Tree-Species Classification in Subtropical Forests Using Airborne Hyperspectral and LiDAR Data
"> Figure 1
<p>An overview of the technique route for tree-species classification using hyperspectral and LiDAR data.</p> "> Figure 2
<p>The location of study area in Yushan forest and the distribution of the plots of three main forest types: Coniferous dominated forest, broadleaved dominated forest and mixed forest. Left side is the orthophoto of Yushan forest and right side is the distribution of three types of plots.</p> "> Figure 3
<p>(<b>a</b>) Point cloud of one plot; and (<b>b</b>) the result of segmentation using PCS algorithm (each single tree corresponds to a color).</p> "> Figure 4
<p>(<b>a</b>) Hyperspectral image with the location of trees (dominant and co-dominant), the PCS algorithm detected tree tops and the tree crowns within one plot (30 × 30 m<sup>2</sup>); and (<b>b</b>) map of sunlit portion of each crown which were selected from hyperspectral data.</p> "> Figure 5
<p>(<b>a</b>–<b>e</b>) Mean (bold line) and ±1 standard deviation of reflectance by species for sunlit crown; and (<b>f</b>) mean spectral reflectance of the studied species.</p> "> Figure 6
<p>Mean spectral reflectance and derivative curves for all sunlit crowns of five tree-species. Dots with the same color above curves represent the best 20 bands selected by PCA procedure.</p> "> Figure 7
<p>Evolution of overall classification accuracy with changing number of metrics. 5SA = Five tree-species classification using all metrics (LiDAR and sunlit hyperspectral metrics); 5CA = Five tree-species classification using all metrics (LiDAR and crown hyperspectral metrics); 5SH = Five tree-species classification using sunlit hyperspectral metrics; 5CH = Five tree-species classification using crown hyperspectral metrics.</p> "> Figure 8
<p>Evolution of overall classification accuracy with changing number of metrics. 2SA = Two forest-types classification using all metrics (LiDAR and sunlit hyperspectral metrics); 2CA = Two forest-types classification using all metrics (LiDAR and crown hyperspectral metrics); 2SH = Two forest-types classification using sunlit hyperspectral metrics; 2CH = Two forest-types classification using crown hyperspectral metrics.</p> "> Figure 9
<p>Box plots for selected most important hyperspectral metrics at crown and sunlit crown levels for the five tree-species (<span class="html-italic">X</span> axis is the five tree-species and <span class="html-italic">Y</span> axis is the most important metrics).</p> ">
Abstract
:1. Introduction
1.1. Background
1.2. Objectives
2. Materials and Methods
2.1. Study Site
2.2. Field Data
2.3. Remote Sensing Data
2.4. Data Pre-Processing
2.5. Hyperspectral Metrics Calculation
2.6. Individual Tree Detection
2.7. LiDAR Metrics Calculation
2.8. Sunlit Portion in Individual Tree Crown
2.9. Hyperspectral Metrics and the Selection
2.10. Random Forest and Classification
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). Global Forest Resources Assessment; Food and Agriculture Organization: Rome, Italy, 2010; Volume 163. [Google Scholar]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The structure, distribution, and biomass of the worlds forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef]
- McKinley, D.C.; Ryan, M.G.; Birdsey, R.A.; Giardina, C.P.; Harmon, M.E.; Heath, L.S.; Houghton, R.A.; Jackson, R.B.; Morrison, J.F.; Murray, B.C.; et al. A synthesis of current knowledge on forests and carbon storage in the United States. Ecol. Appl. 2011, 21, 1902–1924. [Google Scholar] [CrossRef] [PubMed]
- Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.S.; McLachlan, J.S. Stability of forest biodiversity. Nature 2003, 423, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Lai, J.; Muller-Landau, H.C.; Mi, X.; Ma, K. Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-H.; Kent, M.; Fang, X.-F. Evergreen broad-leaved forest in Eastern China: Its ecology and conservation and the importance of resprouting in forest restoration. For. Ecol. Manag. 2007, 245, 76–87. [Google Scholar] [CrossRef]
- Plourde, L.C.; Ollinger, S.V.; Smith, M.L.; Martin, M.E. Estimating species abundance in a northern temperate forest using spectral mixture analysis. Photogramm. Eng. Remote Sens. 2007, 73, 829–840. [Google Scholar] [CrossRef]
- Cho, M.A.; Mathieu, R.; Asner, G.P.; Naidoo, L.; van Aardt, J.; Ramoelo, A.; Debba, P.; Wessels, K.; Main, R.; Smit, I.P.J.; et al. Mapping tree species composition in South African savannas using an integrated airborne spectral and LiDAR system. Remote Sens. Environ. 2012, 125, 214–226. [Google Scholar] [CrossRef]
- Dale, V.H.; Joyce, L.A.; Mcnulty, S.; Neilson, R.P.; Ayres, M.P.; Flannigan, M.D.; Hanson, P.J.; Irland, L.C.; Lugo, A.E.; Peterson, C.J.; et al. Climate change and forest disturbances. Bioscience 2001, 51, 723. [Google Scholar] [CrossRef]
- Thomas, S.C.; Malczewski, G. Wood carbon content of tree species in Eastern China: Interspecific variability and the importance of the volatile fraction. J. Environ. Manag. 2007, 85, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Foody, G.M. Remote sensing of tropical forest environments: Towards the monitoring of environmental resources for sustainable development. Int. J. Remote Sens. 2003, 24, 4035–4046. [Google Scholar] [CrossRef]
- Feret, J.-B.; Asner, P.G. Tree species discrimination in tropical forests using airborne imaging spectroscopy. IEEE Trans. Geosci. Remote Sens. 2013, 51, 73–84. [Google Scholar] [CrossRef]
- Li, J.; Hu, B.; Noland, T.L. Classification of tree species based on structural features derived from high density LiDAR data. Agric. For. Meteorol. 2013, 171–172, 104–114. [Google Scholar] [CrossRef]
- Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375–398. [Google Scholar] [CrossRef]
- Cao, L.; Coops, N.C.; Innes, J.L.; Dai, J.; Ruan, H.; She, G. Tree species classification in subtropical forests using small-footprint full-waveform LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 39–51. [Google Scholar] [CrossRef]
- Souza, A.F.; Forgiarini, C.; Longhi, S.J.; Oliveira, J.M. Detecting ecological groups from traits: A classification of subtropical tree species based on ecological strategies. Braz. J. Bot. 2014, 37, 441–452. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z.; Ye, W.; Cao, H.; Wei, S.; Wang, Z.; Lian, J.; Sun, I.F.; Ma, K.; He, F. Spatial distributions of tree species in a subtropical forest of China. Oikos 2009, 118, 495–502. [Google Scholar] [CrossRef]
- Dalponte, M.; Ørka, H.O.; Gobakken, T.; Gianelle, D.; Næsset, E. Tree species classification in boreal forests with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2632–2645. [Google Scholar] [CrossRef]
- Clark, M.L.; Roberts, D.A. Species-level differences in hyperspectral metrics among tropical rainforest trees as determined by a tree-based classifier. Remote Sens. 2012, 4, 1820–1855. [Google Scholar] [CrossRef]
- Shaw, G.; Manolakis, D. Signal processing for hyperspectral image exploitation. IEEE Signal Process. Mag. 2002, 19, 12–16. [Google Scholar] [CrossRef]
- Odagawa, S.; Okada, K. Tree species discrimination using continuum removed airborne hyperspectral data. 2009 First Work. Hyperspectral Image Signal Process. Evol. Remote Sens. 2009, 1–4. [Google Scholar] [CrossRef]
- Jones, T.G.; Coops, N.C.; Sharma, T. Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada. Remote Sens. Environ. 2010, 114, 2841–2852. [Google Scholar] [CrossRef]
- Richter, R.; Reu, B.; Wirth, C.; Doktor, D.; Vohland, M. The use of airborne hyperspectral data for tree species classification in a species-rich Central European forest area. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 464–474. [Google Scholar] [CrossRef]
- Erins, G.; Lorencs, A.; Mednieks, I.; Sinica-Sinavskis, J. Tree species classification in mixed Baltic forest. In Proceedings of the Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lisbon, Portugal, 6–9 June 2011; pp. 1–4. [Google Scholar]
- Krahwinkler, P.; Rossmann, J. Tree Species Classification Based on the Analysis of Hyperspectral Remote Sensing Data. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 321–328. [Google Scholar]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Fung, T.; Ma, F.Y.; Siu, W.L. Hyperspectral data analysis for subtropical tree species recognition. In Proceedings of the 1998 Geoscience and Remote Sensing Symposium, Seattle, WA, USA, 6–10 July 1998; Volume 3, pp. 1298–1300. [Google Scholar]
- Jensen, R.R.; Hardin, P.J.; Hardin, A.J. Classification of urban tree species using hyperspectral imagery. Geocarto Int. 2012, 27, 443–458. [Google Scholar] [CrossRef]
- Youngentob, K.N.; Roberts, D.A.; Held, A.A.; Dennison, P.E.; Jia, X.; Lindenmayer, D.B. Mapping two Eucalyptus subgenera using multiple endmember spectral mixture analysis and continuum-removed imaging spectrometry data. Remote Sens. Environ. 2011, 115, 1115–1128. [Google Scholar] [CrossRef]
- Boschetti, M.; Boschetti, L.; Oliveri, S.; Casati, L.; Canova, I. Tree species mapping with Airborne hyperspectral MIVIS data: The Ticino Park study case. Int. J. Remote Sens. 2007, 28, 1251–1261. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Meza, C.M.; Rivera, J.P.; Alonso, L.; Moreno, J. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 2013, 46, 42–52. [Google Scholar] [CrossRef]
- Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogramm. Eng. Remote Sens. 2006, 72, 799–811. [Google Scholar] [CrossRef]
- Heinzel, J.; Koch, B. Investigating multiple data sources for tree species classification in temperate forest and use for single tree delineation. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 101–110. [Google Scholar] [CrossRef]
- Tarabalka, Y.; Chanussot, J.; Benediktsson, J.A. Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognit. 2010, 43, 2367–2379. [Google Scholar] [CrossRef]
- Van Aardt, J.A.N.; Wynne, R.H. Examining pine spectral separability using hyperspectral data from an airborne sensor: An extension of field-based results. Int. J. Remote Sens. 2007, 28, 431–436. [Google Scholar] [CrossRef]
- Biging, G.S.; Dobbertin, M. Evaluation of Competition Indices in Individual Tree Growth-Models. For. Sci. 1995, 41, 360–377. [Google Scholar] [CrossRef]
- Fox, J.C.; Ades, P.K.; Bi, H. Stochastic structure and individual-tree growth models. For. Ecol. Manag. 2001, 154, 261–276. [Google Scholar] [CrossRef]
- Medlyn, B.E.; Pepper, D.A.; O’Grady, A.P.; Keith, H. Linking leaf and tree water use with an individual-tree model. Tree Physiol. 2007, 27, 1687–1699. [Google Scholar] [CrossRef] [PubMed]
- Mõttus, M.; Takala, T. A forestry GIS-based study on evaluating the potential of imaging spectroscopy in mapping forest land fertility. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 302–311. [Google Scholar] [CrossRef]
- Robila, S.A. An investigation of spectral metrics in hyperspectral image preprocessing for classification. In Proceedings of the ASPRS Annual Conference, Baltimore, MD, USA, 7–11 March 2005. [Google Scholar]
- Singh, A.K.; Kumar, H.V.; Kadambi, G.R.; Kishore, J.K.; Shuttleworth, J.; Manikandan, J. Quality metrics evaluation of hyperspectral images. In Proceedings of the International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, ISPRS Technical Commission VIII Symposium, Hyderabad, India, 9–12 December 2014; Volume 40, pp. 1221–1226. [Google Scholar]
- Ollinger, S.V.; Smith, M.-L. Net primary production and canopy nitrogen in a temperate forest landscape: An analysis using imaging spectroscopy, modeling and field data. Ecosystems 2005, 8, 760–778. [Google Scholar] [CrossRef]
- Pu, R.; Gong, P.; Heald, R. In situ hyperspectral data analysis for nutrient estimation of giant sequoia. Geosci. Remote Sens. 1999, 395–397. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Zur, Y.; Chivkunova, O.B.; Merzlyak, M.N. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem. Photobiol. 2002, 75, 272–281. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef]
- Fagan, M.E.; DeFries, R.S.; Sesnie, S.E.; Arroyo-Mora, J.P.; Soto, C.; Singh, A.; Townsend, P.A.; Chazdon, R.L. Mapping species composition of forests and tree plantations in northeastern Costa Rica with an integration of hyperspectral and multitemporal landsat imagery. Remote Sens. 2015, 7, 5660–5696. [Google Scholar] [CrossRef]
- Drake, J.B.; Dubayah, R.O.; Knox, R.G.; Clark, D.B.; Blair, J.B. Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest. Remote Sens. Environ. 2002, 81, 378–392. [Google Scholar] [CrossRef]
- Koetz, B.; Morsdorf, F.; Sun, G.; Ranson, K.J.; Itten, K.; Allgöwer, B. Inversion of a lidar waveform model for forest biophysical parameter estimation. IEEE Geosci. Remote Sens. Lett. 2006, 3, 49–53. [Google Scholar] [CrossRef]
- Hyyppa, J.; Kelle, O.; Lehikoinen, M.; Inkinen, M. A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Trans. Geosci. Remote Sens. 2001, 39, 969–975. [Google Scholar] [CrossRef]
- Ene, L.; Næsset, E.; Gobakken, T. Single tree detection in heterogeneous boreal forests using airborne laser scanning and area-based stem number estimates. Int. J. Remote Sens. 2012, 33, 5171–5193. [Google Scholar] [CrossRef]
- Li, W.; Guo, Q.; Jakubowski, M.K.; Kelly, M. A new method for segmenting individual trees from the Lidar point cloud. Photogramm. Eng. Remote Sens. 2012, 78, 75–84. [Google Scholar] [CrossRef]
- Wang, Y.; Weinacker, H.; Koch, B. A Lidar point cloud based procedure for vertical canopy structure analysis and 3D single tree modelling in forest. Sensors 2008, 8, 3938–3951. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.-E.; Reutebuch, S.E.; McGaughey, R.J. A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods. Can. J. Remote Sens. 2006, 32, 355–366. [Google Scholar] [CrossRef]
- Lim, K.; Treitz, P.; Wulder, M.; St-Onge, B.; Flood, M. LiDAR remote sensing of forest structure. Prog. Phys. Geogr. 2003, 27, 88–106. [Google Scholar] [CrossRef]
- Kim, S.; McGaughey, R.J.; Andersen, H.-E.; Schreuder, G. Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data. Remote Sens. Environ. 2009, 113, 1575–1586. [Google Scholar] [CrossRef]
- Ørka, H.O.; Næsset, E.; Bollandsås, O.M. Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data. Remote Sens. Environ. 2009, 113, 1163–1174. [Google Scholar] [CrossRef]
- Liu, L.; Coops, N.C.; Aven, N.W.; Pang, Y. Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data. Remote Sens. Environ. 2017, 200, 170–182. [Google Scholar] [CrossRef]
- Vaughn, N.R.; Moskal, L.M.; Turnblom, E.C. Tree species detection accuracies using discrete point lidar and airborne waveform lidar. Remote Sens. 2012, 4, 377–403. [Google Scholar] [CrossRef]
- Holmgren, J.; Persson, Å. Identifying species of individual trees using airborne laser scanner. Remote Sens. Environ. 2004, 90, 415–423. [Google Scholar] [CrossRef]
- Brandtberg, T. Classifying individual tree species under leaf-off and leaf-on conditions using airborne lidar. ISPRS J. Photogramm. Remote Sens. 2007, 61, 325–340. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1416–1427. [Google Scholar] [CrossRef]
- Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens. Environ. 2014, 148, 70–83. [Google Scholar] [CrossRef]
- Voss, M.; Sugumaran, R. Seasonal effect on tree species classification in an urban environment using hyperspectral data, LiDAR, and an object-oriented approach. Sensors 2008, 8, 3020–3036. [Google Scholar] [CrossRef] [PubMed]
- Alonzo, M.; Roth, K.; Roberts, D. Identifying Santa Barbara’s urban tree species from AVIRIS imagery using canonical discriminant analysis. Remote Sens. Lett. 2013, 4, 513–521. [Google Scholar] [CrossRef]
- Dalponte, M.; Ene, L.T.; Marconcini, M.; Gobakken, T.; Naesset, E. Semi-supervised SVM for individual tree crown species classification. ISPRS J. Photogramm. Remote Sens. 2015, 110, 77–87. [Google Scholar] [CrossRef]
- Asner, G.P.; Knapp, D.E.; Kennedy-Bowdoin, T.; Jones, M.O.; Martin, R.E.; Boardman, J.; Hughes, R.F. Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR. Remote Sens. Environ. 2008, 112, 1942–1955. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P.; Martin, R.E.; Anderson, C.B.; Knapp, D.E.; Wright, S.J.; Van De Kerchove, R. Mesoscale assessment of changes in tropical tree species richness across a bioclimatic gradient in Panama using airborne imaging spectroscopy. Remote Sens. Environ. 2015, 167, 111–120. [Google Scholar] [CrossRef]
- Fan, W.; Chen, J.M.; Ju, W.; Zhu, G. GOST: A geometric-optical model for sloping terrains. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5469–5482. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E. Canopy phylogenetic, chemical and spectral assembly in a lowland Amazonian forest. New Phytol. 2011, 189, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Coops, N.C.; Innes, J.L.; Sheppard, S.R.J.; Ruan, H.; She, G. Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data. Remote Sens. Environ. 2016, 178, 158–171. [Google Scholar] [CrossRef]
- Pang, Y.; Li, Z.; Ju, H.; Lu, H.; Jia, W.; Si, L.; Guo, Y.; Liu, Q.; Li, S.; Liu, L.; et al. LiCHy: The CAF’s LiDAR, CCD and hyperspectral integrated airborne observation system. Remote Sens. 2016, 8, 398. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Atzberger, C.; van Wieren, S. Estimation of vegetation LAI from hyperspectral reflectance data: Effects of soil type and plant architecture. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 358–373. [Google Scholar] [CrossRef]
- Carter, G.A. Responses of Leaf Spectral Reflectance to Plant Stress. Am. J. Bot. 1993, 80, 239. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Griffin, K.L.; Field, C.B. Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance. Remote Sens. Environ. 1993, 46, 110–118. [Google Scholar] [CrossRef]
- Tsai, F.; Philpot, W.D. A derivative-aided hyperspectral image analysis system for land-cover classification. IEEE Trans. Geosci. Remote Sens. 2002, 40, 416–425. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Okains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 10–14 December 1973; Volume 1, pp. 325–333. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Mitchell, J.J.; Shrestha, R.; Spaete, L.P.; Glenn, N.F. Combining airborne hyperspectral and LiDAR data across local sites for upscaling shrubland structural information: Lessons for HyspIRI. Remote Sens. Environ. 2015, 167, 98–110. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Garrity, S.R.; Eitel, J.U.H.; Vierling, L.A. Disentangling the relationships between plant pigments and the photochemical reflectance index reveals a new approach for remote estimation of carotenoid content. Remote Sens. Environ. 2011, 115, 628–635. [Google Scholar] [CrossRef]
- Metternicht, G. Vegetation indices derived from high-resolution airborne videography for precision crop management. Int. J. Remote Sens. 2003, 24, 2855–2877. [Google Scholar] [CrossRef]
- Daughtry, C. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Barton, C.V.M.; North, P.R.J. Remote sensing of canopy light use efficiency using the photochemical reflectance index model and sensitivity analysis. Remote Sens. Environ. 2001, 78, 264–273. [Google Scholar] [CrossRef]
- Zheng, T.; Chen, J.M. Photochemical reflectance ratio for tracking light use efficiency for sunlit leaves in two forest types. ISPRS J. Photogramm. Remote Sens. 2017, 123, 47–61. [Google Scholar] [CrossRef]
- Gamon, J.A.; Surfus, J.S. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 1999, 143, 105–117. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Goutte, C.; Gaussier, E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In Proceedings of the 27th European Conference on IR Research, Santiago de Compostela, Spain, 21–23 March 2005; Volume 3408, pp. 345–359. [Google Scholar]
- Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond accuracy, F-Score and ROC: A family of discriminant measures for performance evaluation. In Proceedings of the 19th Australian Joint Conference on Artificial Intelligence, Hobart, Australia, 4–8 December 2006; pp. 1015–1021. [Google Scholar]
- Kim, Y.; Yang, Z.; Cohen, W.B.; Pflugmacher, D.; Lauver, C.L.; Vankat, J.L. Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA using small-footprint lidar data. Remote Sens. Environ. 2009, 113, 2499–2510. [Google Scholar] [CrossRef]
- Coops, N.C.; Smith, M.L.; Martin, M.E.; Ollinger, S.V. Prediction of eucalypt foliage nitrogen content from satellite derived hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1338–1346. [Google Scholar] [CrossRef]
- Gougeon, F.A. Comparison of possible multispectral classification schemes for tree crowns individually delineated on high spatial resolut MEIS images, Petawawa National Forestry Institute, Ontario, Canada. Can. J. Remote Sens. 1994. [Google Scholar] [CrossRef]
- Hughes, G.F. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [Google Scholar] [CrossRef]
- Dong, Y.; Member, S.; Du, B.; Member, S.; Zhang, L.; Member, S. Dimensionality reduction and classification of hyperspectral images using ensemble discriminative local metric learning. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2509–2524. [Google Scholar] [CrossRef]
- Chen, L. Classification of hyperspectral remote sensing images with support vector machines and particle swarm optimization. In Proceedings of the 29th International Conference on Information Engineering and Computer Science, Wuhan, China, 19–20 December 2009. [Google Scholar]
- Pedergnana, M.; Marpu, P.R.; Dalla Mura, M.; Benediktsson, J.A.; Bruzzone, L. Classification of remote sensing optical and LiDAR data using extended attribute profiles. IEEE J. Sel. Top. Signal Process. 2012, 6, 856–865. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens. Environ. 2012, 123, 258–270. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Mariotto, I.; Gumma, M.K.; Middleton, E.M.; Landis, D.R.; Huemmrich, K.F. Selection of hyperspectral narrowbands (HNBs) and composition of hyperspectral twoband vegetation indices (HVIS) for biophysical characterization and discrimination of crop types using field reflectance and hyperion/EO-1 data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 427–439. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Lyon, J.G.; Huete, A. Hyperspectral remote sensing of vegetation and agricultural crops: Knowledge gain and knowledge gap after 40 years of research. In Hyperspectral Remote Sensing of Vegetation; Taylor & Francis Group: Boca Raton, FL, USA, 2011; p. 688. [Google Scholar]
- Malenovský, Z.; Homolová, L.; Zurita-Milla, R.; Lukeš, P.; Kaplan, V.; Hanuš, J.; Gastellu-Etchegorry, J.P.; Schaepman, M.E. Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer. Remote Sens. Environ. 2013, 131, 85–102. [Google Scholar] [CrossRef]
- Niemann, K.O.; Quinn, G.; Goodenough, D.G.; Visintini, F.; Loos, R. Addressing the effects of canopy structure on the remote sensing of foliar chemistry of a 3-dimensional, radiometrically porous surface. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 584–593. [Google Scholar] [CrossRef]
- Blackburn, G.A. Quantifying chlorophylls and carotenoids at leaf and canopy scales. Remote Sens. Environ. 1998, 66, 273–285. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Yuan, J.G.; Niu, Z.; Fu, W.X. Model Simulation for Sensitivity of Hyperspectral Indices to LAI, Leaf Chlorophyll and Internal Structure Parameter—Art; No. 675213; SPIE: Nanjing, China, 2007; Volume 6752, p. 75213. [Google Scholar]
- Hyyppä, J.; Yu, X.; Hyyppä, H.; Vastaranta, M.; Holopainen, M.; Kukko, A.; Kaartinen, H.; Jaakkola, A.; Vaaja, M.; Koskinen, J.; et al. Advances in forest inventory using airborne laser scanning. Remote Sens. 2012, 4, 1190–1207. [Google Scholar] [CrossRef]
- Clark, M.L.; Roberts, D.A.; Ewel, J.J.; Clark, D.B. Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors. Remote Sens. Environ. 2011, 115, 2931–2942. [Google Scholar] [CrossRef]
- Gong, P. Conifer species recognition: An exploratory analysis of in situ hyperspectral data. Remote Sens. Environ. 1997, 62, 189–200. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Förster, M.; Buddenbaum, H.; Koch, B.; Fassnacht, F.E.; Neumann, C.; Förster, M.; Buddenbaum, H.; Ghosh, A.; Clasen, A.; et al. Comparison of feature reduction algorithms for classifying tree species with hyperspectral data on three central European test sites. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2547–2561. [Google Scholar] [CrossRef]
- Carlotto, M.J. Reducing the effects of space-varying, wavelength-dependent scattering in multispectral imagery. Int. J. Remote Sens. 1999, 20, 3333–3344. [Google Scholar] [CrossRef]
Forest Type | Height (m) | DBH (cm) | Crown Radius (m) | Percentage of Trees within Upper Classes (%) | ||||
---|---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Dominant | Co-Dominant | |
Coniferous | 9.80 | 1.84 | 15.59 | 3.96 | 1.45 | 0.51 | 20.6 | 46.1 |
Broadleaved | 11.92 | 2.02 | 18.32 | 5.61 | 2.40 | 0.67 | 10.7 | 43.7 |
Mixed | 10.18 | 2.23 | 16.85 | 9.36 | 1.91 | 0.81 | 14.4 | 42.1 |
Data | Date of Acquisition | Sensor | Flight Altitude | Spectral Range | Bands | Spatial Resolution |
---|---|---|---|---|---|---|
Hyperspectral | 17 August 2013 | AISA Eagle | 900 m | 398.55–994.44 nm | 64 | 0.6 m |
LiDAR | 17 August 2013 | RIEGL LMS-Q680i | 900 m | 1550 nm | 1 | >10/m2 |
Vegetation Index | Equation | Reference |
---|---|---|
LAI and canopy structure | ||
Simple ratio (SR) | [77] | |
Normalized difference vegetation index (NDVI) | [78] | |
Enhanced vegetation index (EVI) | [79] | |
Green normalized difference vegetation index (GNDVI) | [80] | |
Modified red-edge normalized difference vegetation index (mNDVI705) | [81] | |
Soil adjusted vegetation index (SAVI) | [82] | |
Sum green index (SGI) | GREEN a | [83] |
Leaf and canopy pigments | ||
Carotenoid reflectance index 1 (CRI1) | [45] | |
Carotenoid reflectance index 2 (CRI2) | [45] | |
Anthocyanin reflectance index 1 (ARI1) | [46] | |
Anthocyanin reflectance index 2 (ARI2) | [46] | |
Green index (GI) | [84] | |
Chlorophyll index (CI) | [85] | |
Red edge index (REI) | [84] | |
Plant pigment ratio (PPR) | [86] | |
Transformed chlorophyll absorption in reflectance index (TCARI) | [87] | |
Light use efficiency | ||
Photochemical reflectance index (PRI) | [88] | |
Photochemical reflectance ratio (PRR) | [89] | |
Red green ratio index (RGRI) | RED/GREEN b | [90] |
Structure insensitive pigment index (SIPI) | [91] |
Metrics | Description |
---|---|
Percentile height (h25, h50, h75, h95) | The percentiles of the canopy height distributions (25th, 50th, 75th, 95th) of first returns |
Canopy return density (d2, d4, d6, d8) | The canopy return density over a range of relative heights, i.e., percentage (0–100%) of first returns above the quantiles (20%, 40%, 60%, and 80%) to total number of first returns |
Minimum height (hmin) | Minimum height above ground of all first returns |
Maximum height (hmax) | Maximum height above ground of all first returns |
Coefficient of variation of heights (hcv) | Coefficient of variation of heights of all first returns |
Canopy cover above 2 m (CC) | Percentage of first returns above 2 m |
No. of Trees | Correct/Nt | Omission/No | Commission/Nc | r (%) | p (%) | F1 (%) | |
---|---|---|---|---|---|---|---|
Coniferous | 142 | 116 | 26 | 5 | 81.7 | 95.9 | 88.2 |
Broadleaved | 135 | 120 | 15 | 25 | 88.9 | 82.8 | 85.7 |
Mixed | 456 | 351 | 105 | 67 | 77.0 | 84.0 | 80.3 |
All | 733 | 587 | 146 | 97 | 80.1 | 85.8 | 82.9 |
Rank | 5SA | 5CA | 5SH | 5CH | 2SA | 2CA | 2SH | 2CH |
---|---|---|---|---|---|---|---|---|
1 | * hcv | * hcv | + CRI1 | + PRR | * h95 | * hcv | + REI | + CI |
2 | * h95 | * h95 | + PRR | + CRI1 | + mNDVI705 | * h95 | + CRI1 | + PRR |
3 | + CRI1 | + REI | + ARI1 | + CI | + CRI1 | + RGRI | + 1st_18 | + CRI1 |
4 | * d2 | + 1st_18 | + mNDVI705 | + ARI1 | + 1st_18 | + ARI1 | + RGRI | + mNDVI705 |
5 | + 1st_50 | * d2 | + 1st_45 | + RGRI | * CC | * CC | + ARI1 | + RGRI |
6 | + 1st_18 | + RGRI | + 1st_50 | + 2nd_29 | + 2nd_22 | + 1st_18 | + 2nd_24 | + ARI1 |
(a) | |||||||
Class | C.C | S.G | S.O | M.P | C.F | User’s (%) | Commission (%) |
C.C | 41 | 1 | 0 | 1 | 0 | 95.3 | 4.7 |
S.G | 2 | 37 | 1 | 2 | 0 | 88.1 | 11.9 |
S.O | 0 | 1 | 38 | 3 | 1 | 88.4 | 11.6 |
M.P | 2 | 1 | 4 | 46 | 0 | 86.8 | 13.2 |
C.F | 1 | 0 | 2 | 0 | 49 | 94.2 | 5.8 |
Producer’s (%) | 89.1 | 92.5 | 84.4 | 88.5 | 98.0 | Overall Accuracy = 90.6% | |
Omission (%) | 10.9 | 7.5 | 15.6 | 11.5 | 2.0 | ||
(b) | |||||||
Class | C.C | S.G | S.O | M.P | C.F | User’s (%) | Commission (%) |
C.C | 40 | 1 | 2 | 0 | 1 | 90.9 | 9.1 |
S.G | 2 | 35 | 4 | 2 | 1 | 79.5 | 20.5 |
S.O | 1 | 2 | 35 | 3 | 0 | 85.4 | 14.6 |
M.P | 2 | 1 | 2 | 46 | 1 | 88.5 | 11.5 |
C.F | 1 | 1 | 2 | 1 | 47 | 90.4 | 9.6 |
Producer’s (%) | 87.0 | 87.5 | 77.8 | 88.5 | 94.0 | Overall Accuracy = 87.1% | |
Omission (%) | 13.0 | 12.5 | 22.2 | 11.5 | 6.0 | ||
(c) | |||||||
Class | C.C | S.G | S.O | M.P | C.F | User’s (%) | Commission (%) |
C.C | 42 | 1 | 2 | 1 | 0 | 91.3 | 8.7 |
S.G | 1 | 36 | 1 | 3 | 1 | 85.7 | 14.3 |
S.O | 2 | 1 | 37 | 3 | 1 | 84.1 | 15.9 |
M.P | 0 | 2 | 3 | 44 | 0 | 89.8 | 10.2 |
C.F | 1 | 0 | 2 | 1 | 48 | 92.3 | 7.7 |
Producer’s (%) | 91.3 | 90.0 | 82.2 | 84.6 | 96.0 | Overall Accuracy = 88.8% | |
Omission (%) | 8.7 | 10.0 | 17.8 | 15.4 | 4.0 | ||
(d) | |||||||
Class | C.C | S.G | S.O | M.P | C.F | User’s (%) | Commission (%) |
C.C | 40 | 1 | 3 | 1 | 0 | 88.9 | 11.1 |
S.G | 2 | 33 | 2 | 2 | 1 | 82.5 | 17.5 |
S.O | 2 | 3 | 37 | 3 | 1 | 80.4 | 19.6 |
M.P | 1 | 1 | 1 | 44 | 2 | 89.8 | 10.2 |
C.F | 1 | 2 | 2 | 2 | 46 | 86.8 | 13.2 |
Producer’s (%) | 87.0 | 82.5 | 82.2 | 84.6 | 92.0 | Overall Accuracy = 85.8% | |
Omission (%) | 13.0 | 17.5 | 17.8 | 15.4 | 8.0 |
(a) | ||||
Class | Broadleaf | Conifer | User’s (%) | Commission (%) |
Broadleaf | 121 | 11 | 91.7 | 8.3 |
Conifer | 10 | 91 | 90.1 | 9.9 |
Producer’s (%) | 92.4 | 89.2 | Overall Accuracy = 91.0% | |
Omission (%) | 7.6 | 10.8 | ||
(b) | ||||
Class | Broadleaf | Conifer | User’s (%) | Commission (%) |
Broadleaf | 119 | 16 | 88.1 | 11.9 |
Conifer | 12 | 86 | 87.8 | 12.2 |
Producer’s (%) | 90.8 | 84.3 | Overall Accuracy = 88.0% | |
Omission (%) | 9.2 | 15.7 | ||
(c) | ||||
Class | Broadleaf | Conifer | User’s (%) | Commission (%) |
Broadleaf | 120 | 14 | 89.6 | 10.4 |
Conifer | 11 | 88 | 88.9 | 11.1 |
Producer’s (%) | 91.6 | 86.3 | Overall Accuracy = 89.3% | |
Omission (%) | 8.4 | 13.7 | ||
(d) | ||||
Class | Broadleaf | Conifer | User’s (%) | Commission (%) |
Broadleaf | 117 | 17 | 87.3 | 12.7 |
Conifer | 14 | 85 | 85.9 | 14.1 |
Producer’s (%) | 89.3 | 83.3 | Overall Accuracy = 86.7% | |
Omission (%) | 10.7 | 16.7 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, X.; Cao, L. Tree-Species Classification in Subtropical Forests Using Airborne Hyperspectral and LiDAR Data. Remote Sens. 2017, 9, 1180. https://doi.org/10.3390/rs9111180
Shen X, Cao L. Tree-Species Classification in Subtropical Forests Using Airborne Hyperspectral and LiDAR Data. Remote Sensing. 2017; 9(11):1180. https://doi.org/10.3390/rs9111180
Chicago/Turabian StyleShen, Xin, and Lin Cao. 2017. "Tree-Species Classification in Subtropical Forests Using Airborne Hyperspectral and LiDAR Data" Remote Sensing 9, no. 11: 1180. https://doi.org/10.3390/rs9111180