
This document is published in:

Robotics and Autonomous Systems (2012), 60 (12), 1607–1624.
DOI: 10.1016/j.robot.2012.09.019

© 2012 Elsevier B.V.

http://dx.doi.org/10.1016/j.robot.2012.09.019

A behaviour-based control architecture for heterogeneous modular,
multi-configurable, chained micro-robots

A. Brunete 1, M. Hernando 2, E. Gambao 2, J.E. Torres 2
1 Universidad Carlos III de Madrid, Av. Universidad, 30, 28911 Leganés (Madrid), Spain
2 Robotics and Cybernetics Group, Centre for Automation and Robotics (CAR), UPM-CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain

Keywords: Modular, Multi-configurable, Heterogeneous, Behaviour-based, Control Architecture

Abstract: This article presents a new control architecture designed for heterogeneous modular, multi-configurable, chained micro-robots. This
architecture attempts to fill the gap that exists in heterogeneous modular robotics research, in which little work has been conducted compared to that in
homogeneous modular robotics studies. The architecture proposes a three-layer structure with a behaviour-based, low-level embedded layer, a half-
deliberative half-behaviour-based high layer for the central control, and a heterogeneous middle layer acting as a bridge between these two layers. This
middle layer is very important because it allows the central control to treat all modules in the same manner, facilitating the control of the robot. A
communication protocol and a module description language were also developed for the control architecture to facilitate communication and
information flow between the heterogeneous modules and the central control. Owing to the heterogeneous behaviour of the architecture, the system can
automatically reconfigure its actions to adapt to unpredicted events (such as actuator failure). Several behaviours (at low and high levels) are also
presented here.

1. Introduction

The control architecture described in this article was designed
for chained, modular micro-robots. These micro-robots are com-
posed of different types of drive module (heterogeneous modules)
that can be arranged in different configurations, a feature called
multi-configurability. Thus, a robot can be manually assembled in
different configurations depending on the chosen task. Because
this architecture was designed for the robot MICROTUB [1], it will
be called MICROTUB architecture.

Heterogeneous modular robots are robots composed of differ-
ent types of module and are called n-modular [2], where n is the
number of different modules. Conversely, homogeneous modular
robots are robots composed of one single type of module. ‘‘Chain’’
means that the modules are connected in a row, as opposed to ‘‘lat-
tice’’ robots in which modules can be connected in a lattice.

E-mail: abrunete@ing.uc3m.es, alberto.brunete@gmail.com; (A. Brunete), miguel.hernando@upm.es (M. Hernando), joseemilio.torres@upm.es (E. Gambao),
ernesto.gambao@upm.es (J.E. Torres).

Most modular robot designs are homogeneous [3–8], at least
in a locomotive sense. Polypod [9] and I-Cubes [10] are composed
of two types of module, one of which is passive and mainly
functions to carry the power supply. Molecules [11,12] feature two
different modules that perform the same type of movement. Thus,
there is a lack of heterogeneous drive modules. Consequently,
there is no clear state of the art regarding heterogeneous chained,
modular robots. The closest robot to the state of the art relies on
homogeneous modular robot architectures.

Chain-type robots have several features of bio-inspired robots
that also suggests the incorporation of biologically based be-
haviours into their architecture. Behaviour-based architectures
are specifically appropriate for the design and control of semi-
autonomous artificial robots based on biological systems (be-
cause biological models often serve as the basis for the design of
behaviour-based robotic systems [18]), for modular robots and for
systems integrating both low- and high-level control [19].

Among homogeneous modular robot architectures, three of
them have been found to be of special interest: CONRO [13,5],
PolyBot [14,15] and M-TRAN [16,17]. All of these feature control
algorithms for distinct locomotion modes. CONRO presents the
concept of hormones, which are special messages that can trigger
different actions in different modules.

M-TRAN presents a distributed control and a three-layer
architecture with a low-level middle layer for communication
and high-level control (used for reconfigurations). PolyBot
presents the attribute/service model, which is specially designed
for complex tasks that require communication between different
modules.

Regarding behaviour-based architectures, apart from the well-
known Motor Schemas [20], Activation Networks [21] or DAMN
[22], it is necessary to mention CAMPOUT [23,24], which is a very
interesting architecture because it integrates different types of
behaviour (e.g., primitive, composite, communication and
coordination) and different arbitration mechanisms (e.g., priority-
based, state-based, voting and fuzzy). It is a clear example of the
great flexibility that enables the use of behaviour-based
architectures. Recent publications like [25,26] (presenting the
iB2C architecture) show the relevance of behaviour-based control
architectures.

1

(a) Real.

(b) Simulated.

Fig. 1. Micro-robotic modules.

The architecture proposed in this paper attempts to combine
some of the previously presented concepts with some new
features, thus providing a control solution for chained, modular
robots composed of different types of module (heterogeneous
modules). These new features include amiddle layer similar to that
ofM-TRAN’s, butwith someheterogeneous capabilities that permit
the triggering of similar actions in different modules (as opposed
to CONRO’s hormones), a communications model that allows
heterogeneous modules to communicate amongst themselves and
to communicate its capabilities, and a set of behaviours to cover
low- and high-control layers.

The MICROTUB architecture is mainly based on behaviours and
is divided into three layers: a low-control layer that is embedded in
the modules and makes decisions for the modules, a high-control
layer that makes decisions that concern the entire robot, and a
heterogeneous middle layer that acts as an interpreter between
the central control and the modules. The heterogeneous layer is
particularly important because it allows the central control (CC) to
treat all modules in the same manner, thus facilitating the control
of the modules.

Because it is not desirable to reprogram each module every
time a new configuration or a new task is chosen, the control
architecture provides a mechanism for the CC and the modules
to know the current configuration of the micro-robot and behave
according to this configuration. Thus, the robot can be manually
assembled into different configurations (depending on the task),
and it will be able to perform the most appropriate movements
and coordinate sensors and actuators. Because of this control
architecture, the robot is controlled as a whole, and it can receive
simple and complex commands (e.g., go, stop, turn and explore)
and execute them irrespective of its configuration. There is no
need to send specific commands to each module every time. Every
module can perform individual actions and react in a different
manner to the same commands.

Two features of the architecture are of special relevance: the
module description language (MDL) and the offline control. MDL
has been developed to describe the capabilities of the modules
(both the movements that they can perform and sensors that they
may have). Because of MDL, each module can report to the CC
what it is able to do (their capabilities, e.g., rotate, push forwards,
measure temperature and measure distance), and the CC can set
up actions for the entire robot.

Offline control permits the development of rules andmovement
patterns based on the optimisation of the movements of the
heterogeneous configurations of the robot while running in a
simulator that is specifically designed for the type of robot and has
been previously validated with real data.

This architecture has been tested in the robot MICROTUB
(Fig. 1), a chained, modular micro-robot designed for pipe
and small cavity exploration, in which the following modules
have been developed: rotation, support, extension, helicoidal,
and camera/contact [1]. These modules allow for different
movements such as snake-like, worm-like, helicoidal-driven and
any combination of these. The MICROTUB robot is described in
Section 2.

Section 3 provides an overall description of the architecture,
and the three layers of the architecture will be explained in
Sections 4–6. Section 7 is dedicated to the offline control and
the simulation. Finally, in Section 8, sample applications of the
architecture in different situations are provided.

2. Robot description

MICROTUB is a semi-autonomous multi-configurable micro-
robot for small-diameter pipe inspection and maintenance. It has
been designed to explore pipes with a camera to detect breakages,
holes, leaks and any type of defect [27]. This micro-robot is
composed of different modules, each of which performs a different
task. Thus, multi-configurability is an essential characteristic that
allows these modules to be easily interchanged depending on the
task, without the need for reprogramming the micro-robot.

2

Fig. 2. Module description chart.

The different types of module developed (Fig. 1) will be briefly
described next, but more information can be found in [28,1]. The
diameter of each module is 27 mm. The thickness of some parts is
less than 1 mm. Fig. 2 shows a chart comparing the dimensions of
all of the modules.

The micro-robot is heterogeneous and modular, meaning that
it is composed of different types of active (they are able to move)
and passive (they have to be acted on) modules.

To assemble them together, a common interface has been built.
This interface allows for the mechanical and electrical connection
between modules. The electrical bus is composed of eight wires:

• Power (5v) and ground.
• I2C communication: data and clock.
• Two synchronism lines (in and out) for low-level communica-

tion between adjacent modules (some examples of its use can
be found in Sections 4.1.6 and 5.2).

• Two auxiliary lines for general purposes (for example, to
transmit the video signal from the camera).

Eachmodule includes an electronic control board that performs
the following tasks: control actuators, communication via I2C or
with adjacent modules, manage several types of sensor, auto-
protection and adaptable motion, self-orientation detection, and
low-level embedded control.

The different modules of the micro-robot have to be manually
assembled at the beginning owing to the characteristics of the
mechanical connectors. The use of electromechanical latches or
magnets (as in [16,14]) for future modules so that they are able
to attach and detach by themselves is being considered.

2.1. Camera/Contact module

This module plays two roles. First, as a camera, it is used
to acquire information about the environment and detect holes,
breakages or cracks in the pipes. Second, as a contact sensor, it is
able to determine whether the micro-robot is facing an obstacle.

The module features a 320× 240 pixels composite video CMOS
B&W camera, which permits the visualisation of the inner part of
a pipe, and three contact sensors, which permit the detection of
obstacles.

3

Fig. 3. Hardware architecture description.
Fig. 4. Control layers.

2.2. Rotation module

The rotation module is a two-degrees-of-freedom (DOF)
module that allows rotations in the horizontal and vertical
planes. A combination of these modules can perform undulatory
movement (snake-like) that makes the robot move forwards. It is
composed of two commercial mini-servomotors.

2.3. Inchworm modules

Two modules have been developed to perform inchworm
(or worm-like) movements: an extension module and a support
module. The inchworm mode of locomotion allows the robot to
manoeuvre in small spaces. Another advantage of this kind of
motion is that the robot manages to maintain a firm grip on the
surface at all times. The support module is used to fix the micro-
robot to the pipe; thus, this module does not move. The extension
module is used to extend the robot (make it go forwards) and to
allow it to turn right and left.

2.4. Helicoidal module

The helicoidal module was designed to be a fast-drive module
able to push othermodules. It is composed of two parts: a body and
a rotating head.

When the head turns, it goes forwards in a helicoidalmovement
(helped by the distribution of thewheels that form a 15° anglewith
the vertical) that pulls the body of the micro-robot forwards. The
wheels of the body help to keep themodule centred in the pipe and
prevent the body from turning.

2.5. Other modules

Some othermodules that have been designed (but not built) are
the traveller module, the sensor module and the battery module.
The traveller module is used to compute the travelled distance
by using several wheels featuring encoders and an appropriate
algorithm. It has been specially designed for pipes. At any time, at
least one of the wheels is in contact with the pipe. The algorithm
computes the measurements from all wheels and outputs an
estimated distance.

The sensor module is a passive module that includes different
types of sensor, such as temperature and humidity sensors.

A battery module has also been developed, but it must
be improved to provide the necessary power supply to drive
several modules for a reasonable period of time. Currently, the
micro-robot requires a cable connection for both the power
supply and video transmission.

3. Overview of the control architecture

3.1. Physical layout

The hardware architecture is shown in Fig. 3; the modules hold
an embedded control board, and they are connected via the I2C bus.
A PC holding the CC is connected through an interface board to the
I2C bus. Modules are also connected to their neighbours through a
wire (synchronism line).

3.2. Layer structure

For the proposed architecture, a semi-distributed control has
been chosen. It has a behaviour-based central control planner that
makes decisions for the entire robot and an embedded behaviour-
based control in every module that is capable of reacting in real
time to unpredicted events. There is also an interpreter acting
between the CC and the embedded behaviours: the heterogeneous
agent.5 The heterogeneous agents of all modules form the
heterogeneous layer, which is called a middle layer because it
acts between the CC (highest-level layer) and the onboard control
(lowest-level layer). Regarding the physical layout, control is
divided in (Fig. 4) as follows:
• CC: It could be a PC or one of the modules. Currently, it is

a PC, but it could be one of the modules to make the robot
autonomous. It includes the following layers:
– High-control Layer: controls the robot as a whole. It collects

information from the modules, processes it, and sends
information about the situation and state of the robot, as well
as commands with objectives, to the modules. It also helps
the modules to make and coordinate decisions. The high-
control layer is also in charge of planning and is composed of
several parts, including an inference engine and a behaviour-
based control.

• Onboard Control: it is embedded in each module and is based
on behaviours. It includes the following layers:
– Heterogeneous (Middle) Layer: agent that translates com-

mands coming from the CC into specific module commands.
For example, it translates the command ‘‘extend’’ into servo-
motor movements.

– Low-control Layer: composed of behaviours. It allows
modules to react in real time (for example, to sense external
and internal stimuli, such as overheating and unreachable
positions, and adapt to the pipe shape) and to perform tasks
that do not require the CC (e.g., movements, communication
with adjacent modules and simple tasks).

5 This interpreter was first thought to be a behaviour, but for clarity, it was
renamed as ‘‘interpreter’’.

4

Fig. 5. I2C frames.

Table 1
Types of parameters.

Name Code Size Range Coding

Angle 1 1 byte [−90°..90°] Binary
Enum 2 1 byte [0..255] Binary
String 3 n + 1 bytes – n + 1 characters
Value 4 2 bytes [0..65535] Binary
Bool 5 1 bit – Binary
ModuleID 6 1 byte {r, e, s, h, c} Binary
MDL 7 String – Binary

A behaviour may have several definitions. Simply put, a
behaviour is a reaction to a stimulus [18]. Mataric [29] defines
behaviours as processes or control laws that achieve and/or
maintain goals. For example, ‘avoid-obstacles’ maintains the goal
of preventing collisions, and ‘go-home’ achieves the goal of
reaching some home destination. Within the framework of this
paper, a behaviour is considered an independent procedure or
function that is in charge of a specific task. Behaviours may have
states or be influenced by the state of the module.

3.3. Command exchange protocol

The command exchange protocol is used for communication
between modules and the CC. It is based on I2C upon which the
message structure is built, as shown in Fig. 5. To be transmitted
throughout the I2C bus, messages have to be formatted into the
I2C format.

The two bottom layers of the protocol are the physical and data
link layers of the I2C protocol. The application data layer, which is
responsible for composing the messages to be sent to the modules
and the central control, is built over these two layers. In this layer,
I2C messages are structures composed of three fields: address,
instruction and parameters (depending on the instruction, an I2C
message may have none, one or several parameters). Each module
has a pre-defined address assigned when it is programmed (from 0
up to 63): 63 is for the CC, 0 is for broadcast messages and 1–62 are
for the modules. Parameters are codified in the following manner:
the first byte codes for the parameter (it is also used to determine
the length of the bytes that follow), and the following bytes code for
information. Parameters are shown in Table 1. Finally, instructions
can be divided as follows (see Fig. 6):

• Low-level commands (LLCs): messages sent from the CC to the
modules. According to the processing of the messages in the
module, LLCmessages can be divided into the following levels:

Fig. 6. HLC and LLC commands.

– LLC level 2 (LLC2): they do not have to be translated by the
heterogeneous layer.

– LLC level 1 (LLC1): they have to be translated by the
heterogeneous layer.

• High-level commands (HLCs): messages sent from the operator
to the central control.

3.3.1. LLCs
LLCs are commands sent by the CC to the modules and the

answers to these messages. Currently implemented LLC1 and LLC2
commands are shown in Tables 4 and 5 (at the end of the article),
respectively. The parameters of SIM (Send Info of the Module),
AIM (Answer Info of the Module), SIE (Send information of the
Environment) and AIE (Answer information of the Environment)
commands (in Table 5) are shown in Table 7 (also at the end of the
article).

3.3.2. HLC
HLCs are commands that can be sent to the CC by the operator

to perform a specific task. The commands are specified in Table 6
(at the end of the article).

RPL parameters are composed of a first value, which indicates
the type of position (Table 8 third column), plus the coordinates
[(x, y, z)] in millimetres (three integers) (when needed). The DO,
SIR, AIR, SIE and AIE parameters are shown in Table 8.

3.4. Module description language (MDL)

MDL is a language created to describe the capabilities of one
module to the CC and other modules [30].

MDL is essential for inferring functions or skills for the entire
robot from the module features through rules and inference
engines. With MDL, it is possible to create units (groups of
modules) that are able to perform more complex tasks.

MDL is useful for developing new behaviours by combining
module skills. It is based on a series of indicators that describe
the tasks that the module can perform and a range of values that
indicate the level of performance for each indicator.

Default MDL values are assigned in the design phase, but it is
important to note that module MDL indicators are dynamic and
that they may vary during the development of a task. Thus, MDL
indicators canmalfunction or even stopworking in themodule. For
example, the servomotor of a module may become stuck and may
be able to turn only a percentage of its nominal range of motion.
When themodule detects this, it can communicate the issue to the
robot via MDL commands.

3.4.1. Indicators
Indicators are presented in Table 2. Extend/contract refers to

the capability of a module to increase or decrease its length. By
contrast, support refers to the capability of a module to become
fixed to the pipe.

Push in pipe indicates that the module can go forwards by
itself inside a pipe, whereas Push in open air refers to large spaces
(including large-diameter pipes).

5

Table 2
MDL indicators.

Position Acronym Name

1 Ext Extend/contract
2 Sup Support
3 Push_pipe Push in pipe
4 Push_flat Push in open air
5 RotX Rotate in its x axis
6 RotY Rotate in its y axis
7 RotZ Rotate in its z axis
8 Att Attach/detach to/from other modules
9 Sense_front Sense proximity front

10 Sense_back Sense proximity backwards
11 Sense_side Sense proximity lateral
12 Sense_temp Sense temperature
13 Sense_humi Sense humidity
14 Sense_grav Sense gravity
15 Grab Grab
16 Drill Drill
17 PS Power supply

Table 3
MDL values.

Value Indicator

0 No competence for that skill
1 Little competence
2 Medium competence
3 Good competence

Rotate in its x/y/z axis means it has a DOF along that axis.
Attach and Detach to/from other modules is designed for self-

reconfigurablemoduleswith active links (SMAs or electromechan-
ical latches) [31,32].

Sense proximity front/backwards/lateral refers to any sensor
that may detect obstacles. Sense temperature/humidity refers to
the capacity for measuring temperature/humidity. Sense gravity
indicates that it has accelerometers.

Grab indicates that it is able to grab objects. Drill indicates that
it is able to make a hole.

Power supply indicates that it has a power supply to share.

3.4.2. Values
Each indicator is associated with a value that indicates the level

at which the module can perform such a task (Table 3). This value
is divided into four levels from 0 to 3 (from no competence to good
competence).

3.4.3. Packaging
The values corresponding to each module are packed into a

single structure—an array ranging from 0 to 3. For example, for the
rotation module, it would be:

MDL (Rot_mod) = [00003300000003000]

and for the helicoidal module:

MDL (Heli_mod) = [00310000000000000]

4. Low-control layer

This section is dedicated to the behaviour-based control
programs running in each of the modules, also called the low-level
control.

All behaviours running in the modules6 share some common
characteristics. Their goals can be to perform an activity, to attain a
goal or to maintain some state. Behaviours encode time-extended

6 Not all behaviours are implemented in all modules.

Table 4
LLC1 commands.

Acro Instruction Description/remarks Param

MS1 Move servo 1 Indicates the position of
the servo 1

Angle

MS2 Move servo 2 Indicates the position of
the servo 2

Angle

GS1 Get value servo 1 Demands the position of
the servo 1

None

GS2 Get value servo 2 Demands the position of
the servo 2

None

EX Expansion For extension/support
module

None

CT Contraction For extension/support
module

None

INH Inchworm
position

Indicates the position in
the inchworm gait: first
support (1), extension (2)
or second support (3)

[1..3]

GP Get position To demand what is the
position in the chain

None

GPS Get position start Chain identification phase
starts

None

GPF Get position
finish

Chain identification phase
ends

None

MDS MDL phase start MDL phase starts None
MDF MDL phase finish MDL phase ends None
SPT Split Detach from the previous

module
None

ATT Attach Attach to the previous
module

None

SS1 Sendvalue servo 1 Send the value of servo 1 Angle
SS2 Sendvalue servo 2 Send the value of servo 2 Angle
TS Touch sensor It points out that the

touch sensor has been
activated

Enum

TSF Touch sensor final The elbow mode is over None
PC1 My position in

chain is first
Answers from all modules
in the chain but the last

Module ID (r, e, s, etc.)
or MDL parameters

PCL My position in
chain is last

Answer from the last
module

Module ID (r, e, s, etc.)
or MDL parameters

Table 5
LLC2 commands.

Acro Instruction Description/remarks Param

MO1 1D sinusoidal gait Vertical sinusoidal movement None
MOS Serpentinemovement Horizontal sinusoidal

movement
None

MRO Rolling Lateral movement None
MSW Sidewinding Lateral movement None
TUR Turning Arc movement None
TUP Turning in pipe Pushing against the wall None
MWOMove inchWOrm Inchworm gait None
MHE Move HElicoidal Move pushing forwards None
RTC Reset time counter For synchronisation None
STP Stop Stop the module None
RST Restart Restart the module None
CM Change mode To change the working mode Enum
PO Polling Anybody has something to say? None
SIE Send information of

the environment
The information demanded
will be specified by the
parameters

Enum

SIM Send info of themodule Consumption, orientation, etc. Enum
SYC Sendyour capabilities Say what you can do: MDL None

AMC Answer:my capabilities MDL specific capabilities String
AIE Answer information

of the environment
Sends the information
demanded

Enum+ value

AIM Answer: info of the
module

Consumption, orientation, etc. String

– Answer to the
polling message

It depends on the module –

processes (not atomic actions) in a relatively simple manner, are
introduced into the system incrementally, from the simple to the
more complex, and can be concurrently executed. Their inputsmay

6

Table 6
HLC commands.

Acro Instruction Description/remarks Param

STP Stop Refers to the whole robot None
RST Restart Refers to the whole robot None
RPL Reach a place Go to the end of a part of the

pipe, go to the next
bifurcation, go to a specific
coordinate, etc. The place will
be specified by the parameters

Enum+ value

DO Do a task Repair, make a hole, etc. The
task is specified by the
parameter

Enum

EXP Explore None
SIR Send information of

the robot
The information demanded
will be specified by the
parameters

Enum

SIE Send information of
the environment

The information demanded
will be specified by the
parameters

Enum

AIR Answer information of
the robot

Sends the information
demanded

Enum+ value

AIE Answer information of
the environment

Sends the information
demanded

Enum+ value

Table 7
SIM and AIM, SIE and AIE parameters.

ID SIM and AIM parameter SIE and AIE parameter

1 Average consumption Temperature
2 Consumption peaks Humidity
3 Number of working motors Picture
4 Orientation
5 Distance covered
6 State of the batteries
7 State of contraction/extension

Table 8
SIR, SIE and RPD parameters.

ID SIR and AIR SIE and AIE RPL DO

0 Coordinates
1 Average consumption,

mA (1 integer)
Temperature
(1 integer)

The end of this
part of the pipe

Repair

2 Consumption peaks,
mA (1 integer)

Humidity
(1 integer)

The next
bifurcation

Make
a hole

3 Working modules, array of
module IDs (string)

Picture
(TBD)

Until you touch
something

4 Orientation, degrees, (3 angle) Home
5 Distance covered, millimetres

(1 integer)
6 State of the batteries, ok or

no ok, (bool)

come from sensors or from other behaviours, and their outputs
may go to actuators or to other behaviours.

Generally, behaviours can be described as shown in Fig. 7. The
activation conditions are the only conditions that must be met for
a behaviour to run. If these conditions are fulfilled, the behaviour
will run. Some behaviours do not have activation conditions, and
they are always running. Some examples of activation conditions
are command (from CC or operator), enable signals from other
behaviours, and low battery signals.

Stimuli are the inputs of behaviours and include the position
of the module, position of the actuators, internal variables of the
modules (intensity, torque), and state of the module. Actions are
the outputs of behaviours and define what the behaviours intend
to do, including modifying the position and orientation of the
module, blocking the motors, retrieving module state or actuator
position. The outputs of behavioursmust be coordinated, as will be
explained in the following sections.

Fig. 7. Behaviour scheme.

All behaviours share the same information of the module
to which they belong, such as module ID, module capabilities,
position in the micro-robot, and working mode.

An interesting parameter is the working mode of a module,
which refers to the situation in which the module is normally
referring to environmental or system conditions or characteristics.
The working mode consists of information that the CC sends to the
modules after processing the information previously sent by the
modules to the CC after compiling data obtained from its sensors.
This workingmode indicates the environment in which themicro-
robot is working. The environment could be inside a pipe, open
air7 or general terrain. The working mode is information that is
essential for every behaviour of the module to perform its tasks.
Only some behaviours will make use of it.

4.1. Embedded behaviours

There are several types of behaviour, which have been classified
into several categories (as described in [18]) according to the
type and complexity of the tasks they perform. Some behaviours
perform simple tasks, whereas some are based on other behaviours
to perform more complex tasks.

The behaviours that have been defined are as follows:

1. Survival behaviours (seek to maintain the integrity of the
module): Avoid overheating, Avoid actuator damage, Avoid
mechanical damages.

2. Perceptual behaviours: (attempt to gather information about
the module and its environment): Self-diagnostic, Situation
awareness, Environment diagnostic.

3. Walking behaviours (move the module): Vertical sinusoidal
movement, Horizontal sinusoidalmovement,Worm-likemove-
ment, Push-Forward movement.

The execution of each behaviour is independent of that of the
others, and it is influenced by the situation and state experienced
at a particularmoment. Not all behaviours can act at the same time;
thus, they have to be coordinated.

A description of the implemented behaviours is given next,
followed by the coordination mechanisms.

4.1.1. Avoid overheating
The purpose of this behaviour is to make sure that the

accumulated heat is maintained under certain limits to prevent
circuit damage. For example, the heat produced in the coil of the
motors by the electric current may lead to the burning of the coil.
To avoid the overheating of the circuits, the electric current has to
be limited.

7 Open air can also be a wide pipe (a pipe with a large diameter) in which the
micro-robot can perform movements as if it were in the open air.

7

Fig. 8. Heat dissipation and absorption sketch.

The heat generated in the coil of the motor follows the Joule
effect formula. Part of this heat is transmitted to the environment,
and part of it is absorbed by the wire (increasing the temperature)
as shown in Fig. 8 and described by Eq. (1). Eq. (1) leads to Eq. (2),
where: RΩ is the electrical resistance in (�), i is the electrical
current in (A), tm is the temperature of the motor in (°C), te is
the temperature of the environment in (°C), Rth is the thermal
resistance (°C/W) and Cth is the thermal capacitance (W s/°C).

Qgenerated = Qdissipated + Qabsorbed (1)

RΩ · i2(t) =
tm(t) − te(t)

Rth
+ Cth ·

dtm(t)
dt

. (2)

In the Laplace domain, Eq. (2) is expressed as Eq. (3). To perform
a Laplace transformation, a variable change has been performed:
α(t) = I2(t).

RΩ · α(s) =
Tm(s) − Te(s)

Rth
+ Cth · Tm(s) · s. (3)

Thus, Tm, the temperature of the motor, which is the variable
that should be under supervision, can be obtained as shown
in Eq. (4).

Tm(s) =
Te(s) + Rth · RΩ · α(s)

1 + Rth · Cth · s
. (4)

Applying the Euler transformation s =
1−z−1

T , where T is the
sampling period, the following is obtained in the Z domain:

Tm(z)

=
T · Te(z) + T · Rth · RΩ · α(z) + Rth · Cth · Tm(z) · z−1

T + Rth · Cth
. (5)

Applying the inverse transform, the discrete time equation is
obtained as follows:

Tm[n]

=
T · Te[n] + T · Rth · RΩ · I2[n] + Rth · Cth · Tm[n − 1]

T + Rth · Cth
. (6)

The temperature of the environment is measured by a
temperature sensor; the electrical current is obtained from the
measurements of the sensors and the electrical and thermal
resistance; and thermal capacitance is considered to be constant.

The behaviour continuously monitors the temperature and
intensity, and when overheating in the servomotors is detected,
the motors are stopped immediately.

Fig. 9 shows the evolution of one of the servomotors of the
rotation module under different situations. In the beginning, the
servomotor performs a sinusoidal movement as part of a snake-like
movement, and the temperature increases to the normal working
temperature (from point A to point B). After a short pause (from B
to C), the servomotor is commanded to perform a movement that is
blocked; therefore, the temperature starts to increase dangerously

Fig. 9. Temperature evolution of one of the servomotors of the rotation module.

(from C to D). When the servomotor releases, the temperature
starts to decrease (from D to E), and when the servomotor is
commanded to perform the movement again, the temperature
again increases (from E in advance).

Thus, when the estimated temperature exceeds a certain limit
(50 ° C), the movement of the servo is stopped for safety reasons.

4.1.2. Avoid actuator damage
The purpose of this behaviour is to ensure that the torque of the

motors remains under certain limits to avoid damage to themotors
or actuators. If the torque exceeds a certain limit, the servomotors
are immediately released.

This purpose is achieved by keeping the instant current
intensity under a certain limit, which has been determined
experimentally. In Fig. 10, the servomotor is trying to move from
100° to 180°, but it is blocked at 135°. The consumption increases
very fast, and consequently it should be blocked below 120 mA. A
limit of 100 mA is a reasonable value in our case.

4.1.3. Avoid mechanical damages
This behaviour is in charge of the mechanical security of the

module, resolving any possible danger it may encounter owing to
improper use of the actuators.

One of the tasks that this behaviour controls is avoiding
mechanical singularities. Two types of singularity are considered:
those at the limits of the workspace of the robot and those inside
the workspace of the robot.

In the extension module, the behaviour avoids singular points
in the two crank-connecting mechanisms. Singular points are
produced, for example, when the links of each arm are aligned.
They are produced at angles of 25° (inside the workspace) and
147° (limit of the workspace). The smaller value cannot be reached
because of the mechanical configuration (see Fig. 11(a)), but
the communication of that position to the servomotor must be
prevented because it could break itself or the module trying to
reach it. The higher value can only be avoided by using software
(see Fig. 11(b)).

Because the movement of the end connector of the extension
module is limited by the sliding bar placed at the centre, there are
several combinations of the angles of the two actuators that are not
physically possible. Positions that must be avoided are computed
from the kinematic equations of each module.

The same effect occurs in the support module: singular points
occur when the two links are aligned. Additionally, as described
for the extension module, the mechanical design prevents that
position from being reached, but that position should also be
avoided.

All modules feature their specific implementation of this
behaviour and execute it when needed.

8

(a) Intensity. (b) Angle.

Fig. 10. Maximum servomotor consumption with blocking.

(a) Lower position. (b) Higher position.

Fig. 11. Extension module at its higher and lower positions.

4.1.4. Self-diagnostic
The purpose of this behaviour is to examine the functioning of

themodule:whether the actuators canmove,whether the levels of
intensity and torque are acceptable, whether the communication
bus is working, whether the synchronism line is functioning, or
whether the sensors are working correctly.

This behaviour records the setpoints (desired positions) of the
actuators and compares them with their real positions. If the
positions are not approaching (and there is no problem with the
torque and intensity, meaning it is not blocked), then there may be
a problem with the actuator, and an alarm state is activated and
communicated to the CC.

To verify the synchronism lines, in the configuration check
phase, the behaviour checks if the signals Sin and Sout have been
activated at any time. If not, there may be a problem, and an alarm
state is activated and communicated to the CC.

4.1.5. Situation awareness
This behaviour attempts to determine the position of the

module/micro-robot: inside a narrow pipe, a wide pipe, or open
air. It makes use of the contact sensors, infrared (IR) sensors, and
the intensity and torque control system of the servomotors, among
other sensors.

Through the IR sensors, the module is capable of determining
whether it is in an open environment or inside a pipe. If it is inside
a pipe, it can detect whether the pipe is wide or narrow.

The touch (and camera) module plays a very important role
because it features touch sensors to detect obstacles, which, in this
case, are elbows and bifurcations. Through the contact sensor, the

module can detect whether it has collided into something, and
other behaviours may act accordingly.

4.1.6. Vertical and horizontal sinusoidal movements
Modules with rotational DOFs can perform several movements

(some of them are similar to snake-like rolling, rotating, or lateral
shifting) based on a central pattern generator [33]. The position
of the actuators follows two sinusoidal waves: one for the vertical
actuators and one for the horizontal actuators (Eqs. (7) and (8)).

Θvi(t) = Av · sin(ωv · t + (i − 1) · φv) (7)
Θhi(t) = Ah · sin(ωh · t + (i − 1) · φh) (8)

where Θ is the angle of the actuator, A the amplitude, ω the angular
velocity and φ the phase. By changing the parameters, different
movements can be achieved (see [34–38]). There is a wave for the
vertical joints (Θv) and another one for the horizontals (Θh), and
each is managed by a behaviour.

There are twomethods to synchronise t . The first is by resetting
t for all modules simultaneously when a start sequence message
is received from the CC. This is the easiest method, but the
drawback is that modules may lose synchronisation. To avoid
this, a synchronisation message must be provided at regular time
intervals (i.e., every 2 s).

The second method is by using the synchronism line:

• the first module steps t and activates the output synchronism
line

• the second module detects the input line activated, steps t and
activates the output line

9

• and so on until the last module detects the input line activated,
steps t , activates its input line

• the penultimatemodule detects the output line activated, steps
t and activates the input line

• and so on.

Both methods have been implemented. The method that uses
the synchronism line is more accurate, but it cannot be used when
the synchronism line has to be used for other purposes. In such
cases, the other method must be used.

These behaviours are also in charge of executing turns. In open
spaces, turns are achieved by placing horizontal joints at a fixed
position at all times. The robot is shaped like an arc. The radius
of curvature of the trajectory can be modified by modifying the
degree of rotation of the horizontal joints.

Inside pipes, it is also possible to negotiate elbows by pushing
against the pipe walls. The sequence occurs as follows:

• The first module (M1) turns 90°.
• M1 turns up the synchronism line with module M2.
• When M2 detects the synchronism line up, M2 turns 90°.
• When M2 turns at a predetermined angle (approximately 60°),

M2 turns downs the synchronism line with M1.
• M1 returns to the initial 0° position.
• WhenM2 has turned 90°, it then turns up the synchronism line

with M3 (see Fig. 12).

4.1.7. Worm-like movement
This behaviour can be found in modules with extension–

contraction capabilities. Each module knows if it has support or
extension capabilities. Worm-like movement is performed by a
combination of extension–contraction mechanisms.

A description of this procedure can be found in [1].

4.1.8. Push-forward movement
This behaviour can be found in modules that have self-

propulsion capabilities, such as the helicoidal module. This
behaviour activates the actuator to move forwards or backwards
as commanded.

4.2. Behaviour fusion

Behaviour coordination is a complex task. Some behaviours
collaborate to achieve their goal (cooperation), whereas others
compete (competition) or act independently from each other. The
scheme is explained in Fig. 13.

Behaviours are divided into sets of priorities and tasks.
Walking behaviours (e.g., vertical sinusoidal and horizontal

sinusoidal) control the actuators of the module; some of them
control one actuator, whereas others control two or more. They
may be complementary, and thus, themodules output is combined
to achieve its goal. Its output can be overridden by LLC1 commands
received directly from the CC.

Perceptual behaviours act independently because they only
inform and have no actuator control. However, their output feeds
back to the other behaviours with information regarding broken
actuators, current situation, and other parameters.

Survival behaviours have the highest priority (if they compete
with other behaviours, they will win) because they try to maintain
proper functioning of the module. They can inhibit the output of
another behaviour if such a behaviour endangers the integrity of
the module. For example, if the output of a behaviour is to move a
servomotor to a specific position where power consumption is too
high, the position is released.

a b c

d e

f

Fig. 12. Elbow negotiation inside pipes.

5. Heterogeneous middle layer

The heterogeneous layer controls several tasks that take place
between the module and the CC and/or other modules, such as
communication. Each time a command is receivedby themodule, it
is processedby theheterogeneous layer and translated into specific
instructions for themodule. Conversely, when themodule needs to
send a message, this is performed by the heterogeneous layer.

For example, when an action has to be executed (i.e., extend),
the CC sends an I2C message to every module with the command
to follow. The heterogeneous layer of each module translates this
message into proper commands for the module. It is important to
note that all messages are the same irrespective of the module at
which they are aimed; therefore, the module knows what actions
it has to perform.

The heterogeneous layer also controls the following tasks:
communications, configuration check and MDL phase.

5.1. Communications

The heterogeneous layer receives commands from the CC and
sends commands to the CC when the CC asks if there is something
to communicate (polling).

At certain time intervals, the CC sends a message to all modules
asking if they have something to communicate (polling). This
process is how the modules communicate with the CC or other
modules. In the inverse procedure, the module sends a command
to the CC, and if necessary, the heterogeneous layer translates the
message.

10

Fig. 13. Embedded behaviours fusion scheme.

5.2. Configuration check

The purpose of this task is to determine the configuration of
the micro-robot and the position of the modules in the robots
chain. The first time this behaviour acts is after the mechanical
connection of the modules and power-up, when the phase of
awareness starts: every module knows its position in the modular
chain. Then, the behaviour can be activated by the CC any time it
is necessary to know the configuration (e.g., after split up and if a
module is broken).

This procedure occurs as follows (see Fig. 14):

• The CC sends a GPS message to all modules.
• All modules activate their synchronism lines.
• The first module (it knows that it is the first because its Sin

synchronism line is down) replies with a PC1 message (this
message is sent to the CC and includes the ID of the module:
e.g., r for rotation, s for support).

• The first module puts the Sout synchronism line down, and thus,
the second module knows it goes next (because now its Sin
synchronism line is down).

• The second module sends a PC1 message and puts its Sin
synchronism line down, and thus, the first module knows it has
finished.

• The CC continues to collect all of the messages.
• This process repeats for all modules.
• When it is the last module’s turn (it knows it is the last because

its Sout synchronism line is down), it sends a PCL message.
• The CC sends a GPF message, and thus, the last module knows

it has finished.

5.3. MDL phase

The MDL phase follows a similar mechanism to that of the
configuration check phase, but instead of sending the id parameter
in the PC1 and PCLmessages, themodule sends theMDL string that
shows capabilities.

6. High-control layer

The CC represents the high-control layer in the control
architecture. It makes the main decisions of the robot (i.e., what it
is going to do and how) independently of themodular composition
of the micro-robot. The CC can be run on an external PC – as it is
now – or in a specific module. It is also based on behaviours that
target the entire micro-robot.

To determine the capabilities of the robot, the CC makes use of
an inference engine and a set of rules that make use of the MDL
commands from each module to set the capabilities for the entire
micro-robot.

Each module has several features that define what it can do, al-
though a set of modules together can have newer features. Mod-
ules can be grouped into units to develop different capabilities;
these units can in turn be grouped into super-units to possess even
newer capabilities.

The capabilities of the entire micro-robot are the consequence
of a combination of the capabilities of all modules and the position
of the modules in the chain. It is not equivalent to have an
extension module between two support modules as it is to have
the extension module at the side of two support modules in a row.
In the first case, the chain could perform an inchwormmovement,
whereas this is not possible in the second one. There are three
possible locations for the modules:

• Anywhere: they can develop their capabilities independently of
where are they placed.

• In sequential order (but not adjacent).
• Adjacent: one after the other.

To determine the capabilities of a micro-robot, a set of rules
has been implemented (shown in Table 9). These rules can be
extended either by writing new rules when new features appear
or by developing new rules by learning.

In general, rules can be described as follows:
sequential(MDL) +


adjacent(MDL)

+


anywhere(MDL) ⇒


robot(MDL)

11

Fig. 14. Configuration check sequence diagram.

Table 9
Table of rules.

Anywhere Sequential Adjacent Robot

Bat Rot +

Rot+Rot
Ext

Bat Sup + Ext + Sup Forward/backward
movement (inchworm)

Bat Sup +.. + Sup Sup unit
Bat Ext +.. + Ext Ext unit
Bat Sup unit + Ext

unit + Sup unit
Forward/backward
movement (inchworm)

Bat + Rot
+ Push_pipe

Turning

Bat+Push_pipe Forward movement
Bat+Push_pipe Backward movement
Bat Rot +

Rot+Rot
Forward movement
(snake)

where


sequential(MDL)means the combination of theMDL pa-
rameters of sequential modules,


adjacent(MDL) the combina-

tion of parameters of adjacent modules,


anywhere(MDL) the
combination of parameters of modules where its position doesn’t
matter, and


robot(MDL) are the MDL parameters of the whole

robot.
For example, the rotation module does not have exten-

sion/contraction capabilities, but a unit composed of three rotation
modules together does have that feature:

ADJACENT(Rotmod + Rotmod + Rotmod)

+ANYWHERE(Openair)

⇒ Extension/Contraction (grade 3)
ADJACENT(Rotmod + Rotmod + Rotmod)

+ANYWHERE(Pipe) ⇒ Extension/Contraction (grade 1).

To explain this clearly, let us suppose that a chain is composed of
three modules with the following MDL structures:

MDL(module 1) = [00003203001003000]
MDL(module 2) = [00003302130003000]
MDL(module 3) = [00003000200003111]

Each MDL structure is merged with each of the indicator masks
to determine whether the module has that specific capability. For
example, the mask for indicator RotX is [00001000000000000].
Merging each of the modules’ MDLs with the masks gives
[00003000000000000].

Then, capabilities are inserted in the rules, and those that are
fulfilled are activated. In this case, the activated rules are

SEQUENTIAL(00003000000000000,
00003000000000000, 00003000000000000)
+ANYWHERE(Openair) ⇒ 30000000000000000

SEQUENTIAL(00003000000000000,
00003000000000000, 00003000000000000)

+ANYWHERE(Pipe) ⇒ 10000000000000000.

Thus, new capabilities are obtained, which can in turn create new
rules to obtain newer capabilities.

Through these rules, the CC can deduce or infer the capabilities
of a robot. It goes through all of the rules and selects those that
are fulfilled. Then, the procedure is repeated by incorporating
previously obtained conclusions. This procedure continues until
there are no new rules fulfilled in a cycle.

The CC can also deduce or infer which modules are needed for
a specific task. For example, if a robot needs to split into two, it can
decide the optimal point at which to split such that each part of
the robot keeps the necessary modules to accomplish the task to
be executed.

New rules can be added or modified at any time without
reconfiguring the system. The inference engine makes use of the
active rules at every moment.

6.1. Behaviours

Continuing with the classification made in Section 4.1, the
behaviours that have been defined for the CC are shown in the
following list. As explained previously, some behaviours perform
simpler tasks, whereas more complex behaviours are based on
these to perform more complex tasks.

12

Fig. 15. Example of orientation behaviour.

1. Postural behaviours: Balance/stability.
2. Walking behaviours: Move straight forwards/backwards, Turn

to left/right, Move laterally, Rotate.
3. Protective behaviours: Obstacle negotiation.
4. Path following behaviours: Edge following, Pipe following,

Stripe following.
5. Exploration behaviours: Wandering.
6. Goal Oriented behaviours: Reach a landmark, Reach a place,

Find a pipe break, Repair.

6.1.1. Balance/stability
This behaviour is responsible for determining the orientation

of the robot and changing it when necessary in order to be in the
correct position for the current task.

The information regarding the orientation of the module is
taken from the accelerometer, from the servomotors or from
information received from other modules or the CC.

For example, if a module with two rotational DOFs wants to
turn to the right, depending on its orientation, it will use one of the
DOFs. If neither of them is in the right position, the behaviour will
make the necessary movements to place the module in the right
position.

For certain movements, it is important to maintain a specific
posture. For example, in the vertical sinusoidal wave movement, if
the robot lays down, it is necessary to recover the position before
continuing with the vertical sinusoidal movement.

In Fig. 15, an example of the performance of the orientation
behaviour is shown. In (a), it is possible to see that the first DOF
is horizontal. In (b), the robot makes an arc and consequently falls
down as shown in (c). Then, it orients itself into a straight position,
leaving the first degree of freedom vertical.

6.1.2. Walking behaviours
The move straight forward/backward behaviour controls the

forward and backward movements of the micro-robot. There are
several types of movement it can perform, such as serpentine,
caterpillar, and inchworm. The use of one or another depends
on the type of modules comprising the robot, the predominant
modules, the environment through which it is moving and the
state of the module (e.g., in terms of power supply andmechanical
viability).

If the predominant modules are rotation modules, a snake-
like gait is performed. Propagation of sinusoidal waves in the
horizontal plane is called serpentine motion, whereas that in the
vertical plane is called caterpillar locomotion. Serpentine motion
is more suitable for open spaces, whereas caterpillar can be used
in both pipes and open spaces. Other possible gaits in open spaces
are rolling and sidewinding, although these require the micro-
robot to first change its orientation. If the predominant modules

are the support and the extension modules, an inchworm gait is
performed.

If the predominant modules are the rotation modules, it is also
possible to perform an inchworm locomotion. A group of three
modules has contraction–extension capabilities, and this group
could act as a unit similar to a support or extension module by
following the previous procedure.

The helicoidal module has only one DOF. It can go forwards
or backwards by pushing other modules. Thus, a helicoidal
module can be added to other modules, and its push will be
added to the other modules’ push. If the locomotion of other
modules is not possible or desired, the modules acquire a
configuration of minimum friction that would facilitate straight
forward movements.

Other modules that have no actuators act as pig modules, and
they are performed by the drive modules. They only have to relay
the signals coming from the synchronism line.

Themove laterally behaviour controls the sidewaysmovements
of the micro-robot. As mentioned previously, there are several
types of movement that a micro-robot can perform, such as lateral
shifts and rolling gaits. The use of one over the other depends
on the types of module comprising the robot, the predominant
modules, the environment through which it is moving and the
state of the module (e.g., in terms of power supply andmechanical
viability). In the rolling gait, the robot can roll around its body
axis. In the lateral shift gait, the robot moves parallel to its body
axis. For these movements, some of the modules must have two
perpendicular DOFs.

The rotation behaviour rotates the robot parallel to the ground
clockwise or anti-clockwise. The robot can change its orientation
in the plane. Rotation can only be performed if the micro-robot
has modules that have one rotational DOF. Vertical and horizontal
sinusoidal movements are used.

Finally, the turning behaviour changes the heading of the robot.
To turn, there are at least two possibilities: performing a turning
gait (caterpillar locomotion combined with rotation in the other
DOF actuator) or to stop, rotate to a certain degree and go forwards.

The type of gait to use is defined by each behaviour according
to the rules, the types of modules of the robot and the situation
and destination of the micro-robot. Depending on the modules of
the micro-robot, each behaviour knows which movements can be
performed.

6.1.3. Obstacle negotiation
Obstacle negotiation is a complex behaviour because it makes

use of other behaviours. When something is detected in the path
of the micro-robot, the behaviour is in charge of selecting the
appropriate actions to move around the obstacle.

If the robot is in a pipe when it encounters an obstacle, it is
probably at an elbow or bifurcation. The robotmust then select the
actions to negotiate the turn.

When an obstacle is encountered in the open air, it is slightly
more complicated because there are many available options. The
easiest way is to go back and then slightly turn and go forwards. If
the object is detected again, the same algorithm is performed.

6.1.4. Path following behaviours
Edge followingmakes use of distance (IR) and touch sensors and

seeks to keep the micro-robot from operating too close to a wall
or object. Depending on the measurements received from the IR
sensors of the modules, the behaviour will output the coordinates
where the robot should go.

Pipe following controls themovement of the robot inside a pipe,
trying to keep the best movement gait and negotiating elbows and
bifurcations.

13

Fig. 16. Contact, rotation, helicoidal and passive modules inside a pipe.

6.1.5. Wandering
This behaviour controls the movement of the robot when there

is no specific task selected. It is especially useful in pipes.
The robot moves around, looking for possible damage and

trying to avoid colliding into an obstacle. It also may follow the
pipes by making a map of the path using the travelled distance
measuring system.

Fig. 16 shows an example of a micro-robot executing the wan-
dering behaviour. This includes going forwards and negotiating an
elbow when a bifurcation is detected by the contact module. The
micro-robot is composed of the following modules: one contact,
two rotation, one helicoidal, two rotation and one passive module.
The helicoidalmodule is responsible for themain driving force. The
rotationmodules help to a small extent in going forwards, but their
main task is to turn.

6.1.6. Goal oriented behaviours
These behaviours are the highest-level behaviours. They make

use of other behaviours to complete their tasks.

The behaviours reach a place and reach a landmark function in
a similar manner. Starting from its own position, the behaviour
estimates where the objective is and moves the robot in that
direction. In a pipe, the objective could be to go to the next
bifurcation, go forwards/backwards a certain distance, or go
up/down.

In open air, possible objectives include go to position (x, y), go
to the next corner, or move into the pipe in front.

The behaviour ’find a pipe break’ utilises the wandering
behaviour tomove inside the pipewhile looking for breaks or holes
with the camera and IR sensors.

The repair behaviour is an example of what will be possible
when repairing tools are developed and added to the robot. The
behaviour will control moving the robot while it repairs the
damaged pipe.

6.2. Behaviour fusion

The behaviour fusion scheme for the CC algorithms is shown
in Fig. 17. Higher-level behaviours (i.e., path following, obstacle
negotiation, exploration (wandering) and goal oriented) follow a
subsumption-like procedure in order to coordinate. If no behaviour
wants to take control, wandering is the active behaviour, but it can
be subsumed by path following, which in turn can be subsumed
by goal oriented; this final behaviour can then be subsumed by
obstacle negotiation. Thus, obstacle negotiation is the highest-level
behaviour.

Each of the path-following and goal-oriented behaviours
contributes to the selection of the destination. Thus, the bottom
part of Fig. 17 shows a summation of all of the individual outputs.

The output of all of the previous behaviours is the coordinates
of or directions to where the robot seeks to go. This output
is received by the walking behaviours, which compete amongst
themselves for the control of themodules. The output of the action

Fig. 17. Behaviour fusion scheme for central control behaviours.

14

(a) Rotation angle. (b) Intensity.

Fig. 18. 30°–120°.

selection mechanism can be suppressed by the balance/stability
behaviour, which is in charge of keeping the micro-robot in the
most appropriate position.

6.2.1. Action selection mechanism
The outputs of the four walking behaviours (go forwards, turn,

move laterally and rotate) have to bemerged into a unique output.
Because these are all competing behaviours, one behaviour must
be selected to follow. The selection criteria depend on two factors:
the situation and the destination of the micro-robot.

The situation is very important because it is not the same to
move inside as it is to move in the open air; the same applies to
movement across a plain terrain/pipe with respect to that across
an uphill terrain/vertical pipe.

The destination of the robot is of the greatest importance.
Destinations may include the following: in front of or to the
left/right of or diagonal to the robot. These also encode distance
scales, such as near or far. Depending on all of these, one behaviour
will be chosen to take control.

7. Offline control

Offline control refers to the control algorithms that occur when
the micro-robot is not running (as opposed to online control,
which has been covered in the previous sections). These offline
algorithms aim to select the best configuration of the micro-robot
(regarding both module position and parameter configuration) for
later use in the online control.

Offline control occurs in a simulator specifically developed
for the micro-robot described in Section 2 (more information
in [39]). A physically accurate robotic simulation system has been
developed to provide a very efficient method of prototyping and
verifying control algorithms, hardware design, and exploration
systemdeployment scenarios. It is also used to verify the feasibility
of system behaviours using realistic morphology, body mass and
servomotor torque specifications.

Because of this simulator, it is possible to perform tests with a
simulated robot based on genetic algorithms (GAs). Two types of
GA have been developed:
• configuration demand: in heterogeneous configurations, for a

given task, the GA has to determine which modules to use for
an optimal configuration and/or the optimal position (order) of
the modules in the chain.

• parameter optimisation: for a given configuration, the GAhas to
determine the optimum parameters for the best performance.
This is particularly useful in configurations in which the micro-
robot is performing a snake or inchworm movement (to
optimise amplitude, angular velocity, or phase).

The results of these offline algorithms feed the action selection
mechanisms and the inference engine rules of the CC, helping to
develop new rules.

Table 10
Speed test of helicoidal module.

Angle (°) 0 30 60 90

Speed (cm/s) (real) 3 2, 1 1, 5 1, 2
Speed (cm/s) (simulation) 3 2, 3 1, 6 1, 3

8. Results

8.1. Validation

Validation experiments have been performed regarding not
only external parameters (position, velocity) but also internal
variables (torque, intensity). The simulator has been validatedwith
data taken from real modules to adjust its parameters as much as
possible, to be able to generate newmovement patterns and gaits,
and to test new module concepts.

As an example, the movement of one of the DOFs of the
rotational module from 30° to 120° was compared to the simulated
module in Fig. 18(a) (angle) and (b) (intensity).

Table 10 shows some tests performed in the helicoidal module
at different slopes.

8.2. Simulation

In this section, several examples of the use of the architecture
are provided.
Rotation plus support plus extension plus helicoidal modules.

One key feature of the architecture is that it allows heteroge-
neous modules to work together. By combining several types of
module, several types of movement can be performed simultane-
ously: snake-like, worm-like and helicoidal. Each of them is well
suited for each respective situation in pipes or open air.

Fig. 19 shows an example of the touch, rotation, helicoidal, ex-
tension and support modules working together and performing
vertical sinusoidal, helicoidal and worm-like movements simulta-
neously.

After interconnecting the modules, the system is aware of the
configuration of the robot. Modules with sensors (in this case IR)
send information to the CC, which is used to determine whether
the micro-robot is inside a pipe. When the command to explore is
given, behaviours at the CC select the best way to move, and the
behaviours of each module perform the necessary gaits.

When an elbow is detected by the first module (contact sensor),
it is communicated to the CC, which informs all modules that they
have to turn, after which each of them takes the necessary actions.
All of this procedure is independent of the type of module and is
based only on the modules characteristics, which are immediately
transmitted to the CC upon operation.

15

Fig. 19. Example of heterogeneous configuration.

Fig. 20. Inchworm locomotion composed of several extension and support
modules.

Several support plus extension modules.
The next example (Fig. 20) shows that it is possible to combine

several support modules to create support units and several
extension modules to create extension units. After the MDL phase,
the CC can detect the support and extension modules and identify
support and extension units.

These units can be composed of different numbers of modules,
either two or more. Fig. 20 shows an example of a unit composed of
two modules ((a) and (b)), three modules ((c) and (d)) and a com-
bination of these ((e) and (f)). In (g), an example is shown of two
different inchworm drive units working together to demonstrate
that modules are aware of their positions (although this configura-
tion does not work because the support modules of one unit avoids
the movement of the extension module of the other unit).
Rotation plus inchworm unit plus rotation modules.

The third example demonstrates the flexibility of the architec-
ture and how the same configuration of modules performs differ-

Fig. 21. Example of locomotion inside a pipe.

Fig. 22. Example of rolling movement in heterogeneous configuration (rotation
and inchworm modules).

ently depending on the environment (expressed by the working
mode) without reprogramming any module or the CC.

The combination of several rotationmodules plus an inchworm
unit leads to several possible movements. This configuration
allows the micro-robot to perform an inchwormmovement inside
pipes and other movements (making use of the rotational DOF of
the extension module) in the open air.

Figs. 21 and 22 show a chain composed by two rotation, one
support, one extension, one support and two rotation modules.
In the first figure, the micro-robot is performing an inchworm
movement inside a pipe, whereas in the second figure, it is
performing a rolling gait in open air.

8.3. Optimisation

In this experiment, a micro-robot composed of six rotation
modules performed a snake-like gait. The algorithm goal was to
optimise its sinusoidal wave parameter to move as fast as possible.
The chromosome was composed of 21 bits: seven each for the
amplitude, angular velocity, and phase. The results of the algorithm
(for which the parameters can be seen in Table 11) are shown in
Fig. 23.

Starting with a population of 40 randomly selected chro-
mosomes, the best individual was obtained in generation 172
(111100111111111010000), corresponding to the following val-
ues: 85° amplitude, 15 rad/s angular velocity, 1.97 rad phase.

16

Fig. 23. Results of GA algorithm in open air (parameter optimisation).

Table 11
GA experiment PO 1: Open air.

Parameter Value

Population 40
Gene type Bit
Chromosome 21 genes
Generations 175
Crossover prob 0.7
Mutation prob 0.005
Fitness function Distance covered
Terrain Open air

8.4. Real experiments

In this section two experiments made with the real robot are
presented. In the first one (Fig. 24), a worm-like configuration
is shown, where the microrobot is going forward in a 40 mm
diameter pipe at two different slopes, 0° and 30°, and also
negotiating an elbow.

In the second experiment (Fig. 25), a snake-like configuration
is presented. In the figure the micro-robot is moving inside a
40 mm diameter pipe and is able to negotiate straight stretches
and elbows.

9. Conclusions

A control architecture for chained, modular robots composed
of heterogeneous modules has been presented. This architecture
attempts to fill the gap in the modular robotics field regarding
heterogeneous configurations.

The control architecture is structured in three levels. It is similar
to a hybrid architecture, and indeed, both share many features;
however, the control architecture behaviours can be found in both
low- and high-level control layers and not only in the reactive
layer.

The lower level is entirely based on behaviour, and it includes
behaviours related to the module, such as reactive behaviours that
take care of the health of themodule, walking behaviours in charge

Fig. 25. Negotiating an elbow inside a 36 mm diameter pipe.

of the movement of the robot and perceptual behaviours in charge
of gathering information about the module and its environment.

On the contrary, the higher level has twomain parts. One is also
behaviour-based, composed of behaviours related to the whole
micro-robot. The other is an inference engine in charge of making
decisions based on the information provided by the modules.
Behaviours in this layer control the stability of the robot and its
movements, allow it to reach goals, help it to avoid obstacles, and
to perform other tasks.

Behaviour fusion is a very important feature at both low
and high levels. Both coordination and competition are selected
depending on the behaviours. It is also worth noting that the
coordination of walking behaviours is an independent function, as
the combination of heterogeneous drive movements is one of the
distinguishing elements of this architecture.

It is important to highlight the role of the intermediate layer,
which allows the central control to treat all modules in the same
manner because the heterogeneous layer translates its commands
into module-specific commands.

An important part of the control architecture is the MDL, a
language developed to allowmodules to transmit their capabilities
to the CC so that the CC can process this information and choose the
best configuration and parameters for the micro-robot.

A simulator has been developed to serve as a prototype
verification tool and to develop new algorithms. Through this
simulator, offline algorithms based on GAs have been developed to
optimise the parameter configuration of the robot and to improve
its module configuration.

The architecture has been tested in a micro-robot composed
of several modules (rotation, extension, support, helicoidal and
camera), and some examples of its use have been provided.

In summary, the control architecture described in this paper
presents a new solution for control of chained, modular micro-
robots composed of several drive units, contributing to the line of
research of heterogeneous modular robotics.

(a) Worm module at an elbow. (b) Worm module at 30°. (c) Worm module at 0°.

Fig. 24. Worm module tests.

17

References

[1] A. Brunete, M. Hernando, E. Gambao, Modular multiconfigurable architecture
for lowdiameter pipe inspectionmicrorobots, in: Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, ICRA, Barcelona, Spain.

[2] M. Yim, D. Duff, K. Roufas, Evolution of polybot: a modular reconfigurable
robot, in: 2001 COE/Super-Mechano-Systems Workshop, Tokyo, Japan.

[3] H. Kurokawa, K. Tomita, A. Kamimura, E. Yoshida, S. Kokaji, S. Murata, Dis-
tributed self-reconfiguration control of modular robotm-tran, in: Proceedings
of the 2005 IEEE International Conference on Mechatronics and Automation,
vol. 1, pp. 254–259.

[4] Y. Zhang, K.D. Roufas, M. Yim, Software architecture for modular self-
reconfigurable robots, in: Proceedings of the 2001 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS.

[5] W.-M. Shen, Y. Lu, P. Will, Hormone-based control for self-reconfigurable
robots, in: Proceedings of the 2000 International Conference on Autonomous
Agents, Barcelona, Spain.

[6] V. Zykov, E. Mytilinaios, B. Adams, H. Lipson, Self-reproducing machines,
Nature 435 (2005) 163–164.

[7] W.-M. Shen, M. Krivokon, H. Chiu, J. Everist, M. Rubenstein, J. Venkatesh,
Multimode locomotion via superbot reconfigurable robots, Autonomous
Robots 20 (2006) 165–177.

[8] M. Jorgensen, E. Ostergaard, H. Lund, Modular atron: modules for a self-
reconfigurable robot, in: Proceedings of the 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Japan.

[9] M. Yim, New locomotion gaits, in: Proceedings of the 1994 IEEE International
Conference on Robotics and Automation, pp. 2508–2514.

[10] C. Unsal, P.K. Khosla, Mechatronic design of a modular self-reconfigurable
robotics system, in: Proceeding of the 2000 IEEE International Conference on
Intelligent Robots and Systems, pp. 1742–1747.

[11] K. Kotay, D. Rus, M. Vona, C. McGray, The self-reconfiguring robotic molecule,
in: Proceedings of the 1998 IEEE International Conference on Robotics and
Automation, pp. 424–431.

[12] K. Kotay, D. Rus, Efficient locomotion for a self-reconfiguring robot, in: Proc.
of 2005 IEEE International Conference on Robotics and Automation, ICRA,
Barcelona, Spain.

[13] M. Rubenstein, W.-M. Shen, Scalable self-assembly and self-repair in a
collective of robots, in: Proceedings of the 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS’09, IEEE Press, Piscataway,
NJ, USA, 2009, pp. 1484–1489.

[14] M. Yim, D. Duff, K. Roufas, Polybot: a modular reconfigurable robot, in:
Proceedings of the 2000 IEEE International Conference on Robotics and
Automation, pp. 514–520.

[15] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
G.S. Chirikjian, Modular self-reconfigurable robot systems [grand challenges
of robotics], IEEE Robotics and Automation Magazine 14 (2007) 43–52.

[16] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, S. Kokaji,
M-tran: self-reconfigurable modular robotic system, IEEE/ASME Transactions
on Mechatronics 7 (2002) 431–441.

[17] S. Murata, K. Kakomura, H. Kurokawa, Toward a scalable modular robotic
system—navigation, docking, and integration of m-tran, IEEE Robotics and
Automation Magazine 14–4 (2008) 56–63.

[18] R.C. Arkin, Behavior-Based Robotics, MIT Press, 1998.
[19] M.M. Mataric, Behavior-based control: main properties and implications,

in: Proceedings of the 1992 IEEE International Conference on Robotics and
Autonomation, Workshop on Architectures for Intelligent Control Systems.

[20] R. Arkin, Motor schema based navigation for a mobile robot: an approach
to programming by behavior, in: Proceedings of the 1987 IEEE International
Conference on Robotics and Automation, vol. 4, pp. 264–271.

[21] P. Maes, Situated agents can have goals, in: P. Maes (Ed.), Designing
Autonomous Agents, MIT Press, 1990, pp. 49–70.

[22] J.K. Rosenblatt, Damn: a distributed architecture for mobile navigation,
in: AAAI Spring Symposium on Lessons Learned from Implemented Software
Architectures for Physical Agents, AAAI Press, Menlo Park, CA, 1995.

[23] P. Pirjanian, T. Huntsberger, P. Schenker, Development of campout and its
further applications to planetary rover operations: a multirobot control
architecture, in: Proceedings of the 2001 SPIE Sensor Fusion andDecentralized
Control in Robotic Systems.

[24] P. Pirjanian, T.L. Huntsberger, A. Trebi-ollennu, H. Aghazarian, H. Das,
S.S. Joshi, P.S. Schenker, Campout: a control architecture for multi-robot
planetary outposts, in: Proc. SPIE Conf. Sensor Fusion and Decentralized
Control in Robotic Systems III, pp. 221–230.

[25] C. Armbrust, L. Kiekbusch, K. Berns, Using behaviour activity sequences for
motion generation and situation recognition, in: Proceedings of the 2011
International Conference on Informatics in Control, Automation and Robotics,
ICINCO, Noordwijkerhout, The Netherlands, pp. 120–127.

[26] M. Proetzsch, T. Luksch, K. Berns, Development of complex robotic systems
using the behavior-based control architecture iB2C, Robotics and Autonomous

Systems 58 (2010) 46–67.

configurable chained micro-robot for exploration of small cavities, Automa-
tion in Construction Magazine 21 (2011) 184–198.

[28] A. Brunete, J. Torres, M. Hernando, E. Gambao, A proposal for a multi-drive
heterogeneous modular pipe-inspection micro-robots, International Journal
of Information Acquisition (IJIA) 5 (2008) 111–126.

[29] M.J. Mataric, Interaction and intelligent behavior, Ph.D. Thesis, Massachusetts
Institute of Technology, MIT, 1994.

[30] A. Brunete, M. Hernando, E. Gambao, J. Torres, A. Castro-Gonzalez, MDL: a
module description language for chained heterogeneous modular robots, in:
2011 IEEE International Conference on Robotics and Biomimetics, ROBIO,
pp. 2706–2711.

[31] H. Kurokawa, A. Kamimura, E. Yoshida, K. Tomita, S. Kokaji, S. Murata, M-tran
II:metamorphosis froma four-leggedwalker to a caterpillar, in: Proceedings of
the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems,
vol. 3, 2003, pp. 2454–2459.

[32] S. Murata, H. Kurokawa, Self-reconfigurable robots, IEEE Robotics and
Automation Magazine 14 (2007) 71–78.

[33] J. Conradt, P. Varshavskaya, Distributed central pattern generator control for
a serpentine robot, in: Proceedings of the 2003 International Conference on
Artificial Neural Networks, ICANN, Istanbul, Turkey, pp. 338–341.

[34] K. Dowling, Limbless locomotion: learning to crawl, in: Proceedings of the
1999 IEEE International Conference on Robotics and Automation, vol. 4,
pp. 3001–3006.

[35] H. Schempf, E. Mutschler, B.C.S. Boehmke, Boa II and pipetaz: robotic pipe-
asbestos insulation abatement systems, in: Proceedings of the 1997 IEEE
International Conference on Robotics and Automation, vol. 1, pp. 52–59.

[36] J. Gonzalez, H. Zhang, E. Boemo, J. Zhang, Locomotion of a modular robot with
eight pitch-yaw-connecting modules, in: 2006 International Conference on
Climbing and Walking Robots.

[37] J. Gray, H. Lissmann, The kinetics of locomotion of the grass-snake, Journal of
Experimental Biology 26 (1950) 354–367.

[38] M. Sato,M. Fukaya, T. Iwasaki, Serpentine locomotionwith robotic snakes, IEEE
Control Systems Magazine 22 (2002) 64–81.

[39] A. Brunete, Design and control of intelligent heterogeneousmulti-configurable
chained microrobotic modular systems, Ph.D. Thesis, Universidad Politecnica
de Madrid, 2010.

Acknowledgment: The research leading to these results has received funding from RoboCity2030-II-CM (S2009/DPI-1559), funded by Programas de
Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds os the EU.

[29] M.J. Mataric, Interaction and intelligent behavior, Ph.D. Thesis, Massachusetts

18

	Página en blanco

