HF/VHF Radar Sounding of Ice from Manned and Unmanned Airborne Platforms
<p>Long resistively loaded wire antenna concept used for other temperate ice sounders. The orientation of the dipole pattern will slightly degrade signal to interference and noise ratio (SINR).</p> "> Figure 2
<p>Simplified block diagram of the CReSIS HF/VHF radar. This diagram represents both the TO and UAS version of the radar.</p> "> Figure 3
<p>HF Sounder antenna and radar electronics installed on Norlandair Twin Otter.</p> "> Figure 4
<p>Return loss of installed Twin Otter antenna with and without a matching network. Black is the antenna response, blue is the antenna response with the Band 1 MN, and red is the antenna response with the Band 2 MN.</p> "> Figure 5
<p>Flight lines over Jakobshavn Glacier in Greenland. United States Geological Survey (USGS)/National Aeronautics and Space Administration (NASA) Landsat-7 imagery in background and National Snow and Ice Data Center (NSIDC) Arctic Polar Stereographic projection. Line segments A–C show the location of radar echogram figures.</p> "> Figure 6
<p>G1X UAS antenna integration and installed measurement; (<b>a</b>) shows the antenna and radar electronic integration on the vehicle; (<b>b</b>) show the simulated (red) and in-flight measured (blue) response of the 14 MHz antenna; (<b>c</b>) is the simulated (red) and in-flight measured (blue) response of the 35 MHz antenna. © 2017 IEEE. Insets (<b>b</b>,<b>c</b>) reprinted, with permission, from [<a href="#B57-geosciences-08-00182" class="html-bibr">57</a>].</p> "> Figure 7
<p>UAS pilot taking off from a frozen lake near Russell Glacier, Greenland.</p> "> Figure 8
<p>Proximity of Russell Glacier to Kangerlussuaq, Greenland (background from Google Earth). The inset image shows the flight lines used to compare the data from the HF sounder and the NASA Operation Ice Bridge (OIB) VHF depth sounder. The green, yellow and red lines represent “good,” “medium,” and “bad” quality data, respectively, from the OIB VHF sounder. Flight lines are overlaid on a Landsat-7 image.</p> "> Figure 9
<p>Data-processing workflow.</p> "> Figure 10
<p>Example radar echogram from the northern side of the Jakobshavn channel; corresponds to line segment A in <a href="#geosciences-08-00182-f005" class="html-fig">Figure 5</a>; (<b>a</b>) shows the echogram prior to the removal of the coherent noise and (<b>b</b>) is the echogram after the noise has been removed. (see <a href="#app1-geosciences-08-00182" class="html-app">Supplementray Materials</a>).</p> "> Figure 11
<p>Inset (<b>a</b>) is a comparison of the TO HF sounder Band 2 data (left) and MCoRDS VHF radar data (right) taken during 2008. These data sets were taken along line segment B in <a href="#geosciences-08-00182-f005" class="html-fig">Figure 5</a>; Inset (<b>b</b>) is a comparison of the HF sounder (left) and the VHF radar from 2006. This data corresponds to line C in <a href="#geosciences-08-00182-f005" class="html-fig">Figure 5</a>. Bed location agrees well in the two data sets. (see <a href="#app1-geosciences-08-00182" class="html-app">Supplementray Materials</a>).</p> "> Figure 11 Cont.
<p>Inset (<b>a</b>) is a comparison of the TO HF sounder Band 2 data (left) and MCoRDS VHF radar data (right) taken during 2008. These data sets were taken along line segment B in <a href="#geosciences-08-00182-f005" class="html-fig">Figure 5</a>; Inset (<b>b</b>) is a comparison of the HF sounder (left) and the VHF radar from 2006. This data corresponds to line C in <a href="#geosciences-08-00182-f005" class="html-fig">Figure 5</a>. Bed location agrees well in the two data sets. (see <a href="#app1-geosciences-08-00182" class="html-app">Supplementray Materials</a>).</p> "> Figure 12
<p>Single channel MCoRDS data from <a href="#geosciences-08-00182-f011" class="html-fig">Figure 11</a>a. While the bed was partially detectable for the full array, it is not discernable for a single channel. (see <a href="#app1-geosciences-08-00182" class="html-app">Supplementray Materials</a>).</p> "> Figure 13
<p>Comparison of the HF sounder echograms (left) to the MCoRDS VHF sounder echograms (right). The “good quality” lines are presented in (<b>a</b>,<b>b</b>), the “medium quality lines are presented in (<b>c</b>,<b>d</b>), and the “poor” quality lines are presented in (<b>e</b>,<b>f</b>). As can be seen from the figures in the left column, the ice bottom is detected nearly 100% of the time along the flight line including in locations where MCoRDS did not detect the bottom. The blue vertical line represents the cross-over locations of the Jet Propulsion Laboratory (JPL) Warm Ice Sounding Explorer (WISE) radar. © 2017 IEEE. Reprinted, with permission, from [<a href="#B68-geosciences-08-00182" class="html-bibr">68</a>]. (see <a href="#app1-geosciences-08-00182" class="html-app">Supplementray Materials</a>).</p> "> Figure 13 Cont.
<p>Comparison of the HF sounder echograms (left) to the MCoRDS VHF sounder echograms (right). The “good quality” lines are presented in (<b>a</b>,<b>b</b>), the “medium quality lines are presented in (<b>c</b>,<b>d</b>), and the “poor” quality lines are presented in (<b>e</b>,<b>f</b>). As can be seen from the figures in the left column, the ice bottom is detected nearly 100% of the time along the flight line including in locations where MCoRDS did not detect the bottom. The blue vertical line represents the cross-over locations of the Jet Propulsion Laboratory (JPL) Warm Ice Sounding Explorer (WISE) radar. © 2017 IEEE. Reprinted, with permission, from [<a href="#B68-geosciences-08-00182" class="html-bibr">68</a>]. (see <a href="#app1-geosciences-08-00182" class="html-app">Supplementray Materials</a>).</p> "> Figure 14
<p>SINR Comparisons for the HF Sounder and MCoRDS echograms shown in <a href="#geosciences-08-00182-f013" class="html-fig">Figure 13</a>. Figures (<b>a</b>–<b>c</b>) are the good, medium, and bad lines, respectively. The blue data is the HF sounder data, and the brown data is the MCoRDS data. (see <a href="#app1-geosciences-08-00182" class="html-app">Supplementray Materials</a>).</p> "> Figure 15
<p>(<b>a</b>) Comparison with WISE manned HF sounder data. The intersection with the G1X flight lines (same shown in <a href="#geosciences-08-00182-f006" class="html-fig">Figure 6</a>) are represented by the green, yellow, and red lines. The time tag for the WISE data is 20100318_14_001. The location of the ice surface and ice bottom detected by the CReSIS HF sounder is denoted with an ‘x’, and (<b>b</b>) the magnified region around the ice bottom shows that the WISE data quality is significantly lower than the HF sounder. © 2017 IEEE. Reprinted, with permission, from [<a href="#B57-geosciences-08-00182" class="html-bibr">57</a>].</p> "> Figure 16
<p>Phase coherence from co-registration of multiple passes. (<b>a</b>) Phase-angle map of the interferogram formed from two overlapping passes taken on two different flights. The interferogram angle is represented by the hue (color) and the log-magnitude is represented by the value (dark is low magnitude). The ice surface and ice bottom show good coherence whereas the background noise has poor coherence and the angle varies rapidly from pixel to pixel. (<b>b</b>) Interferogram coherence (1 represents perfect coherence). (see <a href="#app1-geosciences-08-00182" class="html-app">Supplementray Materials</a>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radar Overview
2.2. Twin Otter
2.2.1. Platform and Antenna
2.2.2. Field Deployment
2.3. Unmanned Aircraft System (UAS)
2.3.1. Platform
2.3.2. Antenna
2.3.3. Field Deployment
2.4. Data Processing
3. Results
3.1. Twin Otter Results from the Jakobshavn Isbræ
3.2. UAS Results from Russell Glacier
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meier, M.F. Contributions of Small Glaciers to Global Sea Level. Science 1984, 226, 1418–1421. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar]
- Joughin, I.; Howat, I.M.; Fahnestock, M.; Smith, B.; Krabill, W.; Alley, R.B.; Stern, H.; Truffer, M. Continued Evolution of Jakobshavn Isbrae following Its Rapid Speedup. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Thomas, R.; Frederick, E.; Li, J.; Krabill, W.; Manizade, S.; Paden, J.; Sonntag, J.; Swift, R.; Yungel, J. Accelerating Ice Loss for the Fastest Greenland and Antarctic Glaciers. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Overpeck, J.T.; Otto-Bliesner, B.L.; Miller, G.H.; Muhs, D.R.; Alley, R.B.; Kiehl, J.T. Paleoclimatic Evidence for Future Ice-Sheet Instability and Rapid Sea-Level Rise. Science 2006, 311, 1747–1750. [Google Scholar] [CrossRef] [PubMed]
- Anthoff, D.; Nicholls, R.J.; Tol, R.S.J.; Vafeidis, A.T. Global and Regional Exposure to Large Rises in Sea-Level: A Sensitivity Analysis; Working Paper 96; Tyndall Centre for Climate Change Research: Norwich, UK, 2006; p. 31. [Google Scholar]
- Jacob, T.; Wahr, J.; Pfeffer, W.T.; Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 2012, 482, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Larour, E.; Schiemrmeier, J.; Rignot, E.; Seroussi, H.; Morlighem, M.; Paden, J. Sensitivity Analysis of Pine Island Glacier Ice Flow using ISSM and Dakota. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Legarsky, J.; Gogineni, S. Unfocused SAR using a Next-Generation COoherent Radar Depth Sounder for measurement of Greenland ice sheet thickness. IGARSS 1998, 1, 463–465. [Google Scholar] [CrossRef]
- Gogineni, S.; Chuah, T.S.; Allen, C.; Jezek, K.; Moore, R.K. An improved coherent radar depth sounder. J. Glaciol. 1998, 44, 659–669. [Google Scholar] [CrossRef]
- Gogineni, S.; Tammana, D.; Braaten, D.; Leuschen, C.; Akins, T.; Legarsky, J.; Kanagaratnam, P.; Stiles, J.; Allen, C.; Jezek, K. Coherent radar ice thickness measurements over the Greenland ice sheet. J. Geophys. Res. 2001, 106, 33761–33772. [Google Scholar] [CrossRef]
- Jezek, K.; Wu, X.; Gogineni, S.; Rodriguez, E.; Freeman, A.; Rodriguez-Morales, F.; Clark, C. Radar Images of the bed of the Greenland ice sheet. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Li, J.; Paden, J.; Leuschen, C.; Rodriguez-Morales, F.; Hale, R.; Arnold, E.; Crowe, R.; Gomez-Garcia, D.; Gogineni, S. High-altitude radar measurements of ice thickness over the Antarctic and Greenland ice sheets as part of Operation Ice Bridge. IEEE Trans. Geosci. Remote Sens. 2013, 51, 742–754. [Google Scholar] [CrossRef]
- Panzer, B.; Gomez-Garcia, D.; Leuschen, C.; Paden, J.; Rodriguez-Morales, F.; Patel, A.; Markus, T.; Holt, B.; Gogineni, P. An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn. J. Glaciol. 2013, 59, 244–254. [Google Scholar] [CrossRef]
- Yan, J.-B.; Gomez-Garcia, D.; McDaniel, J.W.; Li, Y.; Gogineni, S.; Rodriguez-Morales, F.; Brozena, J.; Leuschen, C.J. Ultrawideband FMCW radar for airborne measurements of snow over sea ice and land. IEEE Trans. Geosci. Reomote Sens. 2017, 55, 834–843. [Google Scholar] [CrossRef]
- MacGregor, J.A.; Fahnestock, M.A.; Catania, G.A.; Aschwanden, A.; Clow, G.D.; Colgan, W.T.; Gogineni, S.P.; Morlighem, M.; Nowicki, S.M.; Paden, J.D.; et al. A synthesis of the basal thermal state of the Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 2016, 121, 1328–1350. [Google Scholar] [CrossRef] [PubMed]
- Oswald, G.K.A.; Gogineni, S.P. Recovery of subglacial water extent from Greenland radar survey data. J. Glaciol. 2008, 54, 94–106. [Google Scholar] [CrossRef]
- Oswald, G.K.A.; Gogineni, S.P. Mapping basal melt under the northern Greenland Ice Sheet. IEEE Trans. Geosci. Remote Sens. 2012, 50, 585–592. [Google Scholar] [CrossRef]
- MacGregor, J.A.; Fahnestock, M.A.; Catania, G.A.; Paden, J.D.; Gogineni, S.P.; Young, S.K.; Rybarski, S.C.; Mabrey, A.N.; Wagman, B.M.; Morlighem, M. Radiostratigraphy and age structure of the Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 2015, 120, 212–241. [Google Scholar] [CrossRef] [PubMed]
- Jordan, T.M.; Cooper, M.A.; Schroeder, D.M.; Williams, C.N.; Paden, J.D.; Siegert, M.J.; Bamber, J.L. Self-affine subglacial roughness: Consequences for radar scattering and basal water discrimination in northern Greenland. Cryosphere 2017, 11, 1247–1264. [Google Scholar] [CrossRef]
- Thomas, R.H. Program for Arctic Regional Climate Assessment (PARCA): Goals, key findings, and future directions. J. Geophys. Res. 2001, 106, 33691–33706. [Google Scholar] [CrossRef]
- Studinger, M.; Koenig, L.; Martin, S.; Sonntag, J.G. Operation Icebridge: Using instrumented aircraft to bridge the observational gap between ICESat and ICESat-2. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010. [Google Scholar]
- Bamber, L.J.; Griggs, J.A.; Hurkmans, R.T.W.L.; Dowdeswell, J.A.; Gogineni, S.P.; Howat, I.; Mouginot, J.; Paden, J.; Palmer, S.; Rignot, E.; et al. A New Bed Elevation Dataset for Greenland. Cryosphere 2013, 7, 499–510. [Google Scholar] [CrossRef]
- Fretwell, P.; Pritchard, H.D.; Vaughan, D.G.; Bamber, J.L.; Barrand, N.E.; Bell, R.; Bianchi, C.; Bingham, R.G.; Blankenship, D.D.; Casassa, G.; et al. Bedmap2: Improved Ice Bed, Surface and Thickness Datasets for Antarctica. Cryosphere 2013, 7, 375–393. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Morales, F.; Gogineni, S.; Leuschen, C.J.; Paden, J.D.; Li, J.; Lewis, C.C.; Panzer, B.; Alvestegui, D.G.G.; Patel, A.; Byers, K.; et al. Advanced Multi-Frequency Radar Instrumentation for Polar Research. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2824–2842. [Google Scholar] [CrossRef]
- Nixdorf, U.; Steinhage, D.; Meyer, U.; Hempel, L.; Jenett, M.; Wachs, P.; Miller, H. The newly developed airborne radio-echo sounding system of the AWI as a glaciological tool. Ann. Glaciol. 1999, 29, 231–238. [Google Scholar] [CrossRef]
- Corr, H.; Ferraccioli, F.; Frearson, N.; Jordan, T.; Robinson, C.; Armadillo, E.; Caneva, G.; Bozzo, E.; Tabacco, I. Airborne radio-echo sounding of the Wilkes subglacial basin, the Transantarctic Mountains, and the Dome C region. Terra Antarct. Rep. 2007, 13, 55–64. [Google Scholar]
- Rippin, D.M.; Vaughan, D.G.; Corr, H.F.J. The basal roughness of Pine Island Glacier, west Antarctica. J. Glaciol. 2011, 57, 67–76. [Google Scholar] [CrossRef]
- Vaughan, D.G.; Corr, H.F.J.; Ferraccioli, F.; Frearson, N.; O’Hare, A.; Mach, D.; Holt, J.W.; Blankenship, D.D.; Morse, D.L.; Young, D.A. New boundary conditions for the West Antarctic ice sheet: Subglacial topography beneath Pine Island Glacier. Geophys. Res. Lett. 2006, 33, 33. [Google Scholar] [CrossRef]
- Lindbäck, K.; Pettersson, R.; Doyle, S.H.; Helanow, C.; Jansson, P.; Kristensen, S.S.; Stenseng, L.; Forsberg, R.; Hubbard, A.L. High-resolution ice thickness and bed topography of a land-terminating section of the Greenland ice sheet. Earth Syst. Sci. Data 2014, 6, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Peters, M.; Blankenship, D.D.; Carter, S.P.; Kempf, S.D.; Young, D.A.; Holt, J.W. Along-track focusing of airborne radar sounding dada from Wes Antarctica for improving basal reflection analysis and layer detection. IEEE Trans. Geos. Remote Sens. 2007, 45, 2725–2736. [Google Scholar] [CrossRef]
- Peters, M.E.; Blankenship, D.D.; Morse, D.L. Analysis techniques for coherent airborne radar sounding: Application to West Antarctic ice streams. J. Geophys. Res. 2005, 110, B06303. [Google Scholar] [CrossRef]
- Morlighem, M.; Williams, C.N.; Rignot, E.; An, L.; Arndt, J.E.; Bamber, J.L.; Catania, G.; Chauché, N.; Dowdeswell, J.A.; Dorschel, B.; et al. BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of GreenlandFrom Multibeam Echo Sounding Combined with Mass Conservation. Geophys. Res. Lett. 2017, 44, 11051–11061. [Google Scholar] [CrossRef] [PubMed]
- Griggs, J.A.; Bamber, J.L. Antarctic Ice-Shelf Thickness from Satellite Radar Altimetry. J. Glaciol. 2011, 57, 485–498. [Google Scholar] [CrossRef]
- Bamber, J.L.; Gomez-Dans, J.L.; Griggs, J.A. A New 1 km Digital Elevation Model of the Antarctic Derived from Combined Satellite Radar and Laser Data—Part 1: Data and Methods. Cryosphere 2009, 3, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.H. The dynamics of marine ice sheets. J. Glaciol. 1979, 24, 167–177. [Google Scholar] [CrossRef]
- Watts, R.D.; Wright, D.L. Systems for measuring thickness of temperate and polar ice from the ground or from the air. J. Glaciol. 1981, 27, 459–469. [Google Scholar] [CrossRef]
- Watts, R.D.; Wright, D.L. Radio-echo sounding of temperate glaciers: Ice properties and sounder design criteria. J. Glaciol. 1976, 17, 39–48. [Google Scholar] [CrossRef]
- Smith, B.M.E.; Evans, S. Radio echo sounding: Absorption and scattering by water inclusion and ice lenses. J. Glaciol. 1972, 11, 133–146. [Google Scholar] [CrossRef]
- Kong, A. Effective Permittivity for a Volume Scattering Medium in Electromagnetic Wave Theory; Wiley: New York, NY, USA, 1986; Chapter 6, Section 7; pp. 550–563. [Google Scholar]
- Ishimaru, A. Wave Propagation and Scattering in Random Media; Academic: New York, NY, USA, 1978. [Google Scholar]
- MacGregor, J.A.; Li, J.; Paden, J.D.; Catania, G.A.; Clow, G.D.; Fahnestock, M.A.; Gogineni, S.P.; Grimm, R.E.; Morlighem, M.; Nandi, S.; et al. Radar attenuation and temperature within the Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 2015, 120, 983–1008. [Google Scholar] [CrossRef]
- Jordan, T.M.; Bamber, J.L.; Williams, C.N.; Paden, J.D.; Siegert, M.J.; Huybrechts, P.; Gagliardini, O.; Gillet-Chaulet, F. An ice-sheet-wide framework for englacial attenuation from ice-penetrating radar data. Cryosphere 2016, 10, 1547–1570. [Google Scholar] [CrossRef] [Green Version]
- Paden, J.D.; Allen, C.T.; Gogineni, S.; Jezek, K.C.; Dahl-Jensen, D.; Larsen, L.B. Wideband measurements of ice sheet attenuation and basal scattering. IEEE Geosci. Remote Sens. Lett. 2005, 2, 164–168. [Google Scholar] [CrossRef]
- Brown, C.S.; Rasmussen, L.A.; Meier, M. Bed Topography Inferred from Airborne Radio-echo Sounding of Columbia Glacier, Alaska; U.S. Geological Survey Professional Paper; United States Government Printing Office: Washington, DC, USA, 1986; p. 1258-G.
- Zamora, R.; Ulloa, D.; Garcia, G.; Mella, R.; Uribe, J.; Wendt, J.; Rivera, A.S.; Gacitua, G.; Casassa, G. Airborne radar sounder for temperate ice: Initial results from Patagonia. J. Glaciol. 2009, 55, 507–512. [Google Scholar] [CrossRef]
- Blindow, N.; Salat, C.; Casassa, G. Airborne GPR sounding of deep temperate glaciers—Examples from the Northern Patagonian Icefield. In Proceedings of the 2012 14th International Conference on Ground Penetrating Radar (GPR), Shanghai, China, 4–8 June 2012; pp. 664–669. [Google Scholar]
- Rignot, E.; Mouginot, J.; Larsen, C.F.; Gim, Y.; Kirchner, D. Low-frequency radar sounding of temperate ice masses in Southern Alaska. Geophys. Res. Lett. 2013, 40, 5399–5405. [Google Scholar] [CrossRef]
- Mouginot, J.; Rignot, E.; Gim, Y.; Kirchner, D.; Le Meur, E. Low-Frequency Radar Sounding of Ice in East Antarctica and Southern Greenland. Ann. Glaciol. 2014, 55, 138–146. [Google Scholar] [CrossRef]
- Conway, H.; Smith, B.; Vaswani, P.; Matsuoka, K.; Rignot, E.; Claus, P. A Low-Frequency Ice-Penetrating Radar System Adapted for Use from an Airplane: Test Results for Bering and Malaspina Glaciers, Alaska, USA. Ann. Glaciol. 2009, 50, 93–97. [Google Scholar] [CrossRef]
- Recommendation ITU-R P.372-11. Radar Noise; International Telecommunication Union: Geneva, Switzerland, 2013. [Google Scholar]
- Leuschen, C.; Hale, R.; Keshmiri, S.; Yan, J.-B.; Rodriguez-Morales, F.; Mahmood, A.; Gogineni, S. UAS-based Radar Sounding of the Polar Ice Sheets. IEEE Geosci. Remote Sens. Mag. 2014, 2, 8–17. [Google Scholar] [CrossRef]
- Arcone, S.; Lawson, D.; Delaney, A.J.; Moran, M.L. 12–100 MHz depth and stratigraphic profiles of temperate glaciers. In Proceedings of the SPIE 4084, Eighth International Conference on Ground Penetrating Radar, Gold Coast, Australia, 23–26 April 2000; Volume 4084. [Google Scholar]
- Rodriguez-Morales, F.; Gogineni, S.; Ahmed, F.; Carabajal, C.; Paden, A.; Leuschen, C.; Paden, J.; Li, J.; Fields, W.; Vaughan, J. High-Power, wideband transmit/receive switches and modules for ice sounding/imaging radar. Microw. J. 2016, 59, S6–S18. [Google Scholar]
- DHC-6 Twin Otter. Jane’s All the World Aircraft, 1984–1985; Jane’s Publishing Incorporated: New York, NY, USA, 1985. [Google Scholar]
- Mahmood, A. Design, Integration, and Deployment of UAS borne HF/VHF Depth Sounding Radar and Antenna System. Master’s Thesis, University of the Kansas, Lawrence, KS, USA, 2017. [Google Scholar]
- Keshmiri, S.; Arnold, E.J.; Blevins, A.; Ewing, M.; Hale, R.; Leuschen, C.; Lyle, J.; Mahmood, A.; Paden, J.; Rodriquez-Morales, F.; et al. Radar Echo Sounding of Russell Glacier at 35 MHz Using Compact Radar Systems on Small Unmanned Aerial Vehicles. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Paden, J. Radar Depth Sounder. Available online: Ftp://data.cresis.ku.edu/data/rds/rds_readme.pdf (accessed on 13 April 2018).
- Allen, C.T.; Mozaffar, S.N.; Akins, T.L. Suppressing Coherent Noise in Radar Applications with Long Dwell Times. IEEE Geosci. Remote Sens. Lett. 2005, 2, 284–286. [Google Scholar] [CrossRef]
- Stimson, G.W. Airborne Radar; SciTech: Raleigh, NC, USA, 1998; pp. 317–322. [Google Scholar]
- Leuschen, C.; Gogineni, P.; Tammana, D. SAR Processing of Radar Echo Sounder Data. In Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 24–28 July 2000. [Google Scholar] [CrossRef]
- MATLAB 2017a; MathWorks Inc.: Natick, MA, USA, 2017.
- Rignot, E.; Kanagaratnam, P. Changes in the Velocity Structure of the Greenland Ice Sheet. Science 2006, 311, 986–990. [Google Scholar] [CrossRef] [PubMed]
- Holland, D.M.; Thomas, R.H.; Young, B.; Ribergaard, M.H.; Lyberth, B. Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nat. Geosci. 2008, 1, 659–664. [Google Scholar] [CrossRef]
- Gogineni, S.; Yan, J.B.; Paden, J.; Leuschen, C.; Li, J.; Rodriguez-Morales, F.; Braaten, D.; Purdon, K.; Wang, Z.; Liu, W.; et al. Bed topography of Jakobshavn Isbræ, Greenland, and Byrd Glacier, Antarctica. J. Glaciol. 2014, 60, 813–833. [Google Scholar] [CrossRef]
- Marathe, K.C. Dual-Band Multi-Channel Airborne Radar for Mapping the Internal and Basal Layers of Polar Ice Sheets. Master’s Thesis, University of Kansas, Lawrence, KS, USA, 2008. [Google Scholar]
- Lohoefener, A. Design and Development of a Multi-Channel Radar Depth Sounder. Master’s Thesis, University of Kansas, Lawrence, KS, USA, 2006. [Google Scholar]
- Forster, R.R.; Box, J.E.; Van Den Broeke, M.R.; Miège, C.; Burgess, E.W.; Van Angelen, J.H.; Lenaerts, J.T.; Koenig, L.S.; Paden, J.; Lewis, C.; et al. Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nat. Geosci. 2014, 7, 95–98. [Google Scholar] [CrossRef]
Organization Instrument | Center Frequency | Bandwidth | References |
---|---|---|---|
AWI | 150 MHz | Burst | [26] |
BAS/PASIN | 150 MHz | 10 MHz | [27,28,29] |
DTU | 60 MHz | 4 MHz | [30] |
CReSIS/MCoRDS | [25] | ||
1993–2008 | 150 MHz | 20 MHz | |
2009–current | 195 MHz | 20–30 MHz | |
UTIG/HiCARS | 60 MHz | 15 MHz | [31,32] |
Parameter | Twin Otter (TO) | Unmanned Aircraft System (UAS) |
---|---|---|
Center Operating Frequency (low/high) | 14.1 MHz/31.5 MHz | 14.6 MHz/34.3 MHz |
Bandwidth (low/high) 1 | 1.1 MHz/8 MHz | 1 MH/5 MHz |
Transmit Power (peak) | 1000 Watts | 100 Watts |
Pulse Repetition Frequency (programmable) | 20 kHz | 10 kHz |
Pulse Duration | 0.35–1 μs | 0.32–1 μs |
Sampling Rate | 200 MS/s (12.5 MHz with DDC) | 50 MS/S |
Data Rate | 75 MB/s max | 2 MB/S |
Length | 3 m | |
Wingspan | 4.4 m | |
Engine | DA 120 | |
Mass | empty | 26 kg |
payload | 3 kg | |
batteries | 2.5 kg | |
fuel | 2.5 kg | |
max takeoff | 34 kg | |
Speed | cruise | 35 m/s |
stall | 11 m/s | |
Range | 160 km | |
Endurance | 75 min | |
Landing distance | grass | 50 m |
ice | 90 m | |
snow | 75 m |
Parameter | CReSIS G1XB | TO HF | TO HF |
---|---|---|---|
Greenland | Iceland | ||
Pulse duration | 320 ns | 1 μs | 1 μs |
Tukey weight | 1 | 0.15 | 0.2 |
Start frequency | 35 MHz | 27.5 MHz | 24.9 MHz |
Stop frequency | 35 MHz | 35.5 MHz | 34.9 MHz |
Hanning BW | 10 MHz | 8 MHz | 10 MHz |
Decimation | 10 MSPS | 12.5 MSPS | 12.5 MSPS |
Blanking Switch | No | Yes | No |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnold, E.; Rodriguez-Morales, F.; Paden, J.; Leuschen, C.; Keshmiri, S.; Yan, S.; Ewing, M.; Hale, R.; Mahmood, A.; Blevins, A.; et al. HF/VHF Radar Sounding of Ice from Manned and Unmanned Airborne Platforms. Geosciences 2018, 8, 182. https://doi.org/10.3390/geosciences8050182
Arnold E, Rodriguez-Morales F, Paden J, Leuschen C, Keshmiri S, Yan S, Ewing M, Hale R, Mahmood A, Blevins A, et al. HF/VHF Radar Sounding of Ice from Manned and Unmanned Airborne Platforms. Geosciences. 2018; 8(5):182. https://doi.org/10.3390/geosciences8050182
Chicago/Turabian StyleArnold, Emily, Fernando Rodriguez-Morales, John Paden, Carl Leuschen, Shawn Keshmiri, Stephen Yan, Mark Ewing, Rick Hale, Ali Mahmood, Aaron Blevins, and et al. 2018. "HF/VHF Radar Sounding of Ice from Manned and Unmanned Airborne Platforms" Geosciences 8, no. 5: 182. https://doi.org/10.3390/geosciences8050182