The Influence of Different Recycling Scenarios on the Mechanical Design of an LED Weatherproof Light Fitting
"> Figure 1
<p>Product structure.</p> "> Figure 2
<p>Life cycle system boundaries</p> "> Figure 3
<p>Parts of the light fitting: (<b>1</b>) housing; (<b>2</b>) light diffuser; (<b>3</b>) gasket; (<b>4</b>) closing clips.</p> "> Figure 4
<p>Design combinations.</p> "> Figure 5
<p>Results for Scenario 1.</p> "> Figure 6
<p>Comparative between scenarios, ReCiPe.</p> "> Figure 7
<p>Comparative between scenarios, Carbon footprint.</p> "> Figure 8
<p>Breakdown of the ReCiPe results.</p> "> Figure 9
<p>Breakdown of the carbon footprint results.</p> ">
Abstract
:1. Introduction
2. Life Cycle Assessment Methodology
2.1. System Boundaries
2.2. Functional Unit
2.3. Inventory Data
2.4. Assessment Methods
2.5. The Software Ecotool
3. Life Cycle Inventory
- 3.1. Components manufacturing
- 3.2. Distribution to consumers
- 3.3. End of life data
- ο
- 3.3.1. Scenario 1
- ο
- 3.3.2. Scenario 2
- ο
- 3.3.3. Scenario 3
3.1. Components Manufacturing
Part | Material | Weight (g/part) | Number of Parts | Process |
---|---|---|---|---|
Housing | PC | 430 | 1 | Injection molding |
SMC | 550 | 1 | Thermal Compression | |
Aluminum | 1400 | 1 | Injection molding | |
Diffuser | PC | 310 | 1 | Injection molding |
PMMA | 310 | 1 | Injection molding | |
Styrene-acrylonitrile (SAN) | 265 | 1 | Injection molding | |
Clips | Polyamide 6 glass-filled (PA6 GF10) | 2.5 | 8 | Injection molding |
Stainless steel | 3.8 | 8 | Press | |
Gasket | Polyurethane (PU) flexible foam | 18 | 1 | Heat curing |
Material | EcoInvent Dataset |
---|---|
PC | Polycarbonate production, RER (Europe) |
SMC | Glass fiber-reinforced plastic production, polyester resin, hand lay-up, RER |
PMMA | Polymethyl methacrylate production, beads, RER |
SAN | Styrene-acrylonitrile copolymer production, RER |
PA6 GF 10 | Nylon 6 production, glass-filled, RER + Nylon 6 production, RER |
Aluminum | Aluminum production, primary, ingot, GLO (Global) |
Stainless steel | Steel production, chromium steel 18/8, hot rolled, RER |
PU flexible foam | Polyurethane production, flexible foam, RER |
Process | EcoInvent Dataset |
---|---|
Injection molding | Injection molding, RER |
Electricity consumption | Market for electricity, medium voltage, ES (Spain) |
3.2. Distribution to Consumers
3.3. End of Life Data
Material | Incineration | Landfilling |
---|---|---|
Stainless Steel | - | Treatment of scrap steel, inert material landfill (GLO) |
Aluminum | - | Treatment of waste aluminum, sanitary landfill (GLO) |
SMC | Treatment of waste plastic, mixture, municipal incineration (GLO) | Treatment of waste plastic, mixture, sanitary landfill (GLO) |
PC | ||
PMMA | ||
SAN | ||
PA GF10 | ||
PU | Treatment of waste polyurethane, municipal incineration (GLO) | Treatment of waste polyurethane, sanitary landfill (GLO) |
3.3.1. Scenario 1: IEC TR62635
3.3.2. Scenario 2: Half Closed-Loop System
Part | Material | End of Life Scenario | ||
---|---|---|---|---|
Recycling (%) | Incineration (%) | Land Fill (%) | ||
Housing | PC | 0 | 5 | 95 |
SMC | 0 | 5 | 95 | |
Aluminum | 91 | 0 | 9 | |
Diffuser | PC | 0 | 5 | 95 |
PMMA | 0 | 5 | 95 | |
SAN | 0 | 5 | 95 | |
Clips | PA6 GF10 | 0 | 5 | 95 |
Stainless steel | 94 | 0 | 6 | |
Gasket | PU flexible foam | 0 | 5 | 95 |
Part | Material | End of Life Scenario | ||
---|---|---|---|---|
Recycling (%) | Incineration (%) | Land Fill (%) | ||
Housing | PC | 50 | 5 | 45 |
SMC | 0 | 5 | 95 | |
Aluminum | 95.5 | 0 | 4.5 | |
Diffuser | PC | 50 | 5 | 45 |
PMMA | 50 | 5 | 45 | |
SAN | 50 | 5 | 45 | |
Clips | PA6 GF10 | 50 | 5 | 45 |
Stainless steel | 97 | 0 | 3 | |
Gasket | PU flexible foam | 0 | 5 | 95 |
3.3.3. Scenario 3: Whole Closed-Loop System
Part | Material | End of Life Scenario | ||
---|---|---|---|---|
Recycling (%) | Incineration (%) | Land Filling (%) | ||
Housing | PC | 100 | 0 | 0 |
SMC | 0 | 5 | 95 | |
Aluminum | 100 | 0 | 0 | |
Diffuser | PC | 100 | 0 | 0 |
PMMA | 100 | 0 | 0 | |
SAN | 100 | 0 | 0 | |
Clips | PA6 GF10 | 100 | 0 | 0 |
Stainless steel | 100 | 0 | 0 | |
Gasket | PU flexible foam | 0 | 5 | 95 |
4. Results and Discussion
- (1)
- Selection of the lowest impact part depending on the material.
- (2)
- Assembly of the light fitting with the lowest impact parts, and calculation of the environmental impact of transport to customer.
4.1. Scenarios Results
4.1.1. Scenario 1: IEC TR62635
Part | Manufacturing (Materials + Production) | End of Life | ||
---|---|---|---|---|
ReCiPe (mPt) | Carbon Footprint (kgeqCO2) | ReCiPe (mPt) | Carbon Footprint (kgeqCO2) | |
Clip plastic | 15.4 | 0.24 | 0.24 | 0.8 |
Clip steel | 36.7 | 0.16 | −30.8 | −0.08 |
Diffuser SAN | 142 | 1.38 | 4.46 | 0.07 |
Diffuser PMMA | 239 | 2.55 | 4.56 | 0.06 |
Diffuser PC | 237 | 2.75 | 4.56 | 0.06 |
Gasket | 9.80 | 0.21 | 0.28 | 0.01 |
Housing SMC | 267 | 2.59 | 8.09 | 0.11 |
Housing PC | 329 | 3.82 | 6.33 | 0.08 |
Housing Aluminum | 2412 | 25.3 | −1924 | −20.7 |
4.1.2. Scenario 2: Half Closed-Loop System
Part | Manufacturing (Materials + Production) | End of Life | ||
---|---|---|---|---|
ReCiPe (mPt) | Carbon Footprint (kgeqCO2) | ReCiPe (mPt) | Carbon Footprint (kgeqCO2) | |
Clip plastic | 15.4 | 0.18 | 0.29 | 0.0 |
Clip steel | 36.7 | 0.16 | −31.8 | −0.12 |
Diffuser SAN | 142 | 1.38 | −47.8 | −0.43 |
Diffuser PMMA | 239 | 2.55 | −92.9 | −0.99 |
Diffuser PC | 237 | 2.75 | −92.2 | −1.09 |
Gasket | 9.80 | 0.21 | 0.28 | 0.01 |
Housing SMC | 267 | 2.58 | 8.09 | 0.11 |
Housing PC | 329 | 3.82 | −128 | −1.51 |
Housing Aluminum | 2412 | 25.3 | −2019 | −21.7 |
4.1.3. Scenario 3: Whole Closed-Loop System
Part | Manufacturing (Materials + Production) | End of Life | ||
---|---|---|---|---|
ReCiPe (mPt) | Carbon Footprint (kgeqCO2) | ReCiPe (mPt) | Carbon Footprint (kgeqCO2) | |
Clip plastic | 15.5 | 0.18 | 0.3 | 0 |
Clip steel | 36.7 | 0.18 | −32.8 | −0.12 |
Diffuser SAN | 142 | 1.38 | −102 | −0.98 |
Diffuser PMMA | 239 | 2.55 | −192 | −2.08 |
Diffuser PC | 237 | 2.75 | −191 | −2.28 |
Gasket | 9.80 | 0.21 | 0.28 | 0.01 |
Housing SMC | 267 | 2.58 | 8.09 | 0.11 |
Housing PC | 329 | 3.82 | −264 | −3.16 |
Housing Aluminum | 2412 | 25.3 | −2114 | −22.8 |
4.2. Results Comparison
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- European Parliament. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). In Official Journal of the European Union; EU Publications Office: Luxembourg City, Luxembourg, 2003. [Google Scholar]
- European Parliament. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency. In Official Journal of the European Union; EU Publications Office: Luxembourg City, Luxembourg, 2006. [Google Scholar]
- European Parliament. Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE). In Official Journal of the European; EU Publications Office: Luxembourg City, Luxembourg, 2012. [Google Scholar]
- European Parliament. Directive 2005/32/EC of the European parliament and of the council of 6 July 2005 establishing a framework for the setting of ecodesign requirements for energy-using products. In Official Journal of the European Union; EU Publications Office: Luxembourg City, Luxembourg, 2005. [Google Scholar]
- European Parliament. Directive 2009/125/EC of the European parliament and of the council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products. In Official Journal of the European Union; EU Publications Office: Luxembourg City, Luxembourg, 2009. [Google Scholar]
- Weng, C. Advanced thermal enhancement and management of LED packages. Int. Commun. Heat Mass Transf. 2009, 36, 245–248. [Google Scholar] [CrossRef]
- Hu, J.; Yang, L.; Shin, M.W. Thermal and mechanical analysis of high power LEDs with ceramic packages. Proc. ASME Int. Mech. Eng. Congr. Expo. 2007, 8, 251–255. [Google Scholar]
- OSRAM Opto Semiconductors GmbH. Siemens Corporate Technology. In Life Cycle Assessment of Illuminants. A comparison of Light Bulbs, Compact Fluorescent Lamps and LED Lamps; OSRAM Opto Semiconductors GmbH: Regensburg, Germany, 2009. [Google Scholar]
- Welz, T.; Hischier, R.; Hilty, L.M. Environmental impacts of lighting technologies—Life cycle assessment and sensitivity analysis. Environ. Impact Assess. Rev. 2011, 31, 334–343. [Google Scholar] [CrossRef]
- Elijošiutė, E.; Balciukevičiūtė, J.; Denafas, G. Life cycle assemssment of compact fluorescent and incandescent lamps: Comparative analysis. Environ. Res. Eng. Manag. 2012, 3, 65–72. [Google Scholar]
- Tähkämö, L.; Bazzana, M.; Ravel, P.; Grannec, F.; Martinsons, C.; Zissis, G. Life cycle assessment of light-emitting diode downlight luminaire—A case study. Int. J. Life Cycle Assess. 2013, 18, 1009–1018. [Google Scholar] [CrossRef]
- Javierre, C.; Claveria, I.; Ponz, L.; Aísa, J.; Fernández, A. Influence of the recycled material percentage on the rheological behaviour of HDPE for injection moulding process. Waste Manag. 2007, 27, 656–663. [Google Scholar] [CrossRef]
- Froelich, D.; Maris, E.; Haoues, N.; Chemineau, L.; Renard, H.; Abraham, F.; Lassartesses, R. State of the art of plastic sorting and recycling: Feedback to vehicle design. Miner. Eng. 2007, 20, 902–912. [Google Scholar] [CrossRef] [Green Version]
- Briassoulis, D.; Hiskakis, M.; Babou, E. Technical specifications for mechanical recycling of agricultural plastic waste. Waste Manag. 2013, 33, 1516–1530. [Google Scholar] [CrossRef]
- Welle, F. Twenty years of PET bottle to bottle recycling—An overview. Resour. Conserv. Recycl. 2011, 55, 865–875. [Google Scholar] [CrossRef]
- Soroudi, A.; Jakubowicz, I. Recycling of bioplastics, their blends and biocomposites: A review. Eur. Polym. J. 2013, 49, 2839–2858. [Google Scholar] [CrossRef]
- Achilias, D. Chemical recycling of poly(methyl methacrylate) by pyrolysis. Potential use of the liquid fraction as a raw material for the reproduction of the polymer. Eur. Polym. J. 2007, 43, 2564–2575. [Google Scholar] [CrossRef]
- Undri, A.; Frediani, M.; Rosi, L.; Frediani, P. Reverse polymerization of waste polystyrene through microwave assisted pyrolysis. J. Anal. Appl. Pyrolysis 2014, 105, 35–42. [Google Scholar] [CrossRef]
- Tian, J.; Chen, M. Sustainable design for automotive products: Dismantling and recycling of end-of-life vehicles. Waste Manag. 2014, 34, 458–467. [Google Scholar] [CrossRef]
- Lazarevic, D.; Aoustin, E.; Buclet, N.; Brandt, N. Plastic waste management in the context of a European recycling society: Comparing results and uncertainties in a life cycle perspective. Resour. Conserv. Recycl. 2010, 55, 246–259. [Google Scholar] [CrossRef]
- Rigamonti, L.; Grosso, M.; Møller, J.; Martinez Sanchez, V.; Magnani, S.; Christensen, T. Environmental evaluation of plastic waste management scenarios. Resour. Conserv. Recycl. 2014, 85, 42–53. [Google Scholar] [CrossRef]
- Al-Salem, S.; Lettieri, P.; Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag. 2009, 29, 2625–2643. [Google Scholar] [CrossRef]
- Luijsterburg, B.; Goossens, H. Assessment of plastic packaging waste: Material origin, methods, properties. Resour. Conserv. Recycl. 2014, 85, 88–97. [Google Scholar] [CrossRef]
- Peeters, J.; Vanegas, P.; Tange, L.; van Houwelingen, J.; Duflou, J. Closed loop recycling of plastics containing Flame Retardants. Resour. Conserv. Recycl. 2014, 84, 35–43. [Google Scholar] [CrossRef]
- Martínez, E.; Jiménez, E.; Blanco, J.; Sanz, F. LCA sensitivity analysis of a multi-megawatt wind turbine. Appl. Energy 2010, 87, 2293–2303. [Google Scholar] [CrossRef]
- Elduque, D.; Javierre, C.; Pina, C.; Martínez, E.; Jiménez, E. Life cycle assessment of a domestic induction hob: Electronic boards. J. Clean. Prod. 2014, 76, 74–84. [Google Scholar] [CrossRef]
- Hunt, G.; Lynch, I.; Cassee, F.; Handy, R.; Fernandes, T.; Berges, M.; Kuhlbusch, T.; Dusinska, M.; Riediker, M. Towards a consensus view on understanding nanomaterials hazards and managing exposure: Knowledge gaps and recommendations. Materials 2013, 6, 1090–1117. [Google Scholar] [CrossRef] [Green Version]
- Fernández, A.; Javierre, C.; González, J.; Elduque, D. Development of thermoplastic material food packaging considering technical, economic and environmental criteria. J. Biobased Mater. Bioenergy 2013, 7, 176–183. [Google Scholar] [CrossRef]
- Habert, G.; Arribe, D.; Dehove, T.; Espinasse, L.; Roy, R. Reducing environmental impact by increasing the strength of concrete: Quantification of the improvement to concrete bridges. J. Clean. Prod. 2012, 35, 250–262. [Google Scholar] [CrossRef]
- Brogaard, L.; Damgaarda, A.; Jensen, M.; Barlaz, M.; Christensen, T. Evaluation of life cycle inventory data for recycling systems. Resour. Conserv. Recycl. 2014, 87, 30–45. [Google Scholar] [CrossRef]
- Stichnothe, H.; Azapagic, A. Life cycle assessment of recycling PVC window frames. Resour. Conserv. Recycl. 2013, 71, 40–47. [Google Scholar] [CrossRef]
- Shen, L.; Worrell, E.; Martin, K. Open-loop recycling: A LCA case study of PET bottle-to-fibre recycling. Resour. Conserv. Recycl. 2010, 55, 34–52. [Google Scholar] [CrossRef]
- Charmondusit, K.; Seeluangsawat, L. Recycling of poly(methyl methacrylate) scrap in the styrene–methyl methacrylate copolymer cast sheet process. Resour. Conserv. Recycl. 2009, 54, 97–103. [Google Scholar] [CrossRef]
- Williams, T.; Heidrich, O.; Sallis, P. A case study of the open-loop recycling of mixed plastic waste for use in a sports-field drainage system. Resour. Conserv. Recycl. 2010, 55, 118–128. [Google Scholar] [CrossRef]
- Simões, C.; Costa Pinto, L.; Bernardo, C. Environmental and economic assessment of a road safety product made with virgin and recycled HDPE: A comparative study. J. Environ. Manag. 2013, 114, 209–215. [Google Scholar] [CrossRef]
- Rajendran, S.; Scelsi, L.; Hodzic, A.; Soutis, C.; Al-Maadeed, M. Environmental impact assessment of composites containing recycled plastics. Resour. Conserv. Recycl. 2012, 60, 131–139. [Google Scholar] [CrossRef]
- Dodbiba, G.; Takahashi, K.; Sadaki, J.; Fujita, T. The recycling of plastic wastes from discarded TV sets: Comparing energy recovery with mechanical recycling in the context of life cycle assessment. J. Clean. Prod. 2008, 16, 458–470. [Google Scholar] [CrossRef]
- Chilton, T.; Burnley, S.; Nesaratnam, S. A life cycle assessment of the closed-loop recycling and thermal recovery of post-consumer PET. Resour. Conserv. Recycl. 2010, 54, 1241–1249. [Google Scholar] [CrossRef]
- Köhler, A. Challenges for eco-design of emerging technologies: The case of electronic textiles. Mater. Des. 2013, 51, 51–60. [Google Scholar] [CrossRef]
- Gelbmann, U.; Hammerl, B. Integrative re-use systems as innovative business models for devising sustainable product–service-systems. J. Clean. Prod. 2014, in press. [Google Scholar]
- Mont, O.; Neuvonen, A.; Lähteenoja, S. Sustainable lifestyles 2050: Stakeholder visions, emerging practices and future research. J. Clean. Prod. 2014, 63, 24–32. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. EC/TR 62635 Guidelines for End-of-Life Information Provided by Manufacturers and Recyclers and for Recyclability Rate Calculation of Electrical and Electronic Equipment; International Electrotechnical Commission: Geneva, Switzerland, 2012. [Google Scholar]
- Lofthouse, V. Ecodesign tools for designers: Defining the requirements. J. Clean. Prod. 2006, 14, 1386–1395. [Google Scholar] [CrossRef]
- Frischknecht, R.; Jungbluth, N. Ecoinvent Report No. 1 Overview and Methodology; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007. [Google Scholar]
- Frischknecht, R.; Jungbluth, N.; Althaus, H.-J.; Bauer, C.; Doka, G.; Dones, R.; Hellweg, S.; Hischier, R.; Humbert, S.; Köllner, T.; et al. Implementation of Life Cyle Impact Assessment Methods; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007. [Google Scholar]
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.D.S.A.; Struijs, J.; van Zelm, R. ReCiPe 2008. A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level; Ministerie van Volkshuisvesting: Den Haag, The Netherlands, 2013. [Google Scholar]
- Ministry of Agriculture. Royal Decree 163/2014 by the Ministry of Agriculture, Food and Environment in Which Established the National Register of Carbon Footprint; Ministry of Agriculture: Madrid, Spain, 2014. [Google Scholar]
- Javierre, C.; Camañes, V.; Aísa, J.; Pina, C. Methodology for the Ecological Mechanical Design of Parts Made of Thermoplastic Materials: Aplication to a Large Waste Container. In Proceedings of the 4th International Conference on Engineering for Waste and Biomass Valorisation, Porto, Portugal, 10–13 September 2012.
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Camañes, V.; Elduque, D.; Javierre, C.; Fernández, Á. The Influence of Different Recycling Scenarios on the Mechanical Design of an LED Weatherproof Light Fitting. Materials 2014, 7, 5769-5788. https://doi.org/10.3390/ma7085769
Camañes V, Elduque D, Javierre C, Fernández Á. The Influence of Different Recycling Scenarios on the Mechanical Design of an LED Weatherproof Light Fitting. Materials. 2014; 7(8):5769-5788. https://doi.org/10.3390/ma7085769
Chicago/Turabian StyleCamañes, Víctor, Daniel Elduque, Carlos Javierre, and Ángel Fernández. 2014. "The Influence of Different Recycling Scenarios on the Mechanical Design of an LED Weatherproof Light Fitting" Materials 7, no. 8: 5769-5788. https://doi.org/10.3390/ma7085769
APA StyleCamañes, V., Elduque, D., Javierre, C., & Fernández, Á. (2014). The Influence of Different Recycling Scenarios on the Mechanical Design of an LED Weatherproof Light Fitting. Materials, 7(8), 5769-5788. https://doi.org/10.3390/ma7085769