Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments
<p>(<b>a</b>) High speed CFBG shock and detonation interrogation system based on the spectrally-integrated approach; (<b>b</b>) illustration of chirped fiber Bragg grating detonation velocity sensor system response functions. The CFBG spectrum is narrower than the ASE light source spectrum. The total reflected light intensity (R) is proportional to the grating length (L) and wavelength (<span class="html-italic">λ</span>). A CFBG sensor adjacent to a detonating explosive will produce data that measure the detonation position (L) as a function of time.</p> "> Figure 2
<p>High speed CFBG shock and detonation interrogation system based on the time-streaked spectrally-resolved approach.</p> "> Figure 3
<p>(<b>a</b>) A short 200-ns sample of a time-streak CFBG waveform showing the 100-MHz pulse train detected by the 35-GHz photoreceiver and recorded by the oscilloscope after the laser has interrogated a 10 mm-long C-band CFBG; (<b>b</b>) a single pulse (blue trace) from the waveform in (<b>a</b>) shows that the pulse has been chromatically dispersed and time stretched to 6.7 ns using a 13 km-long spool of fiber; the time axis sample rate is 100 GS/s. A measure of the time integrated CFBG spectrum (black trace) from the arrayed spectrometer matches the shape of the time-streaked pulse, and the CFBG length is indicated in the top axis of (<b>b</b>).</p> "> Figure 4
<p>Spectrum (black), group delay (blue) and linear fit (red) plots for various CFBG sensor lengths: (<b>a</b>) 10 mm, (<b>b</b>) 100 mm, (<b>c</b>) 120 mm and (<b>d</b>) 200 mm. The 200-mm CFBG in (<b>d</b>) consists of two 100 mm-long gratings (C-band and L-band) physically separated by 1 mm. The slope of the linear fit to the OBR measured group delay data plots yields the chirp for each grating. The fitted slopes are: (<b>a</b>) 0.00344 ns/nm, (<b>b</b>) 0.0342 ns/nm, (<b>c</b>) 0.0334 ns/nm and (<b>d</b>) 0.03347 ns/mm (C-band) and 0.03443 ns/nm (L-band). After conversion to units of mm/nm, the linear chirp values are: (<b>a</b>) 0.351 mm/nm, (<b>b</b>) 3.49 mm/nm, (<b>c</b>) 3.41 mm/nm and (<b>d</b>) 3.42 mm/nm (C-band) and 3.51 mm/nm (L-band).</p> "> Figure 5
<p>(<b>a</b>) PBX-9501 slab test illustration showing the location of the various detonation front time-of-arrival diagnostics; (<b>b</b>) a photograph of the assembled test indicating the locations of the various diagnostics.</p> "> Figure 6
<p>(<b>a</b>) PBX-9501 slab test showing the two CFBG signal voltage traces versus time results. The inset is a graph of showing the CFBG pre-shot reflection spectra that is needed for the data analysis; (<b>b</b>) Extraction analysis using a LUT approach allows for mapping of the signal voltage versus time to plots of CFBG length versus time.</p> "> Figure 7
<p>PBX-9501 slab test showing one (CFBG3) of the 120 mm-long CFBG time-streak signal traces recorded at various 10-ns time slice windows: (<b>a</b>) <span class="html-italic">t</span> = 25.00 <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math>s, prior to the arrival of the detonation front; (<b>b</b>) <span class="html-italic">t</span> = 28.09 <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math>s, the detonation front reaches the beginning of the CFBG; (<b>c</b>) <span class="html-italic">t</span> = 35.01 <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math>s, the detonation front approaches the end of the CFBG; (<b>d</b>) <span class="html-italic">t</span> = 40.00 <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math>s, the detonation front is past the end of the CFBG. Note that in each plot, the top axis has been converted to wavelength.</p> "> Figure 8
<p>(<b>a</b>) 2D time-streak contour plot of PBX-9501 detonation propagation along the length of a 120 mm-long CFBG (3.43 mm/nm chirp). The spectral wavelength band of the CFBG is indicated on the left y-axis and the length on the right y-axis. The intensity z-axis is the signal level of the recorded output voltage of the InGaAs photoreceiver. (<b>b</b>) A pulse-to-pulse edge extraction analysis from the data in (<b>a</b>) is used to determine the position of the detonation front. The plot shows both of the 120 mm-long CFBGs (CFBG3 and CFBG4) fielded on the PBX-9501 slab test.</p> "> Figure 9
<p>PBX-9501 slab test results plotted for all of the HE detonation diagnostics fielded. The detonation velocity and uncertainty measured for each diagnostic are listed in <a href="#sensors-17-00248-t003" class="html-table">Table 3</a>.</p> "> Figure 10
<p>Figure illustrating the geometry used to generate a radial shock wave in a phenolic plastic case driven by the impulse from a LoFi (low fidelity) detonator.</p> "> Figure 11
<p>(<b>a</b>) 2D time-streak contour plot of a radial decaying shock wave and eventual crossover to non-destructive CFBG response after shock loading from a detonator-driven impulse. The spectral wavelength band of the CFBG is indicated on the left y-axis and the length on the right y-axis. The intensity z-axis is the signal level of the recorded output voltage of the InGaAs photoreceiver. A short segment of the CFBG is observed to survive at late times. At <span class="html-italic">t</span> = 65.6 <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math>s, the switch over to elastic response is observed with the weakened pressure wave that introduces compressive strain in the CFBG, amounting to a peak transient induced strain of 0.013 <span class="html-italic">ϵ</span>. (<b>b</b>) Plot of the CFBG length versus time plot after processing the data from (<b>a</b>). The trace represents the shock location in the grating. The average uncertainty in position is ±0.075 mm.</p> "> Figure 12
<p>(<b>a</b>) Illustration showing the relative placement of the CFBG sensors on the inside wall of the aluminum cylinder; (<b>b</b>) a photograph of the assembled target on the firing point.</p> "> Figure 13
<p>2D time-streak contour plots of the four CFBGs fielded on the cylinder wall shock wave tracking test. The CFBG and corresponding azimuth locations are: (<b>a</b>) CFBG1, 30<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math>, (<b>b</b>) CFBG2, 120<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math>, (<b>c</b>) CFBG3, 210<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math> and (<b>d</b>) CFBG4, 300<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math>. Because of the recording system used, we note that CFBG1 and CFBG3 only record to <span class="html-italic">t</span> = 47 <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math>s, and CFBG2 and CFBG4 record over a longer time window to <span class="html-italic">t</span> = 65 <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math>s.</p> "> Figure 14
<p>(<b>a</b>) Plots of the CFBG extracted (data from <a href="#sensors-17-00248-f013" class="html-fig">Figure 13</a>) shock position versus time for all four of the CFBGs that were fielded on the aluminum cylinder wall test. Point-to-point position uncertainty is estimated at ±150 <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math>m. (<b>b</b>) A shock position plot versus time shows the average of all four CFBG curves from (<b>a</b>). A least squares linear fit is also shown in red, and the slope of 6.46 ± 0.024 mm/<math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math>s is the measured average shock speed along the aluminum cylinder wall.</p> ">
Abstract
:1. Introduction
2. CFBG Recording Systems and Sensors for Detonation and Shock Wave Research
2.1. GHz High Speed FBG Interrogation Systems
2.1.1. Spectrally-Integrated Approach
2.1.2. Time-Streaked Spectrally-Resolved Approach
2.2. Characteristics of Fiber Bragg Gratings for Detonation and Shock Physics Measurements
3. Experimental Tests
3.1. Linear Detonation Front Measurements in the Plastic Bonded Explosive PBX-9501
3.2. Tracking of a Radial Decaying Shock: Crossover to Non-Destructive CFBG response
3.3. Shock Wave Tracking along a Cylinder Wall under Weak Loading Accompanied by CFBG Strain Response Effects
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
FBG | Fiber Bragg grating |
CFBG | Chirped fiber Bragg grating |
PBX | Plastic bonded explosive |
PDV | Photonic Doppler velocimetry |
VISAR | Velocity interferometer for a system of any reflector |
ASE | Amplified spontaneous emission |
LUT | Look-up table |
OBR | Optical backscatter reflectometer |
LWG | Line wave generator |
HE | High explosive |
LoFi | Low fidelity |
PMMA | Polymethylmethacrylate |
ENOB | Effective number of bits |
References
- Rodriguez, G.; Sandberg, R.L.; McCulloch, Q.; Jackson, S.I.; Vincent, S.W.; Udd, E. Chirped fiber Bragg grating detonation velocity sensing. Rev. Sci. Instrum. 2013, 84, 015003. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, G.; Sandberg, R.L.; Jackson, S.I.; Vincent, S.W.; Gilbertson, S.M.; Udd, E. Fiber Bragg sensing of high explosive detonation experiments at Los Alamos National Laboratory. J. Phys. Conf. Ser. 2014, 500, 142030. [Google Scholar] [CrossRef]
- Barbarin, Y.; Lefrancois, A.; Zaniolo, G.; Chuzeville, V.; Jacquet, L.; Magne, S.; Luc, J.; Osmont, A. Optimization of detonation velocity measurements using a chirped fiber Bragg grating. Proc. SPIE 2015, 9480, 94800S. [Google Scholar]
- Gilbertson, S.; Jackson, S.I.; Vincent, S.W.; Rodriguez, G. Detection of high explosive detonation across material interfaces with chirped fiber Bragg gratings. Appl. Opt. 2015, 54, 3849–3854. [Google Scholar] [CrossRef]
- Rodriguez, G.; Jaime, M.; Balakirev, F.; Mielke, C.H.; Azad, A.; Marshall, B.; La Lone, B.M.; Henson, B.; Smilowitz, L. Coherent pulse interrogation system for fiber Bragg grating sensing of strain and pressure in dynamic extremes of materials. Opt. Express 2015, 23, 14219. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, G.; Jaime, M.; Mielke, C.H.; Balakirev, F.; Azad, A.; Sandberg, R.L.; Marshall, B.; La Lone, B.M.; Henson, B.F.; Smilowitz, L.; et al. Insight into fiber Bragg sensor response at 100-MHz interrogation rates under various dynamic loading conditions. Proc. SPIE 2015, 9480, 948004. [Google Scholar]
- Rodriguez, G.; Smilowitz, L.; Henson, B.F. Embedded fiber Bragg grating pressure measurement during thermal ignition of a high explosive. Appl. Phys. Lett. 2016, 109, 164101. [Google Scholar] [CrossRef]
- Ravid, A.; Shafir, E.; Zilberman, S.; Berkovic, G.; Glam, B.; Appelbaum, G.; Fedotov, G.A. Fibre Bragg grating sensor for shock wave diagnostics. J. Phys. Conf. Ser. 2014, 500, 142029. [Google Scholar] [CrossRef]
- Barbarin, Y.; Lefrancois, A.; Magne, S.; Woirin, K.; Sinatti, F.; Osmont, A.; Luc, J. Dynamic high pressure measurements using a fiber Bragg grating probe and an arrayed waveguide spectrometer. Proc. SPIE 2016, 9960, 99600U. [Google Scholar]
- Barbarin, Y.; Lefrancois, A.; Sinatti, F.; Bey, A.; Balbarie, M.; Osmont, A.; Luc, J. Dynamic dispersive spectrometer using a fiber Bragg grating for high pressure measurements. IEEE Sens. 2016. [Google Scholar] [CrossRef]
- Benterou, J.; Bennett, C.V.; Cole, G.; Hare, D.E.; May, C.; Udd, E.; Mihailov, S.J.; Lu, P. Embedded fiber optic Bragg grating (FBG) detonation velocity sensor. Proc. SPIE 2009, 7316, 73160E. [Google Scholar]
- Udd, E.; Benterou, J.; May, C.; Mihailov, S.J.; Lu, P. Review of high-speed fiber optic grating sensor systems. Proc. SPIE 2010, 7677, 76770B. [Google Scholar]
- Udd, E.; Benterou, J. Improvements to high-speed monitoring of events in extreme environments using fiber Bragg grating sensors. Proc. SPIE 2012, 8370, 83700L. [Google Scholar]
- La Lone, B.M.; Marshall, B.R.; Miller, E.K.; Stevens, G.D.; Turley, W.D.; Veeser, L.R. Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments. Rev. Sci. Instrum. 2015, 86, 023112. [Google Scholar] [CrossRef] [PubMed]
- Strand, O.T.; Goosman, D.R.; Martinez, C.; Whitworth, T.L.; Kuhlow, W.W. Compact system for high-speed velocimetry using heterodyne techniques. Rev. Sci. Instrum. 2015, 86, 023112. [Google Scholar] [CrossRef]
- Barker, L.M.; Shahinpoor, M.; Chhabildas, L.C. Experimental diagnostics and techniques. In High-Pressure Shock Compression of Solids; Asay, J.R., Shahinpoor, M., Eds.; Springer: New York, NY, USA, 1993; pp. 43–73. [Google Scholar]
- Udd, E.; Udd, I.; Benterou, J.; Rodriguez, G. Ultrafast fiber grating sensor systems for velocity, position, pressure, and temperature measurements. Proc. SPIE 2016, 9852. [Google Scholar] [CrossRef]
- Rodriguez, G.; Sandberg, R.L.; Jackson, S.I.; Dattelbaum, D.M.; Vincent, S.W.; McCulloch, Q.; Martinez, R.M.; Gilbertson, S.M.; Udd, E. Fiber Bragg grating sensing of detonation and shock experiments at Los Alamos National Laboratory. Proc. SPIE 2013, 8722, 872204. [Google Scholar]
- Rodriguez, G.; Sandberg, R.L.; La Lone, B.M.; Marshall, B.R.; Grover, M.; Stevens, G.; Udd, E. High pressure sensing and dynamics using high speed fiber Bragg grating interrogation systems. Proc. SPIE 2014, 9098, 90980C. [Google Scholar]
- Jackson, S.I.; Short, M. Scaling of detonation velocity in cylinder and slab geometries for ideal, insensitive and non-ideal explosives. J. Fluid Mech. 2015, 773, 224–266. [Google Scholar] [CrossRef]
Length (mm) | Band | Chirp (mm/nm) | Coating |
---|---|---|---|
10 | C | 0.35 | acrylate |
100 | C, C + L | 3.5, 1.75 | polyimide, acrylate |
120 | C | 3.4 | polyimide, acrylate |
200 | C, C + L | 3.45 | polyimide |
Diagnostic | Sensor Count | CFBG Chirp (mm/nm) or Pin Spacing (mm) |
---|---|---|
CFBG | 2 (120 mm) | 3.41, 3.42 |
Time-Streak CFBG | 2 (120 mm) | 3.43, 3.42 |
Shorting Switch | 16 | 10.5 |
Shorting Pin | 8 | 25.4 |
Piezo Pin | 8 | 25.4 |
Diagnostic | Measured Velocity (mm/s) |
---|---|
CFBG | 8.84 ± 0.014 |
Shorting Switch | 8.78 ± 0.11 |
Shorting Pin | 8.80 ± 0.04 |
Piezo Pin | 8.80 ± 0.03 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez, G.; Gilbertson, S.M. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments. Sensors 2017, 17, 248. https://doi.org/10.3390/s17020248
Rodriguez G, Gilbertson SM. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments. Sensors. 2017; 17(2):248. https://doi.org/10.3390/s17020248
Chicago/Turabian StyleRodriguez, George, and Steve M. Gilbertson. 2017. "Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments" Sensors 17, no. 2: 248. https://doi.org/10.3390/s17020248