Global Crop Monitoring: A Satellite-Based Hierarchical Approach
"> Figure 1
<p>CropWatch hierarchical crop monitoring approach.</p> "> Figure 2
<p>Sixty-five Monitoring and Reporting Units of the CropWatch system.</p> "> Figure 3
<p>Seven crop monitoring sub-divisions adopted by the CropWatch System for China (modified from Sun (1994) [<a href="#B42-remotesensing-07-03907" class="html-bibr">42</a>]).</p> "> Figure 4
<p>Major Production Zones in the CropWatch system.</p> "> Figure 5
<p>Thirty-one key countries in the CropWatch system.</p> "> Figure 6
<p>January to April 2013 global map of temperature departure from the 2002–2012 average, by country and administrative subdivisions within large countries; the difference is expressed as degrees Celsius (°C).</p> "> Figure 7
<p>October 2013 to January 2014 global rainfall departure from the 2001–2012 average, by country and large administrative areas within large countries; the difference is expressed as percentage of the reference (%).</p> "> Figure 8
<p>January to April 2014 global map of potential biomass departure from the 2001–2013 average, over sixty-five crop Mapping and Reporting Units; the difference is expressed as percentage of the reference (%).</p> "> Figure 9
<p>Cropping intensity map for Western Europe in 2013.</p> "> Figure 10
<p>Cropped and uncropped arable land map for Western Europe over two time intervals. (<b>a</b>) January to April 2013; (<b>b</b>) October 2013 to January 2014.</p> "> Figure 11
<p>Spatial distribution of the VCIx between January and July 2014 in the CONUS.</p> "> Figure 12
<p>Comparison of various NDVI profiles over the maize, wheat, rice and soybean mask for CONUS.</p> "> Figure 13
<p>(<b>a</b>) The Spatial distribution of NDVI departure cluster during January and July 2014 in the United States; (<b>b</b>) The NDVI departure profiles associated with (<b>a</b>). The horizontal line marks “0 departure”, <span class="html-italic">i.e.</span>, average conditions.</p> "> Figure 14
<p>(<b>a</b>) The Spatial distribution of VHI departure cluster in the United States; (<b>b</b>) The VHI departure profiles associated with (<b>a</b>); the horizontal line denotes average conditions.</p> "> Figure 15
<p>Three year moving average production of maize, rice, wheat and soybean of major producers.</p> ">
Abstract
:1. Introduction
2. Hierarchical Approach
2.1. Spatial Scale
2.1.1. Global Crop Monitoring and Reporting Units (MRU)
2.1.2. Major Production Zones (MPZs)
2.1.3. Countries and Sub-Country Units
2.2. Indicators
Scale | R | T | PAR | BIO | CI | CALF | VHI | VCIx | NDVI | CTP | Outputs |
---|---|---|---|---|---|---|---|---|---|---|---|
Global | + | + | + | + | Abnormal weather pattern | ||||||
MPZs | + | + | + | + | + | + | + | + | Unusual cropping pattern | ||
30+1 key countries | + | + | + | + | + | + | + | + | + | Crop condition and production | |
Sub countries | + | + | + | + | + | + | + | + | + | + | Crops opted for by farmers |
2.2.1. Agroclimatic Indicators
2.2.2. Arable Land Use Intensity Indicators
2.2.3. Crop Condition Indicators
2.2.4. Crop Production Indicators
2.3. Crop Supply Situation Outlook Analysis
3. Typical Outputs
3.1. Analysis of Indicators
3.1.1. Global Agroclimatic Assessment at the Global Scale
3.1.2. Arable Land Use Intensity Monitoring at MPZ Scale
3.1.3. Crop Condition at Country Scale
3.1.4. Crop Type Proportion for Provinces in China
City | Maize | Rice | Soybean | Wheat |
---|---|---|---|---|
Anhui | 28.86 | 26.76 | 24.17 | 39.21 |
Chongqing | 52.69 | 26.49 | 3.46 | 19.83 |
Fujian * | ||||
Gansu | 50.57 | 0.09 | 0.49 | 25.27 |
Guangdong * | ||||
Guangxi | 6.29 | 45.88 | 0.08 | |
Guizhou | 82.12 | 2.36 | 15.49 | |
Hebei | 76.58 | 0.02 | 0.34 | 36.79 |
Heilongjiang | 60.68 | 21.69 | 15.03 | 1.32 |
Henan | 74.27 | 0.01 | 11.42 | 68.80 |
Hubei | 21.81 | 38.31 | 1.03 | 16.36 |
Hunan | 9.37 | 71.61 | 0.29 | |
Inner Mongolia | 77.49 | 0.05 | 0.29 | 5.10 |
Jiangsu | 3.87 | 50.70 | 5.94 | 40.71 |
Jiangxi * | ||||
Jilin | 79.09 | 14.03 | 1.65 | |
Liaoning | 80.85 | 7.56 | 0.42 | |
Ningxia | 72.30 | 13.98 | 0.00 | 20.03 |
Shaanxi | 71.54 | 7.65 | 0.37 | 18.57 |
Shandong | 54.58 | 0.00 | 0.18 | 57.80 |
Shanxi | 75.50 | 0.00 | 1.08 | 15.74 |
Sichuan | 28.89 | 44.68 | 3.63 | 28.46 |
Yunnan | 47.22 | 12.78 | 1.97 | |
Zhejiang * | ||||
China | 52 | 19 | 6 |
3.2. Food Supply Situation
3.2.1. Global Crop Supply Prospects
3.2.2. Production Estimates
Maize | Rice | Wheat | Soybean | ||
---|---|---|---|---|---|
Total production | 993,783 | 755,513 | 719,718 | 294,822 | |
Departure from 2013 production (%) | World | 0 | 0 | +2 | +6 |
Top 80% producers | −1 | 0 | +2 | +9 | |
Rest of the world | +9 | +6 | −23 | −26 | |
Major exporters | −1 | 0 | 0 | +7 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wu, B.; Meng, J.; Li, Q.; Zhang, F.; Du, X.; Yan, N. Latest development of “CropWatch”—An global crop monitoringsystem with remote sensing. Adv. Earth Sci. 2010, 25, 1013–1022. [Google Scholar]
- Becker-Reshef, I.; Justice, C.; Sullivan, M.; Vermote, E.; Tucker, C.; Anyamba, A.; Small, J.; Pak, E.; Masuoka, E.; Schmaltz, J.; et al. Monitoring global croplands with coarse resolution earth observations: The global agriculture monitoring (GLAM) project. Remote Sens. 2010, 2, 1589–1609. [Google Scholar] [CrossRef]
- Wu, B.; Meng, J.; Li, Q.; Yan, N.; Du, X.; Zhang, M. Remote sensing-based global crop monitoring: Experiences with China’s CropWatch system. Int. J. Dig.Earth 2014, 7, 113–137. [Google Scholar] [CrossRef]
- MinAgri—Argentina. Available online: http://www.minagri.gob.ar/site/ (accessed on 31 May 2014).
- Fontana, D.C.; Melo, R.W.; Wagner, A.P.L.; Weber, E.; Gusso, A. Use of remote sensing for crop yield and area estimates in the southern of Brazil. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, 36, 8/W48. 53–58. [Google Scholar]
- Reichert, G.C.; Caissy, D. A Reliable Crop Condition Assessment Program (CCAP) Incorporating NOAA AVHRR Data, a Geographical Information System and the Internet. Available online: http://proceedings.esri.com/library/userconf/proc02/pap0111/p0111.htm (accessed on 22 March 2013).
- Space Applications Centre (SAC). Manual for Crop Production Forecasting Using Remotely Sensed Data, a Joint Project of Space and Ministry of Agriculture; Space Applications Centre: Ahmedabad, India, 1995.
- Sivakumar, M.V.K.; Gommes, R.; Baier, W. Agrometeorology and sustainable agriculture. Agric. For. Meteorol. 2000, 103, 11–26. [Google Scholar] [CrossRef]
- Gommes, R. Agrometeorological models and remote sensing for crop monitoring and forecasting. In Proceedings of the Report of the Asia-Pacific Conference on Early Warning, Preparedness, Prevention and Management of Disasters, Chiang-Mai, Thailand, 12–15 June 2001.
- Adams, R.M.; Houston, L.L.; McCarl, B.A.; Tiscareño, M.L.; Jaime Matus, L.; Weiher, R.F. The benefits to Mexican agriculture of an El Niño-southern oscillation (ENSO) early warning system. Agric. For. Meteorol. 2003, 115, 183–194. [Google Scholar] [CrossRef]
- Balaghi, R.; Badjeck, M-C; Bakari, D.; de Pauw, E.; de Wit, A.; Defourny, P.; Donato, S.; Gommes, R.; Jlibene, M.; Ravelo, A.C.; et al. Managing climatic risks for enhanced food security: Key information capabilities. Procedia Environ. Sci. 2010, 1, 313–323. [Google Scholar] [CrossRef]
- Begum, S.; Nessa, M.; Alam, M.S. Space technology for crop monitoring of Bangladesh. Res. J. Sci. IT Manag. 2013, 2, 11–17. [Google Scholar]
- Fakhruddin, S.H.M.; Chivakidakarn, Y. A case study for early warning and disaster management in Thailand. Int. J. Disaster Risk Reduct. 2014, 9, 159–180. [Google Scholar] [CrossRef]
- Pulwarthy, R.S.; Sivakumar, M.V.K. Information systems in a changing climate: Early warnings and drought risk management. Weather Clim. Extremes 2014, 3, 14–21. [Google Scholar] [CrossRef]
- Mock, N.; Morrow, N.; Papendieck, A. From complexity to food security decision-support: Novel methods of assessment and their role in enhancing the timeliness and relevance of food and nutrition security information. Glob. Food Sec. 2013, 2, 41–49. [Google Scholar] [CrossRef]
- Traore, S.B.; Ali, A.; Tinni, S.H.; Samake, M.; Garba, I.; Maigari, I.; Alhassane, A.; Samba, A.; Diao, M.B.; Atta, S.; et al. AGRHYMET: A drought monitoring and capacity building center in the West Africa region. Weather Clim. Extremes 2014, 3, 22–30. [Google Scholar] [CrossRef]
- FAO. GIEWS—The Global Information and Early Warning System on Food and Agriculture. Avaialable online: http://www.fao.org/giews/english/giews_en.pdf (accessed on 15 July 2014).
- Foreign Agricultural Service. Crop Explorer for Major Crop Regions. Available online: http://www.pecad.fas.usda.gov/cropexplorer/ (accessed on 15 July 2014).
- Duveiller, G.; Lopez-Lozano, R.; Baruth, B. Enhanced processing of 1-km spatial resolution fAPAR time series for sugarcane yield forecasting and monitoring. Remote Sens. 2013, 5, 1091–1116. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.W.; Di, L.P.; Yu, G.P.; Chen, Z.Q. Vegetation condition indices for crop vegetation condition monitoring. In Proceedings of the 2001 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 3534–3537.
- National Aeronautics and Space Administration (NASA). Large Area Crop Inventory Experiment (LACIE) Phase I and Phase II Accuracy Assessment Final Report. Available online: http://www.nass.usda.gov/Education_and_Outreach/Reports,_Presentations_and_Conferences/GIS_Reports/Phase%20I%20and%20II%20Accuracy%20Assessment%20Final%20Report%20(Pages%201–100).pdf (accessed on 3 April 2014).
- Chhikara, R.S.; Feiveson, A.H. Landsat-Based Large Area Crop Acreage Estimation—An Experimental Study. Available online: https://www.amstat.org/sections/srms/proceedings/papers/1978_030.pdf (accessed on 29 September 2014).
- MacDonald, R.B.; Hall, F.G. Global crop forecasting. Science 1980, 208, 670–679. [Google Scholar] [CrossRef] [PubMed]
- BlackBridge. Satellite Imagery Product Specifications, Version 6.0. Available online: http://blackbridge.com/rapideye/upload/RE_Product_Specifications_ENG.pdf (accessed on 2 March 2014).
- ESA. About Proba-V, Proba-V Facts and Figures. Available online: http://www.esa.int/Our_Activities/Technology/Proba_Missions/About_Proba-V (accessed on 2 March 2014).
- Shenzhen Institute of Advanced Technology. Chinese Academy of Sciences. Available online: http://www.siat.ac.cn/xwzx/zkyxw/200801/t20080129_2094573.html (accessed on 2 March 2014).
- China Centre for Resources Satellite Data and Application. Available online: http://www.cresda.com/n16/n1130/n188475/188494.html (accessed on 2 March 2014).
- Drusch, M.; del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Brown, R.J.; Bernier, M.; Fedosejevs, G.; Skretkowicz, L. NOAA-AVHRR crop condition monitoring. Can. J. Remote Sens. 1982, 8, 107–117. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Barnes, W.L.; Maymon, P.W.; Montgomery, H.E.; Ostrow, H. MODIS—Advanced facility instrument for studies of the earth as a system. IEEE Trans. Geosci. Remote Sens. 1989, 27, 145–153. [Google Scholar] [CrossRef]
- Pulitini, P.; Barillot, M.; Gentet, T.; Reulet, J.F. VEGETATION payload. In Proceedings of the International Society for Optical Engineering (SPIE) 2209, Garmisch-Partenkirchen, Germany, 1 April 1994; p. 126.
- Simpson, J.; Robert, F.A.; Gerald, R.N. A proposed tropical rainfall measuring mission (TRMM) satellite. Bull. Am. Meteorol. Soc. 1988, 69, 278–278. [Google Scholar] [CrossRef]
- Kogan, F.N. Global drought and flood-watch from NOAA polar-orbiting satellites. Adv. Space Res. 1998, 21, 477–480. [Google Scholar] [CrossRef]
- FAO. Global Ecological Zones for FAO Forest Reporting: 2010 Update. Available online: http://www.fao.org/geonetwork/srv/en (accessed on 26 June 2014).
- Grieser, J.; Gommes, R.; Cofield, S.; Bernardi, M. New Gridded Maps of Koeppen’s Climate Classification. Avaiable online: http://www.juergen-grieser.de/downloads/Koeppen-Climatology/Koeppen_Climatology.pdf (accessed on 26 June 2014).
- FAO/CLIMPAG VasClimo Data. Available online: http://www.fao.org/nr/climpag/globgrids/npp_en.asp (accessed on 26 June 2014).
- Fischer, G.; Velthuizen, H.V.; Medow, S.; Nachtergaele, F. Global Agro-Ecological Assessment for Agriculture in the 21st Century: Methodology and Results. Avaiable online: http://ipcc-wg2.gov/njlite_download.php?id=7117 (accessed on 26 June 2014).
- USDA. Major World Crop Areas and Climatic Profiles. Avaiable online: www.usda.gov/oce/weather/pubs/Other/MWCACP/MajorWorldCropAreas.pdf (accessed on 25 March 2005).
- Ramankutty, N.; Foley, J.A.; Norman, J.; McSweeney, K. The global distribution of cultivable lands: Current patterns and sensitivity to possible climate change. Glob. Ecol. Biogeogr. 2002, 11, 377–392. [Google Scholar] [CrossRef]
- Monfreda, C.; Ramankutty, N.; Foley, J.A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 2008, 22, 1–19. [Google Scholar] [CrossRef]
- Gommes, R.; Wu, B.; Li, Z.; Zeng, H. Design and characterisation of global crop monitoring and reporting units. Agr. Ecosyst. Environ. 2015. submitted. [Google Scholar]
- Sun, H. Agricultural Natural Resources and Regional Development of China; Jiangsu Science and Technology Press: Nanjing, China, 1994. [Google Scholar]
- FAOSTAT. FAO Global Production and Trade Statistics. Available online: http://faostat3.fao.org/home/E (accessed on 5 March 2014).
- NASA. TRMM-Based Precipitation Estimates. Available online: ftp://trmmopen.gsfc.nasa.gov/pub/merged/mergeIRMicro/ (accessed on 5 August 2014).
- European Commission, Joint Research Center. Agrometeorological Data. Available online: http://spirits.jrc.ec.europa.eu/?page_id=2869 (accessed on 5 August 2014).
- NOAA. National Climatic Data Centre, Global Summary of the day (GlobalSOD). Available online: ftp://ftp.ncdc.noaa.gov/pub/data/gsod (accessed on 5 August 2014).
- Lieth, H. Modeling the primary productivity of the earth. Nat. Resour. 1972, 2, 5–10. [Google Scholar]
- Gommes, R.; Wu, B.; Zhang, N.; Feng, X.; Zeng, H.; Li, Z.; Chen, B. CropWatch Agroclimatic Indicators (CWAIs) for weather impact assessment on global agriculture. Int. J. Biometeorol. 2015. submitted. [Google Scholar]
- Chen, B.; Gommes, R.; Li, Z.; Wu, B. Environment indices processing software and implementation. Sin. J. Remote Sens. 2015. in preparation. [Google Scholar]
- Fan, J.; Wu, B. A methodology for retrieving croppingindex from NDVI profile. Sin. J. Remote Sens. 2004, 8, 628–636. [Google Scholar]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, B.; Yu, M.; Zou, W.; Zheng, Y. Monthly monitoring of uncropped arable land: concepts and implementation—A case study in Argentina. Sin. J. Remote Sens. 2015, in press. [Google Scholar]
- Kogan, F.N. Remote sensing of weather impacts on vegetation in non-homogenous area. Int. J. Remote Sen. 1990, 11, 1405–1419. [Google Scholar] [CrossRef]
- Yan, N.N.; Wu, B.F.; Chang, S. Agriculture drought monitoring and assessment based on noaa vhi products: A case study in north america. Sin. J. Remote Sens. 2015. in preparation. [Google Scholar]
- Zhang, F.; Wu, B.; Liu, C.; Luo, Z.; Zhang, S.; Zhang, G. A method to extract regional crop growth information with time series of NDVI data. Sin. J. Remote Sens. 2004, 8, 515–528. [Google Scholar]
- Meng, J.; Wu, B. Study on the crop condition monitoring methods with remote sensing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 945–950. [Google Scholar]
- Zou, W.T.; Wu, B.F.; Zhang, M.; Zheng, Y. Synthetic method for crop condition analysis-a case study in india. Sin. J. Remote Sens. 2015, in press. [Google Scholar]
- Romani, L.A.S.; Goncalves, R.R.V.; Amaral, B.F.; Chino, D.Y.T.; Zullo, J.; Traina, C.; Sousa, E.P.M.; Traina, A.J.M. Clustering analysis applied to NDVI/NOAA multitemporal images to improve the monitoring process of sugarcane crops. In Proceedings of the International Work Shop on the Analysis of Multi-temporal Remote Sensing Images—MultiTemp, Trento, NJ, USA, 12–14 July 2011; pp. 33–36.
- Petitjean, F.; Kurtz, C.; Passat, N.; Gançarski, P. Spatio-temporal reasoning for the classification of satellite image time series. Pattern Recognit. Lett. 2012, 33, 1805–1815. [Google Scholar] [CrossRef]
- Zheng, Y.; Gommes, R; Zhang, M.; Zou, W.T.; Wu, B.F. Crop condition monitoring based on the time-series remote sensing clustering. Sin. J. Remote Sens. 2015. in preparation. [Google Scholar]
- Wu, B.; Li, Q. Crop acreage estimation using two individual samplingframeworks with stratification. Sin. J. Remote Sens. 2004, 8, 551–569. [Google Scholar]
- Wu, B.; Li, Q. Crop planting and type proportion method for crop acreageestimation of complex agricultural landscapes. Int. J. Appl. Earth Obs. 2012, 16, 101–112. [Google Scholar] [CrossRef]
- Xu, X.; Wu, B.; Meng, J.; Li, Q. Design and implementation of cropyield forecasting system. Comput. Eng. 2008, 34, 283–285. [Google Scholar]
- Du, X.; Wu, B.; Li, Q.; Meng, J.; Jia, K. A method to estimated winterwheat yield with the meris data. In Proceedings of the Progress in Electromagnetics Research Symposium(PIERS), Beijing, China, 23–27 March 2009; pp. 23–27.
- Du, X.; Wu, B.; Meng, J.; Li, Q. Estimation of harvest index of winterwheat based on remote sensing data. In Proceedings of the 33rd International Symposium on Remote Sensing of Environment, Stresa, Italy, 4–8 May 2009; pp. 4–8.
- Meng, J.; Du, X.; Wu, B. Generation of high spatial and temporal resolution NDVI and its application in crop biomass estimation. Int. J. Digit. Earth 2013, 6, 203–218. [Google Scholar] [CrossRef]
- Office of the Chief Economist. Major World Crop Areas and Climate Profiles (MWCACP). Available online: http://www.usda.gov/oce/weather/pubs/Other/MWCACP/index.htm (accessed on 6 June 2012).
- FAO. Global Information and Early Warning System on Food and Agriculture (GIEWS) Country Briefs. Available online: http://www.fao.org/giews/countrybrief/index.jsp (accessed on 10 November 2013).
- Ren, J.; Chen, Z.; Zhou, Q.; Tang, H. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. Int. J. Appl. Earth Obs. 2008, 10, 403–413. [Google Scholar] [CrossRef]
- Becker-Reshef, I.; Vermote, E.; Lindeman, M.; Justice, C. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens. Environ. 2010, 114, 1312–1323. [Google Scholar] [CrossRef]
- Kogan, F.; Kussul, N.; Adamenko, T.; Skakun, S.; Kravchenko, O.; Kryvobok, O.; Shelestov, A.; Kolotii, A.; Kussul, O.; Lavrenyuk, A. Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models. Int. J. Appl. Earth Obs. 2013, 23, 192–203. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Li, X.; Tian, H.; Pan, Z. Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA’s-AVHRR. PLoS One 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- National Agricultural Statistics Service. Crop Production Reports Released April 9 and May 9, 2014. Available online: http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1046 (accessed on 15 June 2014).
- Nicholson, S.E.; Some, B.; McCollum, J.; Nelkin, E.; Klotter, D.; Berte, Y.; Diallo, B.; Gaye, I.; Kpabeba, G.; Ndiaye, O. Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part II: Validation of TRMM rainfall products. J. Appl. Meteorol. 2003, 42, 1355–1368. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar]
- Su, F.; Hong, Y.; Lettenmaier, D.P. Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. J. Hydrometeorol. 2008, 9, 622–640. [Google Scholar] [CrossRef]
- Kogan, F.N. Global drought watch from space. Bull. Am. Meteorol. Soc. 1997, 78, 621–636. [Google Scholar]
- Kogan, F.N. World droughts in the new millennium from AVHRR-based Vegetation Indices. Eos Trans. AGU 2002, 83. [Google Scholar] [CrossRef]
- Fang, H.; Wu, B.; Liu, H.; Huang, X. Using NOAA AVHRR and LandsatTM to estimate rice area year-by-year. Remote Sens. Tech. Appl. 1997, 12, 23–26. [Google Scholar]
- Wu, B. Operational remote sensing methods for agricultural statistics. Acta Geogr. Sinica. 2000, 55, 23–35. [Google Scholar]
- Wu, B. China CropWatch system with remote sensing. Sin. J. Remote Sens. 2004, 8, 1013–1022. [Google Scholar]
- Jiang, X.; Zhao, R.; Li, Q.; Wu, B.; He, L. Extraction of crop acreage using GVG system and its precision analysis. J. Nanjing Inst. Meteol. 2002, 25, 78–83. [Google Scholar]
- Fan, J.; Meng, Q.; Wu, B.; Zhou, X. Development of crop yield forecasting system. Chin. J. Agrometeorol. 2003, 24, 46–51. [Google Scholar]
- Zhang, F.; Wu, B.; Huang, H.; Li, M. Study of ploughed field information extraction in rice area of Thailand. J. Nat. Resour. 2003, 18, 766–772. [Google Scholar]
- Meng, Q.; Li, Q.; Wu, B. Operational crop yield estimating method foragricultural statistics. Sin. J. Remote Sens. 2004, 8, 602–610. [Google Scholar]
- Wu, B.; Fan, J.; Tian, Y.; Li, Q.; Zhang, L.; Liu, Z.; Zhang, G.; He, L.; Huang, J.; Jiang, X.; et al. A method for crop planting structure inventory and its application. Sin. J. Remote Sens. 2004, 8, 18–627. [Google Scholar]
- Wu, B.; Zhang, F.; Liu, C.; Zhang, L.; Luo, Z. An integrated method for crop condition monitoring. Sin. J. Remote Sens. 2004, 8, 498–514. [Google Scholar]
- Wu, B.; Meng, J.; Li, Q. An integrated crop condition monitoring system with remote sensing. Trans. ASABE 2010, 53, 971–979. [Google Scholar] [CrossRef]
- Wu, B.; Tian, Y.; Li, Q. GVG, a crop type proportion sampling instrument. Sin. J. Remote Sens. 2004, 8, 570–580. [Google Scholar]
- Zeng, L.; Zhang, Y.; Zhang, X.; Wu, B. A short-term model of grain supply anddemand balance based on remote sensing monitoring and agriculture statistical data. Sin. J. Remote Sens. 2004, 8, 645–654. [Google Scholar]
- Li, Q. Validation and Uncertainty Analysis of Large Area Crop Acreage Estimation with Remote Sensing. Ph.D. Thesis, Institute of Remote Sensing Applications, Chinese Academyof Sciences, Beijing, China, 2008. [Google Scholar]
- Li, Q.; Wu, B. Accuracy assessment of planted area proportion using Landsat TM imagery. Sin. J. Remote Sens. 2004, 8, 581–587. [Google Scholar]
- Jia, K.; Li, Q.; Tian, Y.; Wu, B.; Zhang, F.; Meng, J. Crop classification based on fusion of ENVISAT ASAR and HJ CCD data. In Proceedings of the Dragon 2 Programme Middle Results (2008–2010), Guilin, China, 17–21 May 2010; pp. 17–21.
- Jia, K.; Wu, B.; Tian, Y.; Zeng, Y.; Li, Q. Vegetation classification methodwith biochemical composition estimated from remote sensing data. Int. J. Remote Sens. 2011, 32, 9307–9325. [Google Scholar] [CrossRef]
- Li, Q.; Wu, B.; Jia, K.; Dong, Q.; Eerens, H.; Zhang, M. Maize acreage estimation using ENVISAT MERIS and CBERS-02B CCD data in the North China Plain. Comput. Electron. Agric. 2011, 78, 208–214. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, B.; Yu, M.; Zou, W.; Zheng, Y. Crop condition assessment with adjusted NDVI using the uncropped arable land ratio. Remote Sens. 2014, 6, 5774–5794. [Google Scholar] [CrossRef]
- Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences. Available online: http://www.fao.org/giews/countrybrief/index.jsp (accessed on 20 April 2014).
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Gommes, R.; Zhang, M.; Zeng, H.; Yan, N.; Zou, W.; Zheng, Y.; Zhang, N.; Chang, S.; Xing, Q.; et al. Global Crop Monitoring: A Satellite-Based Hierarchical Approach. Remote Sens. 2015, 7, 3907-3933. https://doi.org/10.3390/rs70403907
Wu B, Gommes R, Zhang M, Zeng H, Yan N, Zou W, Zheng Y, Zhang N, Chang S, Xing Q, et al. Global Crop Monitoring: A Satellite-Based Hierarchical Approach. Remote Sensing. 2015; 7(4):3907-3933. https://doi.org/10.3390/rs70403907
Chicago/Turabian StyleWu, Bingfang, René Gommes, Miao Zhang, Hongwei Zeng, Nana Yan, Wentao Zou, Yang Zheng, Ning Zhang, Sheng Chang, Qiang Xing, and et al. 2015. "Global Crop Monitoring: A Satellite-Based Hierarchical Approach" Remote Sensing 7, no. 4: 3907-3933. https://doi.org/10.3390/rs70403907