
Visualizing Threaded Discussions

by

May-Li Khoe

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 22, 2000
L nu

) Copyright 2000 May-Li Khoe. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author____________
Department o{ El trual Engineering and Computer Science

May 22, 2000

Certified by
Ju1i Dorse~rd

Accepted by
Arthur C. h

Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 2 7 2000

LIBRARIES

Visualizing Threaded Discussions
by

May-Li Khoe

Submitted to the
Department of Electrical Engineering and Computer Science

May 22, 2000

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

The main goal of this project is to design a visualization and improved user interface for
threaded discussion forums, a kind of software commonly interfaced through the web
today. These forums contain discussion threads, also known as threaded discussions:
groups of replies which, directly or indirectly, originate from one initial message. Current
interfaces for threaded discussions provide only minimal functionality, and are often
cumbersome to navigate. Despite the graphical nature of the World Wide Web, no
visualizations or meaningful images are provided, and meta-data which could supply
users with greater context is not displayed. Limited screen space is part of the problem -
if too much information is presented in textual form, the screen becomes cluttered.
Balancing this trade-off is an inherent problem with discussion forums, since it is a
challenge to compress large amounts of textual data into a compact web page. A
visualization of this discussion data with effective design and interactivity could be a step
toward solving the problem. Our designs are aimed at helping users save time and energy
while seeking information within discussion databases.

Thesis Supervisor: Julie Dorsey
Title: Associate Professor in the Departments of Electrical Engineering and Computer
Science and Architecture

2

Table of Contents

ABSTRACT 2

TABLE OF CONTENTS 3

CHAPTER 1: INTRODUCTION 5

1.1 TERMINOLOGY 5
1.2 STATEMENT OF PROBLEM 6

CHAPTER 2: PROJECT OVERVIEW 8

2.1 GOALS OF PROJECT 8
2.2 OVERVIEW OF THE PROCESS 10
2.3 OBSERVATIONS 12
2.4 SUGGESTIONS 17
2.5 NARROWING DOWN THE SUGGESTIONS 21

CHAPTER 3: THE DESIGN OF THE VISUALIZATION 23

3.1 INTRODUCTION TO THE DESIGN 23
3.2 DEFINITIONS AND DESIGN PRINCIPLES 25
3.3 THE DESIGN PROCESS 29
3.4 BRIEF OVERVIEW OF LEVEL ONE 31
3.5 DESCRIPTION OF LEVEL TWO 35
3.6 BRIEF OVERVIEW OF LEVEL THREE 45

CHAPTER 4: EXPERIMENTING WITH IMPLEMENTATION 48

4.1 INTRODUCTION TO THE PROTOTYPE 48
4.2 DIRECTOR AS A FRONT END TO NOTES 49
4.3 NETWORK COMMUNICATION BETWEEN NOTES AND DIRECTOR 52
4.4 MANAGING THE DATA COMMUNICATED BETWEEN NOTES AND DIRECTOR 54
4.5 MANAGING THE DATA WITHIN DIRECTOR 59
4.6 CREATING SPRITES DYNAMICALLY 61
4.7 OVERVIEW OF THE IMPLEMENTATION 64

CHAPTER 5: DISCUSSION 70

5.1 RESULTS AND ISSUES 70

3

5.2 RELATED WORK 72
5.3 FUTURE DIRECTIONS 73
5.4 ACKNOWLEDGEMENTS 74

REFERENCES 76

4

Chapter 1: Introduction

1.1 Terminology

This thesis will focus on the graphical user interface for threaded discussion

forums, a kind of software commonly interfaced through the web today. Threaded

discussion forums are reminiscent of message boards, in which people can post new

messages or reply to existing ones. Each new topic posted can be followed by a series of

replies. A group of replies which, directly or indirectly, originate from one initial

message, can be called a threaded discussion, or a discussion thread. Each message in a

discussion thread is considered an entry in that thread. A discussion forum usually

contains and provides the interface to these threads, usually grouping those with similar

subject matter.

Throughout this paper, threaded discussion forums will be referred to

interchangeably as discussion databases, or simply threaded discussions. Thread entries

can also be called contributions, messages, or postings. The replies to a message can be

referred to as its child entries, and the message from which a reply originates is called its

parent entry. The descendents of an entry include its parent entries, and all of their parent

entries, and so on, until there are no more entries with parents to trace back to.

This paper will also make many references to the term "meta-data". By general

definition, meta-data refers to data about data. For example, meta-data can include data

about data elements or attributes, (name, size, data type, etc), data about records or data

structures (length, fields, columns, etc) and data about data (where it is located, how it is

associated, ownership, etc.). Meta-data may include descriptive information about the

5

context, quality and condition, or characteristics of the data [1]. For our purposes, meta-

data shall refer to all data related to threads and entries other than the main body of entry

text.

1.2 Statement of Problem

Current interfaces for threaded discussions, both on the web and in Lotus Notes,

are quite basic - they provide minimal functionality, and are often cumbersome to

navigate. Users are generally presented with a purely textual interface, despite the

graphical nature of the World Wide Web. There are usually no visualizations or

meaningful images to help a user understand and navigate discussion forums or

discussion threads. Thus most existing discussion databases do not possess the nearly

same caliber of presentation as it has potential for.

At present, little context is provided in current forum interfaces, not in the form of

either textual or visual information. Providing context helps users determine what they've

read, what others have read, and what they might want to read next. Furthermore, it is

common to navigate discussion databases using a text search, which often lands users at

an entry in the middle of a discussion thread. Due to the lack of context normally

accompanying the display of an entry, it is often cumbersome to find the rest of the

thread, including the descendants and children of an entry. The inherent problem with

browsing search results is that each document is no longer presented as part of a bigger

picture. Providing easily accessible context for threads and thread entries could help

alleviate this problem within discussion entries.

6

Another problem is that there is a limited amount of screen space for displaying

the large amount of potentially useful information contained in threads and in forums.

The result is a trade-off - it is difficult for a user to navigate a site that displays too little

information at a time, but if too much information is presented in a purely textual form,

the screen becomes too cluttered. Thus, most existing interfaces would not have space for

much meta-data, even if it were collected and available.

As a result, much of the information that provides users with context, and a better

idea of what they want to read, is not available at all. Providing discussion data in a

meaningful and navigable manner could save people time and energy exploring threads

that do not contain the information they are seeking. There is still much exploration still

to be done about which information is more useful, and importantly, how it can be

presented in a way that is helpful to users.

7

Chapter 2: Project Overview

2.1 Goals of Project

The visual interface we have designed aims to provide more than the current basic

and textual interface, through both additional meta-data and visual interpretations of that

data. In order for this to be effective, we searched for appropriate idioms of expression to

represent the meta-data we chose for display. As stated earlier, this meant that we needed

to design visual representations which people could identify with and understand quickly,

once they learned how.

To do this, we needed to make use of the basic elements of design to ensure that

attributes were emphasized when they were of potential interest to the user, and de-

emphasized when they were not. It was also important to make use of the natural

hierarchical structure of discussion databases, and consequently offer multiple macro and

micro levels of data viewing. Since our environment was potentially interactive, we

wanted to incorporate currently underutilized interaction strategies, allowing users to

probe the visualization for more further data using their mouse input. These techniques

will help, not only by providing the user with additional context, but by assisting users in

learning the idioms of expression we propose.

Some amount of learning how to read our visualizations might be required on the

user's part, although we were generally searching for representations which were

intuitive and consistent. There is a trade off between ease of use and ease of learning: in

this case we felt as if some amount of learning was acceptable, if afterward the user

8

found the interface easier to use. In other words, users might require explanations of our

visual representations when they first view the interface, but after they have viewed it

several times, it should be easy to understand what is going on at a quick glance.

The work in this project is targeted more at a business-oriented community, rather

than considering the leisure use of discussion forums. Businesses strive to manage and

utilize their knowledge assets, but are currently limited from using discussion databases

as toward such a purpose, despite the amount of information stored in them. This is

because discussion forums are limited by the inefficiency of their navigation. Goal-

directed users need to be able to find and retrieve information from these databases

without losing a lot of time to ineffective searching and reading. They need to be able to

decide quickly which threads to examine, and which entries in a thread might be

interesting. If these discussion forums can be reasonably navigable knowledge sources,

rather than large stores of information which no one can efficiently wade through, then

businesses will want to host more of them. Then these could be used by current and

potential customers, business partners, and employees, and be kept afterwards as future

references, becoming a valuable corporate resource.

In order to demonstrate our ideas to the business community, it was necessary to

build a proof of concept prototype. The main purpose of a partial implementation was to

illustrate that our design proposals actually had potential feasibility, and to test our

visualization against some nominal amount of data. It also helped us to determine which

development tools could be worthwhile in the realm of interactive data visualization,

since narrowing large amounts of data into a compact, web-browsable multimedia

presentation is no small matter. The creation of a prototype showed our theoretical ideas

9

in context, so that others in the development community could quickly see their value,

more so than when they are only expressed in formal presentation. Thus a prototype was

mainly to help demonstrate that our ideas were useful and feasible enough to continue

researching and developing in the future.

Currently, there are limited idioms of expression for the attributes of discussion

threads; those that do exist are mainly hierarchies, presented in an outline list. Thread and

forum attributes are often abstract concepts, such as the relationship of replies, amount of

activity in the thread, etc. Thus intuitive visual representation is a challenge - for

example, there is no clear idea in most people's minds of a picture that could effectively

represent a reply.

Due to a lack of former work done in this field, there was a substantial amount of

exploration required to develop idioms of expression for threads and their meta-data.

While we experimented with various designs to see what worked and what didn't, we

were not aiming to discover a set of definitive symbols.

The scope of our subject matter is potentially overwhelming, given the length of

time allotted. The amount of exploration needed in the design aspects alone could have

been a project of immense size and duration. There are various issues around the

implementation, security, privacy, and validity, described later in this chapter, which

influenced our choices of what to design and implement. We concentrated on proposing

an improved visualization and graphical interface to discussion forums on the web.

2.2 Overview of the Process

10

Designing a visualization for threaded discussion databases was a process which

involved observation as well as design experimentation. For the first three months of the

project, Hyun-Yeul Lee, a graduate student in Interaction Design at Carnegie-Mellon

University, and myself, worked together with Paul Moody, a Design Researcher at Lotus

Research. For the final three months of the project, there was a greater focus on exploring

implementation, at which point only Paul Moody and myself were involved in the

process.

To begin thinking about a visualization, we needed to have some basic knowledge

about the kind of data we were trying to represent. We browsed many existing discussion

database interfaces, and observing not only how they chose to present their data, but also

what kind of data they were dealing with. It was important to see how their discussion

databases were meant to be interacted with by users, to study the types of information

being discussed, and to chart the resulting structure of the discussions. Doing this

exercise helped us understand what sort of interface improvements could be made that

would provide better navigational assistance to the average user. We also observed that a

lot of information about thread activity was missing, information that could be extremely

helpful to viewers who are trying to decide what to read next.

From our observations, we compiled a list of meta-data missing from current

systems which we felt would be useful to provide. We also began to brainstorm about

improvements possible to the existing interfaces, narrowing our focus to the visualization

of the aspects we felt were within the scope of our project. It was also necessary to decide

which meta-data would be immediately useful to explore. Since some of this information

11

had never been provided to users before, a certain amount of hypothesizing was

necessary to this effect.

After choosing which meta-data to visualize, we began to design some

visualizations. Our designs began to try and determine the right visual metaphors for the

data in question - pictures or symbols which represented aspects of discussion entities in

an easily comprehensible manner. The designs we came up with began with

investigations of existing designs, from man and from nature, which served similar

purposes, such as algorithms for organic growth, or existing methods for monitoring large

amounts of data. Our ideas started out as hand-drawn sketches on paper or on

whiteboards, and were further developed through iterations of redesign and critique.

After deciding upon a particular visual representation of some data, it was also important

to explore the types of user interaction possible with the new design. We began

experimenting with how the design should react to mouse events and other user input, as

well as dealing with issues such as extremes in quantity or space limitations. Each design

for interactivity was also subjected to iterations of critique, redesign, and fine-tuning.

Eventually, the process of visual and interaction design needed to give way to some

exploration in methods of implementation. So, we proceeded to investigate some of the

tools which seemed potentially useful for an implementation. We then narrowed in on a

part of the design and began implementing it.

2.3 Observations

12

In order to collect information about current discussion database interfaces and

existing thread data, we went to sites such as delphi.com, deja.com (which provides a

web interface to Usenet), ecircles.com, slashdot.org, and quickplace.com (a site offered

by Lotus). All of these are examples of sites which host discussions. Another example of

an interface to online discussions is that of Lotus Notes, which has its own discussion

database design, which is browsable using the Notes client, or via the web.

Of the sites we examined, none of them offered any sort of visualization of thread

structure. The ones that revealed structure did so via simple textual lists presented in a

hierarchical structure, such as those shown in Figure 2.3.1

Messages
1-9 of9 matches Page 1 of 1
Mesage Author Dale

- ___2Michael ValentinerBranth 5/12/2000

- 2 Frode Langset 512/2000

Ms- S robi /14/200

L KAkl Sarr J Blumson 5/15/200

1-9 of9 matches Page 1 of I

Figure 2.3.1. An example of a hierarchical list from deja.com

At the most macro level, the web forum interfaces generally offered a list of the

major discussion areas available at their site. Occasionally, they also highlighted some of

the most active discussion forums of the day, or chose particular topics which they

thought were the "hot topics" of the day. An example taken from delphi.com is shown in

Figure 2.3.2. The major discussion areas are listed at left, and some potentially interesting

or active have been chosen and highlighted on the right.

13

Explore

Business /Finance

Civic /Government

Companies

Computers

creative Arts

Current Events

Education

Entertainment

Family /Parenting

Games

Health & Wellness

Hobbies & Crafts
Home Life

Internet & Web

Lifestyles

Motor Transport
Religion/Spirituality

Science & Space

Sports /Recreation

Support/Recovery

Taste & Trends

Travel & Places

Hosts' Fo*r"mWhoa Form?

What's Hot W/1
Lick Me. Stick Me. Ship Me First Class!
Canada Post is introducing Personalized vanity stamps. Talk about competitive airfare!
In LunaRayven's Loveseat

Forum Host Spotlight
Disney Fans Forum
Join other Disney Fans discussing ALL things Disney from parks to merchandise, in the
happiest place in cyberspace!

Goin2Goal
Host: GatesDautr

Visit Losin_It for weight loss tips, motivation & support on your journey to losing 100+
pounds!!

I Love Somersizinq!!!!
Host: Susan
Come, lose weight with all the food and fun you desire!

Today's Most Active________________
Fox: The X-Files Forum

13 Maximum PC Magazine Commport

Fox: Beverly Hills 90210
I AlienTech's DSS Forum

Pregnancy/Birth

h Golf Equipment Aficionados
I RefMaker -- Earn More Online!

h Tom's Hardware Forum

h Shadow Riders Forum

b Married But Love To Flirt
Fox News: National

Falcon 4.0 Forum
The Warren Ellis Forum

l The Road Star Riders

* Urban Leuends and Folklore
h ISRA - International Star Riders Assoc.

About.com Thyroid Disease Forum

TVGuy's Place

10 Tnnv Hawk's Prn Skater

Figure 2.3.2. The initial page displayed at delphi.com.

On many sites, once a particular subject area is selected, a page displaying

another list of sub-areas of discussion, or a list of the threads in that subject area, is

14

shown. These threads are most often listed by the subject of their first or "root" entry, and

are often accompanied by a number indicating their total number of posts. . Throughout

the various interfaces we examined, other meta-data is occasionally displayed. For

example, in some forums the author and/or date of the root entry is listed, while in others,

the author and/or date of the latest entry are listed. On most sites, if the user browsing the

site has never browsed it before, the threads will all be marked as "new", showing that

they had never been read by that user (see Figure 2.3.3). Once the user has read some of

the messages in the thread, it is no longer marked new. In some interfaces, a number

indicating the number of messages read and unread by that user is listed, although unread

messages are often indicated as being "new", even if they were posted before the user

read other messages in the thread. This had the effect of misleading the user to believe

that there are new posts to read, when in fact, there were only old posts that they chose to

ignore earlier.

SStart New Discussion

.)Cleaning the coffee po
[7]

NEW extra storace: freezer
or fride? [35 new]

-New Tu ierwarl [1 new]
-NEW acuum Sealing Meat

[11 new]
=NeW rl361 ans [4 new of 27]

NEw Favorite Apoliance/
Cookware [20 new]

New Favorite Cookbooks?
[8 new of 85]

-NEw Favorite Brisket
Recipes [15 new]

=New Peoer Beefsteak with
Jack Daniel Sauce
[3 new]

-New French Onion Soup
[6 new of 17]

Figure 2.3.3. A list of unread threads marked as "new" at delphi.com.

15

When a thread's entry is selected for display, the actual author, date, time, and

body of the entry is shown, as illustrated in Figure 2.3.4.

3-D Monitor From Deep Video Imaginga
Posted by tiroty on Friday May 19, @04:40PM
from the that's-U.Sdllars dept.
Silver A writes: "Deep Video Imaging Ltd. has available monitors with real,
physical depth, and touchscreen capability. Unfortunately, it's only 800 x
600 x 2 so far. The base model is ony $8765.00 for US and Canadian
customers. This looks really cool, but I'd like to know i they plan to go to more than 2
planes, and ifthey support X." Or, on the other hand, if X will support them. These may have
limited utility as is, but undemiably cool

(Read More... 1212 of 436 comments)

Figure 2.3.4. Example view of an entry from slashdot.org.

This is offered along with some very basic navigational tools: the user has to read

one entry at a time, and click "next" or "previous" buttons on the page to continue

reading consecutive entries in the thread. There might be an indication of what number an

entry is in a thread, for example, number 33 out of 122. In deja.com's interface to Usenet

(the main body of discussion databases on the web), a basic list presentation of

hierarchical thread structure is actually offered along with the display of the entry data,

with the entry's position highlighted in the thread. However, when a viewer browses a

particular entry which they have found using the search function, the hierarchical

presentation is not provided. This is the one of the very few interfaces we found which

provided thread context, let alone one which assisted navigation by displaying thread

structure at the same time as entry data.

Even though we browsed hundreds of threads, we found that there were only two

types of threads which occurred throughout the web forums we investigated. A

16

WON.-

"problem" thread discusses problems, symptoms of problems, and solutions, and

therefore is directed. An "opinion" thread does not contain entries which are directed at

identifying and solving problems, but rather is open-ended, allowing users to voice their

opinions about some issue.

We also observed that a large variability in thread size and structure existed

throughout the forums we investigated. . There were some threads with only a few entries

and a few users contributing to a coherent discussion, and there were other threads with

hundreds of people participating and thousands of entries, with significant branching into

tangents throughout. Some of this variability was due to the popularity of the hosting site

or the thread topics. Of particular note, thread branching seemed to related to tools for

entry authorship provided by the forum, which did not always clearly indicate to a user

whether they were forking the discussion or simply replying to the end of the thread.

Even when the tools did make this distinction, it seemed as if users were careless about

where in the thread structure they added their entry, simply because it was not evident to

them that this would be of any consequence.

2.4 Suggestions

Having examined a variety of existing discussion threads and forums, we found

that there is some meta-data which we believe will useful in providing users with context.

17

We have compiled a list of these, focusing on those which are likely to help users find

what they need, quickly and efficiently.

The list of meta-data or attributes we came up with can be divided into several

different categories. The first category simply contains normal thread attributes, which

are relatively mundane and easy to collect, but still essential. The second category

contains meta-data not currently recorded or available in current discussion systems

because they are unusual or challenging to collect. The third category contains attributes

that are only relevant once users have already interacted with a thread in some way, by

reading or contributing entries.

The first category includes obvious thread attributes such as subject, date of

origin, date of last or most recent entry, total number of entries, author of originating

entry, and author of last or most recent entry. It also contained entry attributes such as an

entry's author, date, number of replies, parent entry, child entries, size, keywords, as well

as how many users had viewed that entry already.

Some of the less obvious attributes fell under category two. These include aspects

such as branching, bushiness, frequency, trends in authorship, etc. These will be

described below in further detail.

One of the more unusual attributes, which we call "bushiness", refers to the

amount of branching and sub-threads in a particular thread. A thread with a high degree

of bushiness often has many entries posted in reply to any given entry, and thus has a

high branching factor. This means that the "root" or originating entry might have many

child entries, and each child entry might have many replies, and so forth. On the other

18

hand, a thread with little or no bushiness proceeds much like a calm conversation, where

people always reply to the latest entry.

Frequency of posting or reading was another attribute which fell under the second

category. Frequency refers to how many entries are posted within a given amount of time.

It is obviously a relative quantity, since some threads might have hourly activity, while

others might only receive postings several times a week. Nonetheless, it could be

interesting to see when there were peaks in thread activity, and large amounts of

contributions were made within a relatively short span of time.

Recency of posting or reading can be interesting because a thread's date of origin

might not have anything to do with how recent the majority of its entries are. For

example, a thread started a year ago might have postings which are very recent, whereas

a thread started a week ago might only have postings from around the time of its origin.

A thread with recent activity, or a thread with only old postings but a great deal of recent

readership, might be more interesting to investigate. Many existing discussion interfaces

only provide the date of thread origin or most recent posting which can be deceptive.

Length of contributions is also interesting because quite often users searching for

some substantial amount of information can end up looking in the parts of threads where

people are posting two word entries to each other (such as "I agree"), rather than at the

parts of the thread containing original contributions to the topic under discussion. . If

users were to know in advance the posting's length, they might be able to skip over

entries which have only short remarks such as "I agree!" and "What do you mean?",

allowing them to focus on the meaningful parts of the thread.

19

Trends in authorship and readership can reflect a great deal about what might be

contained in a thread, the quality of the contents, and who is interested in it. It could be

helpful to examine a thread and determine at a glance which and how many people had

been writing or reading, and where. For example some threads have two people arguing

back and forth over an issue and fifty people reading what they say. Other threads might

have fifty or more people participating and only a couple non-contributing readers. These

attributes might help users determine value of the topic to non-participants. Another use

of these attributes could be to see where an expert in a field chooses to contribute a lot to

a thread, or which threads an expert is choosing to read. Along the same lines, it would be

nice to know how many people are contributing to a thread in total, as well as how many

contributions in total any given author makes to a thread.

Keyword or semantic trends are something that we believe could be useful to

users of discussion databases. A keyword trend is a semantic histogram calculated by

examining entries in a thread for keywords, and then tracing whether or not there are any

patterns in the sequence of entries. For example, a thread might start out with the

keywords "domestic violence" and "abuse" appearing frequently in its early entries, but

end with the keywords "alcoholism" and "counseling" occurring in its more recent

entries. . Determining and showing this sort of trend could provide users with a much

better idea of where the subject matter of discussions are going. Many threads have root

entries with some particular subject, but end up on tangents far or different from their

original purpose. This can be frustrating to users who delve into a thread, hoping to find

some particular information, but end up wasting their time reading off-topic information.

20

Our third category of attributes is relevant only once a user has interacted with a

thread, by reading or contributing to it. Users who have already shown interest in a thread

might want to know if new postings have occurred since they last visited, and how many

of these new postings have already been read by other users. They might also be

interested to know how many people have read the same posting which they have read.

More specifically, users may want to be aware of when a particular author posts

something, or a particular user reads the thread. From our own experience, we feel it is

useful to know when others reply our contributions, or when others reply to the same

entry we have replied to.

In addition to the attributes listed above, we believe users could benefit from

which threads are directed or problem oriented threads, and which threads are open-

ended "opinion" threads, before starting to investigate them. In the case of directed

threads, it would be especially helpful to indicate whether or not the problem posed in the

thread has been solved. It may also be very useful to provide direct access to the postings

that contain the problems and solutions.

2.5 Narrowing down the suggestions

With our list of attributes in hand, it was necessary to postulate as to which

features which support them to incorporate into our design explorations. Some of these

attributes were limited by social issues, some by implementation issues, and some by

both.

21

For example, it was questionable whether or not reader tracking would actually be

socially acceptable and technically feasible. This is because some individuals might not

want others to know which entries or threads they had been reading, and would want to

consider information of this nature confidential. It is also difficult to truly determine

when a document has been read, not merely opened and then closed again, be it due to an

accidental click or any other reason.

Keyword tracking is an example of an attribute which we decided not to focus on

due to implementation issues. Effective keyword tracking is a technical thesis in itself,

and is still a subject of on-going related research and speculation. It is definitely not

something featured in current, publicly available databases, and beyond the scope of this

thesis.

The attributes we chose to represent in our designs, as well as implement, were those

which were more accessible to us and yet still potentially important to users. They will be

described along with our proposed designs in the next chapter.

22

Chapter 3: The Design of the Visualization

3.1 Introduction to the Design

After investigation of several existing discussion databases, it was found that

there were approximately three natural levels of detail needed in order to view and

navigate a discussion forum.

The first level, which is the most distant or "macro" level view of a discussion

database's information, allows the viewer to see all the categories of discussion threads

available in the forum. For example, an introduction page to a web-based discussion

database might present the user with a series of linked category names, such as

Business/Finance, Civic/Government, Computers, Creative Arts, Current Events,

Education, and so on. Users can click on any of these categories, and then be brought to

another page or view.

Normally, at the first level, there is no information presented about individual

discussion threads. In contrast, the second level provides some thread meta-data, although

generally its main purpose is to display a list of thread titles. The meta-data available,

such as the date of most recent activity, or the total number of entries in the thread, is

displayed alongside the thread title. However, no thread structure and thread entry data is

shown yet.

The level which follows level two is an overview of all the entries in the thread.

Occasionally it displays thread structure, but typically it is a simple chronological listing

of thread entry titles. From this third level, it is apparent which message is the root node

23

of the discussion, and which entries were posted after the root. Entry titles are often listed

with their dates of submission and author names, and are sometimes accompanied by

indications of whether or not a user has read them.

Clicking on an entry title in the third level brings the user to a fourth level of

viewing, which is the most detailed or "micro" view possible in a discussion forum.

Viewing the fourth level is similar to looking at an e-mail, except with discussion entry

data instead. Usually the author, date, and title of the entry are displayed, along with the

body of the text. In many cases, a "previous" button and a "next" button are provided for

further thread navigation.

It was decided that our design would be divided into three main parts: Level One,

Level Two, and Level Three. While our Level One and Level Two correspond to the

general descriptions of the first and second levels above, our Level Three would display

thread structure as well as entry content. We felt it would be effective to combine the

levels three and four described above, in order to preserve the thread context of entries

normally viewed in a separate level four. This would allow the visualization of thread

structure to be used as a navigational tool for entry data, by providing direct access to the

listing of entries at the same time as entry viewing.

The design work was divided among the team. Hyun-Yeul Lee worked primarily

on Levels One and Three, while I worked on Level Two. Description of the entire design

is necessary in order to convey the full picture of what we were trying to accomplish.

However, since the bulk of my work was in Level Two, I will give only brief overviews

of Levels One and Three below, and provide a more detailed description for Level Two.

24

3.2 Definitions and Design Principles

In order to design a visualization for discussion databases, it was necessary to

experiment with certain basic elements of design, such as line thickness, color, macro and

micro views, etc. There were other design concepts also important to consider and

potentially integrate into our visualization. These involved techniques which are specific

to multimedia environments, where animation and interactivity are available to add new

dimensionality to a display.

As stated earlier, a large problem which occurs in current interfaces to threaded

discussions is the lack of overall context provided to the user. Many of the principles

which we kept in mind throughout our design are particularly relevant when presenting

improved navigational context. We will describe these concepts in greater detail below.

Generally, transitions between any states in the display of data can be made smooth

and gradual. While doing so, there can be a fine line between wasting the user's time and

providing better context. Nonetheless, if these transitions are designed optimally, they

help focus a user on whatever information is relevant to the transition, as well as provide

that user with better context for the new screen state. When considered, sudden changes

in the visual state of objects are a rare occurrence in a human's natural visual realm.

Normally, the changes in the world we see around us tend to transition from one state the

next in a somewhat gradual manner, as long as they hold our attention. The fact that we

accept sudden screen changes as a normal aspect of computational display is not

necessarily optimal. If chosen correctly, there are contexts in a multimedia representation

of a data which could benefit from smooth on-screen state transitions.

25

These would be particularly useful for in the transitions between our levels, which

we have designed to connect to one another smoothly, but in a new viewer's experience

might connect less obviously. These levels are already categorized into macro and micro

views of the data, and therefore it follows naturally that zooming [2] would be an

animation technique we would consider. Increasing and decreasing levels of detail are

always useful, and providing users with a transition will help users understand how one

level corresponds to the next. Such a transition can achieve the effect of a zoom, even

without being a "true" zoom into the picture, but it is important to give the viewer a

feeling that the picture has just been magnified.

While designing our visualization, we also aimed for continuity in spatial layout.

Evidently, users find it confusing when information they are accustomed to finding in a

particular place on the page is moved to another area on the same page. To prevent this

problem, we considered many strategies such as placeholders, animated transitions in

layout, and continuity of general layout. For example, if a visualization of thread

structure needed to shift substantially in order to accommodate new child entries, we

would give additional consideration to redesigning the layout strategy of the thread

structure, or design a better animated transition to the new layout.

It can be a challenge to focus the viewer's attention on a particular part of the

screen, especially when navigating them through large amounts of data. The easiest and

most brute force way is to display one thing at a time, showing only what you want the

user to be looking at for that moment. This, however, succeeds in providing no

navigational context. For example, a user looking at thread structure may want it

available, even while browsing individual entry data. If both are kept on the screen at the

26

same time, the user is able to see where in the thread the entry being displayed comes

from, and is not limited to only viewing the next entry in the thread. . This is much more

efficient than having to switch back and forth between screens.

There are a multitude of subtle ways to shift a viewer's focus of attention,

involving a variety of visual techniques and elements. One such way is by blurring

elements not needing attention, and unblurring those which do. This can help soften

background information without losing sight of it or letting it stray very far, since it could

be interesting or useful one second later. It helps to alleviate the problem of having a

cluttered page, without completely eliminating some of the information which should be

kept visible but should not be distracting. Similarly, darkening, or reduction of saturation

levels, in a background can help shift and focus attention. This results in the elements in

focus becoming brighter and more attention-grabbing than those in the background. . It is

also possible to use a fish-eye technique, where objects which are intended centers of

attention are larger, and all the other objects appear incrementally smaller as they have

less and less relation to the object in focus. The term "fish-eye" [3] is appropriate here

because the technique is analogous to looking at something through a fish-eye lens:

objects are scaled according to their proximity to the center of the picture. . Other

elements in the environment are kept in view, but they are diminished, once again

preserving context while minimizing distraction.

Shifts in focus can be needed to alert the viewer of some change in the state of the

display. This is especially true when there are many small but similar elements on a

screen, and a change in one small element might not be immediately apparent to the user.

Techniques such as flashing objects or displaying large alerts are often employed in these

27

situations, but users dislike such disruptive notification, especially for a change of

potential interest, and not of urgency. To accomplish a more subtle effect, we

experimented with rippling the area of change on the screen to represent a change in the

state of an element. In a rippling effect, the neighbors of the changed element are

displaced slightly and then moved back, sequentially outward from the point of change,

similar to the effect of a drop landing in water. This achieves an ambient and subtle way

of bringing the user's attention to the area of change. At the same time, the ripple can

easily be ignored if the viewer chooses to do so.

Another powerful visual technique is known as dynamic querying [4][5]. This

allows a user to indicate, using a slider or some other control, a particular attribute's

value which they are interested in, and watch as elements which have that value are

highlighted. For example, if there was a slider bar which represented time, then a user

could move the slider from beginning to end, and watch elements highlight according to

their time-stamps. Similarly, a user viewing a thread visualization could click on

someone in his or her buddy list, and see all entries authored by that person highlight.

Using dynamic querying in combination with an effective visualization, users can find

information according to different attribute values of interest, without having to face an

entirely new screen of rearranged data.

The final but non-trivial technique which shall be mentioned here is known as the

hover-over. A hover-over means that information pertaining to something on the screen is

displayed when the user positions their mouse over a particular region of the screen.

Usually this display occurs only after the mouse has entered the area and remained there

for a certain amount of time (at least a second or two), otherwise the screen would flash

28

with unwanted information as the mouse is moved around. In current user interfaces,

hover-overs are used occasionally, but most of the time this function is underutilized.

Hover-overs allow non-committed browsing of additional, hidden, information and

require minimal effort on the part of the user. We feel that they can be better utilized than

they currently are, and this will become evident throughout the designs described later on

in the chapter.

3.3 The Design Process

Finding visual metaphors to represent an online discussion database is an

exploratory process. No "correct" answers exist when visualizing data, but there are

representations which work better than others. Through our visual experiments, we

arrived at the designs presented in this chapter. They are presented as possibilities, and

not as end-all solutions. We went through many iterations of brainstorming, fine-tuning,

and revisions to arrive at the designs proposed here, so it would not be feasible to include

every version of each idea we experimented with here. However, some of the questions

which were raised will be described below.

Discussion threads vary greatly in their structure, rate of growth, and activity in

general, even if they are contained within the same discussion database. At the beginning

of our explorations, we considered trying to break up the variability in thread structures

and sizes, and design different visualizations for different threads. However, we decided

that we wanted to focus on designing visualizations which would work for most common

29

threads. As a result, the possibilities we came up with are optimized for the middle

ground.

However, at times we considered what to do in the case of data overflow. This is

more evident in some areas of our design than others, since the problems we faced varied

across the levels. Many times, it was necessary to consider numbers qualitatively, as our

project was not focused on gathering the statistical data to support what "a lot" and "a

little" really meant in the context of discussion data. Thus, in some of the designs below,

one can get an idea of what kind of quantity is represented, but no real numbers are

provided. In dealing with limited screen space, quantities are usually represented relative

to one another, rather than as absolute values. We have represented this kind of

information, so that viewers can get an idea of any quantity by viewing it comparatively

with others.

We also had to deal with the issue regarding the type of information shown versus

the amount of information shown. For example, there were a large number of attributes

which we felt could be represented in our design, but there was always the danger of

cluttering the screen or overwhelming the viewer with too much information packed into

a small space. As a result, we chose to focus our design on only a few of the attributes

which we felt were most important or most readily available.

Another trade-off we came across involved ease of use versus ease of learning.

Some images and graphical user interfaces are extremely intuitive and easy to understand

at a viewer's first glance. However, these might not be the most efficient to use later on,

when time is a more pressing issue. On the other hand, some images or graphical user

interfaces are extremely non-intuitive or difficult to learn for a first-time user, but are

30

easily and quickly utilized by an experienced user. For example, the pull-down menus in

typical window-based software provide are easily found and provide clearly labeled

access to many functions. Key commands for these same functions are often also

available, but because they are less obvious to first time users, they are only used by

experienced users, who might want to keep using the keyboard without stopping to reach

for the mouse.

Throughout our designs, we aimed to maintain a particular aesthetic, in order to

preserve the continuity between different levels of viewing. The mood of this aesthetic

was first established during the design of Level One, and is kept in Levels Two and

Three. Especially noticeable it the use of circular symbols. This choice was made to

enhance the freshness and appeal of our designs, since much of on-screen design is

rectangular. Our goal was to push the visual and interactive capabilities of our design,

and thus we aimed to experiment with new, interesting, and atypical forms.

3.4 Brief Overview of Level One

Level One is has two main structures of information. The smaller structure is the

field, which represents a subject area, for example "Pet Care". The larger structure is a

grid of many fields. The general layout of Level One is shown in Figure 3.4.1.

31

Figure 3.4.1. Example Layout of Level One.

Each field contains one hundred tiny dots, representing individual threads, and

each of these has several possibly states. Threads can be active, or not active, depending

on how recently activity has occurred in them, and this is represented by a bright red

square with a yellow center, or a dark red square with an empty center, respectively. A

yellow circle appears when a user has contributed to a thread, and appears as bright

yellow when that contribution has been replied to. A blue circle shows that a user has

read something in the thread, and appears as a brighter blue when new entries have been

posted since the user last read. When a thread is hovered over, a little banner rolls out

32

from it, displaying the title of the thread. The symbols representing each state of a thread

are outlined in Figure 3.4.2.

Figure 3.4.2. Different thread symbols for different states in Level One.

If there are more than one hundred threads in the field, then the field has several

layers to it, and users can switch from layer to layer using controls which appear at the

side of the field when several layers are present. To ensure that the user understands that

these controls switch layers, the control has the same number of parts to it as layers in the

field. In other words, if there are three layers in the field, three little controls will appear

next to the field, and the one which corresponds to the layer currently being viewed is

33

...........

highlighted. When the user clicks on another layer control, it highlights and the

corresponding layer scrolls in. The user is shown the idea of layers because of the

transition between them, and can always tell which layer they are on by looking at which

part of the control is highlighted.

Level One is a grid containing many of these fields, three deep and indefinitely

wide, each labeled with the title of its subject area. The fields are spaced far enough apart

from each other that the user can still feel at ease faced with the large quantity of

information, but within this constraint as many as possible are placed horizontally across

the screen. Users can scroll left and right by throwing their mouse into the right or left

margins of the screen, in which case the fields scroll right or left accordingly. This helps

provide the user with a feeling of continuity in the layout of the entire level.

When the mouse is left within the area of a particular field for a certain amount of

time, the field enters what can be called touring or Auto-Sweep mode. This is analogous

to the sweeping that is done in radar systems, in which information is gathered and

displayed about an area by repeatedly repositioning and sending out a signal. When a

field goes into Auto-Sweep mode, the threads are highlighted one at a time, and the

information that would normally not appear unless they are hovered over is displayed.

This means that a user who wasn't sure which thread to enter in the field could just sit

back and watch the titles scroll by for a while, until they saw one that caught their

attention and decided to investigate it further. It saves a user having to drag the mouse

over one thread at a time to see all their hover-overs.

34

3.5 Description of Level Two

Level Two corresponds to a type of viewing which is generally not used to

display much information in existing interfaces. However, it has the potential to provide a

great deal of navigational assistance to users browsing a database. This view is close

enough to a thread to display appropriate meta-data, but far enough away to show it for

several threads at a time. Thread meta-data can be extremely useful to the user; it can

provide a better idea of which thread to investigate closely next, or even help determine if

a particular thread is worth delving into at the time or not. This will become increasingly

evident as further description of Level Two is provided.

The basic layout of Level Two corresponds to the layout of a field in Level One

(see Figure 3.5.1). Like a Level One field, it contains many smaller controls, each

representing a single thread, which are all laid out in a grid-like format. In this way, it can

easily be seen as a "close-up" view of Level One, as if the user has just held a

magnifying glass to a particular subject area field. Each thread is labeled with its title

written above it. In order to help separate out one thread from the next and connect the

thread representation with its corresponding title, and thin, light grey, stroke curves

around the left side of each thread to the left side of its title.

35

Figure 3.5.1 Example layout of Level Two.

The design of a control to represent a thread, with all of its appropriate meta-data,

was the main challenge of Level Two. The first step was to decide which meta-data were

actually important enough to display. Of the thread attributes described earlier, the

following eleven were chosen and categorized for display in level two:

General attributes:

36

...........

1. number of readers

2. number of authors

3. amount of bushiness in the thread

4. problem thread or opinion thread

5. if problem thread, problem solved or not

Attributes pertaining to readership:

1. number of readers which have read as much as the user has read

2. number of new posts since the last time the user read

3. number of people that have read the new entries that were posted since the user last

read

Attributes pertaining to authorship:

1. number of replies posted to the user's contribution

2. number of people who have read the user's contribution

3. number of people who replied to the same post that the user replied to

These were the data that we felt a user would be most interested in at the time.

The same aesthetic and design could even be employed to display slightly different data

attributes. However, since most of these attributes have never been provided at this level

in most existing interfaces, we do not know for sure what the user response to them

would be. Thus their inclusion is purely experimental, and can help us receive feedback

from anyone viewing our demonstrations of the prototype. Note that the second two

37

categories of meta-data are relevant only if the user viewing Level Two has either read or

contributed to a thread. This allows for the design to draw some simple parallels between

the data in Level Two and the data in Level One, which also relies heavily on readership

and authorship.

The fact that the control needed to represent and display so much different data at

the same time presented an inherent design trade off between ease of use and ease of

learning. It was decided after some debate that for our purposes, ease of use was of

greater importance. Thus, the design is not necessarily intuitive to read for a first-time

user, but a slightly more experienced user should be able to use the view to navigate

extremely quickly. The experienced user would hopefully be able to determine which

threads were probably worth visiting but just quickly glancing over Level Two. Thus the

design concentrates on providing visual elements which change according to the data in a

way which emphasizes them, in situations we believed would be more interesting to

users. After much experimentation with the design, I arrived at the control shown in

Figure 3.5.2.

Figure 3.5.2. Level Two control at full capacity.

It was apparent that a circular control would definitely be optimal. This

corresponded well with the designs that were currently under way for Level One and

38

Level Three. The feathery elements around the outside were first inspired by the idea of a

slider moving back and forth along a thin triangle, similarly to what is common in the

temperature controls of a car. What is shown is the result of wrapping these thin triangles

around the outside of the circle. Because the user will be faced with an entire field of

these controls, it made more sense to lengthen and shorten the feathers according to the

numbers they indicate, rather than have sliders along them. This results in a greater area

of bright color around the threads which have a lot of activity, and therefore should need

more attention, thus making them easier to pick out of the field at a glance. The colors of

these feathery elements were chosen to correspond to those indicating readership and

authorship in Level One, with the blue indicating that the user has read something in the

thread, and the yellow indicating that they have contributed. However, most colors at this

level were chosen at least partially because they matched with the scheme for Level One.

The center of the control is used to display most of the general information, such as

total readership of the thread, which is indicated by the thickness of the red, and total

number of authors in the thread, which is indicated by the thickness of the yellow.

Threads with a large number of readers and a large number of contributors are made to

stand out because they are bright red and yellow in their centers. The indication of thread

bushiness is quite literal, showing many stems for a thread which has a lot of branching

in its structure, and none for a thread which is one sequential line of replies. Finally, the

green circle shows that the discussion was about a problem which needed solving, rather

than about opinions. It is only present when the control represents a problem thread;

otherwise that area is left intentionally blank. The color green can be associated with

stoplights, and thus implies a certain amount of direction in the conversation. The green

39

sphere which appears in the middle of it shows that the problem has been solved. It

serves to emphasize the green color which will be apparent to the user at a glance, and

also completes the green circle which indicated a problem, in a kind of metaphorical

completion of the topic.

The feather colors, although they are all blue for readership and all yellow for

authorship, differ among themselves in brightness. Specifically, the feathers closest to the

center of the control are the brightest, and the brightness decreases outward from the

center, so that the outermost feathers are the darkest. The brightest feathers were chosen

to represent what we felt was the most useful data, so that when they are full, the thread is

brightly highlighted and calls attention to itself. Thus the brightest blue feather indicates

how many new contributions have been posted since the user last read, and the brightest

yellow feather indicates how many people have replied to the user's posting.

A legend for the different parts of the control and their various states is provided

in Figure 3.5.3.

40

Figure 3.5.3. Legend for Level Two control parts and their possible states.

In order to help users learn how to read the Level Two thread representation, and

also to provide them with a way to read real quantitative data about each thread, it was

necessary to create a hover-over animation to label each aspect of the control. This too,

presented quite a challenge, since normally hover-overs present a single element of data,

not eleven pieces of data at once. The existing design inherently implied a spinning

41

A.ab --

motion, and thus it followed naturally that the hover-over be a series of animated labels,

some of which spun out from the control. This is illustrated in Figure 3.5.4.

Figure 4.5.4. Example hover-over animation of a single Level Two control.

The hover-over animation was created in accordance with our general design

principles, which aim for gradual transitions and techniques to shift a user's focus. When

a the mouse cursor is left within the area of a particular thread for a certain period of

42

.

time, all other threads in the field darken gradually. At the same time, the thread's title

and side separator incrementally brighten, and the labels grow out from it. These two

things help isolate the thread in question, by making it appear bright compared to the rest

of the threads in the field. Labels for the side feathers follow the natural divisions

between feathers, spinning out and then budding text bubbles. Readership and authorship

numbers are labeled directly in the center of the control. If the thread is a problem, or a

solved problem, the green spot, or the green spot and green ring respectively, are traced

with a traveling light green pixel, and then connected to a horizontally growing label. The

labels which indicated "problem" and indicate "solved" are placed very closely together,

so that when they are both present they read like the phrase "problem solved". Each of the

hover-over labels started out with the same color, but later on were changed to yellow,

blue, and green, respectively, in order to better indicate which parts of the representation

they were labeling.

The hover-over animation for Level Two provides labeling of eleven different

data, and accomplishes in an extremely appealing way. In other words, even though it is

not necessarily an extremely efficient way of labeling a visual representation, it has an

aspect of memorability to it, which will help users remember the labels the next time they

see it, and thus be able to read the control more and more quickly every time. However,

there are certain border conditions for which the hover-over animation so far will not be

effective: specifically, the edges and corners of the field. In order to solve this problem,

the labels for the side experiencing overflow could simply overshoot their normal ending

positions, and instead spin around the control until they are away from the edge of the

page. This is illustrated in Figure 3.5.5.

43

Figure 3.5.5. Corner condition hover-animation for a Level Two control.

The final effect of Level Two is that threads with greater activity, whether it is

general activity, or activity pertinent only to the current user, should stand out more in the

field.

44

MWOMM- - -I&JIMS10- -

3.6 Brief Overview of Level Three

Level Three provides a visualization of overall thread structure, as well as ways to

view individual entry data and navigate entry data using the thread structure as a map. It

consists primarily of connected circles, where each circle represents an entry in the

thread, and connectors link entries with their replies. The primary design challenges faced

at this level included how to grow the thread optimally (i.e. in order to avoid entire

rearrangement of the space), and how to represent different contributors in the thread.

The design was never truly finalized, but the basic ideas behind how it operates will be

described here.

The thread structure starts out with a single root node, which has a special color.

Replies to an entry are placed around their parent in a circle, sitting in chronological

order, clockwise, with the first reply at three o'clock. When there are more replies to an

entry than fit with the current radius, an animation is used to show the user how the

entries will be rearranged. The radius at which the child entries sit is increased, and the

entire existing structure is swung around counterclockwise as the child entries are

recompressed backwards around the circle. If there is spatial conflict between entries, in

other words, the rules for display mean that two or more things need to be in the same

place, those entries on a branch added layer are moved to a lower layer. This means that

they appear to be underneath the earlier data, but can be brought forward by placing the

mouse over them.

Each entry is represented by a little circle, but there are many different kinds of

little circles, and each one represents a different user's contributions. Also, a list of people

45

can be dynamically queried to show all entries posted by a particular user. Entries can be

clicked on to view the entry data as well. The basic layout is illustrated in the Figure

3.6.1.

Figure 3.6.1. Example Layout of Level Three.

Level Three was also designed with capabilities for dynamic query, by various

entry attribute values. An example of this dynamic query by author name is shown in

Figure 3.6.2. Two names are selected in a buddy list, where they are shown with their

special symbols. Correspondingly, the nodes representing entries by these selected

authors are highlighted in color within the thread structure. On the left side of the thread

46

structure is an example of how entry content might be displayed, when a user clicks on a

particular node in the thread.

Figure 3.6.2. Level Three layout with a Dynamic Query by author name.

47

Chapter 4: Experimenting with Implementation

4.1 Introduction to the Prototype

Some consideration was required in choosing which parts of the design to

implement in a prototype so we could experience it firsthand. It would not be possible

to create the entire design, given the scope of this thesis and the time constraints we were

facing. The entire design would have required creating and customizing a new server

back-end to host discussion databases, and the collection of the new meta-data that our

designs required.

The most useful, relevant, and feasible part of our design was level three, the

visualization that displayed a single thread's entire structure while displaying one of the

thread's entries. The types of meta-data required to implement level two would not be

readily available in current discussion database systems. The type of meta-data needed to

implement level one would also be unavailable, namely information pertaining to

readership and authorship for a given user. Thus level three offered an interesting

visualization of a thread's structure, and the most feasibility given the time and scope of

this thesis.

Before continuing on into greater description of our prototype, it would be

advantageous to explain some of the Director terminology we will be using. A Director

"cast" corresponds to the cast of characters in a play, and contains all the possible

elements which could appear on the screen, referred to as the stage. A Director "sprite" is

a cast member which is on the stage. The "score" in Director works like the score for an

48

orchestra: it provides an axis representing time, and shows which sprites are on the stage,

when, and for how long.

The implementation of our prototype was an experimental combination of several

different tools and environments. This combination included Macromedia Director,

XMIL, and Lotus Notes, although some initial experimentation included Javascript as

well. The reasoning behind each choice of tool or environment, as well as the manner in

which it was used and results of its use, are discussed below.

4.2 Director as a Front End to Notes

Macromedia Director was chosen as the experimental medium in which to create the

graphical user interface for a variety of reasons. Director has built-in multimedia

capabilities which can easily be packaged for the web, via the ubiquitous Shockwave

format. Director supports the use of graphics and animation, in conjunction with other

visual techniques which help support context, such as fades, shadows, and background

transparencies. These techniques can be hard to achieve smoothly and effectively in other

media, especially when they are displayed over a web interface. It was apparent at the

time that some of the manipulations which we intended to do in our visual representations

could be efficiently done using Director given its ability to easily handle animation.

Because of Director's multimedia capabilities and its accessibility via the web,

Director is already widely used by high-end web designers. This is an added incentive for

a corporate research project, since it would obviously be beneficial for a company's back-

end products to be easily combined with high-end multimedia web design.

49

Director also showed a lot of potential for programmability using its object-oriented

scripting language called Lingo. This allows for various visual attributes of objects to be

manipulated programmatically, using scripts which can be triggered by user input. Lingo

also features a data structure known as a propertyList, which can be used to create tables

and other in-memory entities that facilitate efficient storage, manipulation and retrieval of

large amounts of structured data. Changes in data which occur at the back end can also be

polled periodically using a timer, although "pushing" data from Notes to the web would

not be implemented so easily. With the existence of Director Xtras, programmability

increases even further. Director Xtras are extensions to Director and allow it to perform

particular functions which are computationally more complex than regular Lingo

scripting allows for. Specifically, Director comes with an XML Parser Xtra, which

showed great potential for our purposes.

Another aspect of using Director which is advantageous is that the resulting

shockwave files are browser independent on the web. While many possible methods for

rendering and manipulating highly visual content for the web exist, quite often it is

complicated to keep track of the possibilities and standards which are provided in the two

largest competing browsers, Microsoft Internet Explorer and Netscape Navigator. As a

result, one quite often has to create two different versions of a prototype in order to

achieve the same visual effects, and then call them depending on which browser is

detected to be in use. Shockwave files, on the other hand, although they require the

installation of a plug-in in order to view them, are viewed identically on both browser

types.

50

Lotus Notes was chosen as the back-end database to host and store the discussion

databases we would be interpreting and displaying via Director. The reason for this

choice was largely due to time constraints as well as the large amount of expertise in

using Notes which is, quite naturally, available at Lotus. Also, Notes development is

starting to provide more web features which take advantage of XMIL, something which

showed potential for our project. Notes provides a standard discussion database which is

can be manipulated using the Notes development environment. The discussion database

provides for some of the data structure that we are interested in visualizing, such as

parent-child relationships, in the entry data itself. This means that rather than parsing

ordered list indentations manually from HTML in order to extrapolate these relationships,

they could be directly accessed instead. Thus, rather than build a back-end discussion

database from scratch with all our desired functionality, or even minimum functionality,

or use one which was unfamiliar to anyone in the group, we chose to use Notes.

A potential drawback to using Director's programming capabilities, as well as

using Notes, was the issue of speed. The performance of the Director scripts in

combination with web access of Notes data could potentially be unacceptably slow for

our purposes, or at least for any expansion of our purposes. Perhaps we could obtain a

satisfactory performance for the prototype, but not for any real application of the

interface. However, this would only be evident after experimenting with some substantial

amount of data using the prototype. We considered using Java because of its new 2D

API, which would allow a similar manipulation of images, but Java is not known for its

speed either. So it was decided that Director would be our choice of medium, provided

we could determine that it could communicate with the necessary components of the

51

system, as well as provide us with enough functionality to perform the required tasks.

Director would need to communicate with Notes over the network somehow, and obtain

all the back-end data necessary to render the appropriate visual representation. Director

would need to be able to create sprites dynamically to create new visual objects on the fly

that directly represent some of the data retrieved from the back end. This might seem like

an intuitive and obviously necessary function to include in Director's capabilities, but

there was some doubt as to whether or not it was possible to execute in an elegant

manner. These matters will be discussed further in the next three sections.

4.3 Network Communication between Notes and Director

The first exploration was to determine how Director and Notes were going to

communicate over the network. There were two methods that were experimented with:

the first was an attempt using Javascript as a middle ground between Notes and Director,

and the second involved using network commands directly from Director to Notes. The

first method will be described briefly here, as it may be of interest to those who wish to

use Javascript-Director communication. Following that, the second method shall be

described in better detail.

The experiment using Javascript consisted of four parts: communicating from

Director to Javascript, Javascript to Director, Notes to Javascript, and Javascript to Notes.

Our investigation ended after the first two parts were completed, since we were able to

determine a better method for direct communication between Director and Notes instead.

52

The communication between Javascript and Director operates as a push from either

side. If the Javascript side wants to send information to Director, it can call a method

called EvalScripto, which takes a string, and acts on the director object embedded in the

same page. For example, if a director file is named test.dcr, then within the HTML page

there would be some HTML saying:

<EMBED SRC="test.dcr" NAME="test" SWLIVECONNECT=TRUE WIDTH= etc>

Within the Javascript on that page, one could define a function which calls Director using

the method as follows: test. EvalScript (" teststring "I). In order to receive the event

generated by Javascript, the Director file also needs to have a corresponding method

defined, which takes in the string sent by the Javascript. In the other direction, Director

can also call functions in and pass strings to the Javascript. To accomplish this, nothing

special has to exist within the Javascript other than the desired function definition.

Using Javascript was eventually abandoned for several reasons. It reintroduces

browser dependency, since the communication did not work the same way in Internet

Explorer and in Netscape. Also, because it was a two-part transaction in either direction

between Notes and Director, it looked like it would be relatively slow and inefficient

compared to other possible methods. Lastly, realizing that Director had commands to

import the source of web pages, specified by URL over the network, we saw this as a

better method. .

Our final method took advantage of a two seemingly inconspicuous features in

Director and Notes which had never been used together before. One feature, which has

been alluded to already, allows Director to parse the HTML source of any page linked to

the web, simply by using the command getNetText, and specifying the URL of the page

to grab. Of course, there is some delay over the network, and the Director file has to be

53

scripted with functions which check on the status of its network request, but the basic

functionality exists. Correspondingly, there is a feature which exists in Notes and

Domino known as the "URL command". Several of different kinds of these URL

commands exist; they allow access to servers, databases, and other components of a

Domino web site, all by creating a link or entering a command into a browser. As a

result, databases, views, and documents in the back-end discussion database can be

accessed using a URL command. In combination with the Director command,

getNetText, these URL commands allow for Director to directly access the Notes/

Domino back end discussion database.

The getNetText function retrieves the source of a given URL, and URL commands

allow retrieval of specific back-end data given a specified URL. These two features seem

to fit so well together, that they appear to be what is needed in order to achieve direct

Director-Notes communication. It is also noteworthy that the getNetText function works

in conjunction with related functions, which allow error codes and retrieval status to be

determined at any time. This is important, since in order for the system to be even slightly

robust, error detection and isolation when dealing with network transactions is not

optional.

4.4 Managing the Data Communicated between Notes and Director

Although the mechanisms described in section 4.2 solve the problem of

communicating data between Notes and Director over a network, there still remains the

question of what form the data should be communicated in. If the data is retrieved from

54

Notes by Director in a form which provides no meaning for each entry, for example, a

simple HTML ordered list structure, there will be a lot of computation needed on the

Director side. This additional work would be needed in order to determine contextual

data, such as the parent-child relationships between discussion entries.

Since the Notes back-end naturally provides this sort of specialized data within the

Notes development environment, it would make sense that Notes be able to provide this

sort of information to outside sources as well. To use a simple URL command in order to

retrieve a Notes view would result in Director receiving the HTML source of a page

which displays a notes view. However, since HTML only provides browsers with

information on how data should be displayed, all the information which Notes normally

holds within a view would be lost.

This is where XML can provide us with some helpful structural data. XML, also

known as the Extensible Markup Language, allows tagging of textual data according to

its relevance and meaning, rather than simply according to how it ought to be displayed

by a browser. Using plain HTML, a discussion entry's date would simply be retrieved by

Director as possibly some bolded text, i.e. December 6, 1999, in which case the

front-end would have to determine, simply by analyzing format and perhaps matching

strings, its relevance as the date of an entry. This could be prone to error and require a lot

of extra computation, since view structure can vary and a lot of string manipulations and

counters would be required. However, using XML, this same data can actually be tagged

as being the date of an entry using a specified XML tag, i.e. <date>December 6,

1999</date>.

55

Lotus Notes actually provides a URL command which generates XML representing

Notes data. This XML functionality provided by Notes is still in its preliminary stages,

and has not yet been completely standardized. However, for our purposes, which are

largely experimental, we felt that the little that was provided at the time was at an

advanced enough stage to try using it. The URL command ReadViewEntries allows one

to retrieve the XM[L representing the data by specifying an absolute starting index of an

entry in a particular view, and a count to indicate the number of entries at and after the

starting index to retrieve. By absolute, I mean that each entry is named one after the

other, regardless of their parent-child relationships within the thread. For example, if

entry number 4 has three children, and entries 1 through 4 are requested for retrieval, the

3 children of entry number 4 are not retrieved, since they are considered entries 5, 6 and

7. The ability to retrieve XML formatted text helps immensely in retrieving the data to

display the overall layout of a thread, i.e. level three, since the default view of a

discussion database provided contains the titles, dates, and some structural data of all the

entries in a thread. However, there are a few technicalities which accompany using the

ReadViewEntries URL command, and a few inconsistencies. Some of these are due to

the preliminary nature of the Notes XML features, and some are due to the fact that the

Notes development environment and its data structures don't necessarily translate

elegantly when used by external environments.

For example, despite the fact that ReadViewEntries retrieves the entries in a view

using indices which count entry by entry, regardless of the parent child relationships, no

provision is supplied in order to determine in advance what the total number of entries in

the view is. There is only some data at the beginning of the retrieved XML view data

56

which states how many top level entries there are in the view. It looks something as

follows: <viewentries toplevelentries=" 1">. This means that if a thread has been

started using one entry, and all other entries are descendents of this initial entry, then

using a URL command one would only be able to determine the existence of one top

level entry. For our purposes, this data is not sufficient. Therefore, in order to determine

how many entries there are in total, a flattened view was created within the back-end in

Notes. This flattened view, named FlatView, contains all the same entries as the regular

default view, but it considers all entries to be top-level entries. Thus when it is retrieved

using the ReadViewEntries URL command, it actually provides Director with a number

which is a true count of the total number of view entries. Notice that the retrieval process

now ends up being a two-step procedure. The first is to retrieve just the 1st entry of the

flattened view, using the URL command which looks like the following:

http://server/databasename.nsf/FlatView?ReadViewEntries&Start=1&Count=1

This would be enough for Director to obtain the XML which contains the total number of

entries in the view, namely: <viewentries toplevelentries=<n>">, where n is the

integer value of the total entries. After this, Director can make a second request to the

back-end, which would look something like:

http: / /server/databasename .nsf/MainView?ReadViewEntries&Start=1&Count=n

and this would cause Notes to return all the rest of the data in the view to Director.

Also noteworthy at this point is that, according to our design of level three, we

would ideally like to be able to display author names and perhaps even the textual body

of any given discussion entry, at a click of the mouse. However, the only existing URL

command which generates XML at the time could only do so for the data provided within

a view, and could not retrieve document data. At the same time, the Notes default view

57

for discussion databases does not always provide an entry's author's name, and it

definitely never provides the actual content of the entry's body within the view. Thus, a

specialized view was created to this effect, containing the body of each entry within the

view. As a result, the second request which Director makes to Notes results in the

retrieval of all necessary discussion data, including the body of each entry itself. Here is a

sample of how the XML data looks when it arrives at the Director front end:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Lotus-Domino (Build V502_09141999 - September 14, 1999 on Windows
NT/Intel) -- >
<viewentries toplevelentries="2">

<viewentry position=" 1" unid="E37D7655600794A68525683F0068C2BC"
noteid=" 8FA" children="2"
descendants=" 2" siblings="1">
<entrydata columnnumber="O" name="$106">
<datetime>19991206T140415,96+05</datetime></entrydata>
<entrydata columnnumber= "1l" name=" $116">
<text>2</text></entrydata>
<entrydata columnnumber=" 2" name="$120">
<text>hello? is anyone there? (May-Li Khoe)</text></entrydata>
<entrydata columnnumber="4" name="Body">
<text>Is anyone else posting messages in this newsgroup? Anyone out
there?</text></entrydata>
</viewentry>

So far Director has succeeded in retrieving the discussion data in XML format from

the Notes back-end. At this point, Director's XML Xtra could be used to help parse the

necessary data from within the XML. The XML Xtra in Director allows XML data to be

indexed and parsed easily. Thus, rather than having to go through the data manually,

using numerous counters and string comparisons, we could call the Xtra's methods on the

imported discussion data in order to retrieve the entry data by index. Because the XML

methods such as getAttributeName and getAttributeValue, listed in the help documents,

were not fully functional at the time, it was necessary to access data by index number

only. Because of this we analyzed the XML data in order to determine which index

corresponded to what desired values. For a particular field, the index needed could be

58

different from entry to entry, depending on what relationship that entry had to others.

However, there was definitely a pattern to the numbering schema, which was determined

and then put into practice through a series of if-then statements.

4.5 Managing the Data within Director

All this data could be retrieved from the XML using Director's XML Parser Xtra,

but the data still needed to be stored within Director's memory. This was accomplished

using a data type in Director's Lingo called a propertyList.

Lingo propertyLists allow storage of a list of name-value pairs, which are also

retrievable using various different methods. For example, the values can be accessed

using name or index number (i.e. position in the list). It is also possible to obtain a pair's

position number or index in the list using the value. Most importantly, propertyLists can

be contained within one another, which allows for a table structure to be created.

The Notes XML data which is received by Director arrives with entries listed in a

depth first manner. This means that if a particular entry has three child entries, it is listed

first, followed by its three children in chronological order. This is true for each entry in

the list. Every entry also has a position number, which is assigned to it within a Notes

view, and then sent to Director along with the rest of the XML data. These position

numbers reveal the line of descendants belonging to each node. For example, a root level

node might simply have position number 1. The children of this node at position 1 will

have position numbers 1.1, 1.2, 1.3, etc., accordingly. If the entry with position number

59

1.2 has two children, they will have position numbers 1.2.1 and 1.2.2, respectively, and

so on.

In order to store each entry's data in a manner easily completed from the XML data

provided, but still easily navigable from parent to child and back, a special data structure

was necessary. This data structure consists of three levels of propertyLists: the top level

propertyList simply contains all the entries, the second level propertyLists contains each

entry's data, and the third level of propertyLists are list of an entry's children. Each entry

is stored with its position number as its name in the main, top level propertyList. As its

value, each entry has a sub-propertyList, containing the main data fields, such as "title",

"body", "parent", and "kids". The value of the last field, "kids", is also a sub-propertyList

containing all the position numbers of the child entries. Thus, in order to trace from an

entry to all of its child entries, one simply has to iterate through the propertyList in its

"kids" field, and use the position numbers in that list to access the top-level propertyList

accordingly. Conversely, to reach a parent from a child, one simply has to access the top-

level propertyList with the value of the entry's "parent" field.

This structure is illustrated by Figure 4.5.1.

60

Figure 4.5.1. Storage Structure of example discussion data.

Using this basic structure, the data can easily be accessed for display to the

screen. Also, additional data, which might be needed to keep track of an element's desired

position on the screen or other visual attributes, can be added to the second-level data

propertyList. Although access speed required to manipulate large lists would normally be

a consideration, there is no other data type or structure within Lingo to perform a similar

function. Thus for our purposes this is sufficient.

4.6 Creating Sprites Dynamically

61

The visualization of the discussion database consists of a number of elements,

which need to react to the user's mouse events, and then display information according to

which entry they represent. At the same time, there is no way of knowing how many

entries will be present in the database before that information is retrieved over the

network. As a result, the visual elements of Director, called sprites, needed to be created

on the fly. Unfortunately, Director was designed more as a presentation-type tool, in

which all the sprites are known of and created manually in advance. Thus some dynamic

manipulation of Director's current functionality was needed in order to achieve the

desired effects.

One possible implementation was to attempt creation of the maximum number of

sprites possible, and hide those intended to represent and connect the entries off screen,

only making them visible when needed. However, predetermining the number of sprites

needed could fail eventually, since if there is even one document extra, it would be

impossible to create that extra sprite at runtime, and then representation would be

inaccurate. Thus this method did not appear to be a robust solution

It was apparent that Director was not yet intended to be a medium that was altered at run-

time. However, there was one seemingly obscure way to dynamically create sprites using

Lingo, and this was to take advantage of the commands beginRecording and endRecording.

This method seemed slightly more elegant, in that it allowed for new sprites to be added into

the score to correspond with each entry in the discussion database. The documentation we

created to describe this technique is shown in Figure 4.7.1.

62

Figure 4.7.1. Documentation showing a basic example of how to create sprites on the fly

and assign behavior to them dynamically.

However, it also had drawbacks, in that it could only add sprites to one frame of

the movie at a time, and this caused the screen to flash. It also sometimes caused a

strange corruption in the transparency of sprites that were on screen at the time of the

recording. In the end, the movie was created to be only a few frames long which looped,

63

and the flashing could be reduced to one single flash. The movie was also partitioned

into two sections, one section which allowed the retrieval and parsing of data, and the

other which allowed the display of the elements. These could be thought of as the two

states of the movie: data retrieval and data display. As a result, the transparency side

effects which could occur during the recording time would be isolated within the first

section of the movie, but since the recording happened only in second section, those side

effects were never seen by the user.

Once the sprites were on the screen, they also needed to react to user input

according to which discussion entry they represented. This meant that behavior scripts

had to be assigned to them on the fly as well - another task utilizing an obscure part of

Director's functionality. This was accomplished using something called the

scriptlnstanceList, which keeps track of which scripts a sprites uses. The sprites which

were dynamically created each had to have sprite numbers (this corresponds to their

placement in the score). Adding this sprite number to a script's scriptInstanceList meant

that the corresponding sprite would acquire that behavior.

4.7 Overview of the Implementation

In order to provide the reader with a better idea of how all these parts collaborate, a

brief overview of the prototype as a whole will be described here.

At run-time, the prototype basically executes the following steps:

1. retrieve the total number of discussion entries from FlatView in Notes

2. retrieve the actual entry data using Notes URL command ReadViewEntries

64

3. parse and create the data structure containing all entry data

4. create new sprites and assign behaviors to them according to the data

Note that for steps one and two, the prototype enters a loop in which is checks the

status of its network request. If it receives an error, it notifies the user of the nature of the

error, which is determinable using the error code provided by a command in Director. If

it receives no error and the network transaction is complete, i.e. getNetStatus returns 1,

then it no longer checks network status and continues on to step three to parse the data.

Figure 4.7.1 shows the Lotus Notes discussion data which is being retrieved by

the prototype in the screenshots below, as it would normally be displayed by the Notes

client.

J I~ Y ho'P oh,

Figure 4.7.1. A standard Lotus Notes view of a discussion database.

Screenshots of the prototype are provided below in Figures 4.7.2 through 4.7.5.

65

Figure 4.7.2. Prototype in initial state.

66

Figure 4.7.3 Prototype upon completing data retrieval over the network.

67

Figure 4.7.4. Prototype with Level Three visualization

and a hover-over to show entry title.

68

Figure 4.7.5. Prototype displaying entry data after a node has been clicked.

69

Chapter 5: Discussion

5.1 Results and Issues

We have been able to come up with visualizations which successfully represent

various abstract concepts related to online discussion databases. Our representation

partitions the data into three levels of detail, and provides an interactive visualization for

each level. Although we have not done any formal usability or user testing, our demos

have had some exposure to various researchers and product teams within both the MIT

and Lotus/IBM communities, and has been extremely well received by those who have

viewed it. The visualizations and interface are seen as a step in the right direction in

improvement of discussion databases by everyone, and the representations which we

designed are comprehensible by most. Most viewers felt that our visualization and

interface would be a significant improvement and work well to help browse the kinds of

discussion forums they had personally interacted with in the past. There was universal

acceptance to the idea of indicating "problem" threads apart from "opinion" threads. It

was evident that people unanimously wanted a working version of our interface to use as

soon as possible, with those involved in regular use of threaded discussion expressing

extreme interest. We feel we have been successful in our primary goal, demonstrating

that further research and development in this area is worth doing.

We have also received some feedback as to what could be done differently, both

in the data we chose to represent, and the manner in which we chose to represent it. In

Levels One and Two, some people felt that the attributes we chose to visualize, while

70

interesting and valuable to them, were limited in scope, and perhaps should allow the

users flexibility in choosing attributes visualized. This was not a problem in level three,

however, since the design already allowed for viewing of alternate data. Also, some

people felt as if Level One should have had a greater number of possible symbols to

represent a more variety of discussion thread states. The choice of symbols in Level Two

was also occasionally questioned. This was partially expected, because we had decided

that the importance of ease of use should surpass ease of learning at this level. We knew

the design would be slightly less intuitive for this reason, and also because it presented a

large amount of unfamiliar meta-data. However, even viewers who experienced the Level

Two interface repeated times felt that it was difficult to determine which of the attributes

represented were more important data than the rest - it was unclear whether the outermost

or innermost elements were more essential. The choice of representation in Level Three

was the most intuitive to everyone, perhaps because it uses the familiar link-node map

structure which most people have been exposed to before, in other contexts.

In our implementation we demonstrated that Director has great potential as a

multimedia browser tool for dynamic data - Director is often used for interacting with

static data, and its capability of handling dynamic data was unknown. It not only

provided popular visual effects that would be difficult to code from scratch, such as

background transparency and fades, but it also provided a browser-independent,

relatively compact, multimedia format, dynamically downloadable from the web. Its

programmability effectively hooked into the network and retrieved data from an outside

source of discussion data. Thus it showed that further exploration of Director similar

multimedia software, such as Flash, would be worthwhile.

71

However, Director also had some problems which needed further investigation, or

perhaps some changes to its current capabilities. Among these were performance, which

was rather slow for any substantial amount of data. This was due not only to slow

network access, but also to the amount of time required to parse and display the data.

Some of the functionality listed in the help documents for the XML Parser Xtra did not

work, and made XML parsing slower and more cumbersome than necessary. There was

also a problem with the creation of new sprites during run-time, which caused the screen

to flash. Hopefully, as the functionality of Director continues to expand in upcoming

versions, some of these side effects will be eliminated, or easier to bypass.

5.2 Related Work

There has been other work which visualizes social interactions on the web,

including online discussion forums. This includes the work done by Danyel Fisher at the

Department of Computer Science in Berkeley, California [6]. Fisher's work focuses on

discussion databases as a medium for creation of interesting social networks, and his

work aims to visualize these networks. Warren Sack of the MIT Media Laboratory also

visualizes discussion thread;, his work focuses on representations of discussion database

social networks and semantic processing of natural language[7]. The existing work which

is most closely related to ours is the project WebFan, created by Rebecca Xiong, also at

MIT [8]. Her work visualizes threaded discussions, but rather than focusing on efficiency

of use, her work allows investigation of social interactions, such as how one determines

who is an expert in a on-line community. Other similar work has also been done in the

72

Sociable Media Group at the MIT Media Laboratory, such as Loom, under Judith Donath

[9]. The loom project visualized the tone of conversation as a thread progressed,

indicating where comments were supportive or contradictory to the thread topic. Some

other projects of the Social Media Group attempt to visualize synchronous chat

interactions, rather than the asynchronous discussion forums. This body of existing work

contains interesting visualizations of social interactions, as well as some retrieval of

additional data, such as keyword trends. However, we have uniquely chosen to focus on

helping users handle information overload, and reach the information they are looking for

more effectively.

5.3 Future Directions

As stated earlier, the scope of our project was potentially overwhelming. As a

result, there is much work to be continued in this area.

The idioms of expression and interactions which we have created can be fine-

tuned and redesigned further, an exploration which could go on indefinitely. It would also

be possible to experiment with other interaction techniques, such as true zooming, and

expand our designs to include tools for posting as well as the ones we have proposed for

viewing. Since our implementation focused on only part of our design, we did not take

advantage of some additional features of our tools, which could be utilized to provide

additional features to our prototype. This includes functions such as the postNetText

command in Director, which allows data to be sent back to the database. There are also

different implementation tools, such as Flash, which could be explored as alternatives to

73

our current choices. In addition, we have not experimented with different or new types of

meta-data in the back-end, and entire projects could be based on the work needed to

create discussion databases which collect and store all of the meta-data we have

suggested.

A goal of our project was to create representations which would effectively

represent the average discussion data which exists on the web, but visualizations that

could also be tested against greater amounts of real data. Using the results of this testing,

both the representations and the interface could be further enhanced or redesigned to

withstand data extremes.

Finally, as with any visualization and interface, our proposed designs should

eventually undergo usability and user testing. Since we aimed help the users handle the

information overload available in discussion databases, user feedback is invaluable for

fine-tuning and optimizing our designs

5.4 Acknowledgements

This project would not have happened without my thesis advisor, Julie Dorsey,

who instructs the Visualization class which made me realize it would be possible to make

this work into a thesis. I would also like to send my sincere thanks to all of the staff at

Lotus Research for their support and contributions to this work, particularly Li Cabrera,

who went far beyond ensuring I had the computing means to do this work, and Steve

Rohall, for his technical guidance. I must also acknowledge my fellow intern, Hyun-Yeul

Lee of Carnegie Mellon University, for her enthusiasm, support, and input throughout the

74

design section of the project. Most of all, I cannot express nearly enough gratitude to Paul

Moody, my supervisor for this project, who has given me such incredible inspiration,

input, and guidance throughout this work.

75

References

1. Howe, Denis. The Free Online Dictionary of Computing, 1993.
http://wombat.doc.ic.ac.uk/foldoc/index.html

2. Bederson, B. B. Stead, L., and Hollan, J. D. Pad++: Advances in Multiscale
Interfaces, Proceedings of ACM Human Factors in Computing Systems Conference
Companion (CHI'94), 1994, pp. 315-316

3. Furnas, G.W. Generalized Fisheye views. In Human Factors in Computing Systems
CHI '86 Conference Proceedings, 1986, 16-23

4. Shneiderman, B. Dynamic Queries for Visual Information Seeking, IEEE Software,
Vol. 11, No. 6, 1994, pp. 70-77

5. Christopher Ahlberg and Ben Shneiderman. "Visual Information Seeking: Tight
Coupling of Dynamic Query Filters with Starfield Displays." In Human Factors in
Computing Systems: Proceedings of the CHI '94 Conference. New York: ACM, 1994.

6. Fisher, Danyel. Visualizing Social Newsgroup Interaction. 2000.

7. Sack, Warren. "Discourse Diagrams: Interface Design for Very Large-Scale
Conversations" to appear in the Proceedings of the Hawaii International Conference
on System Sciences, Persistent Conversations Track, Maui, HI, January 2000.

8. Xiong, Rebecca.WebFan. http://graphics.lcs.mit.edu/-becca/webfan/

9. Karahalios, Karrie. Loom. http://www.media.mit.edu/~kkarahal/loom/

76

