionally distributed 
as a standardized normal variate: 

tECM 1"~N(y(fK~)1/2, l)+Op(q-I). (A9) 

In essence, (A9) is conditional on {u,}, and so on {z,}. 
Under the null hypothesis, y = O so tECM is both conditionally and uncondi­

tionally asymptotic N(O,l), to Op(q -1), from Phillips and Park (1988). 
Comparison of the unconditional distributions of tECM and tOF under the 
local alternative requires several steps. 
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First, note that the distribution of tOF in (Al) is invariant to q. Thus, for 
given values of T, e, and its critical value, tOF has a given power, p* (say). 
Second, (fK;)1/2 in (A9) is non-negative; and, for any O( 1 ~ O> O), there 
exists a 'IC > O such that: 

Prob[(fK~)1/2~ 'IC]> 1- O. (AlO) 

Third, note that e is negative; and y in (A9) is e(l + q2)1/2, which is O(q). 
Now, consider a critical value for tECM equivalent to that for tOFo For sorne q 
large enough, y(f K~)1/2 [and so tECM itself] is more negative than that critical 
value with probability arbitrarily close to unity. Thus, for large q, tests using 
tECM have greater power than those using tOFo 

An approximation to the unconditional mean of tECM helps in analyzing 
the Monte Cario simulations: 

(A11) 

The two approximations arriving at y[E(f K~)P/2 are standard. The deriva­
tion of E(f K~) proceeds as follows. 

The integral f K;, can be generated as the large-T limit of T-2"i:.~;/a~ for 
the process: 

(A12) 

where p = eclT, e < O, and ~o = O. Without loss of generality, a~ = 1. For any 
t>O, 

E(~n=(l- p2t)/(1- p2) 
=(1- e2ctIT)/(1- e2clT ) 

by repeated substitution of (A12). Thus, it follows that: 

App.lyingL'Hopital's rule (as T- 00), the large-sample limit of (A14) is: 

limT_coE(T-2"i:.~n=(e2c-1- 2e)/(4e2). 

(A13) 

(A14) 

(A15) 

Applying L'Hopital's rule again (this time as q - 00 and so as e - O) obtains: 

lime_o limT_ co E( T-2"i:.~n = lim,_oe 2c/2 = 1/2. (A16) 
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