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TOTAL CURVATURES OF COMPACT MANIFOLDS IMMERSED
IN EUCLIDEAN SPACE (*)

L. A, SAxTALG

1. Introduction.

This paper will be concerned with some kind of total absolute curva-
tures of compact manifolds X» of dimension n» (without boundary)
immersed in euclidean space E"*¥ of dimension n 4+ N (N> 1). Clas-
sical Differentinl Geometry handled almost exclusively with «local »
curvatures for such manifolds X" (assumed sufficiently smooth) and
mainly dealed with the case N =1. The Gauss-Bonnet theorem, ex-
tended by Allendoerfer-Weil-Chern to the case n > 2[1],[7), has
been for years the most important, and almost the unique, result
of a «global » character. In the classical theory of convex manifolds
(boundaries of convex sets) in euclidean space, play an important role
the Minkowski’s « Quermassintegrale » which may be defined glo-
bally without any assumption of differentiability and also, for suf-
ficiently smooth convex manifolds, as integrals of the symmetric func-
tions of the principal curvatures. This classical case shows that, in
order to define total curvatures of a given X (not necessarily convex)
immersed in E™+¥, one can either give directly a global definition and
then try to express it as the integral of certain local curvatures, or
give first a local definition (curvature at a point xe X") and then
computing the total curvature by integrating this local curvature
over X*. The last method makes necessary some assumptions of
smoothness for X» A noteworthy example of such curvatures are
those introduced by H. Weyl in a classical paper on the volume of
tubes |28]. These Weyl’s curvatures has been used by Chern to get
a general kinematic formula in integral geometry for compact sub-
manifolds of E**" [10]. For more general subsets of E*** an analogous
formula was given by H. Federer [14] whose « curvature measures »
are an extension of the Weyl’s curvatures.

{(*) I risultati conseguiti in questo lavoro sono stati esposti nella conferenza
tenuta il 22 maggio 1973.
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In 1957-58 two papers of Chern-Lashof [11], [12] call the attention
about « absolute » total curvatures, i.e. total curvatures obtained by
integrating on X" the absolute values of certain local curvatures. These
papers were followed by a series of papers of several authors, mainly
N. H. Kuiper, who related this branch of differential geometry with
Morse theory of critical points of real valued functions defined over
X"[17),[18). A survey and new results about this fleld is to be found
in the lecture notes of D. Ferus [16]. See also T. J. Willmore [29].

In the mark of these studies we have introduced in [24],[25],
some total curvatures (absolute) for compact manifolds X immersed
in E~". The main purpose of the present paper is to give a local
definition of these curvatures, so that they will appear as the integrul
over X" of the absolute value of certain differential forms defined in
each point e X~. These definitions allow to compare the new cur-
vatures with other curvatures previously introduced in the literature.
We will then consider some examples, for instance the case of surfuces
X* immersed in E* which presents some remarkable peculiarities.

Nork: We will consider throughout that X* is a compact, C*-
differentiable manifold of dimension n, without boundary, immersed
in some eucltdean space. In the non-smooth case, a great deal of dif-
ficulties arise. For some questions about total curvature of C'-manifolds,
see W. D. Pepe [20].

By E:, r < s, we will indicate a r-plane (linear space of dimension r)
in the s-dimensional euclidean space E°*. If the euclidean space K*
in which Er is immersed is apparent form the context, we will write
simply Er instead of Ej.

2. Preliminaries.

We will recall the fundamental equations of the differential geo-
metry of a X» immersed in E*+” and certain know integral-geometric
formulae about such manifolds. We use the method of moving frames
of Cartan-Chern. See for instance Chern [9] or Willmore [29].

Let (x; ¢,, €, ..., ¢uty) be a local field of orthonormal frames, such
that, restricted to X*, the vectors e,, ¢,, ..., ¢, are tangent to X* and
the remaining vectors e,.,, ..., €,+y are normal to X», The orientation
of the unit vectors e,, é,, ..., 6,4y i8 assumed coherent with that of E~+~.
In this section we agree on the following ranges of indices

1<t jy kybyo<ny, n<afyy,..<n+ N, 1<4,B,C,..<n+ N

and the summation convention will be used throughout.
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The fundamental equations for the moving frames in E*¥ are
(2.1) dr = w,e,, de,= w e,
where, because e, e,= 0,,.
(£.2) Wyt wy,=0 and  o,=e,dr,  w,=eyde,.

The exterior derivatives satisfy the equations of structure:

2.3) dw, == wg/\wy, , dw 5= W4e/\ gy .
The assumption that e,,..., e, are tangent to X" gives
(2.4) w,=0

and the condition that X» has dimension n insures that the forms w,
are linearly independent. From (2.3) and (2.4) we deduce w,Aw =0
and therefore, according to the so called lemma of Cartan, we have

(2.5) Wiy = Aa,uw1 y Aa,u= Aa.ll

where A, ,, are the coefficients of the second fundamental form in the

normal direction e,. Notice that we have represented by w,, w,,

the forms in (2.3) corresponding to the space of all frames in Er+¥

as well as the corresponding forms in the bundle of frames such that e,

are tangent vectors and e, are normal vectors to X" at . We think

that this simplification in the notation will not cause confusion.
From (2.3), (2.4) and (2.5) we have

(2.6) dw; = waAwr+ 2y

where

(2.7) Q= WAz = — Ay n Ay 5 OW N0, = } B nw Ay
with

(2-8) Ruu == Aa,ﬂ:Aa,u - Aa,uAa.n .
We have also

(2.9) da)ap = way/\wyﬁ + Qﬂﬂ'

where

(2.10) -Qap = WyNwpg= — Aa.uA,a.uwt/\w» = %Raﬂuwn/\wf
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with

2.11) Ram; == Aa,mAp,u - Aa,n’iAﬂ,ih .
Note the relations

Ru’kh _ Rmk = = Rm-» y Ru’jkh - Ruu
(2-13) Ruu + R(k»;+ Rmx= 0

Raﬂk! - Rﬂau = Rapu .

The expression

(2.13) (Aaioi0))e,

is called the second fundamental form of Xc E~¥ and
(2.14) = () e
n LX) ’

in called the mean curvature vector. X" is said to be minimal if
Agii= 0 for all a.

R are essentially the components of the Riemann-Christoffel
tensor. However, they are not these components. For instance, the
Riemannian curvature for the orientation determined by the vectors
&y ' takes now the form K(x; &, n!) = [(Rimé 9’ &n*) (6 0ia— 0in0,1) -
-&'pi&pt]. For m =2, the Gaussian curvature is given by

(2.16) K(x) = Ry,

instead of the classical K = R,,,,/g when Ry, is the component of
the Riemann-Christoffel tensor.

3. Densities for linear subspaces and some integral formulae.

We will state some known formulae which will be used in the sequel.

Let Eh,, denote a h-dimensional linear subspace in E"+": we will
call it, simply, a h-plane. Let E}, 4(0) denote a h-plane in En~¥
through a fixed point O. The set of all oriented E%, ,(0), with a sui-
table topology, constitute the Grassman manifold G, ,.y_». We shall
represent by dE,,(0) the element of volume in G, .iy_», Which is
called the density for oriented hk-planes in E*+¥ through 0. The ex-



Total curvatures of compact manifolds immersed in euclidean space 367
pression of dE, ,(0) is well known, but we recall it briefly for com-
pleteness (see {223, (23], [10]).

Let (O ey, ...,y ..., €415) be an orthonormal frame of origin 0.
In the space of all orthonormal frames of origin O we define the dif-
ferential forms

(3.]) Mgy — — My = (.md('i - -—(,"d(',,, 1) ("‘7 m = ']! 2’ ey n + N) .

Assuming Eh, 4(0) spanned by the unit vectors e, ..., e, then
(3.2) dEh (0) = Aw,,

where the right-hand side is the exterior product of the forms m,,
over the ranges of indices

(3.3) i=1,2..,h, m=h+1,h+2..,n+N.

The (n + N — h)-plane EXi3™0) orthogonal to E!, ,(0) is span-
ned by the unit vectors €4, ..., ea+x and according to (3.2) we have
the « duality » (up to the sign)

(3.4) dE4(0) = dEZN0) .

Notice that the differential forms dE*,,(0) and dE,;3™0) are of
degree h(n + N —h), which is equal to the dimension of the gras-
smannian G, .4x_», as it should be.

The density for sets of h-planes E*, not through 0, in E*'¥ is given by

(3.5) dEN = dE:+N(O)/\(0A+1/\wn+a/\ cor NOpiy

where wypy A AWniy = (Ex1GT) A (Er11dT)N ... A (€4 xdit) i8 equal to the
clement of volume in Elly0) (= (n+ N —h)-plane spanned by the
vectors e,y,, ..., e,.y orthogonal to E*) at the intersection point
E* N\ ErHY-n0),

The measure of the set of all the oriented E}, ,(0) (= volume of
the Grassman manifold G,..+y_,) may be computed directly from (3.2)
or applying the result that it is the quotient space 8O(n + N)/SO(h) x
% 80(n + N — h)(Chern [10]). The result is

0npy O i Oninr  0,04,,...0
3.6 A, (0) = Pr19-1Oniwca e Onswon _ OaOhia - Onyws
(3.6) f +x(0) 0.0, ... 0,_, 0.0,... Oponrs’

On,nsN-M
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where O, is the area of the ¢-dimensional unit sphere, i.e.

Spli+1)ia

Notice the relation

(3.8) 0,0,_,— (i—1)0,.

For the case h =1, the density of oriented lines through O (as-
suming that EL, ,(0) is the line spanned by e,) writes

(3.9) dE,‘H,,(O) = W AW A o Ay = (Esde ) A (esde)) AL/ (0 gdey)

which is equal to the element of volume of the (n 4 N —1) dimen-
sional unit sphere at the end point of ¢,. By the duality (3.4) this
density (3.9) is equal to the density dEY\} ' (0) of hyperplanes through O
(in this case (3.9) corresponds to the hyperplane spanned by
€3y €3y ooy Cuin)s

Later on we shall need the following formula. Let E"+¥(0)cC
c Er+"+2(0). Given a line Ej,y,,(0), let E*1(0) be the (p + 1)-plane
which contains Ej,y,,(0) and is perpendicular to E***(0) and let

2+1(0) be the density of E,+,+,(0) as a line of E*+(0). If E,,4,,(0)
donous the projection of the line E,,y,,(0) on E*+*(0) and 6 denotes
the angle between E,,+,+,(O) and its projection E,, ,(0), an easy
calculation shows that

(3.9) dEy yiy(0) = 8in™ "0 dE, JO)AAE,,,(0) .

For instance, if p =1, we have dE}(0) = df and (3.9) writes
(3.10) dE},y,(0) = sin"-10dE}, ,(O)AdO .

Projection formulae. The differential geometry of hypersurfaces
X»c E~+! is well known. Calling R,, R,, ..., R, the principal radii of
curvature of X* at the point # and putting do.(r) = area element

of X* at x (given by do.(r) = o, Aw,A...ANwa according to the no-
tation (2.1)), the total »-th mean curvature of X" is defined by

(3.11) M (X = f{kl—l?l-...%}do,.(x),
PR

ir

where {} denotes the r-th elementary symmetric function of the prin-
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cipal curvatures 1/R, (i=1,2,...,n). For r=0, we have M,= area
of X», For r=n, if X* is the boundary oD**! of a domain D! of
E~, it is known that

(3.12) M, (X") = 0, z(D"+)

where y denotes the Euler-Poincare characteristic. If n is even, we
have #(X") = 4(0D**') = 2x(D+') and (3.12) writes

(3.13) M (X" = 30, (X", n even .

If X~ is a topological sphere, we have (X"} =1 4 (—1)".

For closed convex hypersurfaces X% (boundaries of convex bo-
dies of E"+') we must recall the following « projection formulae »
(see [23] and Hadwiger [15]): let X" be the boundary of the ortho-
gonal projection of X% into Ej{1 "(0) and let u, ,(X?™) denote the
measure of X* (with respect to the euclidean metric in Ejf{™).

Then we have

@19 [ pearn o) =
Onii-rr
— O"fl_.o."_—.’_'_'f O,""' o Ozl—l on—_z":-- Or "
.—Or—l 0'_: oes Ol '(Xe) — »On;_'_l s Ol P(Xe) .

For r =n we have uy(X3) =2 and (3.14) coincides with (3.12).
For r =1, (3.14) gives the total first mean curvature M, as the mean
value of the measure of the boundaries of the orthogonal projections
of X* on all hyperplanes. For instance, for n =2, the total mean
curvature of a convex closed surface X! in E* is given by

(3.15) Ml(X:)=§};zJ“d0”
0y

where dO,—= dE}(0) denotes the element of surface area on the unit
sphere and » denotes the length of the boundary of the projection of
X, into a plane perpendicular to the direction defined by dO,.

For non-convex hypersurfaces, the formulae (3.14) need to be
modified: in the right-hand side appear the total «absolute» mean
curvatures which we will consider in a next section.

Intersection formulae. Let X" be a closed hypersurface of En+!,
not necessarily convex (recall that we always assume that X* is of
class C”). Let E,,, be a moving r-plane in E*! and consider the

24
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manifold Xr1= X"NE,,,. Call M"(X"1) the total i-th mean cur-
vature of X! as a manifold of dimension » —1 in Er. Then the fol-
lowing formula holds (see [22], [23])

0,,__, Oﬂnfr“ 9n—i+l
0,0,...0,_,

(3.16) f M(X* N Er)dEr = M, (X",

Paa¥ £

r—i

For ¢ = r—1, assuming that A~'= A" N Kk’ is the boundary of
a domain Drc E', according to (3.12) we have M2 (X™') = O,_,y(Dr)
and (3.16) gives

On—l see 0n—r+l On—'+2M I(X") .

(3.17) f (D) dE" = 0,..0,, 0O

P ol (7]

In particular, if X* is a closed convex hypersurface X? we have
2(D*) =1 and (3.17) gives the total measure of all r-planes which
intersect X7,

. Onaen Onris Onrss "
(3.18) f ar = Orpt e e Dasnst a7
b ¢1a¥ 4.0

. ‘gﬂ:l_“'roﬂ—f . . n
T (m—r+1)0,_,...0, M (X)) -

If r is odd we have (D)= () x(X") and (3.17) may be written

™ r 20n—1 s on—rﬂ 9n:—r+2 "
(3.19) f 2(X*NE)dE = 0.0 "o r1(X*)  (r odd).

Pala¥ 21

In order to illustrate the foregoing ideas we will give a typical
application. Let n = 3, r = 3. Then X? is a closed hypersurface in E4;
assume that it bounds a domain D*c E*. According to (3.18) and
(3.19) the mean value of y(X*N E*) is E(x(X3N E3)) =2 M,(X?)/M4(X?)
where M, denotes the 2-th total mean curvature of the convex hull
of X3 If V* is the volume of the domain bounded by the convex hull,
it is known that M > (322 V*)i> (322 V) (Hadwiger [15]), where V
is the volume of D¢ Thus we have

My (X?)

E(x(X’('\ ES))< 71_(2—7;;‘,_)* .

The equality sign holds for euclidean spheres.
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b) Another known and useful integral formula is the following:

Let X" be a compact manifold in E**. Let u,_,(X" N E") denote
the (r — N)-dimensional measure of X" N Er (r>= N) according to the
euclidean metric on Er. For r = N, u, denotes the number of points
of the set X" Er. Then we have

0,,x0 ...0 0
724 . . . niN Y nyN-1 niyN—rVr—N "
(3.20) oA N ET)dE 0,0,...0,0, a.(X"),

P&la¥ £ 21

where ¢,(X") = volume of X",

This integral formula holds good for any space of constant curva-
ture, in particular on the (n 4 N)-dimensional sphere, with a suitable
definition of dE* (see [22]).

In all the preceding formulae and in those which will follow, the
linear spaces Er are assumed «oriented ». Otherwise the right-hand
side of (3.16), ..., (3.20) should be divided by a factor 2.

4. The total absolute curvatures K ,(X").

Let X» be a compact n-dimensional manifold (without boundary)
of class C° in E ¥, To ecach point re X» we attach the frame
(Z; ey, €, ..., €a1y) considered in section 2, such that the vectors
€, €, ..., 6, are tangent to X* and spann the tangent n-plane T(x).
The remaining vectors €,4q, ..., €045 are normal to X* and spann the
normal N-plane N(x).

Assuming

(4.1) I<r<n+ N—1

we define the r-th total absolute curvature of X» as follows
(see [24], [25)):
c.

a) Case 1<r<n. Let O be a fixed point in E*¥ and consider
a (n+ N —r)-plane say E**—(0) through O. Let I', be the set of all
r-planes Er in E*** which are contained in some T(x) (x€ X"), pass
through 2, and are perpendicular to E»+f-7(0). The intersection
I, 0 E*¥7(0) is a compact variety in E™¥—(0) of dimension

(4‘2) (51=n—rN,
Let po_.y(I', N E**""(0)) denote the measure of this variety as

subvariety of E***™(0); if 6,= 0, then u, means the number of
intersection points of I', and E™**—(0).
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We define the r-th total absolute curvature of X" immersed in
E*+", as the mean value of the measures u, .y over all E***~(0),
that is, according to (3.6),

0,..0n, 3¢

(4.3) K} (X = 0 J‘/t..,,,(l',ﬁ Err-r(0))dE*2-7(0).

GuaN-r,r

SN / B

The coefficient on the right-hand side may be replaced by

0,0,...0,_,

()'H N~ soo 0n+:l-l

b) Cuse n<r<n -+ N—1. In this case, instead of the set of Er
which «are contained » in some I'(x), we consider the set of all
Erc E** which «contain» some T(x) and are perpendicular to
E*+"((0). As before, we represent this set by I',. The dimension of
the variety I, N E***™(0) is now

(4.4) G=mn(r4+1—n—N)

and the rth total absolute curvature of X is defined by the same
mean value (1.3) which now writes

(4.5) K . (X")=

— 01 0n+t—r—l f ”n('“_"_')(l*' N En-H'——r(O)) dEn+I—r(0) .
0,...0nin

Ouan-re

The dimensions 6,, d,, given by (4.2), (4.4) have been calculated
elsewhere (j24), [25]). From their values, and since r<n+ N—1,
we deduce

i) The curvatures K, , are only defined for
(4.6) n>rN and r—=n+4 N-—1.

ii) If r<n and X is immersed in E*** with N’ < N, then
K 4(X*)=0. This result follows from the fact that, if X»c E~+,
all tangent spaces 7T'(x) are also contained in E*** and therefore f, .y
in (4.3) is zero except for the spaces E***—(0) which are perpendicular
to E***', which form a set of measure zero.
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iii) The most interesting cases correspond to n=7rN and
r=mn-4 N—1, for which the measures x4 under the integral signs in
(4.3) and (4.5) are non negative integers and therefore the total ab-
solute curvatures are invariant at least under similitudes. We will
consider these cases separately in the following sections.

iv) Consider the case n = N, r=1. This case has the follow-
ing geometrical interpretation. Let S?*-! denote the unit (2n —1)-
dimensional sphere in E*" of center 0. Let E~(x, O) be the n-plane
through O parallel to the tangent space T(x). The intersection
S-1\ E™x, 0) i8 a (n—1)-dimengional great circle of 8!, If we
assume identified the pairs of antipodal points on S*~! we have the
(2n — 1)-dimensional elliptic space P31 and the intersections S"t N
N Ev(x, 0) define a n-parameter family of (n—1)-planes in P,
say C._,. Let v, ,(y) be the number of (n—1)-planes of C,., which
contain the point ye P> ' and let #,_,(n) be the number of
(n —1)-planes of C,., which are contained in the hyperplane 5 in P21,
Let dog,,(y) denote the volume element in P?""t at y, and let dE*"~!(z)
denote the density of the hyperplanes of P*~! at 5. Then, the curva-
tures (4.3) and (4.5) are clearly equal to

2
(47) K:,n(X”)- 0 - fvn—l(y)dazn—l(y) ?
:m--l’m_I
2
(4.8) K31 n(X®) = 0. Van_1(n) dE*™ (7)) .

i

For n=2,N=2,r=1 we have a congruence of lines C, in P?
and, in a certain sense, the foregoing curvatures are the mean « order »
and the mean «class » of the congruence C,. This relation between
compact surfaces of E* and congurences of lines in the elliptic space P?*
seems to deserve further attention.

5. A reproductive formula.

Let X»c E*”. Consider the intersection X**= XrNE, N<s<
<n+ N, and assume that X** is a compact differentiable manifold
of dimension 8—N. Let K,%(X'"), r<s— N, denote the total ab-
solute curvature of X*°” as a manifold immersed in E*. We wish to
prove the following «reproductive formula »

Onins... O 0 o
5.1 K:(l) X,—, dE‘ _ RN ~2 n+1—1 A+N—r VNN yra "
( ) .,( ) Ol .. l lon—r On—u’ K (X ) ’

rcx**N
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where
(5.2) n-8>(r4 1N,

Consider first the orthogonal linear spaces E40), E***~(0) through
a fixed point O and the intersection E*~7(Q) = E{0) N E**¥"(0), & - r.
Let (O; e, ¢,,....€,:4) be un orthonormal frame and suppose that
E*(0) is spanned by the unit vectors {e,,..., e}, B (0) is spanned
by {eri1y ..ty 0.} and E**¥7(0) is spanned by {e,4y, ..., €,, €,114 0y Cnin}.
The density of E«0) in E~* is
(5.3) dE ..+)v(0) = (1011 A D12\ oo N WOrniy)

AWy 1 A Og g Ao AWsni x)

................

................

/\ ((Ul.|+l/\“):.|+2/\ --‘/‘\(”l.vHN) .

The density of E*"(0) as subspaces of E*0) is

(5'4) dE:_'(O) = (wr+l.l/\wr+1.2/\n-/\0)ﬂl.r)

A Orraa AWtz Ao Aty )

................

Alw, s AW, A\ A, )
and as subspace of Et¥T

(5.5) l‘:..:y..'(o) = (a)r-i 1. a+1/\ /\“’r +1, n*N)

MOrszat1 A AOrianin)

................

AN@ass A ANOunin) -
Finally, the density of E***(0) in E*+¥ ig

(5-6) 1‘:1;— (0) = (04 A OpipaN\ oo e AWOr14.r)

AWt  AWrtsa A e AWria)

................

A (Ontxa AOnigaA e AWuine) -
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Since we are only interested in the absolute value of the densities,
we make no question on the order in the exterior products.
From (5.3) to (5.6) we deduce the identity

(5.7) dE"(0) AN dE,,f(0) = dEy Y, (O)\AE, 7 "(0) .

According to the definition (4.3) we have

0,..0
5.8 o)XYy = o Lemrmt ] sn_en dE(0
(5.8) *7 ) 0,..0,, He-n—rn (0),

Go-r.r

where u, 5 .y denotes the measure of the (8 — N —rN)-dimensional
variety in E}7(0) generated by the intersection points of E; "(0)
with the r-planes in E* which are perpendicular to E{"(0) and are
contained in some tangent space of X*~¥. From (3.5) and (5.7) we have

(5.9) J. B3(X "y dEyy =
Enxtnd

0 “ee 0,_'_ Yo— n+N—r
= 01 0 lf,“a—l-mdl" H(O)/\dE.I'z', (O)ADs Ao NOuyy -
rores -1

The form w, A...Awq+y i8 €qual to the element of volume in E~+¥
orthogonal to E+, which is also equal to the element of volume in
En+¥-r orthogonal to E*-* and therefore we have

(5.10) ,+N-,(O)/\wn+l/\ /\wn+ll" dE;:-'IV—r

(= density of (s —r)-planes, not necessarily through 0, in E"+*-(0))
and (5.9) gives

(5.11) f KX ) dE y =
EaanO X"
0,..0,_,_
= 61; .‘i‘b'—lIJ.II.-N—denHI—r/\dE:I (0)

Applying (3.20) to the (n—rN)-dimensional variety Y"" in
E}57(0) generated by the intersection points of E%%"(0) with the
linear r-spaces of E*+¥ which are perpendicular to E¥:% "(0) and are

contained in some tangent space of X» and to the (s — r)-planes of
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gt '(0) which interseet Y we have

0 ...0 0
5.12 g w—r dE;" == nyN—r NiN—sVg_N—rN .
{ ) f/ ¥or¥ +N 0.0, .00 o JTI—

where u,_.y denotes the measure of Y*¥,
Thus (5.11) writes

KXY dEy =
) IV & ]

Ol cee O._'_] 0"+N—' een Onfl—a O_I—N—fN
0...0,,0,..0,,0,_.y

J. Bn_en dE::-fV_'(O) .

s +N=v,r

This formula and the definition (4.3), give the desired formula (5.1).

6. The case K2, r_, »(X"): curvature of Chern-Lashof.

The case r=n-+ N —1 gives rise to the curvature defined by
Chern and Lashof [11],[12]. The identity of both curvatures will be
apparent from the analytical expression of K,,,_,, which will be
given in a subsequent section. For the moment, we wish to show how
the geometrical definition above allows to obtain directly some known
properties of the Chern-Laghof curvature,.

a) Notice that uy(lniy-y N E*7-1(0)) in (4.5) is equal to the
number v of hyperplanes E~+*-! which are perpendicular to a given
line E*}0) and contain some tangent space T(x) of X*. This number
is surely >2, since there are at least the two support hyperplanes of
X» which are perpendicular to E!(0). Therefore we have K, y_; (X" >2
(theorem 1 of Chern-Lashof [11]).

For an oriented surface X* (compact) the number of hyperplanes
of support which are perpendicular to a direction EXQ) is >2(1 4 g),
where g is the genus of X3, related to the Euler characteristic by
2(X*)=2(1 —g). Thus we have

(6.1) Ky x X520 + 9)=4— (X7

b) The inequality K,,y., »(X") < 3, means that there exists a set
of directions E!(0) (with positive measure) such that the number of
hyperplanes in E** which contain some T'(x) and are perpendicular
to EY(0) is exactly 2, a condition which suffices for X" to be homeo-
morphic to a n-dimensional sphere (theorem 2 of Chern-Lashof [11]).
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¢) Assume that X»c E~¥(0)c E*t"+1(0). To each hyperplane
E¥ in E*+¥+1(0) which is perpendicular to the line Ej,y,,(0) and
contains some T'(x) corresponds the hyperplane Ert¥-1 = Ent¥ \ Ent¥(())
of E~+* which js perpendicular to the projection E,,,(0) of Ej, ,,,(0)
into E~¥  According to (3.10) we have

. 1 y
Kovpwn(X") = 0. f vaEa511(0) =
n+N0£,-nN
1 o 1 X
= - ysin*"10dE,, (O)Nd0 = . vdE, y(0)=
O,H,y 0n+}l—l
G1msN-1 O1,n4N1

= K:+N—1.N(Xr) .

By induction on N, we get that the total absolute curvature
Koy 5(X*) of Xrc E~¥ does not change if we consider X* as an
immersed manifold in E***+ > E*¥ (Lemma 1 of Chern-Lashof [12]).

7. The case n =rN. Local representation of the curvatures K} ,(X").

Let = be a point of the manifold X" immersed in E*** and consider
the frame (x;e,,e,, ..., 6415) of Sect. 2. The density for r-planes
through z is given by (3.2) which we will now write

(7.1)  dE  y(2)=Adw, (i=1,2,...,rim=r+1,7r4+2,....n+ N)

where r<n. The density for r-planes E(z) in the tangent space T(x)
spanned by e,, e,,..., e, is

(7.2) dE (@) = Aww (1=1,2,...,r5m=r4+1,..,n).

The densities (7.1), (7.2) refers to the r-space spanned by
(€, €3, ..., &). It is important to note that if »=n, N=1, the den-
sity (7.2) is not defined. Since we have in this case only one Ej(= T'(x))
its average is the same space, 8o that in this case we must cancel dE,
(and the corresponding integrations) in all the formulae in which it
appears. On the other hand, this case corresponds to the well known
case of hypersurfaces X~ in E**! and the curvature here defined is
the absolute value of the classical Gauss-Kronecker curvature.

The element of volume of X" at x is

(7.3) do (@) = O AWA ... AWy .
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Assuming n = rN, the differential forms dE,, ,(r) and dEj(x)A
Adon(@) have the same degree, so that we can define a function
G(z, Ej(x)) by the equation (as noted in section 2, the ditferential
forms in this equality must be considered as forms in the bundle of
frames trangent to A'*; for details, see [11] or {29])

(7.4) dE, ,4(x) = G(z, E,(x)) dEy(x) \do,(x) .

Calling v = v(E,,y) the number of r-planes E;,, which are paral-
lel to E,,y(x) and belong to some tangent space T'(z) of X*, (7.4) gives

(7.5) | vdE;,,,(:v)HJ.( [ 166z, By))laBr)) Adoia)

Gr oneN-r Gy m-r

Thus, setting
(7.6) K} y(X) = [Qh4() do,
i

according to (4.3) and (7.5), (having into account (3.4)), we have

0,...0,, 5 - "
(7.7) Qrlz)= oot f |G(x, En(x)) [dEL(2) .
O' e 0”+,_1

Ge,n-r

From (7.4) and (7.1), (7.2), (7.3) we can obtain the expression for
the «local » sectional curvature G(z, E,) corresponding to the point x
and the section E}(x) (spanned by the unit vectors e,, e,, ..., ¢,). We get

(7.8) G(z, E})do,= Aw,,,
(i=1,2,...,r;m=n+1,n+2,...,2+4 N).

Using (2.5) we get
An+l.ll An+l,12 s An+l,ln

An+N.ll An+ll.l! (LK) An+ﬁ,ln

An+l,:l An+l.22 see An+l.2n

(7‘9) G(w’ E;((B)) = An+l.!l An+N.22 LEX] An+1l."n

...................

...................

An+N.rl An+1’.r2 s An-HVrn

the determinant being of order n because n = rN.
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This formula corresponds to the r-plane spanned by e, é€,, ..., ¢,.
For a general r-plane in T'(x) spanned by the set of orthogonal vectors
€y, €, ..., ¢, of the frame e;=7yner (i,h=1,2,...,n) defined by the
orthogonal matrix (ya), the elements A,, in (7.9) must be sub-
stituted by A;.‘,: Yar¥imAasm (B, m summed over the ranges
hy,m=1,2,...,n) as it follows easily from (2.5) and (2.2).

In order to evaluate Q,'.,(w) we must compute the mean value of
|G(z, E,(x))| over all E;(x) (i.e. over the Grassmann manifold G, ,,).
Actual evaluation of this mean value seems to be difficult. We will
only consider some particular cases in the following sections. As
follows either from the geometrical definition or from (7.8), if r = n,
N =1, G(r, E5(x)) = G is the classical Gauss-Kroneker curvature of
X~ at the point z, and we have

1
(7.10) ny = o_anl'

8. Local representation of Ky,y_, »(X*).

The hyperplanes in E** which contain some tangent space T'(z)
of X* may be determined by its normal vector Ey(x) in the normal
space to X at x, i.e. in the N-space spanned by the vectors e,
€nt3y .-y €a1y. Then, instead of the equation (7.4) we consider

(8.1) dEq, (%) = G(z, Ex(x)) dEx(z)\do](x)

and Kn.y(X") may be written

(8.2) s X") = [QRr1.4(0) don(2)
xl
where
83) Qs =g [ 16, Bie)|dBia)
n4N-1

(8.1), (8.2) and (8.3) show that the absolute total curvature
Ky y14(X") coincides with the Chern-Lashof curvature[11],[12] as
stated in section 6.

Taking Ej(z) to be the line of the unit vector e,y and writting
G(x, €usy) instead of G(z, Ey(z)), from (8.1) we deduce

(8.4) G(@, tnty) AOn(B) = Optwa AOnigaA . AOniy.n
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or, by virtue of (2.5),
(8.5) G, enin) = (—1)" det (A uix.i)

with 7,j=1,2, ..., n.
If, instead of e,;;, we consider the general normal vector
e:=cosl,eqy, (8=1,2,..., N), we get

(8.6) Gz, ) = (—1)"det (cos0,4,,,.,)

and to get Qn,y_,~(®) (= absolute curvature at x = Chern-Lashof
curvature at r) we must evaluate the mean value of |G(x, ¢)| over the
(N —1)-dimensional unit sphere (i.e. over cos?8,+ costf,+ ... +
+ cos*@y=1). Only in some simple cases, this calculation has been
carried out.

9. Total (no absolute) curvatures K.y, »(X").

The total absolute curvatures K. ,(X") are easily defined geome-
trically by (4.3) or (4.5), but their actual evaluation seems to be dif-
ficult, mainly due to the absolute values under the integral sign in
{7.7) and (8.3). From the analytical point of view, it is much more
natural to consider the curvatures « defined » by the same formulae
(7.7), (8.3) and then (7.6) and (8.2) without the absolute value under
the integral sign. We shall denote these no absolute curvatures by
Q, () and K, y(X*) (Or Quiy_1.4(®) and Kayy-,4(X")) respectively. One
can handle analytically with these curvatures more easily than with
the absolute curvatures, but for a geometrical interpretation like (4.3)
or (4.5) it is necessary to provide an orientation (or a sign) to the mani-
folds I, E**"~Y(0) and some difficulties arise.

We will first consider the case Kpiy-1x(X"). We define

1 f G(e, Er(x)) dE4(=)
nyN-1

@3 N1

(9.1) Quixaal®) = 0

where G(z, EX(z)) is defined by (8.5), (8.4) if Ex(x) is the line span-
ned by the vector e,., or by (8.8) if E(x) is the line spanned by the
vector e. From (9.1) we define

(9.2) KoyiyrnlX*)= f Qutx-1x(2) doy(T).
xl
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To calculate the mean value (9.1) we congider the unit vector e
on the line EL(z), say e = cosf,e,y, (8=1,2,..., N; cos20, + cos:0,+
+ ... 4 cos20,=1). We have

(9.3)  G(x, e)doa(x) = (—1)"ede,)A\(ede,) A ... Al(ede,)

= A(c080,w,4,,; 4 080,015, ... 4 CO8Oywaiy.s)

where in the exterior product on the right-hand side we have
1—=12,..,n

The forms w,,,, do not depend on @,. Thus, in order to compute
(9.1) we must calculate the mean value of monomials cos*8, coshf,...
...co8™ 0, with A,+ A,+ ...+ A,=n over the N-sphere cos*f,+
+ cos?0+ ... + cor*f,= 1. These mean values are known: they are
zero unless all exponents 4, are even, and in the later case their values are

A)Ay) ... Ax)
9.4 (cosh 0y ... cos™Oy) = - e
(9.4) Ecoxhfy... codnbn = yop o) N+ n—2)
where 1; even, A, 4 ...+ Ay=mn and A)=1.3...(A—1). From these
mean values, expanding the exterior product (9.3) and using (2.5)
and (2.8), by some invariant-theoretic arguments dues to H. Weyl [28),

one can deduce the following explicit form of the curvature Q,.y_;.»(*)
(n even)

1 Sfrfs-in R

(9.5) Qn+n-1,;(37)=2—"(2n—),/;(‘m $2ds...dn L¥igighity

R

isfefgfy v in-tfnin-1in

where 4,5 is equal to 41 or —1 according as (i;i,...4,) is an
even or odd permutation of (j,j,...j.) and is otherwise zero and the
summation ig over all 4, 4,, ..., ¢, and j,, js, ..., ja independently from
1ton Ifnis odd, Quiy_,u(@)=0. Notice that @,.y_,, does not
depend upon N.

This curvature (9.5) is called the curvature of Lipschitz-Killing
(Chern-Lashof [11], Thorpe [27]). It appears in the work of H. Weyl
on the volume of tubes [28] and in several papers of Chern ([7], [9], [10])
and others. The total curvature K,,,_, »(X*) (n even) gives the Euler-
Poincaré characteristic of X", according to the formula of Gauss-
Bonnet:

(9‘6) Kn+x—x.x(X") = Z(Xn) .
The case n=2. For surfaces X*c E**", we have Qyi, y=(1/27) R, =

= K[2n, where K is the Gaussian curvature (2.16). The expression
of G(z,e) (9.3) is a quadratic form in the variables cos§,. Under the
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hypothesis that this quadratic form is everywhere positive or negative
definite, we have

Q;-H.N: Orvirn= K27 if X0

Q;ﬂ.n: —Qunx=— K27 if K<0.

Hence we have
K= (1 /27:)( fﬁ da —fK do')
14 ¥

where U= {xe X?; K(z) >0}, V= {wve X?; K(x)<0}.
The inequality (6.1) and the Gauss-Bonnet theorem give

dea ——J.Kda‘\/dn(] + 9), dea+dea =2ny(X?) == 4n(1 —g¢).
v v v

v
Thus, we have: If the quadratic form G(z, e) (9.3) is everywhere

definite (positive or negative) on the surface X?®c E*t¥, then the fol-
lowing inequalities hold

9.7 deo’>4n, J.Kda<-—4ng.
14 1 4

These inequalities are due to B. Y. Chen [3].

10. The case n =N, r =1,

If »=1 and e, is the unit vector on the line EX(z), equation (7.8)
writes

(10.1) G(w, €,) don (@) = 01.at1 AWpats A AOrniy -

For the general tangent vector e = cosf,e, (i=1,2,... n) we have

(10.2)  G(x, e,) = A(CO8O, Wy pt,+ CO8O 0y 0e,+ ... + CORO O nts)

where s =1, 2 N.

g oy evey

According to (7.7) we have now

(10.3) Q@)= 0 1 f G(z, ¢)dE,(x)
N4 N-—-1

G1,n-1
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i.e. Q@ x(x) is the mean value of G(z, e) over the unit sphere cos?0, +
+ cos?0,+4 ... + cos?2f,= 1, which may be evaluated by the same
method of H. Weyl of the preceding section. The result is @, y(x) = 0
if n=N is odd and

1 .-
(10'4) QI.N(‘/L‘) P 6;:!.’;: al“lll’lR“ladli’l ore Rﬂu-;“uln-:’n

B"(27)"*(n/2)}
where ay=n-+1, (h=1,2,...,n) if n =N is even.
Notice that @, y(X) depends on the immersion.

ExaMpLE: For n—= N =2, r=1, having into account the pro-
perties of symmetry (2.12) we get
1

(10.5) Q1.a() = 2—7‘;3:412 .

11. The cases n -+ N6,

In the following sections we wish to consider some particular cases.
For n + N<6, the conditions n=7rN and r=n-+4+ N—1 give the
following possibilities:

a) n=2, N=1, r=2. Corresponds to the classical case of sur-
faces X2c E®. We have Q,,(x) = (1/2n)K, K = Gaussian curvature.
Congsideration of ¢;, and K, , gives rise to interesting problems (Kui-
per [17], Willmore [29]).

by n=2,N=2,r=1 and n=2, N=2,r =3, These cases cor

respond to X2c E* and will be considered with detail in the next
section,

¢) n=3,N=3,r=1: X3cE' Particular case of the case
considered in sections 7 and 10. Since n= N=3, is odd, we have
Gralx) = 0.

d) n= 3, N=2,r=4: X*c E*. Particular case of the case con-
sidered in section 9. Since n =3 is odd, we have Q. s(®) = 0.

e) n=3, N=1,r=3: X3c E‘. Hypersurfaces in E'. Q,,(r)=
= (2n2)-'K (K = Gauss-Kronecker curvature).

f) n=3, N=3,r=>5: X*c E*. Particular case of the case con-
gidered in section 9. Q,(z)=0.

g) n=4, N=1,r=4: X‘c E*. Hypersurfaces in E°. Q,,(z)=
= (8n2/3)'K (K = Gauss-Kronecker curvature).
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By n=4, N=2,r=2: X4c k¢, This is a noteworthy case
which will be discussed in section 13.

i) n=4, N=2,r=15: X¢c ES. Particular casc of the case con-
gidered in section 9.

J) n=5,N=1,r=>5: X*cEs. Particular case of the case con-
sidered in section 9.

12. Surfaces in k¢,
We will consider separately the cases a) n =2, N=2,r= 3, and
by n=2 N=2,r=1.
a) The case n =2, N=2,r=3. Putting 0,=0, 0,-= (7/2)—0
into (9.3) we have
(12.1)  G(w, e)w, Awy= c0820wy AWy, + 8iN0wy AWy +
+ 8in 0 cos O(ws AWy + M Agg) -

The density for lines about a point in E? js dEj(z) = df and thus
.
(12.2) J‘ (@, &) A AQD = (033 AWy + Oy Atrgy).
o

Therefore we have

(12.3) Q1 (@) Aw, = 21—7t (w1 Ay + OuA®,) .

The Gaussian curvature of X* at  is defined by dw,,= — K(x)w,Aw,.
Thus, according to (2.3) and (12.3) we get

1
(12.4) Qaa(®) = Ex(w) .

Integration over X* and application of the Gauss-Bonnet formula
for surfaces, gives K,,(X?)= %(X?), in accordance with (9.6).

We will now consider the absolute curvature Q;,. To this end it
i8 convenient to introduce the normal curvatures of Otsuki[19).
Notice that the form wyAwu+ @aAw,, Temains invariant under ro-
tations e, — cosae, 4 ginae,, ¢,—> —sinae,+ cosaxe, on the tangent
plane, but it can be annihilated by a suitable rotation on the normal
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plane ¢y, ¢,. Hence, choosing a suitable pair e,, ¢, of normal unit
vectors one can get

(12.5) O N\Wg+ ©aA\wyy= 0.

Then, assuming that the forms w,, refer to the new frame, we de-
fine the normal curvatures i,, u, (Otsuki's curvatures) by

(12.6) Wy AWy == Aa ANy, WaADG= a0y AWy

80 that according to (12.3) and (12.4) we have

(12.7) 2a-t+ pa= K = Gauss curvature .
Having into account (12.5), equation (12.1) writes

(12.8) G(x, ¢) = cos?01,+ sin'fu,
where we may assume
(12.9) An> fin .

If Aapa>0, the absolute curvature at x is
=
(12100) Qo) =1 (166, )1a0 = 2 |1y 4 o= L 1K
D 3.3 - 27!’ ! - 27! n ,un - 27!‘ l .
]

If A pua<<0 we notice that

Avcost0 + pu,8in'0>0 if || < arctanV—A,/u,,
AncOB%0 + u,8in20< 0  if  arctanV—A,/u.< |0]<n/2

and

in ni/s
f{(}(:o, e)|di = 4f[2.,. co8*0 - ua8int6|df =
o

= 4{ V= Ay pin + (A + pa)(are tan V= Anfttn— n/4)}.
Therefore we have

(12.11) Qf4(2) = %{V: Anttn + K(arctan V— A, u,—m/4)}.

We shall do two simple applications of the preceding results.

25
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i) If X?is orientable and K = 2,4+ u,= 0 (flat torus), we have

(2]
K3 (X2)= J—E;f}.,,daz.
xl

Applying the inequality (6.1), having into account that K =0
implies g = 1, we get the following inequality of Otsuki{19]:

,J- Ando, 272,

ii) If pa>0, A,>0, we have Q;,— K/2n and the Gauss-
Bonnet theorem gives

1
K3, ':J‘Q:.adaz == §;de”2 = 2(X?).
x xn

Inequality (6.1) gives then x(X?*)>2 and we have the following
theorem of Chen [4]: if u,>0, ,>0, then X?* is homeomorphic to
a 2-sphere.

b) The case n =2, N =2 r= 1. This is a particular case of that
considered in section 10. Putting ¢ = cosfe, + sinf,e,, (10.2) becomes
(12.12) G(x, e)w, \wy = (c08Ow,3+ 8in Ow,,)

A (eo80w,, + 8inOw,,)

= 0820 3 Ay 8iN20wga \ gy + SiNO COBO( 3 Ay + (3 A0y,) .

The form w;3Awy,+ wgAw,, remains invariant under changes of
frames in the normal plane, but by a suitable rotation e, — cosae,
+ sinae,, ¢,—> —sinae, + cosae, in the tangent plane, we may at-
tain that

(12.13) W13 AWy + Oy N\wy = 0.

Assuming the frame (x; e, ¢,, €5, €¢,) chosen in such a way that
(12.13) holds, we put

(12.14) Wis AWy = AW AWy, W AWy = ey AWy

where A,, u, are the tangent curvatures of X?* at 2.
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The curvature @,,(r) is then
n

1 1
(12.15) Q) .(z) = Q;'J.(}" con®0 + p,8in?0)do = e (A + 1)

L]

and the absolute curvature takes the values

1 .
(12.16) Q3 () = EM: +pud i Ap0
and

(12.17) Qrs(x) = 7—?;{\/— Ay + (A + po)(arc tan vV— }.,//4,—7:/4)}

if Au, <0.
If we compare with the preceding case Q) ,(x) we observe that,
instead of the Gaussian curvature K, we now have the invariant
== A¢+ pe, such that

(12.18) T, Nw, = (}w‘i‘ /»‘t)wx/\wzz Wi AW+ W3\ 0y

Notice that dw, = — Iw,Aw, and therefore, since every orientable
X2c E* has a continuous fleld of normal vectors (Seifert [26]), from
the Stokes theorem follows that

(12.19) fdw,.z —flw,/\w,z 0
xt o

i.e. the invariant I{(z) does not give any non trivial invariant by inte-
gration over X3,

The curvatures A,, u,, A,, 4s are not independent. From their
definition follows easily that

(12.20) Apin= Apte -

The invariant I has been introduced by Blaschke [2] and, from
a more topological point of view, it has been considered by Chern-
Spanier [13]. It is easy to see that I (like K) remains invariant under
changes of frames (e,, ¢;) on the tangent plane, and also under changes
of frames (eq, ¢,) on the normal plane. From (12.18), using the equa-
tions (2.5) one gets

'A'!l,ll AS.I!
Al.ll Al.lz

‘ A:I,Il AS.‘H

+
!Aa.zx Ac,zz ‘

(12.21) I= = Ryus .
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13. Manifolds of dimension 4 immersed in K*.

We will now consider the case

According to (7.8), if Ki(x) is the 2-plane spanned by e,. ¢, we have
(13.1) Q(x, {¢,, €,}) Ao, — Dy A1 AW A gg .

For the general 2-space Ej(z) spanned by the vectors e, = yy. e,
ey =ymer (h=1,2,3,4), we have

G(x, {ey, €3}) Aoy = Y10, V10, Var Vi s AOs e A Oy s AO2 g =

! i
— i \ ylh' ylh . b ylh‘ yl“‘ ‘ (l)»‘./\(l)h'./\(l)h5/\(l)~. .
(Vang Voo (Vaag o Vaag

Instead of evaluating the integral at the right side over G,, it
is easier to observe that for any frame {e;, e,, €,, ¢} the sum

(13.2) 8 = T wghoghoghog

.9

where the summation is over all permutations of ¢, j from 1 to 4, does
not depend on the orthogonal frame {e,, e, ¢;, ¢,}. Indeed, setting
€= yae, in (13.2), we have

1
405

}’n. 7.». [

Yin Yin L op g A\ (u.,./\ wps A\ (pg
i Vim Vin

1 Ying  Ying

S!

where the dummy indices h, take the values 1,2, 3,4. Having into
account a well known theorem on orthogonal matrices which states
that any minor is equal to its complementary, and since det (y,,) = 1,
we get §8'= 8= zw;s/\wu/\wu/\wu-
.9
Consequently § is equal to its mean value over G,, and according

to (3.6) we have

0. ¢ 1g.

13.3 : = .
( ) Q!,!(‘/") do" 60‘05 87!3




Total curvatures of compact manifolds immersed in euclidean spaco

In terms of the invariants R, an easy calculation gives

Ayn  Ag,
1 Ay Ay
13.4 2(®) = —
( ) Gl 8”‘(§) Ay A
A A
1

8n* (5

Asis
Ass
A‘v’l
A‘Il

A
Ass

A.l‘
A.l‘
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E (R-'m RNM + R./IIRHN ‘*‘ Ruu Ril”) .

It is noteworthy that this invariant does not depend on the im-
mersion of X* into E*. The total curvature K,,(X*) coincides, up to
a constant factor, with a topological invariant introduced by Chern |8].
For a topological sphere we have K,,(X*)= 0 (as follows from ii) of
gection 4). Samelson [21] has given examples of manifolds for which
K,,(X* #0. It can be seen that the differential form (13.1) defines

the Pontrjagin class p, of X* (see Chern [9]).

Testo pervenuto il 21 maggio 1973.
Bozze licenziate il 18 giugno 1974,
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